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CHAPTER 2

EMBEDDING A MECHANICAL
HYSTERON IN A BIHOLEY

METAMATERIAL

2.1 Motivation

Driven frustrated mechanical systems have shown complex intermittent be-
havior, featuring reversibly smooth deformations in meta-stable states and
sharp transitions between these states [1–3, 5, 16, 33, 40–43]. In mechanical
systems, these irreversible and hysteric transitions are often associated with
the snapping of local elements called hysterons [17, 18, 44–48]. When the
external driving strain passes the critical (un)snapping strain of a hysteron,
its state is modified. These hysterons can be thought of as mechanical bits
that can be in two states that we call 0 and 1 [17, 18, 44, 50, 51]. In this
chapter, we introduce a strategy to embed hysterons in a metamaterial.

Our strategy to obtain controlled hysterons is creating frustration [1–3, 5,
6, 52, 53]. For instance, introducing a defect [2, 3, 5, 6, 12, 41, 54, 55] in a
periodic structure may lead to frustration. External driving of a material
with such a defect may cause competition between the local deformation
and global deformation, and eventually causes bistability.
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EMBEDDING A MECHANICAL HYSTERON IN A BIHOLEY METAMATERIAL

Here we create bistable defects in a 2D biholey metamaterial. We note that
the deformations of a holey sheet, compressed in y-direction, causes the
bigger holes to become x-polarized ellipses [2, 3, 11, 30, 34–39] (Fig. 2.1).
The hourglass part between two holes, as shown in Fig. 2.1a, is an atypical
beam that bends to the right under compression. However, a beam initially
curving to the left will bend more to the left under compression. Here we
replace one hourglass-shaped part, which bends to the right in biholey
structure, with a defect beam initially curving to the left. The deformation
of this defect beam will be set by a competition between left and right
bending. We anticipate that when the sample is compressed, such defect
beam will either bend to the right, bend to the left, or show bistable states
including both bending and snapping.

In this chapter, we study all possible actions of such a defect beam in a
biholey metamaterial by varying its geometry. We first discuss the geometry
of the metamaterial with a defect beam in Section 2.2. Next, we discuss
the possible behaviors that we observe when varying the parameters of
the defect beam (Section 2.3). Then we discuss the appropriate design for
snapping action and how to tune the snapping and unsnapping strains
(Section 2.5). Finally, we discus the boundary conditions of the defect
(Section 2.4). Throughout this chapter, we focus on numerical simulations.
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FIGURE 2.1: Uncompressed and compressed structures, where the black arrows
denote the compression direction. (a) Detail of an biholey metamaterial under
compression. An hourglass shaped part between two holes is highlighted by gray.
We observe that the center of the hourglass shaped part (red dash line) bends to the
right under compression. (b) Schematic of a pre-curved beam under compression.
We observe that the beam bends to the left under compression.
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2.2. GEOMETRY AND APPROACH

2.2 Geometry and approach

2.2.1 Geometry
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FIGURE 2.2: Geometry of a quasi-2D biholey metamaterial with a defect beam,
which is characterized by its length L, radius of curvature R, thickness tb, and
location (u1, u2). Zoom-in: geometry of the defect beam.

To create frustration, we embed a defect in the biholey metamaterial, as
shown in Fig. 2.2. The biholar metamaterial with a defect beam features
a square array of alternating circular holes of diameter D1 and D2. We
focus here on biholey metamaterials consisting of 5× 5 holes. To ensure
homogenous loading, we extend the top and bottom parts by P/2; the
effective height of the sample, H, is defined as m× P, where P is the pitch
of the array and m = 5 is the number of holes in the vertical direction.
The defect beam is specified by the length L, its dimensionless radius of
curvature r := R/L, dimensionless thickness t := tb/L, and dimension-
less horizontal location u := u1−u2

u1+u2
, where the defect beam is closer to the

smaller (larger) holes when u > 0 (u < 0), as shown in Fig. 2.2. Based
on preliminary simulation results, we fix the holey array parameters as
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EMBEDDING A MECHANICAL HYSTERON IN A BIHOLEY METAMATERIAL

{P, D1, D2} = {10mm, 10mm, 7mm}, and vary the beam length L, dimen-
sionless beam radius r, dimensionless beam offset u and dimensionless
beam radius t, and determine the behavior of the resulting defect beams.

2.2.2 Numerical method

We used Abaqus FEM simulations to investigate the behavior of an individ-
ual defect beam. We use a 2D structure, and model the rubber metamaterial
with neo-Hookean hyper elastic model, using 4-node bilinear plane strain
quadrilaterals, reduced integration and hourglass control (CPD4R). We
have performed a systematic mesh refinement study for the in-plane grid,
leading to an optimal mesh size of t/3. The parameters of our incompress-
ible isotopic neo-Hookean material, C10 and D1, are given by the shear
modulus and bulk modulus, µ and K, which are described by the Poisson’s
ratio of the rubber (ν = 0.495) and the Young’s modulus (E = 220 KPa).

C10 = 1
2 µ

D1 = 2
K

µ = E
2(1+ν)

K = E
3(1−2ν)

(2.1)

To dissipate the kinetic energy caused by snapping, we apply damping to
model, and the critical damping factor is:

C =
αR
2ωi

+
βRωi

2
(2.2)

where ωi is the natural frequency; αR = 0.1; βR = 0.

To observe the action of the defect beam, we apply compression on the top
surface of the sample and fix the bottom surface, track the center part of the
defect beam which is defined as Ux, thus obtaining traces Ux(ε). We detect
the snapping and unsnapping strain by finding peaks in Ux(ε), which we
do by requiring that its (numerical) derivative exceeds ten times its mean
value.
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2.3. ACTIONS OF THE BEAM CONTROLLED BY GEOMETRY

2.3 Actions of the beam controlled by geometry

b
c

a

b
c

a

b
c

a

b
c

a

u = 0.85

u = 0.65
u = 0.70

(d) (e)

(f)

(g)

(a)

 0.00  0.07  0.13  0.20

(b)

 0.00  0.07  0.13  0.20

(c)

 0.00  0.07  0.13  0.20

t = 0.17
t = 0.18

t = 0.16

L = 5 mm
L = 6 mm

L = 4 mm

 D
v 

 E
k

FIGURE 2.3: Behavior of the defect beam in a biholey sample, where the biholey
array has {P, D1, D2} = {10mm, 10mm, 7mm} 1. (a - c) Under compression, the
defect beam (a) co-bends (r = 1.1), (b) snaps (r = 1.3), or (c) counter bends (r =
1.5) depending on the geometry. All defect beams shown in (a - c) have {L, t, u}
= {5 mm, 0.16, 0.5 }. (d) Ux, Ek (kinetic energy), Dv (Viscous dissipation) and σ
(stress), as functions of ε of the beams shown in (a), (b) and (c). Note that for the
beam shown in (b) we observe hysteresis. (e) Ux as a function of u and ε, where
the samples are characterized with {L, r, t} = {5 mm, 1.1, 0.16 }. (f) Ux as a function
of t and ε, where the samples are characterized with {L, r, u} = {5 mm, 1.3, 0.25 }.
(g) Ux as a function of L and ε, where the samples are characterized with {r, u, t} =
{1.2, 0.35, 0.17 }.

To explore the possible actions of the defect beams under compression, we
simulate the cyclic compression process on a 5× 5 sample with a defect
beam. We vary one parameter of the beam and fix the rest parameters to get
a range of behaviors, including counter bending, snapping, and co-bending.
In the following, we study the dimensionless radius, r, the dimensionless
offset, u, the dimensionless thickness, t, and the length, L.

1This work was carried out in collaboration with Jingran Liu.

19



EMBEDDING A MECHANICAL HYSTERON IN A BIHOLEY METAMATERIAL

First, we fix {L, t, u} = {5mm, 0.16, 0.5} and vary r. Fig. 2.3a shows the
co-bending behavior of the defect beam in the loading process, where the
curvature keeps the same direction as its initial direction. We see the beam
bends further to the left as the strain ε := Ey/H increases, where Ey denotes
the displacement of the compression plate. The displacement of the middle
point of the defect beam, Ux, is shown by the red curve in Fig. 2.3d. At
the same time, the curves of both the compression and decompression
processes coincide. This means that in the decompression process, the
beam unbends in the same way as it bends: there is no hysteresis.

Fig. 2.3b shows snapshots of a beam snapping in the loading process. In
the early stage of compression process (ε < 0.12), the beams firstly bends
to the left. Then it suddenly snaps to the right at ε = 0.12 because of the
rotation of its boundaries. We refer to the snapping strain as ε+, and ε−i for
unsnapping. After snapping, the beam bends to the right. In the early stage
of the decompression process (ε > 0.10), the beam unbends smoothly. Then
the beam snaps back at ε− = 0.10, where ε− denotes the unsnapping strain.
The (un)snapping behavior of the defect beam releases kinetic energy, Ek,
which eventually dissipates due to the viscoelasticity, Dv, of the rubber. As
a result, we observe a sharp peak in Ek − ε curve and a sharp jump in the
Dv − ε curve when the beam (un)snaps. At the same time, we observe that
the (un)snapping behavior is visible as a small jump in the compressive
stress σ := F/(WT), where F is the compressive force. We note that the
beam acts hysterically in this case.

We observe that Ux drastically changes when the defect beam (un)snaps,
and there are obvious differences between snapped and unsnapped config-
uration of the defect beam — the unsnapped beam curves to the left while
the snapped beam curves to the right. We note that ε− < ε+, so there is a
bistable region in ε− < ε < ε+ where the defect beam can bend to the left
or to the right. Therefore, we can model the defect beam in a compressed
sample as a hysteron. The unsnapped state can be considered as state ’0’
and snapped state can be considered as state ’1’. The defect beam flips it
from ’0’ to ’1’ at ε+ and flips from ’1’ to ’0’ at ε−.
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2.3. ACTIONS OF THE BEAM CONTROLLED BY GEOMETRY

Fig. 2.3c shows snapshots of the counter bending behavior of the defect
beam in the loading process. When the holes in the biholey metamaterial
start to form an orthogonal ellipse pattern, the beam slowly bends in the
opposite direction from its initial direction. In the decompression process,
the trace of the beam going back in the decompression process coincides
with its trace in the compression, as shown by the blue curve in Fig. 2.3d.
Hence, the beam motion is smooth and there is no hysteresis.

We are able to get a range of behaviors of the defect beam by modifying its
parameters, r, u, t, and L. Firstly, we sequentially observe the co-bending,
snapping, and counter bending behavior of the defect beam as u increases
(Fig. 2.3e). We interpret this as follows: due to the rotation of the diamonds,
the effective distance between the top and bottom of the defect increase
as u increases so that the beam with larger u is less compressed (Section
2.4). Next, we sequentially observe the co-bending, snapping, and counter
bending behavior of the defect beam as t increases (Fig. 2.3f) — slender
beams are easier to co-bend than a thicker beam in the same boundaries
condition. Finally, we sequentially observe the co-bending, snapping, and
counter bending of the defect beam as L increases (Fig. 2.3g). Hence,
the snapping behavior of the beams can be controlled by all geometric
parameters.

In conclusion, we can control the opposite effects of the buckling of a defect
beam and the (rotational) deformations of its endpoints by the geometric
design of the defect beam. With a range of parameters, we observe dif-
ferent behaviors of the defect under quasi-static compression, including
co-bending, snapping and counter bending. For cyclical compression, the
(un)snapping behavior exhibits hysteresis, and ε+ is larger than ε−.
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2.4 Interpretation: boundary conditions of the defect
beam

To understand the various deformation modes of the defect beam, we
now consider the deformations of a biholey metamaterial, without defect
beams, in detail. We assume that as the defect beam is slender, its boundary
conditions, given by the translational and rotational ’islands’ above and
below it, can be determined from their motion in a system without defects.
We investigate the evolution of a unit cell of a biholey sheet by Finite
Element Method (FEM) simulations (Fig. 2.4 (a-b)), and characterize the
deformation by the displacements L of the islands above and below a single
beam.
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FIGURE 2.4: FEM simulations of a unit cell of biholey metamaterial under vertical
compression. The unit cell has {P, D1, D2} = {10 mm, 10 mm, 7 mm}. (a) The
sketch of the unit cell for a range of compressions. From left to right, the distance
between the top boundary and bottom boundary of the hourglass part are denoted
as L1, L2, L3...L9. (b) Evolution of the unit cell. (c) L1, L2, L3...L9 as functions of ε.
For details, see text.

We characterize the rotation and translational of the boundaries of the
defect beam by FEM simulations on a unit cell of the biholey metamaterial
under vertical compression. To investigate the boundary conditions of
the defect beam, we track a series of points. As shown in Fig. 2.4a, we
study a virtual beam with L = 6 mm and -1 < u < 1 and track a range of
points that were symmetrical up and down and 3 mm perpendicular to the
center of the hourglass part. The points we tracked on the unit cell form
the effective boundary for defect beams, and are shown by nine pairs of
black dots in Fig. 2.4 (a - b). Fig. 2.4 (b) shows the evolution of the unit cell
under compression. To study the rotation and compression of the islands,
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2.5. APPROPRIATE DESIGN FOR SNAPPING

we track the vertical distances, Li (1 ≤ i ≤ 9), between the nine pairs of
black dots, as shown by the black vertical lines in Fig. 2.4 (a). From left to
right, we label the black vertical lines in Fig. 2.4 (a) as L1, L2, L3...L9, and
the evolution of L1 to L9 is shown in Fig. 2.4 (c).

We first notice that the upper and lower boundaries of the hourglass part
are counter-rotated, this rotation is the main cause of the beam curing to
the right. Secondly, in Fig. 2.4c we observe that the values of L1 to L9 are
different — the left side of the hourglass part is compressed more than
the right side. We suggest the boundaries of the defect beam are counter-
rotated and move vertically when the sample is compressed. As a result,
the defect beams are able to show different behaviors under such boundary
conditions, and proper design is needed for snapping events.

2.5 Appropriate design for snapping

u
r

1.1 1.15 1.2 1.3 1.4 1.5
0.25 - - left left left bend
0.40 - - - left left -
0.45 - - - left snap -
0.50 left - left snap snap right
0.55 left left left snap - -
0.60 left left snap snap - -
0.65 left snap snap snap -
0.70 snap snap snap - - -
0.75 snap snap right right right -
0.80 snap right - - - -
0.85 right - - - -
1.00 - - right right right right

TABLE 2.1: Actions of the defect beam in a biholey sample under com-
pression, where ’left’ denotes co-bending, ’snap’ denotes hysteretic snapping,
and ’right’ denotes counter bending. The biholey array has {P, D1, D2} =

{10mm, 10mm, 7mm} and the defect beams have {L, t} = {5 mm, 0.16}. ε± of
the snapping beam is shown in Fig. 2.5.
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u
r

1.1 1.2 1.3 1.4 1.5
0.00 - - - - left
0.10 - - - - snap
0.15 - - - left snap
0.20 - - left snap snap
0.25 - left snap snap right
0.30 left snap snap snap -
0.35 left snap snap right -
0.40 left snap right - -
0.45 left snap - - -
0.50 snap snap - - right
0.55 snap right - - -
0.60 right - - - -

TABLE 2.2: Actions of the defect beam in a biholey sample under com-
pression, where ’left’ denotes co-bending, ’snap’ denotes hysteretic snapping,
and ’right’ denotes counter bending. The biholey array has {P, D1, D2} =

{10mm, 10mm, 7mm} and the defect beams have {L, t} = {5 mm, 0.17}. ε± of
the snapping beam is shown in Fig. 2.5.

In Fig. 2.3, we observe that not all the parameters lead to (un)snapping
behavior. To obtain snapping events, we should use appropriate values
of the parameters. Here we explore the parameter space suitable to find
snapping and control the critical strains ε±.

Table 2.1 and Table 2.2 shows the behavior of the defect beam with various
values of r and u. We observe that there is a limited range of parameters
that lead to snapping. For example, when r = 1.1, u = 0.70 to 0.80, the
beam snaps but when r = 1.1 and u = 0.10 to 0.20, the beam co-bends. Based
on the data in Table 2.1 and Table 2.2, we believe that intermediate values
are needed for snapping.

Fig. 2.5 shows ε± as a function of r, t and u. We observe that the ε+ co-bends
as u increases, while ε− increases with u. As a function of radius r, we
observe that ε± increases with r, and ε+ increases faster than ε−. For a beam
with larger r, more compression is needed to induce snapping and less
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2.6. CONCLUSION

decompression is able to promote unsnapping. We note that ε+ is always
larger than ε−, even if ε+ and ε− are close.

In conclusion, to observe hysteresis, the geometry of the defect beam should
have appropriate values — within this range, we can tune ε±.

{r,t} = {1.10, 0.18}

{r,t} = {1.10, 0.17}

{r,t} = {1.10, 0.16}

{r,t} = {1.20, 0.18}

{r,t} = {1.20, 0.17}

{r,t} = {1.20, 0.16}

{r,t} = {1.40, 0.17}

{r,t} = {1.40, 0.16}

u

{r,t} = {1.30, 0.18}

{r,t} = {1.30, 0.17}

{r,t} = {1.30, 0.16}

u
FIGURE 2.5: ε± as a function of r, t and u, where L = 5 mm 2. There is hysteresis
for each sample: the upper dot denotes ε+ and the lower dot denotes ε−. The dots
almost overlapping denotes small hysteresis.

2.6 Conclusion

In this chapter, we have introduced a strategy to create mechanical hys-
terons being placing a defect beam into a biholey metamaterial. We obtain
different behaviors of the defect beam by varying the geometry, including
co-bending, snapping, and counter bending events. In particular, we show
that there is hysteresis in the snapping action for appropriate designs. We

2This work was carried out in collaboration with Jingran Liu.
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find that the (un)snapping strain can be tuned by the geometry of the defect
beam.
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