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CHAPTER 3

SEQUENTIAL SNAPPING AND
PATHWAYS IN A BIHOLEY

METAMATERIAL
1

3.1 Introduction and motivation

Bistable, hysteretic elements commonly occur in complex materials and
play a key role in the understanding of memory effects [16–18, 20, 21,
27, 28, 40, 42, 44–47, 49, 50, 56–58]. Intuitively, when cyclically driving a
complex system, one imagines these elements to undergo sequences of
flipping transitions associated with hopping between metastable states. To
understand these sequences, it is often possible to model these bistable
elements as hysterons: hysteretic elements which which flip their internal
state s from ’0’ to ’1’ when the local driving exceeds the upper switching
field ε+, and which flip from ’1’ to ’0’ when the driving falls below the lower
switching field ε− (Fig. 1a) [17, 21, 44, 46, 47, 49]. By specifying the values
of the switching fields of a collection of hysterons, and potentially their
interactions, one can determine the transitions between all collective states
S := {s1, s2, . . . }, and represent these in a transition graph (t-graph) which
takes the form of a directed (multi)graph [17, 18, 44–48]. The (topological)
organization of such t-graphs characterize the complex response of complex
media and in particular memory effects such as Return Point Memory

1A version of this chapter was published as [56].
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SEQUENTIAL SNAPPING AND PATHWAYS IN A BIHOLEY METAMATERIAL

(RPM), transient memories, and subharmonic response [17, 44–48, 50, 57–
60].

Controlling, characterizing and manipulating such hysterons is challenging
in disordered systems such as crumpled sheets and amorphous media
[18, 40, 61–65]. Here we propose instead to leverage the design freedom of
mechanical metamaterials to embed hysterons into a flexible metamaterial
[1, 16, 20, 27, 28, 42, 66]. This allows to control and tune their switching
fields and to directly observe the sequences of hysteron flipping that con-
stitute the deformation pathways and yield the t-graph. Developing such
metamaterial platforms is an important step towards achieving materials
with deformation pathways on demand [4, 67], with targeted memory
properties and specific responses to cyclical driving, and with advanced
pathways that include elementary computations. Moreover, such metama-
terials allow to explore generality and robustness of the hysteron picture,
and to more closely explore the material properties (e.g. sensitivity to
boundary conditions) of multistable materials. Finally, metamaterials allow
to explore the interactions between non-discrete degrees of freedom, for
example given by visco-plastic relaxation and solid-on-solid friction, which
may lead to additional timescales and continuous degrees of freedom not
considered in simple hysteron models [40].

Here we introduce a simple metamaterial platform in which mechanical
hysterons with controllable switching fields can be embedded. We start
from the well-known biholar metamaterials, which translate global uniaxial
compression to local rotation and compression [2, 3, 30]. We then leverage
the hysteretic snapping of beams between left- and right buckled states
to locally replace slender elements of the metamaterial by hybrid pusher-
beam elements[1, 16, 19, 20, 27, 28, 42]. We show that tuning their design
parameters allows to access qualitatively different pathways. Moreover,
we use gradients in the boundary conditions to independently tune the ef-
fective switching fields of the hysterons, thus obtaining multiple pathways
from a single sample [18]. Finally, we show how subtle frictional effects
allow to slowly evolve the switching fields, giving rise to a history depen-
dent response beyond that captured by simple hysteron models. Together,
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3.2. PHENOMENOLOGY

our work opens new directions for the experimental study and control of
multistable materials.

3.2 Phenomenology

The biholey design consists of alternating smaller and larger holes, sep-
arated by precurved, hourglass-shaped beams which are connected in
groups of four in diamond shaped islands (Fig. 3.2 (a)) [2, 3, 11, 30, 34–39]
(see Section 1.3). Under vertical compression, the biholey metamaterial
forms a pattern of alternating horizontal and vertical ellipse, and the dia-
mond shaped islands exhibit counter-rotating motion [2, 3, 11, 30, 34–39].

What if we replace an hourglass shaped beam with a slender beam that
curved to the opposite direction to the hourglass shaped beam? As we have
shown in Chapter 2, for appropriate designs this ’defect’ beam can undergo
a snap transition. In this section, we investigate the possible behavior of
multiple slender defect beams in a biholey metamaterial experimentally.

To investigate the snapping (or unsnapping) behavior, each defect, which
act as as hysteron (Section 3.4), is composed of a defect beam with curvature
opposite to that expected in the biholar design, and a set of pushers. This
design ensures that under compression the defect beam will be pushed
by these pushers from its initially curved state to a snapped, oppositely
curved state. Such pushers are not strictly necessary (Chapter 2), but
facilitate robust snapping in experiment. Under decompression, the defect
beam then snaps back to its initially curved state. We label the unsnapped
and snapped states of the defect beam as ’s = 0’ and ’s = 1’, to stress
that the defect beam acts as a mechanical hysteron [18, 58]. We track the
compressive strain (Section 1.2), ε, and follow the evolution of s. Fig. 3.1
shows an example of the evolution of the hysterons in a sample under cyclic
compression. From left to the right, we label the hysterons as 1, 2, and 3.
The collective state, S, is characterized by all the states of the hysterons
{s1, s2, s3}.
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SEQUENTIAL SNAPPING AND PATHWAYS IN A BIHOLEY METAMATERIAL

Fig. 3.1 (a) shows the initial state of the sample (ε = 0) where all defect
beams are in their unsnapped state, i.e. curving to the left. As the strain
increases, the defect beams initially curve more to the left. However, the
overall deformation and local rotations inside the biholar metamaterial
are incompatible with the deformations of the defect beams, and the two
end points of these beams in fact rotate counter to the bending of the
defect beams. Hence frustration builds up, and the hysterons are prone
to snapping. To facilitate this further, we have inserted "pushers" into the
sample, that make contact with the defect beams and push them towards
snapping (Chapter 2). The middle beam, beam 2, first snaps at ε = 0.237 ±
0.0022, as shown in Fig. 3.1 (b), and we get a new state {010}. By continuing
compressing the sample, the beam 1 snaps when ε ≥ 0.270 and we get the
new state {110}. When ε ≥ 0.289, beam 3 snaps and we reach the new state
{111}.

Next we slowly decompress the sample to see the unsnapping behavior
of the beams. For this sample, the beams unsnaps in the same sequence
as snap: first beam 2, next beam 1 and then beam 3. We will refer to
the snapping and unsnapping strains of each beam i as ε+i for snapping,
and ε−i for unsnapping – if needed, we also will give the state before the
(un)snapping event. As an example, instead of ε111→101, we write ε−2 (111).
We get the unsnapping strain: ε−2 (111) = 0.047, ε−1 (101) = 0.043, ε−3 (001) =
0.029.

There are many factors affect the ε+ and ε− of the multi beam system. We
note that the beams do not snap together; and that for each beam, ε+ always
larger than ε−. In the following sections, we will investigate the sequences
of snapping and unsnapping events, which we call it pathway, in such
systems. Our goal is to obtain samples with more complex pathways –
for example, with different orderings for the snapping and unsnapping
sequences – and to find design rules to control these sequences. The outline
of this chapter is as follows. In section 3.3, we show the geometry of the
sample and the method we used to study the (un)snapping behavior. In
section 3.4, we investigate the snapping behavior of a single hysteron and
the method to tune the (un)snapping strains. In section 3.5 and section 3.6,

2The error bar, 0.002, is govered by our frame rate (2 fps).
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3.3. GEOMETRY AND APPROACH

we discuss the transition pathways and the method to tune the pathways.
In section 3.7, we show memory effects in our system, characterized by
the ability of details of the driving history, such as the number of driving
cycles, to influence the pathways.

FIGURE 3.1: Evolution of the defect hysterons in a biholey sample under cyclic
compression. In the zoom-ins, we show the hysterons 1, 2 and 3 (from left to right),
with the color highlighting their state: blue denotes the unsnapped state s = 0,
red denotes the snapped state s = 1. Corresponding strains and the states of the
sample shown in (a - e) are as follows: (a) ε = 0, S = {000}; (b) ε = 0.237, S = {010};
(c) ε = 0.270, S = {110}; (d) ε = 0.289, S = {111}; (e) ε = 0.047, S = {101}. For
more, see Appendix.

3.3 Geometry and approach

In this Section, we introduce the geometry and experimental method that
we use to study the biholey system. In the sub-section 3.3.1, we introduce
the optimized geometry design comparing to Chapter 2. In the sub-section
3.3.2 and sub-section 3.3.3, we introduce the methods of experimentation
and data processing.
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FIGURE 3.2: Quasi-2D biholey metamaterial of height H = 50 mm, width W = 100
mm and thickness T = 18 mm. The hole pattern has pitch P = 10 mm, the
holes have diameters D1 = 11 mm and D2 = 7 mm. Zoom-in: geometry of
the defect beam (not to scale). Here, L = 6 mm, and we fix the dimensionless
radius of curvature r := R/L = 0.8, dimensionless thickness t := tb/L = 0.13,
and dimensionless location u := u1−u2

u1+u2
= 0. The pushers are characterized by

{g, A, wt, wb, h := hD/L} = {0.7 mm, 60°, 0.3 mm, 1.6 mm, 0.28 }.

3.3.1 Geometry

To control the pattern transformation of the metamaterial, we embed a hys-
teron in the biholey metamaterial. We focus here on biholey metamaterials
consisting of 9× 5 holes. We use thick samples (T = 18 mm) to prevent
out-of-plane buckling. To control ε± more efficiently, we design a pair of
pushers in the mechanical hysterons. The properties of the mechanical
hysterons depend on the design of both the defect beam and the triangular
pushers, as well as on its location in the metamaterial (Fig. 3.2). The pushers
are characterized by the angle A, the width of their bases wt and wb, their
dimensionless height h := hD/L, and the gap g between pusher and beam.
Based on exploratory experiments and finite element simulations, we fix
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3.3. GEOMETRY AND APPROACH

the biholey array parameters {P, D1, D2} = {10mm, 11mm, 7mm}, fix the
beam parameters {L, r, t} = {6mm, 0.8, 0.13}, fix the pusher parameters
{g, A, wt, wb} = {0.7mm, 60°, 0.3mm, 1.6mm}, and vary the dimensionless
pusher height h and horizontal beam location u.

3.3.2 Experimental Procedure

We create our samples by 3D printing molds, and filling these with a two-
component elastomer (Zhermack Elite Double 8, E ≈ 220 kPa, ν ≈ 0.5). We
place our sample in dual column Instron 5965 uniaxial compression device
(resolution better than 4 µm) and measure the compressive forces (using
a 100 N load cell yielding a resolution better than 0.5 mN) during cycling
loading between compressive strains εm and εM.

FIGURE 3.3: (a) An example of image analysis, where the images have enhanced
contrast. and δ is a difference between two samples. (b) An example of cyclical
loading process, where ∆N denotes the driving sweeps.

The sample is clamped between the ground plate and top plate. The bottom
plate can be tilted by |α| < ± 0.5°. To allow the sample to relax, we do not
fix the top plate to the sample. To choose the compression where ε = 0, we
use a linear fit to force vs compression curves for ε in the range between 0.1
and 0.4.
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We apply cyclic loading using a (de)compression rate of 0.2 mm/sec, which
leads to nearly quasistatic behavior — much faster rates lead to inertial
effects, while much lower rates lead to creep effects. We obtain the strain,
ε := Ey/H and stress, σ := F/(WT) of the sample from the displacement
sensor and the force sensor, where Ey denotes the displacement of the top
surface of the sample, and F is the compressive force.

We monitor the compressive force and in parallel use video imaging to cap-
ture the sample deformations as function of strain, using a Basler asA2040-
25gm/gc CMOS camera (2048 × 2048 pixels, framerate 2 fps). To detect
snapping events, we use difference imaging where the difference, δ, is
defined as

δk = ∑
i,j
(Ik+1(i, j)− Ik(i, j))2 , (3.1)

where Ik(i, j) denotes the pixel array of frame k, as shown in Fig. 3.3 (a). To
normalize these differences, we use ∆:

∆ = ∆k + ∆N = δk
<δk>

+ ∆N , (3.2)

where < δ > denotes the mean; ∆N is the number of experimental loading
steps, as show in Fig. 3.3 (b).

3.3.3 Onset fitting

When we start the experiment, the compression plate is a few millimeters
away from the sample. To obtain a consistent definition of ε, we determine
the onset point of compression by following the linear initial growth part
of the stress - strain curve.

We first read the raw data in the compression process and using the Python
package, scipy.interpolate.UnivariateSpline, to reduce the noise in the origi-
nal data. Then we read a part of the initial growth part, where the stress
is in the range 0.1 kPa < σ < 0.35 kPa. Next we use the Python package
scipy.optimize.curve_fit to fit the initial growth part to a line: σ = au + u0,
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where a is the slope of the line and u0 is the onset point of compression,
as shown by the black line in Fig. 3.4. In the following sections, the ε− σ
curve we show is the processed curve, where ε = u−u0

H , as shown by the
red curve in Fig. 3.4. We note that the value of ε < 0 does not imply that the
sample is stretched, but rather that the compression plate does not reach
the onset point of compression. In particular, for tilted samples, we also
manually set the starting point of compression based on the linear fitting
method.

Fitted
Raw

FIGURE 3.4: An example of onset fitting, where the sample is shown in Fig. 3.5.
The dotted line denotes the line: ’σ = 0’; the black line denotes the fitted line. For
detail, see text.

3.4 (Un)snapping in biholey metamaterial

To facilitate snapping behavior, we have inserted "pushers" into the sample
that push the defect beam under compression (Fig. 3.5a). We now focus on
the behavior of a single mechanical hysteron.

We apply cyclic loading under compression by a strain ε . 0.18, the defect
beam shown in Fig. 3.5a will initially bend left. In contrast, the rotation
of the diamond shaped islands makes the tips of the pushers move right,
so that they eventually come into contact with the defect beam. Further
compression then causes a hysteretic transition of the defect beam into a
right-snapped state at ε+ = 0.18. To detect this transition we use difference
imaging, which is sensitive to sudden motions, and define ∆ as normalized
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(b)
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FIGURE 3.5: (a) Example of the evolution of the defect beam geometry under
cyclic compression for the sample in Fig. 3.2, showing the pushers getting into
contact of the beam and initiating a snapping toward the right. (b) Stress σ, image
differences ∆, and hysteron state s as a function of strain ε for the sample in (b).
Note that the image differences for compression and decompression are offset
by one for visibility. (c) and (d) Critical switching strains ε± as a function of the
dimensionless pusher height h and beam position u. We have performed three
independent runs on two samples and calculated our error bar based on these six
datasets.

difference of the snapshots of the defect snappers (see Eq. 3.2). We note that
the snapping behavior, visible as a small but sharp drop in the compressive
stress σ, can be seen very clearly in the image differences, and indicates that
the hysteron state, s, switches from 0 to 1, as shown by the orange curve in
Fig. 3.5b. Under decompression, the defect beam then snaps back to its left
curved state at ε− = 0.13, which can be seen in both the stress signal and
the image differences (note that we have offset the image differences of the
downsweep for clarity). We note that the ε+ is larger than ε−, so that there
is a bistable region, as expected for a hysteretic transition (Fig. 3.5 b).

We can modify the characteristic (un)snapping strains, ε±, by modifying
the design of the snappers, and focus on the role of the height of the pusher
h and beam position u. We observe that ε+ increases for lower heights h
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3.5. TRANSITION PATHWAYS AND STATES

— more compression is needed to induce a snapping event with smaller
pushers — whereas ε− is essentially independent of h — which makes
sense, as before unsnapping, the defect beam and pusher are not in contact
(Fig. 3.5(c)). We note that our numerical results show a discontinuity for
h ∼ 0.32 — here the pushers are so high that two opposing pusher come
into contact, hinder rotation of the diamonds above and below the defect
beam, and delay the unsnapping transition. As a function of the relative
defect beam position u, we observe that ε+ is nearly constant, while ε−

increases with u (Fig. 3.5(d)). We interpret this trend as follows: due to
rotation of the diamonds, the effective distance between top and bottom
of the defect beam decreases when u is decreased; such defect beams are
thus more compressed, and unsnap for lower values of ε. Finally we
note that for extreme parameter choices, instead of snapping, the beam
undergoes smooth deformations and stops acting as a hysteron; this occurs
for example when u > 0.5. We conclude that the geometric parameters of
the snapping beam allow to tune the upper and lower switching fields ε±

of the corresponding hysteron.

3.5 Transition pathways and states

We now explore the transition pathways in a metamaterial with three
defect beams under cyclic compression (Fig. 3.6). We label the defects
beams as 1, 2, and 3 (left to right), their individual states as s1, s2 and s3,
and their collective state as S := {s1, s2, s3}. In the absence of interaction,
the pathways are determined by the relative ordering of the upper and
lower switching strains of each hysteron [45, 50], which we denote by ε±i ,
where the subscript i labels the switching hysteron; if there are interactions,
the situation can become more complex, and we denote the switching fields
as ε±i (S), where S is the state just before the transition [18, 44, 46, 47].

We first aim to design a metamaterial with the simplest possible pathway,
such that under compression we observe a pathway {000} → {001} →
{011}→{111}, and we visit the same states in opposite order under de-
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compression. Assuming that interactions can be ignored, this requires
ε+1 > ε+2 > ε+3 and ε−1 > ε−2 > ε−3 [44, 46, 47]. We thus chose design parame-
ters for our hysterons consistent with this ordering — the upper switching
fields are mostly controlled by h and decrease for increasing h (Fig. 3.5c),
and we choose dimensionless heights {h1, h2, h3} = {0.23, 0.28, 0.33}; the
lower switching fields are mostly controlled by u and increase with u, and
we chose {u1, u2, u3} = {0.2, 0,−0.1}. We refer to this as sample ’A’.

FIGURE 3.6: Robust pathways in sample A. (a) Sketch of the sample with three
defects labeled 1, 2 and 3 respectively. (b) Snapshots of the defect beams during a
compression/decompression cycle, showing the distinct states. (c) The transition
graph of the sample A. (d) The switching fields ε± A ordered from large to small.

Performing cyclic compression and decompression, we observe the targeted
pathway in sample A (Fig. 3.6(b)). We can collect the states and their
transitions in a very simple transition graph (t-graph), where we denote the
different states as nodes, and the ’up’ transitions under compression, and
’down’ transitions under decompression by red and blue arrows (Fig. 3.6(c))
[17, 44, 45, 48, 50]. Finally, each transition is associated with a specific value
of the compression strain. We denote these as ε±i (S), where the superscript
± denotes up or down transitions, the subscript i the label of the switching
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3.6. TUNING PATHWAYS BY TILTING

hysteron, and S the initial state, just before the transition, and show these
in Fig. 3.6(d). We note that although ε−3 (111) ≈ 0.154 and ε−2 (110) ≈ 0.149
are quite close, the ordering of the switching fields is consistent with our
targeted ordering, and our observed pathway is robust.

3.6 Tuning pathways by tilting

α
y

x

(a) (b)

(c)

(d)

-0.72

iv i ii iii iv

0.14 1.00 3.01 α(°)

ε = 0.30ε = 0.00

iv i ii iii iv iv i ii iii iv

FIGURE 3.7: Tuning pathways by tilting. (a) Sketch of a sample where the bottom
boundary is tilted over an angle α. (b) Snapshots of the sample A tilted by α = 1.7°
at strains as indicated; notice the emergence of shear in the inset of the right panel.
(c) As function of α, we observe three distinct pathways; gray dots indicate tilt
angles where we determined the pathways, and the boundaries are estimated by
bisection. (d) Corresponding critical switching fields as function of α and state S.
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Spatial gradients in the driving can modify the relation between local and
global driving magnitude, and allow a relative shift of the switching fields
of adjacent hysterons [18]. Here we use tilting of the bottom boundary
in our experiments to modify the transition pathways of a given sample
(Fig. 3.7a-b). To do so, we employ a bottom plate with an adjustable tilt
angle α (Fig. 3.7).

We have performed cyclic sweeps of the compression strain ε and deter-
mined the corresponding pathways and switching fields of sample A over
a range of tilt angles α (Fig. 3.7c-d). We observe three distinct pathways,
labeled i, ii and iii, in the range −0.57° ≤ α ≤ 2.86° (Fig. 3.7c). For tilt
angle outside this range (which we label regime ’iv’) one or more of the
defect beams no longer exhibit sharp snapping transitions, but instead
smoothly deform. Hence, they do not act as hysterons. We can detect
this loss of sharp transitions and hysteresis by the absence of sharp peaks
in the image differences, ∆, and attribute it to the increasing presence of
shear deformations when |α| is large — for more discussion on shear, see
below. We note that all three t-graphs are of the Preisach type, meaning
that there are no avalanches, and that the sequence of hysterons switches
is state independent [44, 45, 50]. In particular we note that for all path-
ways, the snapping sequence is the same: first hysteron 3 flips 0 → 1,
then hysteron 2, and finally hysteron 1, yielding a sequence of states S:
{000} → {001} → {011} → {111}. However, decompressing from state
{111}, we observe different unsnapping sequences in regime i, ii and iii
(Fig. 3.7c). We note that while in regime i, a single sweep allows to deter-
mine all transitions, in regime ii and iii additional driving cycles are needed
to establish all transitions.

In each pathway, we have determined the values of the switching fields,
and plot these as function of α (Fig. 3.7d). We find that the critical switching
fields of a given hysteron vary smoothly with α, and that the ordering of
the upper switching fields ε+i remains the same in regime i-iii, as expected.
Hence, the ordering of the switching fields is consistent with the existence
of the three pathways shown in Fig. 3.7c. Moreover, the lower switching
fields ε−i cross at the boundaries between regime’s i-iii. Here, two hysterons
change state at the same strain, which could look like an avalanche. How-
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3.6. TUNING PATHWAYS BY TILTING

ever, we notice that such “avalanches” are not robust to small changes in
the tilt angle, and thus can be seen as degeneracies [18].

We note that the broad trends in the variation of the switching fields can be
understood geometrically: in lowest order one expects an increase in α to
increase the switching fields of hysteron 1, and lower those of hysteron 3.
Moreover, the actual trends are more complex, due to the increasing role
of shear (see right panel Fig. 3.7b) that becomes coupled to compression
for α 6= 0, and which we have observed to have a strong impact on the
hysterons. Moreover, we also note that the sample is prone to global
buckling, which breaks left-right symmetry, and that tilting couples to this
instability and leads to shearing in the center region, which affects the
behavior of the beams in each hysteron.

We measured the switching field for a given hysteron starting from two
distinct states (e.g., ε+2 (001) and ε+2 (101)) in regimes ii and iii, and these
give insight into the presence of hysteron interactions. In the absence of
hysteron interactions, the switching fields for a given hysteron should be
state independent; the small but systematic deviation between ε+2 (001) and
ε+2 (101) indicates the presence of hysteron interactions, which however do
not lead to t-graphs that are more complex than Preisach graphs (Fig. 3.7d)
[44, 45, 50].

We conclude that tilting of one of the boundaries allows to elicit multiple
pathways from a single sample, and that the variation of the individual
switching fields both gives an interpretation to the emergences of these
pathways, as well as an experimental too to probe hysteron interactions.
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FIGURE 3.8: Snapping in sample B and additional degree of freedom. (a) The
traces of the image difference ∆ for multiple driving cycles where we increase the
minimal compression εm as 0.019, 0.039, 0.059, 0.079, 0.099, 0.119 (traces offset for
clarity). Here α = 0.57°. The location of the spikes on the upsweeps indicates the
values of ε+i , and we observe the variation of ε+1 and ε+2 in later cycles. The labels
F1− F6 indicate the strains and sweeps where we took snapshots (insets). The
figures F3− F1 and F4− F1 are difference images, which confirm that while F1
and F3 are nearly identical, F1 and F4 are distinct. (b) Image differences for α =
-0.29° shows a weaker evolution of the switching fields ε+1 and ε+2 . (c-d) Sample B,
now covered in powder to reduce friction and sticking, and α = 0.57°. Slow sweeps
of εm evidence the presence of two critical compressions, εa and εb (c), while
repeated driving at low and high values of εm evidences the absence of plasticity,
and the presence of an additional degree of freedom with complex dynamics (d).
For details, see text.
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3.7 Non-hysteron degrees of freedom

For a system to be described as a collection of (interacting) hysterons,
the switching fields can only depend on the current collective state, but
not on other aspects of the driving history [44, 46, 47]. However, many
materials when driven repeatedly can evolve in different manners, for
example as they suffer from fatigue and plastic aging or exhibit visco-elastic
effects [14, 21, 40, 65, 68, 69]. The presence of such additional degrees of
freedom can for example be seen in the pathways of crumpled sheets that
are cyclically driven [40]. As we show below, our samples also feature such
additional degrees of freedom, with the relative simplicity of our system
allowing us to control, reset and understand these effects.

We probe the presence of additional degrees of freedom by cyclic driv-
ing protocols, where we vary the minimum strain, εm over time, while
probing the switching of each hysteron by monitoring the image differ-
ences. To visualize potentially slow evolution, we plot the traces of ∆
as function of strain, offsetting each up and down sweep by one, as in
Fig. 3.5b. We introduce a new sample B, with {u1, u2, u3, h1, h2, h3} =
{0.2, 0,−0.1, 0.333, 0.300, 0.267}, i.e., with the same values of ui as sample
A, but different values of hi. The larger values of h means pushers come
into contact at lower strains than in sample A, which leads to the emergence
of an additional frictional degree of freedom. Indeed, sample B is prone to
deviations from purely hysteron-driven behavior, and we study it now in
detail.

A first example of such a sweep is shown in Fig. 3.8a. Here we increase εm

while keeping the maximum strain εM constant. We can clearly observe
evolution of the upper switching fields ε+1 and ε+2 , which are lowered in
later cycles, and which even interchange their ordering. We stress that this
happens in cycles where εm is low enough so that we return to state {000};
hence the evolution of ε+1 and ε+2 goes beyond simple hysteron interactions,
and evidences additional degrees of freedom.
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A closer inspection of the traces shows that the peak in ∆ corresponding to
the switching of hysteron 2 splits in two peaks — hence instead of a single
snapping event, the beam undergoes two discontinuous deformations at
two nearby yet distinct values of ε. To see this in more detail, we have
monitored the configuration of beam 2 at given fixed ε = 0.181 at various
sweeps (Fig. 3.8a inset). These show a clear snapping in the first sweep
(frames F1, F2), and that the state of the beam in the second and first up
sweep (F1, F3) are very close, as further evidenced by the absence of a clear
signal in the image difference (F1-F3). However, the state of the beam on
the upsweep at ε = 0.039 slowly evolves when the sweeps are repeated,
and indeed F4 is visibly different from F1, as clearly evidenced in their
image difference. In particular, we notice the emergence of shear: while the
top and bottom pusher are vertically aligned in the first sweep (F1), after
a few sweeps we observe misalignment and shear (F4). We find that the
snapping of such a sheared beam breaks up in two events (F5 and F6), as
also evidenced by the splitting of the relevant peak of ∆ in two separate
peaks. We believe that this shear is the main driving force between the shift
of ε+1 and ε+2 that occurs long before such splitting occurs. Consistent with
this, experiments performed at a lesser tilt angle show a similar but weaker
evolution of the switching fields (Fig. 3.8b).

We now investigate whether shearing is slaved to the amount of compres-
sion, and potentially the hysteron state, or whether it represents (a set
of) independent degrees of freedom. Moreover, we will disentangle the
role of visco-plastic effects, friction and stickyness. To control the latter,
we cover the samples in (baby) powder, which virtually eliminates stick-
ing and lowers the friction, and subject the sample to a large number of
sweeps with slowly varying εm (Fig. 3.8c). The behavior of the sample
depends sensitively on the value of εm, and we define two critical values,
εa = 0.11± 0.01 ≈ ε−3 and a smaller value εb = 0.08± 0.01, where the
errorbar is caused by the increment of εm (Fig. 3.8c). The first striking
observation is that the evolution of ε+1 and ε+2 is virtually absent for sweeps
where εm < εa. This suggests that visco-plastic effects are not the sole or
main driving force, and that lowering the stickyness and friction is impor-
tant. Then, when εm is increased beyond εa, we observe a rapid change in
the switching fields ε+1 and ε+2 , which eventually cross, after which the peak
for hysteron 2 splits into two peaks, as shown before in Fig. 3.8a. One could
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easily interpret the shifting of the switching fields as hysteron interactions,
as when εm > εa ≈ ε−3 , the system does not relax to state {000} but instead
is in state {001} when hysteron 1 and 2 flip from zero to one. However,
the situation is more complex. First, the switching fields ε+1 and ε+2 evolve
with the number of sweeps, without further changes in the hysteron states.
Most strikingly, when we lower εm again, the evolution of ε+1 and ε+2 from
their ’baselevel’ only stops when εm = εb < ε−3 , and indeed continues for
a few sweeps where the system periodically returns to its {000} state at
εm. Hence, the evolution of the switching fields ε+1 and ε+2 evidences the
presence of an additional degree of freedom, rather than direct hysteron
interactions.

To clarify further that the shift of the switching fields is not visco-plastic
and not a direct function of the hysteron states, we perform additional
experiments where we, in succession, perform one sweep where εm = 0,
so that the system can relax, and four sweeps where εm = 0.099 < ε−3 , so
that the system is driven nonlinearly but always resets to state {000} at
minimum driving. We clearly observe a different behavior of the switching
fields: in the latter cycles, the peak of hysteron 2 has split and lies below
that of hysteron 1, whereas in the former, the single peak of hysteron 2
lies above that of hysteron 1. Repeating these cycles evidences very little
additional evolution; the behavior of the hysterons depends on εm, but not
on the deeper history of the sample.

Based on the data in Fig. 3.8, we interpret the existence of non-hysteron
degrees of freedom as follows. First, without powder, friction forces and ad-
hesive forces introduce memory dependent contact forces between beams
and pushers. For moderate εm these contacts, which break left-right sym-
metry, drive the persistent emergence of shear in the sample, as seen in
the snapshots in Fig. 3.8a, which modify the switching fields and snapping
behavior. When εm is small enough, all such contacts are broken, the shear
is eliminated and the sample relaxes. For powdered samples, stickiness and
friction are reduced, and the attractive and frictional forces between beam
and pusher are much reduced, leading to a larger range of εm where the
switching fields are independent of εm. However, for sufficiently large εm,
opposing pushers come into contact and stay in contact over a substantial
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part of the sweep, with their contacts acting as a frictional memory that
directly couples to shear. Hence, in this case the switching fields ε+1 and
ε+2 depend on εm (Fig. 3.8c-d). We note that different designs might be
explored to minimize such ’memory within memory’ effects. However, in
many physical systems one would expect additional degrees of freedom
to play a role, and so we consider our specific example of the coupling
between a friction/shear degree of freedom and the hysterons to provide a
testing ground for investigating such effects.

Finally, we consider how to describe this additional memory effect. We
distinguish between two aspects. First, depending on the driving history,
and in particular the value of εm with respect to εa and εb, we find that
either the switching fields ε+1 and ε+2 are constant, or start to slowly evolve.
Hence our data evidences the presence of a ’metabit’; when it is in state
’0’, ε+1 and ε+2 are constants, when it is in state ’1’, ε+1 and ε+2 continuously
evolve with εm, in a manner which is beyond a hysteron description as it
requires a continuous degree of freedom.

We now focus on finding a minimal model for the switching on and off of
this metabit. We summarize the key features of our data in Fig. 3.9a, which
summarizes our observations of the on (M = 1) or off (M = 0) state of the
metabit for a sequence of five driving cycles (1)-(5). First, we note that our
data can only detect a sensitivity to the value of M during upward sweeps
of ε in the range of ε+1 and ε+2 , which we take as εM

1 ≤ ε ≤ εM
2 (indicated

with a thick bar). Second, we note that a single bit-like degree of freedom
is not sufficient to describe the evolution of M: both εa and εb must play a
role, but we see that for ε larger than both εa and εb, M can be both zero or
one. In other words, since a single sweep is not sufficient to reach M = 1
— rather, we need to sweep up, sweep down, and then sweep up again -
capturing the evolution of the metabit requires more than a single binary
degree of freedom.

We now show that our data is consistent with the scenario sketched in
Fig. 3.9b, where we use four additional states {S̃} = {A, B, C, D}, where
M = 1 in state C and D. We stress that these states are independent from
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FIGURE 3.9: (a) Scenario for the switching on and off of the modifying state M.
The value of M in the range εM

1 < ε < εM
2 (bold) is indicated for upsweep (1)-(5).

(b) Tentative state diagram for additional degrees of freedom beyond hysteron 1-3.
The system starts out in state A, and only after a sequence of up, down and up
transitions, the system can reach the modifying state D, which leads to changes in
the switching fields of hysterons 1 and 2.

the state of the hysterons 1, 2 and 3. The initial state A has M = 0, and
this is where the system returns for small ε. The transition from state A
to B at εX needs to happen on the up-sweep. We assume that state B has
M = 0, which requires εX > εM

2 (otherwise M could be one in the relevant
region for all upsweeps). We then assume that there is a transition from
state B to state C with M = 1 on the down sweep at εY, which implies
that εa < εY < εX. We stress that while in this scenario M = 1 on (part
of) the down sweeps, this does not modify ε+1 and ε+2 , which only play a
role on the upsweeps. Now two things can happen: if ε falls below εa, the
system resets and returns to state A (sweep 2); but if ε remains above εa,
state C must switch to a state D with M = 1, with state D only resetting
back to state A for ε < εb. Hence, εZ > εY. Following the transitions, we
find that M = 1 on sweeps 3 and 4, and only resets to M = 0 on sweep 5,
as required. Hence, the presence of two distinct state C and D which have
M = 1 encode the observed scenario (Fig. 3.9).
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To clarify the connection of states A− D with the presence of the metabit
M, we can also denote them as 0, 0̄, 1, and 1̄ respectively; both states 1 and
1̄ have M = 1, but they differ in the value of ε where they relax to state
A. We then can interpret the presence of the bar as an additional binary
switch, which shows that a combination of two binary degrees of freedom
is sufficient to describe the evolution of the metabit M with ε. We believe
that this is the simplest possible scenario consistent with our data, showing
the complexity of these memory effects.

3.8 Conclusion

In this chapter we have introduced a strategy to embed mechanical hys-
terons into a metamaterial, and studied the ensuing pathways under cyclic
compression. We showed how the hysteron properties and pathways can
be tuned by the geometric design of the hysterons, and how the pathways
of a given sample can be modified by tilting one of the boundaries. We
investigated beyond-hysteron degrees of freedom that modify the switch-
ing fields of the hysterons. Our work is a step towards rational design
of hysterons and pathways into metamaterials [4, 18, 44], and moreover
highlights the importance of additional degrees of freedom [40]. Further
work may extend these ideas into metamaterials where such additional
degrees of freedom can be controlled, suppressed or leveraged. Moreover,
we suggest that alternative designs of mechanical hysterons may allow to
tune their switching fields over a wider range. Finally, we are working on
methods to tune the interactions between hysterons, which can extend the
range of realizable pathways dramatically [44]. We hope our work will
inspire further studies on designer matter with targeted pathways.
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Appendix

In Section 3.4, we have tuned ε± by tuning the geometry of the hysteron.
Now we discuss a method to tune ε± without remaking the biholey meta-
material: in sub-section 3.A we discuss using needles in the sample, and
in sub-section 3.B we consider detachable samples that easily replace the
hysterons.

3.A Tuning ε± by additional pushers

In section 3.4, we showed that rubber pushers are able to modify the
snapping strain. Now we consider the method of altering the pushers
without re-making the sample. We notice that there is a gap between the
defect beam and the original rubber pusher. By inserting a needle in the
gap, the defect beam snaps earlier. In this section, we focus on additional
pushers made by steel needles with a diameter of Dadd = 1.0 mm, 1.5 mm
or 2.0 mm. We first show the function of the needle, and then discuss the
effect of the size of the needle.

To study how does the needle work on the defect beam, we used two
samples with different original pushers, as shown in Fig. 3.10 (a) and (b)
respectively. The snapshots of the samples with needles in the compression
(ε = 0.00, 0.05 and 0.15) and decompression (ε = 0.07) process are shown in
Fig. 3.10.

Fig. 3.10 (a) shows the role of the needles in a sample featured with a pair
of small original pushers and a big gap between original pusher and the
defect beam. In the compression process, the needle keeps pushing the
defect beam until the defect beam snaps (ε+ = 0.095). After snapping, the
needle does not push the defect beam anymore. In the decompression
process, the original pushers and needle do not push the defect beam
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before unsnapping (ε− = 0.074), since the gap is larger than the needle.
Therefore, with the help of the original pushers, the needle only influence
the snapping, and does not influence the unsnapping action. Fig. 3.10 (a)
shows ε± as a function of Dadd, and demonstrates that the needle greatly
reduces the snapping strain.

Fig. 3.10 (b) shows the role of the needles in a sample featured with a pair
of large original pushers and a small gap between original pusher and the
defect beam. We see that the needle contacts the defect beam all the time in
the crowded gap between the original pushers and the defect beam. There-
fore, the needle influences both the snapping and unsnapping behavior
of the defect beam. Sometimes, the defect beam cannot unsnap, but can
only bend back slowly in the decompression process. In the experiment,
whether the beam (un)snaps depend on how deep the needle is caught
by the valley between the defect beam and the original pusher. In the
Dadd − ε± plot in Fig. 3.10 (b), we see that both the snapping strain and
unsnapping strains influenced by the diameter of the needle. We observe
that the defect beam does not snap but bends slowly when Dadd = 2 mm.
Additionally, with Dadd = 1.5 mm, the bottom part of the defect beam is
pushed the right slightly before the sample is compressed.

From the above information, we found that additional pushers consisting
of needles mainly affect the snapping behavior and make ε+ smaller. But
in some cases, needles that are too thick prevent (un)snapping and make
the defect beam bend.
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0.00 0.05  0.07 0.15 0.00 0.05  0.07 0.15

(a) (b)

FIGURE 3.10: The role of needles for the snapping action. The samples (5 × 5) are
characterized by {P, D1, D2, L, r, t, u} = {10 mm, 10 mm, 7 mm, 6 mm, 1.2, 0.13, 0
}. (a) The snapshot (Dadd = 1.5 mm) and the ε± of the hysteron with the needle;
the pusher is characterized by {g, A, wt, wb, h} = {2.0 mm, 90°, 0.55 mm, 0.55 mm,
0.15}.(b) The snapshot (Dadd = 1.0 mm) and the ε± of the hysteron with the needle;
the pusher is characterized by {g, A, wt, wb, h} = {0.65 mm, 60°, 0 mm, 1.9 mm,
0.26}.

3.B Detachable hysterons and composite samples

Replaceable hysterons provide an alternating method to tune the (un)snapping
strain. By replacing the hysteron, we are able to tune the geometry of the
sample without having to recreate the homogeneous part of the sample.
So we considering the samples which consist of two parts, as shown in
Fig. 3.11. The inner part we use includes the hysteron and the holes next to
the hysteron, as shown in Fig. 3.11 (a). The outer part is the sample without
the inner part or parts, as shown in Fig. 3.11 (b).
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(a) (b)

FIGURE 3.11: An example of a detachable sample. The samples (5 × 5) are
characterized by {P, D1, D2, L, r, t, u, g, A, wt, wb, h} = {10 mm, 10 mm, 7 mm, 6
mm, 1.2, 0.13, 0, 0.65 mm, 90°, 0 mm, 1.9 mm, 0.26 }. (a) Inner part. (b) Outer part.

To make the composite sample, we use one outer part and two inner parts
with different original pushers, and the evolution of the inner parts under
compression are shown in Fig. 3.12. As shown as the snapshots in Fig. 3.12
(a), when the sample is uncompressed (ε = 0.0), the inner part and the outer
part contact each other closely. Under compression (ε = 0.1 and 0.2), the
defect beam firstly creases to the left and then snaps at ε+ = 0.127 with
the help of the pushers. In the decompression process, the defect beam
unsnaps at ε+ = 0.071. We note that, between the inner part and the outer
part, we see gaps near the corner of the inner part, but we do not see a gap
elsewhere. The gaps near the corner of the inner part increase as ε increases.
Similar to the original, simple block samples, a small pusher, h := 1.5, is
able to help the defect beam snaps at a small strain, but ε− is not affected
by the needle, as shown in the Dadd − ε plot in Fig. 3.12 (a).

Fig. 3.12 (b) shows the behavior of the composite sample with a larger
original pusher, h := 2.6. Similar to the simple block sample, the needle
contacts the defect beam before the pusher is compressed. The thick needles,
Dadd = 1.5 mm and 2.0 mm, push the defect beam from right to left in the
decompression process, as shown in the Dadd − ε plot in Fig. 3.12 (b). We
note that the hysteron shown in Fig. 3.12 (b) does not snap without a needle.
We observe a gap between the inner part and the outer part as the sample
is compressed, so the boundaries of the hysteron in a composite sample do
not rotate as much as in an simple block sample. As a result, even though
the geometry of the composite sample in Fig. 3.12 (b) is the same as the
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simple block sample shown in Fig. 3.10 (b), the hysteron in the composite
sample does not snap without an needle.

ε= 0.1 ε= 0.1ε= 0.2ε= 0.0

ε= 0.1 ε= 0.1ε= 0.2ε= 0.0

(b)

(a)

FIGURE 3.12: composite sample (5 × 5) with one defect beam which is character-
ized by {P, D1, D2, L, r, t, u} = {10 mm, 10 mm, 7 mm, 6 mm, 1.2, 0.13, 0 }. (a) The
snapshot (Dadd = 1.0 mm) and the ε± of the hysteron with the needle;; the pusher
is charactered by {g, A, wt, wb, h} = {1.7 mm, 90°, 0.5 mm, 0.5 mm, 0.15}.(b) The
snapshot (Dadd = 1.0 mm) and the ε± of the hysteron with the needle; the pusher
is charactered by {g, A, wt, wb, h} = {0.65 mm, 60°, 0 mm, 1.9 mm, 0.26}. There is
no plot for ε− at Dadd = 1.5 mm and 2.0 mm due to the beam bending instead of
snapping in the decompression process.
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