
Spectral imaging and tomographic reconstruction methods
for industrial applications
Zeegers, M.T.

Citation
Zeegers, M. T. (2023, May 31). Spectral imaging and tomographic
reconstruction methods for industrial applications. Retrieved from
https://hdl.handle.net/1887/3619550
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3619550
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3619550


Bibliography
[1] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski,

J. De Beenhouwer, K. J. Batenburg, and J. Sijbers. “Fast and flexible X-ray tomography
using the ASTRA toolbox”. Optics Express 24.22 (2016), pp. 25129–25147 (cit. on pp. 47,
57, 63, 77, 93, 100, 107, 111, 131, 146).

[2] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg,
and J. Sijbers. “The ASTRA Toolbox: A platform for advanced algorithm development in
electron tomography”. Ultramicroscopy 157 (2015), pp. 35–47 (cit. on pp. 47, 57, 63, 77,
93, 107, 111, 131, 146).

[3] W. van Aarle, K. J. Batenburg, and J. Sijbers. “Automatic parameter estimation for
the discrete algebraic reconstruction technique (DART)”. IEEE Transactions on Image
Processing 21.11 (2012), pp. 4608–4621 (cit. on p. 96).

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. “TensorFlow: A system for large-scale machine learning”. In:
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
(Savannah, GA, USA). 2016, pp. 265–283 (cit. on p. 35).

[5] J. F. P. J. Abascal, N. Ducros, V. Pronina, S. Rit, P. Rodesch, T. Broussaud, S. Bussod,
P. C. Douek, A. Hauptmann, S. Arridge, et al. “Material decomposition in spectral CT
using deep learning: A Sim2Real transfer approach”. IEEE Access 9 (2021), pp. 25632–
25647 (cit. on p. 119).

[6] J. F. P. J. Abascal, N. Ducros, and F. Peyrin. “Nonlinear material decomposition using
a regularized iterative scheme based on the Bregman distance”. Inverse Problems 34.12
(2018), p. 124003 (cit. on pp. 27, 154).

[7] A. Adler, M. Elad, and M. Zibulevsky. “Compressed learning: A deep neural network
approach”. arXiv preprint arXiv:1610.09615 (2016) (cit. on p. 69).

[8] S. Akcay and T. Breckon. “Towards automatic threat detection: A survey of advances of
deep learning within X-ray security imaging”. Pattern Recognition 122 (2022), p. 108245
(cit. on pp. 35, 41, 152).

[9] S. Akcay, M. E. Kundegorski, C. G. Willcocks, and T. P. Breckon. “Using deep convolutional
neural network architectures for object classification and detection within X-ray baggage
security imagery”. IEEE Transactions on Information Forensics and Security 13.9 (2018),
pp. 2203–2215 (cit. on p. 68).

[10] C. Albon. Machine learning with Python cookbook: Practical solutions from preprocessing
to deep learning. Sevastopol, CA, USA: O’Reilly Media, Inc., 2018 (cit. on p. 68).

[11] H. Alkadhi, A. Euler, D. Maintz, and D. Sahani. “Spectral imaging: Dual-energy, multi-
energy and photon-counting CT” (2022) (cit. on p. 24).

[12] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan,
B. C. Van Essen, A. A. Awwal, and V. K. Asari. “A state-of-the-art survey on deep learning
theory and architectures”. Electronics 8.3 (2019), p. 292 (cit. on p. 33).

[13] A. Alqahtani, X. Xie, and M. W. Jones. “Literature review of deep network compression”.
Informatics 8.4 (2021), p. 77 (cit. on p. 35).

[14] R. E. Alvarez and A. Macovski. “Energy-selective reconstructions in X-ray computerised
tomography”. Physics in Medicine & Biology 21.5 (1976), p. 733 (cit. on p. 26).

[15] A. H. Andersen and A. C. Kak. “Simultaneous algebraic reconstruction technique (SART):
A superior implementation of the ART algorithm”. Ultrasonic imaging 6.1 (1984), pp. 81–
94 (cit. on p. 17).

[16] V. Andriiashen, R. van Liere, T. van Leeuwen, and K. J. Batenburg. “Unsupervised foreign
object detection based on dual-energy absorptiometry in the food industry”. Journal of
Imaging 7.7 (2021), p. 10 (cit. on pp. 22, 40).

157



158 Bibliography

[17] V. Andriiashen, R. van Liere, T. van Leeuwen, and K. J. Batenburg. “CT-based data
generation for foreign object detection on a single X-ray projection”. Scientific Reports
13.1 (2023), p. 1881 (cit. on p. 153).

[18] F. van Assche, S. Vanheule, L. van Hoorebeke, and M. N. Boone. “The spectral X-ray
imaging data acquisition (SpeXIDAQ) framework”. Sensors 21.2 (2021), p. 563 (cit. on
p. 21).

[19] ASTM. “G173–03: Standard tables for reference solar spectral irradiances: Direct normal
and hemispherical on 37° tilted surface”. ASTM International, West Conshohocken, PA
(2003) (cit. on p. 80).

[20] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. “Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the Kurdyka-
Lojasiewicz inequality”. Mathematics of Operations Research 35.2 (2010), pp. 438–457
(cit. on p. 125).

[21] N. Audebert, B. Le Saux, and S. Lefèvre. “Deep learning for classification of hyperspectral
data: A comparative review”. IEEE Geoscience and Remote Sensing Magazine 7.2 (2019),
pp. 159–173 (cit. on p. 68).

[22] V. Badrinarayanan, A. Kendall, and R. Cipolla. “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation”. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39.12 (2017), pp. 2481–2495 (cit. on p. 43).

[23] E. J. Bakker, P. B. W. Schwering, and S. P. van den Broek. “From hyperspectral imaging
to dedicated sensors”. In: Targets and Backgrounds VI: Characterization, Visualization,
and the Detection Process. (Orlando, FL, USA). Vol. 4029. International Society for Optics
and Photonics. 2000, pp. 312–324 (cit. on p. 66).

[24] R. Ballabriga, J. Alozy, F. Bandi, M. Campbell, N. Egidos, J. M. Fernandez-Tenllado,
E. H. M. Heijne, I. Kremastiotis, X. Llopart, B. J. Madsen, et al. “Photon counting
detectors for X-ray imaging with emphasis on CT”. IEEE Transactions on Radiation and
Plasma Medical Sciences 5.4 (2020) (cit. on p. 114).

[25] R. Ballabriga, J. Alozy, M. Campbell, E. Frojdh, E. Heijne, T. Koenig, X. Llopart, J.
Marchal, D. Pennicard, T. Poikela, L. Tlustos, P. Valerio, W. Wong, and M. Zuber.
“Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging”. Journal
of Instrumentation 11.1 (2016), P01007 (cit. on p. 114).

[26] R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, and W. Wong. “Medipix3:
A 64 k pixel detector readout chip working in single photon counting mode with improved
spectrometric performance”. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (2011), S15–S18
(cit. on p. 21).

[27] R. F. Barber, E. Y. Sidky, T. G. Schmidt, and X. Pan. “An algorithm for constrained
one-step inversion of spectral CT data”. Physics in Medicine & Biology 61.10 (2016),
p. 3784 (cit. on pp. 26, 28, 119, 132).

[28] K. J. Batenburg, W. Fortes, L. Hajdu, and R. Tijdeman. “Bounds on the quality of
reconstructed images in binary tomography”. Discrete Applied Mathematics 161.15 (2013),
pp. 2236–2251 (cit. on p. 102).

[29] K. J. Batenburg, W. J. Palenstijn, P. Balázs, and J. Sijbers. “Dynamic angle selection in
binary tomography”. Computer Vision and Image Understanding 117.4 (2013), pp. 306–
318 (cit. on p. 18).

[30] K. J. Batenburg and J. Sijbers. “DART: A practical reconstruction algorithm for discrete
tomography”. IEEE Transactions on Image Processing 20.9 (2011), pp. 2542–2553 (cit. on
pp. 18, 61, 96, 100).

[31] K. J. Batenburg and J. Sijbers. “DART: A fast heuristic algebraic reconstruction algorithm
for discrete tomography”. In: IEEE International Conference on Image Processing, 2007,
ICIP 2007. (San Antonio, TX, USA). Vol. 4. IEEE. 2007, pp. IV–133 (cit. on p. 96).



Bibliography 159

[32] D. F. Bauer, C. Ulrich, T. Russ, A.-K. Golla, L. R. Schad, and F. G. Zöllner. “End-to-end
deep learning CT image reconstruction for metal artifact reduction”. Applied Sciences
12.1 (2021), p. 404 (cit. on p. 35).

[33] I. Bayram and M. E. Kamasak. “A directional total variation”. In: 2012 Proceedings of the
20th European Signal Processing Conference (EUSIPCO). (Bucharest, Romania). IEEE.
2012, pp. 265–269 (cit. on p. 28).

[34] A. Beck. First-order methods in optimization. Philadelphia, PA, USA: SIAM, 2017 (cit. on
p. 128).

[35] M. Beister, D. Kolditz, and W. A. Kalender. “Iterative reconstruction methods in X-ray
CT”. Physica Medica 28.2 (2012), pp. 94–108 (cit. on p. 14).

[36] R. Bellazzini, A. Brez, G. Spandre, M. Minuti, M. Pinchera, P. Delogu, P. L. De Ruvo, and
A. Vincenzi. “PIXIE III: A very large area photon-counting CMOS pixel ASIC for sharp
X-ray spectral imaging”. Journal of Instrumentation 10.01 (2015), p. C01032 (cit. on
p. 21).

[37] E. van den Berg and M. P. Friedlander. “Spot - A linear-operator toolbox” (2014) (cit. on
p. 146).

[38] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen. “The modern mathematics of deep
learning”. arXiv preprint arXiv:2105.04026 (2021) (cit. on pp. 29, 30, 34, 35).

[39] M. W. Berry, M. Browne, A. N. L., V. P. Pauca, and R. J. Plemmons. “Algorithms and
applications for approximate nonnegative matrix factorization”. Computational Statistics
& Data Analysis 52.1 (2007), pp. 155–173 (cit. on p. 132).

[40] R. Bhayana, A. Parakh, and A. Kambadakone. “Material decomposition with dual-and
multi-energy computed tomography”. MRS Communications 10.4 (2020), pp. 558–565
(cit. on pp. 24, 114).

[41] F. Bleichrodt, T. van Leeuwen, W. J. Palenstijn, W. van Aarle, J. Sijbers, and K. J.
Batenburg. “Easy implementation of advanced tomography algorithms using the ASTRA
toolbox with Spot operators”. Numerical Algorithms 71.3 (2016), pp. 673–697 (cit. on
p. 131).

[42] F. Bleichrodt, F. Tabak, and K. J. Batenburg. “SDART: An algorithm for discrete
tomography from noisy projections”. Computer Vision and Image Understanding 129
(2014), pp. 63–74 (cit. on p. 96).

[43] J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimization for
nonconvex and nonsmooth problems”. Mathematical Programming 146.1 (2014), pp. 459–
494 (cit. on p. 125).

[44] F. G. Bossema, M. Domínguez-Delmás, W. J. Palenstijn, A. Kostenko, J. Dorscheid, S. B.
Coban, E. Hermens, and K. J. Batenburg. “A novel method for dendrochronology of large
historical wooden objects using line trajectory X-ray tomography”. Scientific Reports 11.1
(2021), pp. 1–12 (cit. on p. 13).

[45] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge, UK: Cambridge
University Press, 2004 (cit. on pp. 191, 192).

[46] S. Boyd, N. Parikh, and E. Chu. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Hanover, MA, USA: Now Publishers Inc., 2011
(cit. on p. 195).

[47] R. Bujila, A. Omar, and G. Poludniowski. “A validation of SpekPy: A software toolkit for
modelling X-ray tube spectra”. Physica Medica 75 (2020), pp. 44–54 (cit. on p. 130).

[48] L. Bungert, D. A. Coomes, M. J. Ehrhardt, J. Rasch, R. Reisenhofer, and C.-B. Schönlieb.
“Blind image fusion for hyperspectral imaging with the directional total variation”. Inverse
Problems 34.4 (2018), p. 044003 (cit. on p. 155).



160 Bibliography

[49] M. Busi, C. Kehl, J. R. Frisvad, and U. L. Olsen. “Metal artifact reduction in spectral
X-ray CT using spectral deep learning”. Journal of Imaging 8.3 (2022), p. 77 (cit. on
p. 35).

[50] J.-W. Buurlage. “Real-time tomographic reconstruction”. PhD thesis. Leiden University,
2020 (cit. on p. 18).

[51] T. M. Buzug. Computed tomography: From photon statistics to modern cone-beam CT.
Berlin/Heidelberg, Germany: (1st ed.). Springer, 2008. Chap. 8, pp. 311–342 (cit. on pp. 7,
24, 61, 96).

[52] C. Cai, T. Rodet, S. Legoupil, and A. Mohammad-Djafari. “A full-spectral Bayesian
reconstruction approach based on the material decomposition model applied in dual-
energy computed tomography”. Medical Physics 40.11 (2013), p. 111916 (cit. on p. 132).

[53] E. Çallı, E. Sogancioglu, B. van Ginneken, K. G. van Leeuwen, and K. Murphy. “Deep
learning for chest X-ray analysis: A survey”. Medical Image Analysis 72 (2021), p. 102125
(cit. on p. 35).

[54] J. Cammin, J. S. Iwanczyk, and K. Taguchi. “Spectral/Photon-counting computed tomog-
raphy”. In: Emerging Imaging Technologies in Medicine. Boca Raton, FL, USA: CRC
Press, 2012, pp. 42–61 (cit. on p. 23).

[55] S. Carmignato, W. Dewulf, and R. Leach. Industrial X-ray computed tomography. Cham,
Switzerland: Springer, 2018 (cit. on pp. 5, 7, 13, 18, 24).

[56] C.-I. Chang. Hyperspectral data processing: Algorithm design and analysis. Hoboken, NJ,
USA: John Wiley & Sons, 2013 (cit. on p. 66).

[57] G. Chartrand, P. M. Cheng, E. Vorontsov, M. Drozdzal, S. Turcotte, C. J. Pal, S. Kadoury,
and A. Tang. “Deep learning: A primer for radiologists”. Radiographics 37.7 (2017),
pp. 2113–2131 (cit. on p. 40).

[58] L. Chen, Z. Wei, and Y. Xu. “A lightweight spectral-spatial feature extraction and fusion
network for hyperspectral image classification”. Remote Sensing 12.9 (2020), p. 1395
(cit. on p. 69).

[59] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi. “Deep feature extraction and classification
of hyperspectral images based on convolutional neural networks”. IEEE Transactions on
Geoscience and Remote Sensing 54.10 (2016), pp. 6232–6251 (cit. on p. 68).

[60] D. P. Clark and C. T. Badea. “Spectral diffusion: An algorithm for robust material
decomposition of spectral CT data”. Physics in Medicine & Biology 59.21 (2014), p. 6445
(cit. on pp. 23, 27, 118).

[61] D. P. Clark and C. T. Badea. “Hybrid spectral CT reconstruction”. PloS One 12.7 (2017),
e0180324 (cit. on p. 27).

[62] S. B. Coban, F. Lucka, W. J. Palenstijn, D. van Loo, and K. J. Batenburg. “Explorative
imaging and its implementation at the FleX-ray laboratory”. Journal of Imaging 6.4
(2020), p. 18 (cit. on pp. 45, 47).

[63] W. Cong, D. Harrison, Y. Xi, and G. Wang. “Projection decomposition for dual-energy
computed tomography”. arXiv preprint arXiv:1805.05312 (2018) (cit. on p. 26).

[64] E. Cueva, A. Meaney, S. Siltanen, and M. J. Ehrhardt. “Synergistic multi-spectral CT
reconstruction with directional total variation”. Philosophical Transactions of the Royal
Society A 379.2204 (2021), p. 20200198 (cit. on pp. 26–28).

[65] A. Dabravolski, K. J. Batenburg, and J. Sijbers. “A multiresolution approach to discrete
tomography using DART”. PloS One 9.9 (2014), e106090 (cit. on p. 96).

[66] Q. Dai, J.-H. Cheng, D.-W. Sun, and X.-A. Zeng. “Advances in feature selection methods
for hyperspectral image processing in food industry applications: A review”. Critical
Reviews in Food Science and Nutrition 55.10 (2015), pp. 1368–1382 (cit. on p. 68).



Bibliography 161

[67] M. Danielsson, M. Persson, and M. Sjölin. “Photon-counting X-ray detectors for CT”.
Physics in Medicine & Biology 66.3 (2021), 03TR01 (cit. on p. 23).

[68] G. Demaurex and L. Sallé. “Detection of physical hazards”. In: Food Safety Management.
Elsevier, 2014, pp. 511–533 (cit. on pp. 3, 4, 152).

[69] A. M. Deshpande, A. A. Minai, and M. Kumar. “One-shot recognition of manufacturing
defects in steel surfaces”. Procedia Manufacturing 48 (2020), pp. 1064–1071 (cit. on p. 40).

[70] M. Diwakar and M. Kumar. “A review on CT image noise and its denoising”. Biomedical
Signal Processing and Control 42 (2018), pp. 73–88 (cit. on pp. 45, 61).

[71] N. Djurabekova, A. Goldberg, A. Hauptmann, D. Hawkes, G. Long, F. Lucka, and M.
Betcke. “Application of Proximal Alternating Linearized Minimization (PALM) and inertial
PALM to dynamic 3D CT”. In: 15th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine. (Philadelphia, PA, USA). Ed.
by S. Matej and S. D. Metzler. Vol. 11072. International Society for Optics and Photonics.
SPIE, 2019, pp. 30–34 (cit. on p. 61).

[72] W. Du, H. Shen, J. Fu, G. Zhang, and Q. He. “Approaches for improvement of the X-ray
image defect detection of automobile casting aluminum parts based on deep learning”.
NDT & E International 107 (2019), p. 102144 (cit. on p. 35).

[73] Y. Dua, V. Kumar, and R. S. Singh. “Comprehensive review of hyperspectral image
compression algorithms”. Optical Engineering 59.9 (2020), p. 090902 (cit. on p. 35).

[74] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online learning
and stochastic optimization.” Journal of Machine Learning Research 12.7 (2011) (cit. on
p. 33).

[75] N. Ducros, J. F. P. J. Abascal, B. Sixou, S. Rit, and F. Peyrin. “Regularization of nonlinear
decomposition of spectral X-ray projection images”. Medical Physics 44.9 (2017), e174–e187
(cit. on p. 119).

[76] M. C. Edwards, M. F. Stringer, et al. “Observations on patterns in foreign material
investigations”. Food Control 18.7 (2007), pp. 773–782 (cit. on p. 3).

[77] C. K. Egan, S. D. M. Jacques, T. Connolley, M. D. Wilson, M. C. Veale, P. Seller, and
R. J. Cernik. “Dark-field hyperspectral X-ray imaging”. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 470.2165 (2014), p. 20130629 (cit. on
p. 118).

[78] C. K. Egan, S. D. M. Jacques, M. D. Wilson, M. C. Veale, P. Seller, A. M. Beale, R. A. D.
Pattrick, P. J. Withers, and R. J. Cernik. “3D chemical imaging in the laboratory by
hyperspectral X-ray computed tomography”. Scientific Reports 5.1 (2015), pp. 1–9 (cit. on
pp. 21, 114).

[79] L. Eger, S. Do, P. Ishwar, W. C. Karl, and H. Pien. “A learning-based approach to
explosives detection using multi-energy X-ray computed tomography”. In: 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). (Prague,
Czech Republic). IEEE. 2011, pp. 2004–2007 (cit. on p. 66).

[80] H. Einarsdóttir, M. J. Emerson, L. H. Clemmensen, K. Scherer, K. Willer, M. Bech, R.
Larsen, B. K. Ersbøll, and F. Pfeiffer. “Novelty detection of foreign objects in food using
multi-modal X-ray imaging”. Food Control 67 (2016), pp. 39–47 (cit. on pp. 40, 155).

[81] H. Einarsdóttir, B. Gudmundsson, and V. Ómarsson. “Automation in the fish industry”.
Animal Frontiers 12.2 (2022), pp. 32–39 (cit. on p. 35).

[82] G. Einarsson, J. N. Jensen, R. R. Paulsen, H. Einarsdottir, B. K. Ersbøll, A. B. Dahl,
and L. B. Christensen. “Foreign object detection in multispectral X-ray images of food
items using sparse discriminant analysis”. In: Scandinavian Conference on Image Analysis.
(Tromsø, Norway). Ed. by P. Sharma and F. M. Bianchi. Springer, 2017, pp. 350–361
(cit. on p. 61).



162 Bibliography

[83] G. Elmasry, M. Kamruzzaman, D.-W. Sun, and P. Allen. “Principles and applications of
hyperspectral imaging in quality evaluation of agro-food products: A review”. Critical
Reviews in Food Science and Nutrition 52.11 (2012), pp. 999–1023 (cit. on pp. 66, 67).

[84] C. L. Epstein. Introduction to the mathematics of medical imaging. Philadelphia, PA,
USA: SIAM, 2007 (cit. on p. 14).

[85] A. Falkovskaya and A. Gowen. “Literature review: Spectral imaging applied to poultry
products”. Poultry Science 99.7 (2020), pp. 3709–3722 (cit. on p. 4).

[86] M. Fauvel, J. Chanussot, and J. A. Benediktsson. “Kernel principal component analysis
for the classification of hyperspectral remote sensing data over urban areas”. EURASIP
Journal on Advances in Signal Processing 783194.1 (2009), pp. 1–14 (cit. on p. 68).

[87] L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical cone-beam algorithm”. Journal
of the Optical Society of America A 1.6 (1984), pp. 612–619 (cit. on pp. 15, 61).

[88] F. Feng, S. Wang, C. Wang, and J. Zhang. “Learning deep hierarchical spatial-spectral
features for hyperspectral image classification based on residual 3D-2D CNN”. Sensors
19.23 (2019), p. 5276 (cit. on p. 69).

[89] Y.-Z. Feng and D.-W. Sun. “Application of hyperspectral imaging in food safety inspection
and control: A review”. Critical Reviews in Food Science and Nutrition 52.11 (2012),
pp. 1039–1058 (cit. on pp. 3, 4).

[90] M. K. Ferguson, A. Ronay, Y. T. T. Lee, and K. H. Law. “Detection and segmentation of
manufacturing defects with convolutional neural networks and transfer learning”. Smart
and Sustainable Manufacturing Systems 2.1 (2018) (cit. on p. 35).

[91] A. Förster, S. Brandstetter, and C. Schulze-Briese. “Transforming X-ray detection with
hybrid photon counting detectors”. Philosophical Transactions of the Royal Society A
377.2147 (2019), p. 20180241 (cit. on p. 21).

[92] K. Fotiadou, G. Tsagkatakis, and P. Tsakalides. “Deep convolutional neural networks for
the classification of snapshot mosaic hyperspectral imagery”. Electronic Imaging 2017.17
(2017), pp. 185–190 (cit. on p. 66).

[93] J. Frank. Electron tomography. New York, NY, USA: Springer, 1992 (cit. on p. 96).

[94] E. Fredenberg. “Spectral and dual-energy X-ray imaging for medical applications”. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 878 (2018), pp. 74–87 (cit. on pp. 19, 21).

[95] N. R. Fredette, A. Kavuri, and M. Das. “Multi-step material decomposition for spectral
computed tomography”. Physics in Medicine & Biology 64.14 (2019), p. 145001 (cit. on
pp. 118, 119).

[96] C. Fröjdh, B. Norlin, and E. Fröjdh. “Spectral X-ray imaging with single photon processing
detectors”. Journal of Instrumentation 8.02 (2013), p. C02010 (cit. on p. 22).

[97] F. Fusseis, X. Xiao, C. Schrank, and F. De Carlo. “A brief guide to synchrotron radiation-
based microtomography in (structural) geology and rock mechanics”. Journal of Structural
Geology 65 (2014), pp. 1–16 (cit. on p. 13).

[98] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-
Rodriguez. “A review on deep learning techniques applied to semantic segmentation”.
arXiv preprint arXiv:1704.06857 (2017) (cit. on pp. 40, 41).

[99] R. Garnett. “A comprehensive review of dual-energy and multi-spectral computed tomog-
raphy”. Clinical Imaging 67 (2020), pp. 160–169 (cit. on pp. 21, 23–26, 28).

[100] GitHub - SimonRit/OneStepSpectralCT: Matlab code for spectral CT one-step inversion.
Implementation of five different methods. https://github.com/SimonRit/OneStepSpectralCT.
Accessed on 19 November 2021 (cit. on pp. 130, 131).

[101] L. Gjesteby, B. De Man, Y. Jin, H. Paganetti, J. Verburg, D. Giantsoudi, and G. Wang.
“Metal artifact reduction in CT: Where are we after four decades?” IEEE Access 4 (2016),
pp. 5826–5849 (cit. on p. 59).

https://github.com/SimonRit/OneStepSpectralCT


Bibliography 163

[102] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks”. In: Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics. (Fort
Lauderdale, FL, USA). JMLR Workshop and Conference Proceedings. 2011, pp. 315–323
(cit. on p. 31).

[103] J. Gorski, F. Pfeuffer, and K. Klamroth. “Biconvex sets and optimization with biconvex
functions: A survey and extensions”. Mathematical Methods of Operations Research 66.3
(2007), pp. 373–407 (cit. on pp. 122, 193).

[104] M. Graña, M. A. Veganzons, and B. Ayerdi. Hyperspectral remote sensing scenes. http:
//www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. Accessed
on 15 September 2020 (cit. on p. 77).

[105] M. Grandini, E. Bagli, and G. Visani. “Metrics for multi-class classification: An overview”.
arXiv preprint arXiv:2008.05756 (2020) (cit. on p. 50).

[106] M. Graves, A. Smith, and B. Batchelor. “Approaches to foreign body detection in foods”.
Trends in Food Science & Technology 9.1 (1998), pp. 21–27 (cit. on p. 4).

[107] M. K. Griffin and H. K. Burke. “Compensation of hyperspectral data for atmospheric
effects”. Lincoln Laboratory Journal 14.1 (2003), pp. 29–54 (cit. on p. 81).

[108] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew. “A review of semantic segmentation using
deep neural networks”. International Journal of Multimedia Information Retrieval 7.2
(2018), pp. 87–93 (cit. on p. 40).

[109] R. Habel, M. Kudenov, and M. Wimmer. “Practical spectral photography”. In: Computer
Graphics Forum. Vol. 31. 2pt2. Wiley Online Library. 2012, pp. 449–458 (cit. on p. 155).

[110] M. Habermann, V. Frémont, and E. H. Shiguemori. “Feature selection for hyperspectral
images using single-layer neural networks”. In: 8th International Conference of Pattern
Recognition Systems (ICPRS 2017). (Madrid, Spain). 2017, pp. 1–6 (cit. on p. 66).

[111] R. P. Haff and N. Toyofuku. “X-ray detection of defects and contaminants in the food
industry”. Sensing and Instrumentation for Food Quality and Safety 2.4 (2008), pp. 262–
273 (cit. on p. 40).

[112] P. C. Hansen, J. S. Jørgensen, and W. R. B. Lionheart. Computed tomography: Algorithms,
insight, and just enough theory. Philadelphia, PA, USA: (1st ed.). SIAM, 2021 (cit. on
pp. 14, 61).

[113] P. C. Hansen and M. Saxild-Hansen. “AIR tools - A MATLAB package of algebraic
iterative reconstruction methods”. Journal of Computational and Applied Mathematics
236.8 (2012), pp. 2167–2178 (cit. on p. 131).

[114] A. Hauptmann, O. Öktem, and C. Schönlieb. “Image reconstruction in dynamic inverse
problems with temporal models”. arXiv preprint arXiv:2007.10238 (2020) (cit. on p. 61).

[115] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask R-CNN”. In: Proceedings of the IEEE
International Conference on Computer Vision. (Venice, Italy). IEEE, 2017, pp. 2961–2969
(cit. on p. 43).

[116] Y. He, Q. Xiao, X. Bai, L. Zhou, F. Liu, and C. Zhang. “Recent progress of nondestructive
techniques for fruits damage inspection: A review”. Critical Reviews in Food Science and
Nutrition (2021), pp. 1–19 (cit. on p. 40).

[117] Y. He, X. Bai, Q. Xiao, F. Liu, L. Zhou, and C. Zhang. “Detection of adulteration in food
based on nondestructive analysis techniques: A review”. Critical Reviews in Food Science
and Nutrition 61.14 (2021), pp. 2351–2371 (cit. on p. 4).

[118] B. J. Heismann, B. T. Schmidt, and T. Flohr. Spectral computed tomography. Bellingham,
WA, USA: SPIE Press, 2012 (cit. on pp. 21, 26, 119).

[119] A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg. “Noise2inverse: Self-supervised deep
convolutional denoising for tomography”. IEEE Transactions on Computational Imaging
6 (2020), pp. 1320–1335 (cit. on pp. 45, 152).

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


164 Bibliography

[120] A. A. Hendriksen. “Deep learning for tomographic reconstruction with limited data”.
PhD thesis. Leiden University, 2022 (cit. on p. 35).

[121] G. T. Herman and A. Kuba. Discrete tomography: Foundations, algorithms, and applica-
tions. New York, NY, USA: (1st ed.). Springer, 1999 (cit. on pp. 18, 61).

[122] G. T. Herman and A. Kuba. Advances in discrete tomography and its applications. New
York, NY, USA: Springer Science & Business Media, 2007 (cit. on p. 18).

[123] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear systems”.
Journal of Research of the National Bureau of Standards 49 (1952), pp. 409–436 (cit. on
pp. 61, 132).

[124] T. Higaki, Y. Nakamura, F. Tatsugami, T. Nakaura, and K. Awai. “Improvement of image
quality at CT and MRI using deep learning”. Japanese Journal of Radiology 37.1 (2019),
pp. 73–80 (cit. on p. 35).

[125] T. Hohweiller, N. Ducros, F. Peyrin, and B. Sixou. “Spectral CT material decomposition in
the presence of poisson noise: A Kullback–Leibler approach”. IRBM 38.4 (2017), pp. 214–
218 (cit. on pp. 118, 119).

[126] K. M. Holt. “Total nuclear variation and jacobian extensions of total variation for vector
fields”. IEEE Transactions on Image Processing 23.9 (2014), pp. 3975–3989 (cit. on p. 28).

[127] J. Hsieh. Computed tomography: Principles, design, artifacts, and recent advances. Belling-
ham, WA, USA, 2009 (cit. on p. 96).

[128] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li. “Deep convolutional neural networks for
hyperspectral image classification”. Journal of Sensors 2015 (2015), p. 258619 (cit. on
p. 66).

[129] H. Huang, M. Chen, and Y. Duan. “Dimensionality reduction of hyperspectral image using
spatial-spectral regularized sparse hypergraph embedding”. Remote Sensing 11.9 (2019),
p. 1039 (cit. on p. 67).

[130] J. H. Hubbell and S. M. Seltzer. Tables of X-ray mass attenuation coefficients and
mass energy-absorption coefficients 1 KeV to 20 MeV for elements Z=1 to 92 and 48
additional substances of dosimetric interest. Tech. rep. National Institute of Standards and
Technology-PL, Gaithersburg, MD, USA. Ionizing Radiation Div., 1995 (cit. on pp. 57,
78, 123, 130, 184, 197).

[131] R. Huber, G. Haberfehlner, M. Holler, G. Kothleitner, and K. Bredies. “Total generalized
variation regularization for multi-modal electron tomography”. Nanoscale 11.12 (2019),
pp. 5617–5632 (cit. on p. 28).

[132] M. Imani and H. Ghassemian. “An overview on spectral and spatial information fusion for
hyperspectral image classification: Current trends and challenges”. Information Fusion 59
(2020), pp. 59–83 (cit. on p. 68).

[133] N. Jaccard, T. W. Rogers, E. J. Morton, and L. D. Griffin. “Detection of concealed cars
in complex cargo X-ray imagery using deep learning”. Journal of X-ray Science and
Technology 25.3 (2017), pp. 323–339 (cit. on p. 68).

[134] S. D. M. Jacques, C. K. Egan, M. D. Wilson, M. C. Veale, P. Seller, and R. J. Cernik. “A
laboratory system for element specific hyperspectral X-ray imaging”. Analyst 138.3 (2013),
pp. 755–759 (cit. on p. 114).

[135] S. Jadon. “A survey of loss functions for semantic segmentation”. arXiv preprint arXiv:2006.
14822 (2020) (cit. on pp. 48, 77).

[136] F. Jolivet, J. Lesaint, C. Fournier, M. Garcin, and A. Brambilla. “An efficient one-step
method for spectral CT based on an approximate linear model”. IEEE Transactions on
Radiation and Plasma Medical Sciences 5.4 (2020) (cit. on p. 119).

[137] A. A. Joy, M. A. M. Hasan, and M. A. Hossain. “A comparison of supervised and
unsupervised dimension reduction methods for hyperspectral image classification”. In:
2019 International Conference on Electrical, Computer and Communication Engineering
(ECCE). (Cox’s Bazar, Bangladesh). IEEE. 2019, pp. 1–6 (cit. on pp. 67, 68).



Bibliography 165

[138] A. Kadu and M. T. Zeegers. mzeegers/ADJUST: ADJUST. Zenodo, https://doi.org/
10.5281/zenodo.7821066. Version v1.0.2. 2023 (cit. on p. 146).

[139] J. Kaipio and E. Somersalo. Statistical and computational inverse problems. Vol. 160. New
York, NY, USA: Springer-Verlag, 2004 (cit. on p. 129).

[140] A. C. Kak and M. Slaney. Principles of computerized tomographic imaging. Philadelphia,
PA, USA: SIAM, 2001 (cit. on pp. 47, 98, 101, 141).

[141] K. V. Kale, M. M. Solankar, D. B. Nalawade, R. K. Dhumal, and H. R. Gite. “A research
review on hyperspectral data processing and analysis algorithms”. Proceedings of the
National Academy of Sciences, India Section A: Physical Sciences 87.4 (2017), pp. 541–
555 (cit. on p. 67).

[142] M. Karcaaltincaba and A. Aktas. “Dual-energy CT revisited with multidetector CT:
Review of principles and clinical applications”. Diagnostic and Interventional Radiology
17.3 (2017) (cit. on p. 114).

[143] D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. R. B. Lionheart, P. D. Lee, and
P. J. Withers. “Joint image reconstruction method with correlative multi-channel prior for
X-ray spectral computed tomography”. Inverse Problems 34.6 (2018), p. 064001 (cit. on
pp. 26, 28, 61, 110, 119).

[144] D. Kern and A. Mastmeyer. “3D bounding box detection in volumetric medical image data:
A systematic literature review”. In: 2021 IEEE 8th International Conference on Industrial
Engineering and Applications (ICIEA). (Chengdu, China). IEEE, 2021, pp. 509–516
(cit. on pp. 45, 61).

[145] K. Kim, H. Kim, J. Chun, M. Kang, M. Hong, and B. Min. “Real-time anomaly detection
in packaged food X-ray images using supervised learning” (2021) (cit. on p. 153).

[146] L. Kingma D. P.; Ba. “ADAM: A method for stochastic optimization”. In: Proceedings of
the International Conference on Learning Representations. (San Diego, CA, USA). Ed. by
Y. Bengio and Y. LeCun. 2015 (cit. on pp. 33, 49, 61, 75).

[147] F. Knoll, M. Holler, T. Koesters, R. Otazo, K. Bredies, and D. K. Sodickson. “Joint
MR-PET reconstruction using a multi-channel image regularizer”. IEEE Transactions on
Medical Imaging 36.1 (2016), pp. 1–16 (cit. on p. 28).

[148] R. F. Kokaly, R. N. Clark, G. A. Swayze, K. E. Livo, T. M. Hoefen, N. C. Pearson,
R. A. Wise, W. M. Benzel, H. A. Lowers, R. L. Driscoll, and A. J. Klein. “USGS spectral
library version 7 data: US geological survey data release”. United States Geological Survey
(USGS): Reston, VA, USA (2017) (cit. on p. 80).

[149] R. F. Kokaly, R. N. Clark, G. A. Swayze, K. E. Livo, T. M. Hoefen, N. C. Pearson,
R. A. Wise, W. M. Benzel, H. A. Lowers, R. L. Driscoll, and A. J. Klein. USGS spectral
library version 7. Tech. rep. US Geological Survey, 2017 (cit. on p. 80).

[150] O. Kouropteva, O. Okun, and M. Pietikäinen. “Selection of the optimal parameter value
for the locally linear embedding algorithm”. FSKD 2 (2002), pp. 359–363 (cit. on p. 68).

[151] M. V. Koval’chuk, E. B. Yatsishina, A. E. Blagov, E. Y. Tereshchenko, P. A. Prosekov,
and Y. A. Dyakova. “X-ray and synchrotron methods in studies of cultural heritage sites”.
Crystallography Reports 61.5 (2016), pp. 703–717 (cit. on p. 13).

[152] B. Kumar, O. Dikshit, A. Gupta, and M. K. Singh. “Feature extraction for hyperspectral
image classification: A review”. International Journal of Remote Sensing 41.16 (2020),
pp. 6248–6287 (cit. on pp. 67, 68).

[153] J. Kwon, J. Lee, and W. Kim. “Real-time detection of foreign objects using X-ray imaging
for dry food manufacturing line”. In: 2008 IEEE International Symposium on Consumer
Electronics. (Vilamoura, Portugal). IEEE, 2008, pp. 1–4 (cit. on p. 40).

[154] M. J. Lagerwerf, D. M. Pelt, W. J. Palenstijn, and K. J. Batenburg. “A computationally
efficient reconstruction algorithm for circular cone-beam computed tomography using
shallow neural networks”. Journal of Imaging 6.12 (2020), p. 135 (cit. on p. 49).

https://doi.org/10.5281/zenodo.7821066
https://doi.org/10.5281/zenodo.7821066


166 Bibliography

[155] J. H. Lee, Y. J. Kim, and K. G. Kim. “Bone age estimation using deep learning and hand
X-ray images”. Biomedical Engineering Letters 10.3 (2020), pp. 323–331 (cit. on p. 35).

[156] T. van Leeuwen and A. Y. Aravkin. “Variable Projection for NonSmooth Problems”. SIAM
Journal on Scientific Computing 43.5 (2021), S249–S268 (cit. on p. 125).

[157] M. M. Lell and M. Kachelrieß. “Recent and upcoming technological developments in
computed tomography: High speed, low dose, deep learning, multienergy”. Investigative
Radiology 55.1 (2020), pp. 8–19 (cit. on p. 35).

[158] L. Lenchik, L. Heacock, A. A. Weaver, R. D. Boutin, T. S. Cook, J. Itri, C. G. Filippi,
R. P. Gullapalli, J. Lee, and e. a. Zagurovskaya M. “Automated segmentation of tissues
using CT and MRI: A systematic review”. Academic Radiology 26.12 (2019), pp. 1695–1706
(cit. on p. 44).

[159] S. Leng, M. Bruesewitz, S. Tao, K. Rajendran, A. F. Halaweish, N. G. Campeau, J. G.
Fletcher, and C. H. McCollough. “Photon-counting detector CT: System design and clinical
applications of an emerging technology”. Radiographics 39.3 (2019), pp. 729–743 (cit. on
pp. 23, 28).

[160] J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban, A. Denker, D.
Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, and M. van Eijnatten. “Quantitative
comparison of deep learning-based image reconstruction methods for low-dose and sparse-
angle CT applications”. Journal of Imaging 7.3 (2021), p. 44 (cit. on p. 35).

[161] F. Li, M. K. Ng, R. Plemmons, S. Prasad, and Q. Zhang. “Hyperspectral image segmenta-
tion, deblurring, and spectral analysis for material identification”. In: Visual Information
Processing XIX. (Orlando, FL, USA). Vol. 7701. International Society for Optics and
Photonics. 2010, p. 770103 (cit. on p. 66).

[162] S. Li, H. Luo, M. Hu, M. Zhang, J. Feng, Y. Liu, Q. Dong, and B. Liu. “Optical non-
destructive techniques for small berry fruits: A review”. Artificial Intelligence in Agriculture
2 (2019), pp. 85–98 (cit. on p. 40).

[163] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson. “Deep learning for
hyperspectral image classification: An overview”. IEEE Transactions on Geoscience and
Remote Sensing 57.9 (2019), pp. 6690–6709 (cit. on p. 68).

[164] T. Li, J. Zhang, and Y. Zhang. “Classification of hyperspectral image based on deep belief
networks”. In: 2014 IEEE International Conference on Image Processing (ICIP). (Paris,
France). IEEE. 2014, pp. 5132–5136 (cit. on p. 67).

[165] W. Li, F. Feng, H. Li, and Q. Du. “Discriminant analysis-based dimension reduction
for hyperspectral image classification: A survey of the most recent advances and an
experimental comparison of different techniques”. IEEE Geoscience and Remote Sensing
Magazine 6.1 (2018), pp. 15–34 (cit. on p. 67).

[166] Z. Li, S. Ravishankar, Y. Long, and J. A. Fessler. “DECT-MULTRA: Dual-energy CT
image decomposition with learned mixed material models and efficient clustering”. IEEE
Transactions on Medical Imaging 39.4 (2019), pp. 1223–1234 (cit. on p. 119).

[167] G. Lin, A. Milan, C. Shen, and I. Reid. “Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (Honolulu, HI, USA). IEEE, 2017, pp. 1925–1934 (cit. on
p. 43).

[168] B. Liu, X. Yu, P. Zhang, A. Yu, Q. Fu, and X. Wei. “Supervised deep feature extraction
for hyperspectral image classification”. IEEE Transactions on Geoscience and Remote
Sensing 56.4 (2017), pp. 1909–1921 (cit. on p. 68).

[169] B. Liu, Y. Li, G. Li, and A. Liu. “A spectral feature based convolutional neural network
for classification of sea surface oil spill”. ISPRS International Journal of Geo-Information
8.4 (2019), p. 160 (cit. on p. 69).

[170] J. Liu and H. Gao. “Material reconstruction for spectral computed tomography with
detector response function”. Inverse Problems 32.11 (2016), p. 114001 (cit. on p. 154).



Bibliography 167

[171] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic seg-
mentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (Boston, MA, USA). IEEE, 2015, pp. 3431–3440 (cit. on p. 43).

[172] Y. Long and J. A. Fessler. “Multi-material decomposition using statistical image reconstruc-
tion for spectral CT”. IEEE Transactions on Medical Imaging 33.8 (2014), pp. 1614–1626
(cit. on pp. 26, 132).

[173] T. van de Looverbosch, E. Raeymaekers, P. Verboven, J. Sijbers, and B. Nicolaï. “Non-
destructive internal disorder detection of Conference pears by semantic segmentation
of X-ray CT scans using deep learning”. Expert Systems with Applications 176 (2021),
p. 114925 (cit. on p. 41).

[174] T. van de Looverbosch, M. H. R. Bhuiyan, P. Verboven, M. Dierick, D. van Loo, J. De
Beenbouwer, J. Sijbers, and B. Nicolaï. “Nondestructive internal quality inspection of pear
fruit by X-ray CT using machine learning”. Food Control 113 (2020), p. 107170 (cit. on
p. 13).

[175] G. Lu and B. Fei. “Medical hyperspectral imaging: A review”. Journal of Biomedical
Optics 19.1 (2014), p. 010901 (cit. on p. 66).

[176] T. Lukić and P. Balázs. “Limited-view binary tomography reconstruction assisted by shape
centroid”. The Visual Computer 38.2 (2022), pp. 695–705 (cit. on p. 18).

[177] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang. “Image and video compression
with neural networks: A review”. IEEE Transactions on Circuits and Systems for Video
Technology 30.6 (2019), pp. 1683–1698 (cit. on p. 35).

[178] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities improve neural network
acoustic models”. In: Proceedings of the ICML Workshop on Deep Learning for Audio,
Speech and Language Processing. (Atlanta, GA, USA). Vol. 30. 1. 2013, p. 3 (cit. on pp. 31,
73).

[179] C. Maaß, M. Baer, and M. Kachelrieß. “Image-based dual energy CT using optimized
precorrection functions: A practical new approach of material decomposition in image
domain”. Medical Physics 36.8 (2009), pp. 3818–3829 (cit. on p. 26).

[180] L. van der Maaten, E. Postma, and J. van den Herik. “Dimensionality reduction: A
comparative review”. Journal of Machine Learning Research 10.66-71 (2009), p. 13 (cit. on
p. 68).

[181] F. J. Maestre-Deusto, G. Scavello, J. Pizarro, and P. L. Galindo. “ADART: An adaptive
algebraic reconstruction algorithm for discrete tomography”. IEEE Transactions on Image
Processing 20.8 (2011), pp. 2146–2152 (cit. on p. 96).

[182] A. Maier, H. G. Hofmann, M. Berger, P. Fischer, C. Schwemmer, H. Wu, K. Müller,
J. Hornegger, J. Choi, C. Riess, A. Keil, and R. Fahrig. “CONRAD - A software framework
for cone-beam imaging in radiology”. Medical Physics 40.11 (2013), p. 111914 (cit. on
p. 129).

[183] A. Maier, C. Syben, T. Lasser, and C. Riess. “A gentle introduction to deep learning in
medical image processing”. Zeitschrift für Medizinische Physik 29.2 (2019), pp. 86–101
(cit. on p. 35).

[184] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis. “Deep supervised learning
for hyperspectral data classification through convolutional neural networks”. In: 2015
IEEE International Geoscience and Remote Sensing Symposium (IGARSS). (Milan, Italy).
IEEE. 2015, pp. 4959–4962 (cit. on pp. 66, 68).

[185] H. E. Martz, C. M. Logan, D. J. Schneberk, and P. J. Shull. X-ray imaging: Fundamentals,
industrial techniques and applications. Boca Raton, FL, USA: CRC Press, 2016 (cit. on
p. 35).

[186] S. K. Mathanker, P. R. Weckler, and T. J. Bowser. “X-ray applications in food and
agriculture: A review”. Transactions of the ASABE 56.3 (2013), pp. 1227–1239 (cit. on
pp. 18, 40).



168 Bibliography

[187] J. Matula, V. Polakova, J. Salplachta, M. Tesarova, T. Zikmund, M. Kaucka, I. Adameyko,
and J. Kaiser. “Resolving complex cartilage structures in developmental biology via deep
learning-based automatic segmentation of X-ray computed microtomography images”.
Scientific Reports 12.1 (2022), p. 8728 (cit. on p. 35).

[188] M. T. McCann, K. H. Jin, and M. Unser. “Convolutional neural networks for inverse
problems in imaging: A review”. IEEE Signal Processing Magazine 34.6 (2017), pp. 85–95
(cit. on p. 32).

[189] K. Mechlem, S. Ehn, T. Sellerer, E. Braig, D. Münzel, F. Pfeiffer, and P. B. Noël. “Joint
statistical iterative material image reconstruction for spectral computed tomography using
a semi-empirical forward model”. IEEE Transactions on Medical Imaging 37.1 (2017),
pp. 68–80 (cit. on pp. 119, 132).

[190] K. Mechlem, T. Sellerer, S. Ehn, D. Münzel, E. Braig, J. Herzen, P. Noël, and F. Pfeiffer.
“Spectral angiography material decomposition using an empirical forward model and a
dictionary-based regularization”. IEEE Transactions on Medical Imaging 37.10 (2018),
pp. 2298–2309 (cit. on pp. 118, 119).

[191] D. Mery, I. Lillo, H. Loebel, V. Riffo, A. Soto, A. Cipriano, and J. M. Aguilera. “Automated
fish bone detection using X-ray imaging”. Journal of Food Engineering 105.3 (2011),
pp. 485–492 (cit. on pp. 11, 40).

[192] D. Mery. “Computer vision for X-ray testing”. Switzerland: Springer International Pub-
lishing 10 (2015), pp. 978–3 (cit. on pp. 6–8, 22, 35, 153).

[193] D. Mery, D. Saavedra, and M. Prasad. “X-ray baggage inspection with computer vision:
A survey”. IEEE Access 8 (2020), pp. 145620–145633 (cit. on p. 13).

[194] H. S. El-Mesery, H. Mao, and A. E.-F. Abomohra. “Applications of non-destructive
technologies for agricultural and food products quality inspection”. Sensors 19.4 (2019),
p. 846 (cit. on p. 4).

[195] P. Meyer, V. Noblet, C. Mazzara, and A. Lallement. “Survey on deep learning for radio-
therapy”. Computers in Biology and Medicine 98 (2018), pp. 126–146 (cit. on p. 35).

[196] P. A. Midgley and M. Weyland. “3D electron microscopy in the physical sciences: The
development of Z-contrast and EFTEM tomography”. Ultramicroscopy 96.3-4 (2003),
pp. 413–431 (cit. on p. 96).

[197] J. Minnema, M. van Eijnatten, H. Der Sarkissian, S. Doyle, J. Koivisto, J. Wolff, T.
Forouzanfar, F. Lucka, and K. J. Batenburg. “Efficient high cone-angle artifact reduction
in circular cone-beam CT using deep learning with geometry-aware dimension reduction”.
Physics in Medicine & Biology 66.13 (2021), p. 135015 (cit. on p. 35).

[198] D. Mishra, S. K. Singh, and R. K. Singh. “Deep architectures for image compression: A
critical review”. Signal Processing 191 (2022), p. 108346 (cit. on p. 35).

[199] S. Si-Mohamed, D. Bar-Ness, M. Sigovan, D. P. Cormode, P. Coulon, E. Coche, A.
Vlassenbroek, G. Normand, L. Boussel, and P. Douek. “Review of an initial experience
with an experimental spectral photon-counting computed tomography system”. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 873 (2017), pp. 27–35 (cit. on pp. 40, 61, 114, 118).

[200] M. T. Mohd Khairi, S. Ibrahim, M. A. Md Yunus, and M. Faramarzi. “Noninvasive
techniques for detection of foreign bodies in food: A review”. Journal of Food Process
Engineering 41.6 (2018), e12808 (cit. on pp. 4, 6, 40).

[201] M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico. “Application of
X-ray computed tomography to cultural heritage diagnostics”. Applied Physics A 100.3
(2010), pp. 653–661 (cit. on p. 13).

[202] C. Mory, B. Sixou, S. Si-Mohamed, L. Boussel, and S. Rit. “Comparison of five one-step
reconstruction algorithms for spectral CT”. Physics in Medicine & Biology 63.23 (2018),
p. 235001 (cit. on pp. 119, 129, 131).



Bibliography 169

[203] G. Motta, F. Rizzo, and J. A. Storer. Hyperspectral data compression. Berlin, Germany:
Springer Science & Business Media, 2006 (cit. on p. 66).

[204] A. Mouton and T. P. Breckon. “A review of automated image understanding within
3D baggage computed tomography security screening”. Journal of X-ray Science and
Technology 23.5 (2015), pp. 531–555 (cit. on p. 13).

[205] K. P. Murphy. Probabilistic machine learning: Advanced topics. Cambridge, MA, USA:
MIT Press, 2022 (cit. on pp. 29, 33).

[206] J. Nalepa, M. Myller, and M. Kawulok. “Validating hyperspectral image segmentation”.
IEEE Geoscience and Remote Sensing Letters 16.8 (2019), pp. 1264–1268 (cit. on pp. 66,
77).

[207] K. Narsaiah, A. K. Biswas, and P. K. Mandal. “Nondestructive methods for carcass and
meat quality evaluation”. In: Meat Quality Analysis. Ed. by A. K. Biswas and P. K. Mandal.
Academic Press, 2020, pp. 37–49 (cit. on p. 40).

[208] R. A. Nasirudin, R. Tachibana, J. J. Näppi, K. Mei, F. K. Kopp, E. J. Rummeny,
H. Yoshida, and P. B. Noël. “A comparison of material decomposition techniques for
dual-energy CT colonography”. In: Medical Imaging 2015: Physics of Medical Imaging.
Vol. 9412. International Society for Optics and Photonics. 2015, 94124F (cit. on p. 26).

[209] F. Natterer. The mathematics of computerized tomography. Philadelphia, PA, USA: SIAM,
2001 (cit. on p. 14).

[210] B. M. Nicolaï, T. Defraeye, B. De Ketelaere, E. Herremans, M. L. A. T. M. Hertog, W.
Saeys, A. Torricelli, T. Vandendriessche, and P. Verboven. “Nondestructive measurement
of fruit and vegetable quality”. Annual Review of Food Science and Technology 5 (2014),
pp. 285–312 (cit. on p. 40).

[211] V. V. Nikitin, M. Carlsson, F. Andersson, and R. Mokso. “Four-dimensional tomographic
reconstruction by time domain decomposition”. IEEE Transactions on Computational
Imaging 5.3 (2019), pp. 409–419 (cit. on p. 61).

[212] H. Noh, S. Hong, and B. Han. “Learning deconvolution network for semantic segmentation”.
In: Proceedings of the IEEE International Conference on Computer Vision. (Santiago,
Chile). IEEE, 2015, pp. 1520–1528 (cit. on p. 43).

[213] I. Ordavo, S. Ihle, V. Arkadiev, O. Scharf, H. Soltau, A. Bjeoumikhov, S. Bjeoumikhova,
G. Buzanich, R. Gubzhokov, A. Günther, et al. “A new pnCCD-based color X-ray camera
for fast spatial and energy-resolved measurements”. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 654.1 (2011), pp. 250–257 (cit. on pp. 21, 114).

[214] N. Otsu. “A threshold selection method from gray-level histograms”. IEEE Transactions
on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66 (cit. on pp. 48, 179).

[215] W. J. Palenstijn, K. J. Batenburg, and J. Sijbers. “The ASTRA tomography toolbox”. In:
13th International Conference on Computational and Mathematical Methods in Science
and Engineering, CMMSE. (Almeria, Spain). Vol. 2013. 2013, pp. 1139–1145 (cit. on
p. 100).

[216] F. Palsson, J. R. Sveinsson, and M. O. Ulfarsson. “Multispectral and hyperspectral image
fusion using a 3-D-convolutional neural network”. IEEE Geoscience and Remote Sensing
Letters 14.5 (2017), pp. 639–643 (cit. on p. 69).

[217] H. Pan, C. Zhou, Q. Zhu, and D. Zheng. “A fast registration from 3D CT images to
2D X-ray images”. In: 2018 IEEE 3rd International Conference on Big Data Analysis
(ICBDA). (Shanghai, China). IEEE. IEEE, 2018, pp. 351–355 (cit. on p. 41).

[218] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza. “A new deep convolutional neural
network for fast hyperspectral image classification”. ISPRS Journal of Photogrammetry
and Remote Sensing 145 (2018), pp. 120–147 (cit. on pp. 68, 69).



170 Bibliography

[219] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza. “Deep learning classifiers for hyper-
spectral imaging: A review”. ISPRS Journal of Photogrammetry and Remote Sensing 158
(2019), pp. 279–317 (cit. on p. 68).

[220] N. Parikh and S. Boyd. “Proximal algorithms”. Foundations and Trends in Optimization
1.3 (2014), pp. 127–239 (cit. on p. 125).

[221] M. S. Passmore, R. Bates, K. Mathieson, V. O’Shea, M. Rahman, P. Seller, and K. M.
Smith. “Characterisation of a single photon counting pixel detector”. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 466.1 (2001), pp. 202–208 (cit. on p. 120).

[222] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. “Automatic differentiation in PyTorch”. In: Proceedings of the
NIPS Autodiff Workshop. (Long Beach, CA, USA). 2017 (cit. on pp. 35, 48, 63, 77, 93).

[223] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, and e. a. A. Luca. “PyTorch: An imperative style, high-performance deep
learning library”. In: Advances in Neural Information Processing Systems. (Red Hook,
NY, USA). Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett. 2019, pp. 8026–8037 (cit. on pp. 35, 48, 63, 77, 93).

[224] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine learning in Python”. Journal
of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 82).

[225] D. M. Pelt. GitHub - dmpelt/msdnet: Python implementation of the Mixed-Scale Dense
Convolutional Neural Network. https://github.com/dmpelt/msdnet. Accessed on 24
November 2020. 2019 (cit. on pp. 49, 75).

[226] D. M. Pelt, K. J. Batenburg, and J. A. Sethian. “Improving tomographic reconstruction
from limited data using mixed-scale dense convolutional neural networks”. Journal of
Imaging 4.11 (2018), p. 128 (cit. on pp. 35, 49).

[227] D. M. Pelt and J. A. Sethian. “A mixed-scale dense convolutional neural network for image
analysis”. Proceedings of the National Academy of Sciences 115.2 (2018), pp. 254–259
(cit. on pp. 48, 49, 63, 67, 70, 71, 74, 75, 93).

[228] H. Petersson, D. Gustafsson, and D. Bergstrom. “Hyperspectral image analysis using deep
learning - A review”. In: 2016 Sixth International Conference on Image Processing Theory,
Tools and Applications (IPTA). (Oulu, Finland). IEEE. 2016, pp. 1–6 (cit. on p. 68).

[229] G. Pilikos, L. Horchens, K. J. Batenburg, T. van Leeuwen, and F. Lucka. “Deep data
compression for approximate ultrasonic image formation”. In: 2020 IEEE International
Ultrasonics Symposium (IUS). IEEE. 2020, pp. 1–4 (cit. on p. 35).

[230] G. Poludniowski, A. Omar, R. Bujila, and P. Andreo. “SpekPy v2.0 - A software toolkit
for modelling X-ray tube spectra”. Medical Physics 48.7 (2021) (cit. on p. 130).

[231] T. Qiao, J. Ren, Z. Wang, J. Zabalza, M. Sun, H. Zhao, S. Li, J. A. Benediktsson, Q. Dai,
and S. Marshall. “Effective denoising and classification of hyperspectral images using
curvelet transform and singular spectrum analysis”. IEEE Transactions on Geoscience
and Remote Sensing 55.1 (2016), pp. 119–133 (cit. on p. 67).

[232] J. Radon. “1.1 über die bestimmung von funktionen durch ihre integralwerte längs gewisser
mannigfaltigkeiten”. Classic Papers in Modern Diagnostic Radiology 5 (2005), p. 21 (cit.
on p. 14).

[233] N. Rassouli, M. Etesami, A. Dhanantwari, and P. Rajiah. “Detector-based spectral CT
with a novel dual-layer technology: Principles and applications”. Insights into Imaging 8.6
(2017), pp. 589–598 (cit. on p. 24).

[234] B. Rasti, D. Hong, R. Hang, P. Ghamisi, X. Kang, J. Chanussot, and J. A. Benediktsson.
“Feature extraction for hyperspectral imagery: The evolution from shallow to deep”. arXiv
preprint arXiv:2003.02822 (2020) (cit. on p. 67).

https://github.com/dmpelt/msdnet


Bibliography 171

[235] V. Rebuffel and J. Dinten. “Dual-energy X-ray imaging: Benefits and limits”. Insight -
Non-Destructive Testing and Condition Monitoring, 49.10 (2007), pp. 589–594 (cit. on
p. 61).

[236] R. Redus, A. Huber, J. Pantazis, T. Pantazis, and D. Sperry. “Design and performance of
the X-123 compact X-ray and Gamma-ray spectroscopy system”. In: 2006 IEEE Nuclear
Science Symposium Conference Record. (Piscataway Township, NJ, USA). Vol. 6. IEEE.
2006, pp. 3794–3797 (cit. on p. 114).

[237] E. G. Rens, M. T. Zeegers, I. Rabbers, A. Szabó, and R. M. H. Merks. “Autocrine inhibition
of cell motility can drive epithelial branching morphogenesis in the absence of growth”.
Philosophical Transactions of the Royal Society B 375.1807 (2020), p. 20190386 (cit. on
p. 209).

[238] D. S. Rigie and P. J. La Rivière. “Joint reconstruction of multi-channel, spectral CT data
via constrained total nuclear variation minimization”. Physics in Medicine & Biology 60.5
(2015), p. 1741 (cit. on pp. 28, 61).

[239] D. Rong, L. Xie, and Y. Ying. “Computer vision detection of foreign objects in walnuts
using deep learning”. Computers and Electronics in Agriculture 162 (2019), pp. 1001–1010
(cit. on p. 40).

[240] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomedical
image segmentation”. In: International Conference on Medical Image Computing and
Computer-assisted Intervention. (Munich, Germany). Ed. by N. Navab, J. Hornegger,
W. M. Wells, and A. F. Frangi. Springer, 2015, pp. 234–241 (cit. on pp. 43, 48, 67, 71, 74).

[241] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise removal
algorithms”. Physica D: Nonlinear Phenomena 60.1-4 (1992), pp. 259–268 (cit. on p. 133).

[242] P. Russo. Handbook of X-ray imaging: Physics and technology. Boca Raton, FL, USA:
(1st ed.). CRC Press, 2017 (cit. on pp. 7, 43).

[243] J. Salazar-Vazquez and A. Mendez-Vazquez. “A plug-and-play hyperspectral imaging
sensor using low-cost equipment”. HardwareX 7 (2020), e00087 (cit. on p. 155).

[244] M. Salehjahromi, Y. Zhang, and H. Yu. “Comparison study of regularizations in spectral
computed tomography reconstruction”. Sensing and Imaging 19.1 (2018), pp. 1–23 (cit. on
pp. 27, 119).

[245] M. Al-Sarayreh, M. M. Reis, W. Q. Yan, and R. Klette. “A sequential CNN approach
for foreign object detection in hyperspectral images”. In: International Conference on
Computer Analysis of Images and Patterns. (Salerno, Italy). Ed. by M. Vento and G.
Percannella. Springer, 2019, pp. 271–283 (cit. on pp. 40, 41).

[246] A. Sawatzky, Q. Xu, C. O. Schirra, and M. A. Anastasio. “Proximal ADMM for multi-
channel image reconstruction in spectral X-ray CT”. IEEE Transactions on Medical
Imaging 33.8 (2014), pp. 1657–1668 (cit. on pp. 61, 119).

[247] O. Scharf, S. Ihle, I. Ordavo, V. Arkadiev, A. Bjeoumikhov, S. Bjeoumikhova, G. Buzanich,
R. Gubzhokov, A. Gunther, R. Hartmann, et al. “Compact pnCCD-based X-ray camera
with high spatial and energy resolution: A color X-ray camera”. Analytical Chemistry 83.7
(2011), pp. 2532–2538 (cit. on p. 114).

[248] C. O. Schirra, E. Roessl, T. Koehler, B. Brendel, A. Thran, D. Pan, M. A. Anastasio, and
R. Proksa. “Statistical reconstruction of material decomposed data in spectral CT”. IEEE
Transactions on Medical Imaging 32.7 (2013), pp. 1249–1257 (cit. on p. 118).

[249] C. O. Schirra, B. Brendel, M. A. Anastasio, and E. Roessl. “Spectral CT: A technology
primer for contrast agent development”. Contrast Media & Molecular Imaging 9.1 (2014),
pp. 62–70 (cit. on pp. 19, 21, 28).

[250] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy. “Optimizing costly functions with
simple constraints: A limited-memory projected quasi-newton algorithm”. In: Artificial
Intelligence and Statistics. (Clearwater Beach, FL, USA). PMLR. 2009, pp. 456–463
(cit. on pp. 132, 146).



172 Bibliography

[251] T. G. Schmidt, B. A. Sammut, R. F. Barber, X. Pan, and E. Y. Sidky. “Addressing
CT metal artifacts using photon-counting detectors and one-step spectral CT image
reconstruction”. Medical Physics (2022) (cit. on p. 27).

[252] R. Schoonhoven, A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg. “LEAN: Graph-based
pruning for convolutional neural networks by extracting longest chains”. arXiv preprint
arXiv:2011.06923 (2020) (cit. on p. 154).

[253] D. E. Schut, K. J. Batenburg, R. van Liere, and T. van Leeuwen. “TOP-CT: Trajectory
with Overlapping Projections X-ray Computed Tomography”. IEEE Transactions on
Computational Imaging 8 (2022), pp. 598–608 (cit. on p. 154).

[254] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller. “Tensor-based formulation and nuclear
norm regularization for multienergy computed tomography”. IEEE Transactions on Image
Processing 23.4 (2014), pp. 1678–1693 (cit. on p. 61).

[255] D. Sero, I. Garachon, E. Hermens, R. van Liere, and K. J. Batenburg. “The study of
three-dimensional fingerprint recognition in cultural heritage: Trends and challenges”.
Journal on Computing and Cultural Heritage 14.4 (2021), pp. 1–20 (cit. on p. 13).

[256] M. Sezgin and B. Sankur. “Survey over image thresholding techniques and quantitative
performance evaluation”. Journal of Electronic imaging 13.1 (2004), pp. 146–165 (cit. on
p. 40).

[257] V. Sharma, A. Diba, T. Tuytelaars, and L. van Gool. “Hyperspectral CNN for image
classification & band selection, with application to face recognition”. Technical Report
KUL/ESAT/PSI/1604, KU Leuven, ESAT, Leuven, Belgium (2016) (cit. on p. 66).

[258] Siemens Healthineers, Simulation of X-ray Spectra: Online tool for the simulation of
X-ray Spectra (2018). https://www.oem-xray-components.siemens.com/X-ray-spectra-
simulation. Accessed on 24 February 2020 (cit. on p. 185).

[259] A. Signoroni, M. Savardi, A. Baronio, and S. Benini. “Deep learning meets hyperspectral
image analysis: A multidisciplinary review”. Journal of Imaging 5.5 (2019), p. 52 (cit. on
pp. 66, 69, 77).

[260] G. Silva, L. Oliveira, and M. Pithon. “Automatic segmenting teeth in X-ray images: Trends,
a novel data set, benchmarking and future perspectives”. Expert Systems with Applications
107 (2018), pp. 15–31 (cit. on pp. 40, 41).

[261] J. da Silva, F. Grönberg, B. Cederström, M. Persson, M. Sjölin, Z. Alagic, R. Bujila, and
M. Danielsson. “Resolution characterization of a silicon-based, photon-counting computed
tomography prototype capable of patient scanning”. Journal of Medical Imaging 6.4 (2019),
p. 043502 (cit. on p. 28).

[262] J. Sittner, J. R. A. Godinho, A. D. Renno, V. Cnudde, M. Boone, T. De Schryver, D. van
Loo, M. Merkulova, A. Roine, and J. Liipo. “Data for: Spectral X-ray computed micro
tomography: 3-dimensional chemical imaging [Data set]” (2022) (cit. on pp. 141, 147).

[263] J. Sittner, J. R. A. Godinho, A. D. Renno, V. Cnudde, M. Boone, T. De Schryver, D. van
Loo, M. Merkulova, A. Roine, and J. Liipo. “Spectral X-ray computed micro tomography:
3-dimensional chemical imaging”. X-ray Spectrometry 50.2 (2021), pp. 92–105 (cit. on
pp. 21, 141).

[264] W. Skrzynski. “X-ray detectors in medical imaging”. In: Advanced X-ray Detector Tech-
nologies. Springer, 2022, pp. 135–149 (cit. on pp. 22, 23).

[265] A. van der Sluis and H. A. van der Vorst. “SIRT-and CG-type methods for the iterative
solution of sparse linear least-squares problems”. Linear Algebra and its Applications 130
(1990), pp. 257–303 (cit. on p. 47).

[266] A. So and S. Nicolaou. “Spectral computed tomography: Fundamental principles and
recent developments”. Korean Journal of Radiology 22.1 (2021), p. 86 (cit. on p. 26).

[267] J. Spiegelberg and J. Rusz. “Can we use PCA to detect small signals in noisy data?”
Ultramicroscopy 172 (2017), pp. 40–46 (cit. on p. 66).

https://www.oem-xray-components.siemens.com/X-ray-spectra-simulation
https://www.oem-xray-components.siemens.com/X-ray-spectra-simulation


Bibliography 173

[268] Standard Solar Spectra | PVEducation (2019). https://www.pveducation.org/pvcdrom/
appendices/standard-solar-spectra. Accessed on 8 July 2020 (cit. on p. 80).

[269] E. Ström, M. Persson, A. Eguizabal, and O. Öktem. “Photon-counting CT reconstruction
with a learned forward operator”. IEEE Transactions on Computational Imaging 8 (2022),
pp. 536–550 (cit. on p. 35).

[270] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso. “Generalised dice
overlap as a deep learning loss function for highly unbalanced segmentations”. In: Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Sup-
port. Ed. by M. J. Cardoso, T. Arbel, G. Carneiro, T. Syeda-Mahmood, J. M. R. S. Tavares,
M. Moradi, A. Bradley, H. Greenspan, J. P. Papa, A. Madabhushi, J. C. Nascimento,
J. S. Cardoso, V. Belagiannis, and Z. Lu. Springer, 2017, pp. 240–248 (cit. on pp. 48, 77).

[271] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. “Revisiting unreasonable effectiveness
of data in deep learning era”. In: Proceedings of the IEEE International Conference on
Computer Vision. (Venice, Italy). 2017, pp. 843–852 (cit. on p. 35).

[272] D. Sun. Hyperspectral imaging for food quality analysis and control. San Diego, California,
USA: Elsevier, 2010 (cit. on p. 66).

[273] W. Sun and Q. Du. “Hyperspectral band selection: A review”. IEEE Geoscience and
Remote Sensing Magazine 7.2 (2019), pp. 118–139 (cit. on pp. 66, 67).

[274] K. Taguchi, I. Blevis, and K. Iniewski. Spectral, photon counting computed tomography:
Technology and applications. Boca Raton, FL, USA: CRC Press, 2020 (cit. on pp. 22, 23,
25, 27, 28, 40, 61, 114).

[275] S. Tairi, S. Anthoine, C. Morel, and Y. Boursier. “Simultaneous reconstruction and
separation in a spectral CT framework”. In: Nuclear Science Symposium, Medical Imaging
Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD),
2016. (Strasbourg, France). IEEE. 2016, pp. 1–4 (cit. on p. 110).

[276] N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. Wu, and X. Ding. “Embracing
imperfect datasets: A review of deep learning solutions for medical image segmentation”.
Medical Image Analysis (2020), p. 101693 (cit. on p. 41).

[277] L. Tanzi, E. Vezzetti, R. Moreno, and S. Moos. “X-ray bone fracture classification using
deep learning: A baseline for designing a reliable approach”. Applied Sciences 10.4 (2020),
p. 1507 (cit. on p. 35).

[278] K. Thilagavathi and A. Vasuki. “Dimension reduction methods for hyperspectral image: A
survey”. International Journal of Engineering and Advanced Technology 8 (Dec. 2018),
pp. 160–167 (cit. on p. 68).

[279] R. Vaddi and M. Prabukumar. “Comparative study of feature extraction techniques
for hyperspectral remote sensing image classification: A survey”. In: 2017 International
Conference on Intelligent Computing and Control Systems (ICICCS). (Madurai, India).
IEEE. 2017, pp. 543–548 (cit. on p. 67).

[280] D. Valsesia and E. Magli. “High-throughput onboard hyperspectral image compression
with ground-based CNN reconstruction”. IEEE Transactions on Geoscience and Remote
Sensing 57.12 (2019), pp. 9544–9553 (cit. on pp. 68, 72).

[281] J. A. T. Vasquez, R. Scapaticci, G. Turvani, M. Ricci, L. Farina, A. Litman, M. R. Casu,
L. Crocco, and F. Vipiana. “Noninvasive inline food inspection via microwave imaging
technology: An application example in the food industry”. IEEE Antennas and Propagation
Magazine 62.5 (2020), pp. 18–32 (cit. on p. 4).

[282] M. Veale, P. Seller, M. Wilson, and E. Liotti. “HEXITEC: A high-energy X-ray spectro-
scopic imaging detector for synchrotron applications”. Synchrotron Radiation News 31.6
(2018), pp. 28–32 (cit. on pp. 21, 114).

https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra


174 Bibliography

[283] G. Vilches-Freixas, V. T. Taasti, L. P. Muren, J. B. B. Petersen, J. M. Létang, D. C.
Hansen, and S. Rit. “Comparison of projection-and image-based methods for proton
stopping power estimation using dual energy CT”. Physics and Imaging in Radiation
Oncology 3 (2017), pp. 28–36 (cit. on p. 25).

[284] A. S. Wang and N. J. Pelc. “Spectral photon counting CT: Imaging algorithms and
performance assessment”. IEEE Transactions on Radiation and Plasma Medical Sciences
5.4 (2020), pp. 453–464 (cit. on p. 28).

[285] G. Wang, J. C. Ye, and B. De Man. “Deep learning for tomographic image reconstruction”.
Nature Machine Intelligence 2.12 (2020), pp. 737–748 (cit. on p. 35).

[286] M. Wang. Industrial tomography: Systems and applications. Sawston, Cambridge, UK:
Elsevier, 2015 (cit. on pp. 14, 15).

[287] X. Wang, Y. Bouzembrak, A. O. Lansink, and H. van der Fels-Klerx. “Application of
machine learning to the monitoring and prediction of food safety: A review”. Comprehensive
Reviews in Food Science and Food Safety 21.1 (2022), pp. 416–434 (cit. on p. 3).

[288] R. Warr, E. Ametova, R. J. Cernik, G. Fardell, S. Handschuh, J. S. Jørgensen, E. Papout-
sellis, E. Pasca, and P. J. Withers. “Enhanced hyperspectral tomography for bioimaging
by spatiospectral reconstruction”. Scientific Reports 11.1 (2021), pp. 1–13 (cit. on p. 28).

[289] T. Weidinger, T. M. Buzug, T. Flohr, S. Kappler, and K. Stierstorfer. “Polychromatic iter-
ative statistical material image reconstruction for photon-counting computed tomography”.
International Journal of Biomedical Imaging 2016 (2016) (cit. on p. 132).

[290] R. E. Wendell and A. P. Hurter Jr. “Minimization of a non-separable objective function
subject to disjoint constraints”. Operations Research 24.4 (1976), pp. 643–657 (cit. on
pp. 122, 193).

[291] Wikipedia Commons, EM Spectrum Properties. https : / / upload . wikimedia . org /
wikipedia/commons/c/cf/EM_Spectrum_Properties_edit.svg. Accessed on 19 December
2020 (cit. on p. 5).

[292] M. J. Willemink and P. B. Noël. “The evolution of image reconstruction for CT - From
filtered back projection to artificial intelligence”. European Radiology 29.5 (2019), pp. 2185–
2195 (cit. on pp. 18, 27, 28, 119).

[293] M. J. Willemink, M. Persson, A. Pourmorteza, N. J. Pelc, and D. Fleischmann. “Photon-
counting CT: Technical principles and clinical prospects”. Radiology 289.2 (2018), pp. 293–
312 (cit. on p. 22).

[294] K. H. Wilm. “Foreign object detection: Integration in food production”. Food Safety
Magazine 18 (2012), pp. 14–17 (cit. on p. 40).

[295] M. D. Wilson, L. Dummott, D. D. Duarte, F. H. Green, S. Pani, A. Schneider, J. W.
Scuffham, P. Seller, and M. C. Veale. “A 10 cm× 10 cm CdTe spectroscopic imaging
detector based on the HEXITEC ASIC”. Journal of Instrumentation 10.10 (2015), P10011
(cit. on p. 96).

[296] P. J. Withers, C. Bouman, S. Carmignato, V. Cnudde, D. Grimaldi, C. K. Hagen, E.
Maire, M. Manley, A. Du Plessis, and S. R. Stock. “X-ray computed tomography”. Nature
Reviews Methods Primers 1.1 (2021), pp. 1–21 (cit. on pp. 28, 33).

[297] H. Wu, Q. Liu, and X. Liu. “A review on deep learning approaches to image classification
and object segmentation”. Computers, Materials & Continua 60.2 (2019), pp. 575–597
(cit. on p. 40).

[298] W. Wu, P. Chen, V. V. Vardhanabhuti, W. Wu, and H. Yu. “Improved material decompo-
sition with a two-step regularization for spectral CT”. IEEE Access 7 (2019), pp. 158770–
158781 (cit. on pp. 118, 119).

[299] W. Wu, P. Chen, S. Wang, V. Vardhanabhuti, F. Liu, and H. Yu. “Image-domain material
decomposition for spectral CT using a generalized dictionary learning”. IEEE Transactions
on Radiation and Plasma Medical Sciences 5.4 (2020) (cit. on pp. 118, 119).

https://upload.wikimedia.org/wikipedia/commons/c/cf/EM_Spectrum_Properties_edit.svg
https://upload.wikimedia.org/wikipedia/commons/c/cf/EM_Spectrum_Properties_edit.svg


Bibliography 175

[300] T. Würfl, F. C. Ghesu, V. Christlein, and A. Maier. “Deep learning computed tomogra-
phy”. In: International Conference on Medical Image Computing and Computer-assisted
Intervention. (Athens, Greece). Springer. 2016, pp. 432–440 (cit. on p. 35).

[301] X-ray Mass Attenuation Coefficients, NIST. https://www.nist.gov/pml/x-ray-mass-
attenuation-coefficients. Accessed on 24 February 2020 (cit. on pp. 123, 130, 184,
197).

[302] W. Xia, W. Wu, S. Niu, F. Liu, J. Zhou, H. Yu, G. Wang, and Y. Zhang. “Spectral
CT reconstruction - ASSIST: Aided by Self-Similarity in Image-Spectral Tensors”. IEEE
Transactions on Computational Imaging 5.3 (2019), pp. 420–436 (cit. on p. 28).

[303] Z. Xiong, D. Sun, H. Pu, W. Gao, and Q. Dai. “Applications of emerging imaging techniques
for meat quality and safety detection and evaluation: A review”. Critical Reviews in Food
Science and Nutrition 57.4 (2017), pp. 755–768 (cit. on p. 40).

[304] X. Yang, V. De Andrade, W. Scullin, E. L. Dyer, N. Kasthuri, F. De Carlo, and D. Gürsoy.
“Low-dose X-ray tomography through a deep convolutional neural network”. Scientific
Reports 8.1 (2018), pp. 1–13 (cit. on p. 35).

[305] M. Yaqoob, S. Sharma, and P. Aggarwal. “Imaging techniques in agro-industry and their
applications, a review”. Journal of Food Measurement and Characterization 15.3 (2021),
pp. 2329–2343 (cit. on pp. 3, 4).

[306] S. Yu, S. Jia, and C. Xu. “Convolutional neural networks for hyperspectral image classifi-
cation”. Neurocomputing 219 (2017), pp. 88–98 (cit. on p. 77).

[307] M. T. Zeegers. A collection of 131 CT datasets of pieces of modeling clay containing
stones. Zenodo, https://doi.org/10.5281/zenodo.5866228. 2022 (cit. on p. 63).

[308] M. T. Zeegers. A collection of X-ray projections of 131 pieces of modeling clay containing
stones for machine learning-driven object detection. Zenodo, https://doi.org/10.5281/
zenodo.5681008. 2022 (cit. on p. 63).

[309] M. T. Zeegers. mzeegers/DeepFODDataGenerator: DeepFODDataGenerator. Zenodo,
https://doi.org/10.5281/zenodo.7825045. Version v1.0.1. 2023 (cit. on p. 63).

[310] M. T. Zeegers. mzeegers/DRCNN: Data Reduction CNN. Zenodo, https://doi.org/10.
5281/zenodo.7824969. Version v1.0.1. 2023 (cit. on p. 93).

[311] M. T. Zeegers. mzeegers/MC-DART: MC-DART. Zenodo, https://doi.org/10.5281/
zenodo.7824878. Version v1.0.1. 2023 (cit. on p. 111).

[312] M. T. Zeegers, F. Lucka, and K. J. Batenburg. “A Multi-Channel DART algorithm”. In:
International Workshop on Combinatorial Image Analysis. (Porto, Portugal). Ed. by R. P.
Barneva, V. E. Brimkov, and J. M. R. S. Tavares. Springer, 2018, pp. 164–178 (cit. on
pp. 61, 95, 119, 209).

[313] M. T. Zeegers, D. M. Pelt, T. van Leeuwen, R. van Liere, and K. J. Batenburg. “Task-driven
learned hyperspectral data reduction using end-to-end supervised deep learning”. Journal
of Imaging 6.12 (2020), p. 132 (cit. on pp. 65, 209).

[314] M. T. Zeegers, T. van Leeuwen, D. M. Pelt, S. B. Coban, R. van Liere, and K. J. Batenburg.
“A tomographic workflow to enable deep learning for X-ray based foreign object detection”.
Expert Systems with Applications 206 (2022), p. 117768 (cit. on pp. 39, 209).

[315] M. T. Zeegers, A. Kadu, T. van Leeuwen, and K. J. Batenburg. “ADJUST: A Dictionary-
based Joint reconstruction and Unmixing method for Spectral Tomography”. Inverse
Problems 38.12 (2022), p. 125002 (cit. on pp. 113, 209).

[316] T. Zhang, S. Zhao, X. Ma, A. P. Cuadros, Q. Zhao, and G. R. Arce. “Nonlinear recon-
struction of coded spectral X-ray CT based on material decomposition”. Optics Express
29.13 (2021), pp. 19319–19339 (cit. on p. 119).

[317] X. Zhang, Y. Zheng, W. Liu, and Z. Wang. “A hyperspectral image classification algorithm
based on atrous convolution”. EURASIP Journal on Wireless Communications and
Networking 2019.1 (2019), pp. 1–12 (cit. on p. 72).

https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
https://doi.org/10.5281/zenodo.5866228
https://doi.org/10.5281/zenodo.5681008
https://doi.org/10.5281/zenodo.5681008
https://doi.org/10.5281/zenodo.7825045
https://doi.org/10.5281/zenodo.7824969
https://doi.org/10.5281/zenodo.7824969
https://doi.org/10.5281/zenodo.7824878
https://doi.org/10.5281/zenodo.7824878


176 Bibliography

[318] Y. Zhang, X. Mou, G. Wang, and H. Yu. “Tensor-based dictionary learning for spectral
CT reconstruction”. IEEE Transactions on Medical Imaging 36.1 (2016), pp. 142–154
(cit. on pp. 118, 119).

[319] Y. Zhang and H. Yu. “Convolutional neural network based metal artifact reduction in X-ray
computed tomography”. IEEE Transactions on Medical Imaging 37.6 (2018), pp. 1370–
1381 (cit. on p. 35).

[320] Y. Zhang, Y. Xi, Q. Yang, W. Cong, J. Zhou, and G. Wang. “Spectral CT reconstruction
with image sparsity and spectral mean”. IEEE Transactions on Computational Imaging
2.4 (2016), pp. 510–523 (cit. on pp. 27, 28).

[321] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. “Pyramid scene parsing network”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(Honolulu, HI, USA). IEEE, 2017, pp. 2881–2890 (cit. on p. 43).

[322] Z. Zhao, P. Zheng, S. Xu, and X. Wu. “Object detection with deep learning: A review”.
IEEE Transactions on Neural Networks and Learning Systems 30.11 (2019), pp. 3212–3232
(cit. on p. 40).

[323] J. Zhong, F. Zhang, Z. Lu, Y. Liu, and X. Wang. “High-speed display-delayed planar
X-ray inspection system for the fast detection of small fishbones”. Journal of Food Process
Engineering 42.3 (2019), e13010 (cit. on p. 40).

[324] S. Zhong. “Progress in terahertz nondestructive testing: A review”. Frontiers of Mechanical
Engineering 14.3 (2019), pp. 273–281 (cit. on p. 4).

[325] Z. Zhong, W. J. Palenstijn, J. Adler, and K. J. Batenburg. “EDS tomographic recon-
struction regularized by total nuclear variation joined with HAADF-STEM tomography”.
Ultramicroscopy 191 (2018), pp. 34–43 (cit. on p. 28).

[326] T. Zhou, S. Ruan, and S. Canu. “A review: Deep learning for medical image segmentation
using multi-modality fusion”. Array 3 (2019), p. 100004 (cit. on p. 35).

[327] L. Zhu, P. Spachos, E. Pensini, and K. N. Plataniotis. “Deep learning and machine vision
for food processing: A survey”. Current Research in Food Science 4 (2021), pp. 233–249
(cit. on pp. 3, 31, 33, 35, 40).

[328] X. Zhuge, W. J. Palenstijn, and K. J. Batenburg. “TVR-DART: A more robust algorithm for
discrete tomography from limited projection data with automated gray value estimation”.
IEEE Transactions on Image Processing 25.1 (2016), pp. 455–468 (cit. on pp. 96, 154).

[329] A. Ziabari, S. Venkatakrishnan, M. Kirka, P. Brackman, R. Dehoff, P. Bingham, and
V. Paquit. “Beam hardening artifact reduction in X-ray CT reconstruction of 3D printed
metal parts leveraging deep learning and CAD models”. In: ASME International Mechan-
ical Engineering Congress and Exposition. Vol. 84492. American Society of Mechanical
Engineers. 2020, V02BT02A043 (cit. on p. 35).



A
Appendices to Chapter 2



178 Appendix A. Appendices to Chapter 2

A.1 Intensity value histograms

(a) 2D radiograph with foreign object on
bottom left

(b) Slice of the reconstructed 3D volume with
foreign object on bottom left

(c) Intensity value distribution for the 2D
radiograph

(d) Attenuation value distribution for the slice
of the reconstructed 3D object

(e) Intensity value distribution for the 2D
radiograph (zoomed)

(f) Attenuation value distribution for the slice
of the reconstructed 3D object (zoomed)

Figure A1: Radiograph of an object containing a foreign object (a) and a slice of the corresponding 3D
reconstruction showing its attenuation values (d), indicating the difference in contrast. Additionally,
histograms of intensity value distribution of the radiograph (b-d) and the attenuation value distribution
of the slice of the reconstructed 3D object (e-f). In both cases, the histograms of the voxels or pixels of
the foreign object are plotted separately from the other voxels or pixels. In the 3D volume, the foreign
object is much easier to distinguish based on intensity values.
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We compare the intensity distributions for radiographs and for a CT reconstruc-
tion of an object in Figure A1, which shows a number of statistics about the pixel
and voxel intensities for object 3 (Fig. 2.6). For both approaches, the intensity
value distributions are plotted and separated into values of pixel or voxels that
have been marked as foreign object by the thresholding method. The 3D case has
a clear separation between foreign object and the base object based on attenuation,
such that a simple global threshold based on Otsu’s method [214] is sufficient to
segment the foreign object. On the other hand, in the 2D radiograph case, the
intensity values corresponding to the foreign object locations are similar to values
of the base object.

A.2 Reconstruction and ground truth similarities
In Section 2.4.8, it is verified that the direct use of generated 3D volumes results
in similar ground truth projections compared to the use of the workflow, by
indicating that the average Jaccard index between the ground truth pairs is 0.961.
In Table A.1, the results are given in greater detail by splitting the results up for
nonidentical and combined projections. In addition, we also give the MSE. We
also present the similarity results for the segmentations from which the projections
are generated. Lastly, results are given for the FDK and SIRT reconstruction
algorithms, the latter with 200 iterations. The results indicate that by using these
reconstruction algorithms the similarities between the projection pairs increase.

Identical
(%)

Jaccard
remaining

Jaccard
overall

MSE
remaining

MSE
overall

FDK 15 0.625 0.681 1.34 · 10-4 1.14 · 10-4

SIRT, 100 it. 1 0.656 0.659 1.18 · 10-4 1.17 · 10-4

Se
gm

en
ta

ti
on

SIRT, 200 it. 10 0.643 0.678 1.28 · 10-4 1.15 · 10-4

FDK 47.05 0.981 0.990 1.57 · 10-4 0.83 · 10-4

SIRT, 100 it. 8.99 0.957 0.961 2.97 · 10-4 3.26 · 10-4

Pr
oj

ec
ti

on

SIRT, 200 it. 39.40 0.980 0.988 1.59 · 10-4 0.94 · 10-4

Table A.1: Similarity between ground truth volumes and the corresponding segmented volumes re-
constructed from their own projections, as well as similarity between subsequent virtual projections of
these volumes. The reconstruction are made over 1800 equidistant angles, and the results are averaged
over these angles and 100 training objects. We measure the number of volumes that are identical to
their ground truth, and the Jaccard index and the Mean Square Error (MSE) of both all examples and
the nonidentical examples only.
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Therefore, by adding in an even better reconstruction algorithm in terms of these
similarities, an even more accurate training training set can be generated which can
subsequently yield more accurate detection results than presented in Chapter 2.

A.3 Additional quality measure
In this Appendix we show the F1 scores for all experiments in Chapter 2. The F1
score is given by (

2TPFO

2TPFO + FNBG + FNFO

)
. (A.1)

(a) Few foreign objects experiments (b) Mixed and many foreign objects experiments

(c) Segmentation threshold experiments (d) Simulated data experiments

Figure A2: F1 scores for the various experiments in Chapter 2: (a) the standard experiment with
laboratory data with few foreign objects, (b) the experiment with many and mixed amounts of foreign
objects, (c) the experiment with threshold variation and (d) the simulated experiment. The results are
shown for trained U-Net and MSD networks. The results are averaged over 5 trained networks, with a
different training object order for each run. The shaded regions indicate the standard deviations.

The results for this quality metric are given in Figure A2. The graphs for all
experiments are consistent with the graphs for the quality measures in Section 2.4.
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B.1 Standard data reduction methods
In this section we briefly summarize the most common data reduction methods, used
for comparison in this work: PCA (unsupervised), NMF (unsupervised) and LDA
(supervised). Let X ∈ RNb×(Ntrain·m·n) be a matrix representation of {xi}

Ntrain
i=1 ,

where the rows represent the spectral features and the columns are the data points.

B.1.1 Principal Component Analysis

Let X̃ be the centered version of data matrix X where the means of all features are
shifted to zero. Principal Component Analysis (PCA) is an unsupervised method
that attempts to reduce the data X̃ to X ∈ RNr×(Ntrain·m·n), with Nr < Nb
the number of components, by finding an orthogonal vector w with ||w||= 1

such that the projected data X̃w has the highest variance. The maximization
Var(X̃w) = wTCw yields the largest eigenvalues of the covariance matrix C =

Cov(X̃). Therefore the data matrix X̃ is multiplied by the matrix W , containing
the Nr largest eigenvalues of C, to giveX = X̃W . Denote the final transformation
of PCA derived from data X̃ to Nr components by TPCANr

X . If PCA is chosen
to reduce the data to Nr number of bins, then the optimization problem (3.2)
becomes

min
F

Ntrain∑
i=0

L(F (T
PCANr
X (xtraini )), ytraini )

B.1.2 Non-Negative Matrix Factorization
Let X∗ = X −min(X) be the nonnegative matrix version of X. In Non-Negative
Matrix Factorization (NMF) an attempt is made to factorize the non-negative
data matrix X∗ into two matrices W ∈ RNb×Nr and H ∈ RNr×(Ntrain·m·n) in an
unsupervised manner such that X∗ = WH. The matrix H will then contain the
data points compressed to Nr bins, while W describes the transformation of this
matrix to recover the original data matrix X∗. Since the problem is not solvable
in general, the matrices W and H are often approximated numerically by solving
the minimization problem:

min
W ,H

||X∗ −WH||2N

where ||·||N is usually the Frobenius norm. Denote the transformation of NMF
derived from data X to Nr components by TNMFNr

X . Similar to PCA, if NMF is
chosen to reduce the data to Nr number of bins, the optimization problem (3.2)
becomes
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min
F

Ntrain∑
i=0

L(F (T
NMFNr
X (xtraini )), ytraini )

B.1.3 Linear Discriminant Analysis

Let Y ∈ CNtrain·m·n be the vector representation of {yi}
Ntrain
i=1 . Linear Discriminant

Analysis (LDA) seeks to find a transformation W of the data such that ratio of the
between-class scatter matrix SB(X,Y ) and within-class scatter matrix Sw(X,Y )
is minimized:

min
W

|W TSB(X,Y )W |
|W TSw(X,Y )W |

Intuitively, the data are projected on a lower-dimensional space that maximally
separates the means of the projected class data points, while minimizing the
variances within each class. Similar to PCA, this leads to an eigenvalue problem.
Note that since the rank of between-class scatter matrix is at most C − 1, where
C = |C| is the number of different classes in the target data Y , the rank of W
is at most C − 1 as well. This means that LDA can reduce the data to at most
Nr = |C|−1 bins. Denote the transformation of NMF derived from data X to Nr
components by TLDANr

X,Y . Similar to the previous methods, if LDA is chosen to
reduce the data to Nr < C number of bins, then the optimization problem (3.2)
becomes

min
F

Ntrain∑
i=0

L(F (T
LDANr
X,Y (xtraini )), ytraini )

B.2 X-ray projection data computation
In this appendix, we provide further details on the computation of the simulated
X-ray projections. The dataset consists of 100 2D images of size 512×512 with Nb =
300 spectral bins. These are simulated X-ray projections of 3D volumes of 1024×
1024× 1024 voxels containing 120 cylinders with randomized lengths (uniformly
distributed between 0.143 and 1.43 cm), thicknesses (uniformly distributed between
0.044 and 0.11 cm), angles and positions. For a schematic overview of the simulated
X-ray setup, we refer to Figure 3.6. A virtual source and a virtual detector of
size 1536 × 1536 are placed in front and behind the object respectively, and we
use the ASTRA toolbox to compute the projections from this geometric setup.
After this, we downscale the projections to 512× 512 for computational efficiency,
effectively rescaling the volume size as well. The detector pixel size is chosen to
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be spixel = 0.11 mm, making the detector about 5.6 cm, while the voxel size is
chosen to be svoxel = 0.11 mm, making the object size about 3.75 cm. A cone
beam geometry is used, where the source is placed 44 cm in front of the the center
of the object, while the detector is placed 11 cm behind it. We use the National
Institute for Standards and Technology (NIST) [130, 301] attenuation spectra for
each associated material to compute for each ray an approximation of the number
of photons in energy bin I(Ei) hitting the detector. The computed quantity for
each bin i with energy window Ei and 1 ≤ i ≤ Nb is given by the following:

I(Ei) =

∫ Emax
i

Emin
i

I0(E)e−
∫
`
µ(x,E)dxdE (B.1)

Here, Emin
i and Emax

i signify the energy range in bin i, I0(E) photon influx at
energy E, ` is the ray trajectory and µ(x,E) is the attenuation at position x at
energy E. This is approximated by inserting the assumption that µ(x,E) can be
written as a linear combination of individual material attenuations:

µ(x,E) =
∑
m∈M

µm(E) αm(x)

=
∑
m∈M

(0.01µm(E) + 0.99µpolyethylene(E))αm(x)

where µm(E) is the attenuation coefficient of material m ∈ M, with M being
the set of involved materials, and αm(x) the fraction of material m at position x.
Inserting this into (B.1) gives:

I(Ei) =

∫ Emax
i

Emin
i

I0(E)e−
∫
`

∑
m∈M µm(E) αm(x)dxdE

=

∫ Emax
i

Emin
i

I0(E)e−
∑
m∈M µm(E)

∫
`
αm(x)dxdE

The integral is numerically approximated using the midpoint rule and equally
sized integration bins, which gives the following:

I(Ei) ≈
N∑
j=1

I0(Ẽj)e
−

∑
m∈M µm(Ẽj)

∫
`
αm(x)dx(Eimax − Eimin)

where N is the number of integration bins, and Ẽj = Eimin + 2(j−1)+1
2n (Eimin +Eimax)

the average energy in the j-th integration bin. The number of integration bins is
set to N = 30 for this computation. The integral

∫
`
αm(x)dx is computed using

ASTRA.

The photon influx I0(E) is a product of the source spectrum I0(E) at energy
E, the exposure time t and the detector pixel size spixel:

I0(E) = tI0(E)s2
pixel
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The exposure time is chosen to be t = 0.5 s, and the source spectrum I0 is
simulated as a radiology source spectrum for a tungsten source without filter at 70
kV, taken from Siemens Healhtineers [258]. The energy range used for this dataset
is from E1min = 14 kV to ENbmax

= 69 kV, and the source spectrum including this
range is given in Figure 3.8b. The final projection images in bin i are computed by
dividing I(Ei) by the flatfield image Iflat(Ei) containing reference photon counts
without objects

I(Ei)

Iflat(Ei)
=

I(Ei)∑N
j=1 I0(Ẽj)(Eimax

− Eimin
)

B.3 Time comparison
In this appendix we show the measured processing time for different training setups
with MSD on the generated X-ray dataset. Along with the GPU times we also
include CPU times, where training is carried out on one Xeon CPU core. The
processing times of the trained networks are given in Figure A1. The times for
DRMSD are broken down into the data reduction part and the segmentation part.
Of course, the times on the CPU cores are higher than those on the GPU core. In
both cases the processing time of DRMSD reducing to 1 bin is about 7 to 8 times
faster than that of MSD without any data reduction. On the CPUs the DRMSD
processing time is comparable to that of MSD, with the difference increasing as
the number of bins Nr increases. Note that the number of connections in both
networks increase linearly with the number of reduction images Nr. When reducing
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(a) Processing times on 4 CPUs
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(b) Processing times on 1 GPU

Figure A1: Execution time to apply a forward pass in the trained networks on both CPUs (a) and GPUs
(b). The MSD times (in blue) are added as a reference, where each data point indicates the number
of input channels. These values are equivalent to the processing time on data reduced by standard
methods as PCA, NMF and LDA.
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the data to up to 60 bins on the GPU, the DRMSD network is less than 2 times as
slow as the network on PCA, NMF and LDA reduced data. For the segmentation
part the speedup of the GPU versus CPU is 87%, whereas the speedup for the data
reduction part is 24%. Therefore, on the CPU the differences are smaller, but for
both CPU and GPU the additional data reduction processing time is acceptable.
All in all, the data show that the DRMSD can offer a processing speedup compared
to MSD when accomplishing hyperspectral imaging tasks, and this conclusion could
hold for some other CNN architectures as well.

B.4 Robustness
Since all experiments in this work are not averaged over multiple runs due time com-
putation time restrictions, we assess in this appendix the stability and robustness
of a number of selected experiments. Included in this selection are the experiments
where we witnessed the largest variation in the test results. We compute the
average, standard deviation, minimum, maximum and median values of the average
class accuracy over 8 different runs. The outcomes are given in Table B.1. For

Dataset Data type
Red.
type

Red.
chan.

Avg. Std. Min. Max. Median

X-ray
Noisy

+ Many
materials

DRMSD 2 99.30 0.0883 99.13 99.42 99.31

X-ray
Noisy

+ Many
materials

DRUNet 2 98.87 0.2937 98.36 99.29 98.97

X-ray
Noisy

+ Many
materials

LDA
+

MSD
2 94.09 0.7639 92.76 95.48 93.91

X-ray
Noisy

+ Many
materials

LDA
+

U-Net
2 87.24 0.6757 86.10 88.21 87.36

Remote
sensing

Noisy
+

Overlapping
DRMSD 1 95.85 0.3642 95.28 96.34 95.86

Remote
sensing

Noisy
+

Overlapping
DRUNet 1 94.46 0.7250 93.27 95.58 94.65

Remote
sensing

Noisy
+

Overlapping

LDA
+

MSD
1 59.34 1.2328 56.27 60.60 59.78

Remote
sensing

Noisy
+

Overlapping

LDA
+

U-Net
1 61.11 0.7674 60.03 62.48 61.05

Table B.1: Average, standard deviation, minimum, maximum and median of the average class accuracy
for various network setups, computed over 8 runs.
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each experiment, the standard deviation is at most 1.24, and for DRCNN methods
this is 0.73. The difference between the minimum and maximum values is at most
3.51, and for DRMSD methods this is 1.38. From these results, we conclude that
all the methods presented here are sufficiently stable, and these stability properties
may be expected from the other experiments in this research as well.
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C.1 Proof of Theorem 1
Since the convex set C =

{
X ∈ RM×D |X ≥ 0, X1 ≤ 1,XT1 ≤ 1

}
is composed

of convex set C1 =
{
X ∈ RM×D |X ≥ 0, X1 ≤ 1

}
and convex set C2 ={

X ∈ RM×D |X ≥ 0, XT1 ≤ 1
}
, the indicator function δC (with δC(X) = 0 when

X ∈ C and δC(X) =∞ otherwise) can be expressed as

δC(X) = δC1(X) + δC2(X).

Hence, the projection onto set C amounts to solving the following minimization
problem

projC(Z) = arg min
X

{
1

2
‖X −Z‖2F+δC1(X) + δC2(X)

}
.

Since the cost function is the composition of two indicator functions, we can redefine
a minimization problem by introducing a new slack variable Y :

minimize
X,Y

{
1

2
‖X −Z‖2F+δC1(X) + δC2(Y ) +

1

2
‖X − Y ‖2F

}
,

where we have penalized the slack variable Y to stay close to the original variable
X using quadratic term. The optimal point of this minimization problem must
satisfy the following fixed point equation:

X −Z + ∂δC1(X) +X − Y ∈ 0,

∂δC2(Y ) + Y −X ∈ 0,

where ∂f denotes the sub-gradient of the function f . Hence, the fixed point
iteration scheme to find the optimal point leads to

(I + (1/2)∂δC1)Xt+1 =
Z + Yt

2
,

(I + ∂δC2)Yt+1 = Xt+1,

for t = 1, . . . , T with setting Y0 to an arbitrary vector. Since the operation
(I + α∂δC)

−1 with α > 0 is equivalent to the definition of proximal operator, we
can compactly rewrite the iteration scheme as

Yt+1 = (I + ∂δC2)
−1

(
(I + (1/2)∂δC1)

−1

(
Z + Yt

2

))
,

= projC2

(
projC1

(
Z + Yt

2

))
.
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C.2 Bi-convexity of ADJUST and partial optimality
In this section, we show that the optimization problem (5.7) is bi-convex. We start
with the definitions related to bi-convexity.

Definition 1 (Bi-convex set). A set B ⊂ X × Y is bi-convex on X × Y if Bx =
{y ∈ Y : (x, y) ∈ B} is convex for every x ∈ X and By = {x ∈ X : (x, y) ∈ B} is
convex for every y ∈ Y.

Definition 2 (Bi-convex function). A function F : B → R on a bi-convex set
B ⊆ X×Y is bi-convex if and only if for every fixed y, the function F(x, ·) : Bx → R
is convex on Bx, and for every fixed x, the function F(·, y) : By → R is convex on
By.

Definition 3 (Bi-convex optimization problem). A minimization problem of the
form

minimize
x,y

F(x, y) subject to x, y ∈ B

is bi-convex if the set B is bi-convex on X × Y and the objective function F is
bi-convex on B.

Therefore, to show bi-convexity of problem (5.7), we need to show that the
constraint set CA × CR is bi-convex on RN×M × RM×D, and the function J :
RN×M × RM×D → R is a bi-convex function.

Lemma 1. The set B , CA × CR is bi-convex on RN×M × RM×D.

Proof. Since the set B is partitioned into two independent sets CA and CR, we only
need to show that these sets are convex. The set

CA =

{
X ∈ RN×M |xij ≥ 0,

M∑
j=1

xij ≤ 1

}

is a convex set on RN×M since it is an intersection of the non-negative orthant
(xij ≥ 0) with N number of hyperplanes (

∑M
j=1 xij ≤ 1) (see 2.2.4 of [45]). Similarly,

the set

CR =

{
X ∈ RM×D |xij ≥ 0,

D∑
j=1

xij = 1,

M∑
i=1

xij ≤ 1

}
,

is a convex set on RM×D because it is an intersection of non-negative orthant
(xij ≥ 0) with M number of hyperplanes (

∑D
j=1 xij = 1) and D number of

halfspaces (
∑M
i=1 xij ≤ 1). Hence, from definition 1, the set B = CA × CR is a

bi-convex set on RN×M × RM×D.

Lemma 2. The function J (A,R) = 1
2‖Y −WART ‖2F is bi-convex.
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Proof. First, we rewrite the function in the form

J (A,R) = 1
2‖Y −WART ‖2F ,

= 1
2 Tr

(
(Y −WART )(Y −WART )T

)
‖X‖2F= Tr

(
XXT

)
,

= 1
2 Tr

(
T TRTATW TWART

)︸ ︷︷ ︸
P(A,R)

−Tr
(
Y TWART

)︸ ︷︷ ︸
Q(A,R)

+ 1
2‖Y ‖

2
F .

Hence, to show that J (A,R) is bi-convex, we need to show that P(A,R) and
Q(A,R) are bi-convex.

We first show the bi-convexity of Q(A,R). To do so, fix A ∈ CA. Now, let
R1,R2 ∈ CR and λ ∈ (0, 1). Then we have

λQ(A,R1) + (1− λ)Q(A,R2) = λTr
(
Y TWAR1T

)
+ (1− λ) Tr

(
Y TWAR2T

)
= Tr

(
λY TWAR1T

)
+ Tr

(
(1− λ)Y TWAR2T

)
= Tr

(
λY TWAR1T + (1− λ)Y TWAR2T

)
= Tr

(
Y TWA(λR1 + (1− λ)R2)T

)
= Q(A, λR1 + (1− λ)R2)

Hence, Q(A,R) is a convex function over RM×D for every A ∈ CA. Similarly,
fixing R ∈ CR and using an analogous deduction as above shows that

λQ(A1,R) + (1− λ)Q(A2,R) = Q(λA1 + (1− λ)A2,R)

for every A1,A2 ∈ CA and λ ∈ (0, 1). Hence, Q(A,R) is a convex function over
RN×M for every R ∈ CR. This shows that Q(A,R) is bi-convex.

Next, we show the bi-convexity of P(A,R). Thus, fix A ∈ CA. Now, to
show that P(A,R) is convex, we use the first-order condition (see 3.1.4 of [45]).
Let Q = A

T
W TWA and P = TT T . The first-order condition states that

∀R1,R2 ∈ RM×D, we need

P(A,R2) ≥ P(A,R1) + Tr
(
(R2 −R1)T∇R1

P(A,R1)
)

Tr
(
RT

2QR2P
)
≥ Tr

(
RT

1QR1P
)

+ 2 Tr
(

(R2 −R1)TA
T
W TWAR1TT

T
)

Tr
(
RT

2QR2P
)
≥ Tr

(
RT

1QR1P
)

+ 2 Tr
(
(R2 −R1)TQR1P

)
To arrive at this condition, let us consider

Tr
(
(R1 −R2)TQ(R1 −R2)P

)
= Tr

(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
− Tr

(
RT

1QR2P
)
− Tr

(
RT

2QR1P
)

= Tr
(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
− Tr

(
RT

1QR2P
)
− Tr

(
RT

2Q
TR1P

T
)

= Tr
(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
− 2 Tr

(
RT

1QR2P
)
.
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Since Q and P are positive semi-definite matrices, we have

Tr
(
(R1 −R2)TQ(R1 −R2)P

)
≥ 0.

Hence, we obtain the following relation

Tr
(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
≥ 2 Tr

(
RT

1QR2P
)
,

which proves the first-order condition. Similarly, we can show that P(A,R) is
a convex function over RN×M for fixed R ∈ CR. Hence, P(A,R) is a bi-convex
function.

Since P(A,R) and Q(A,R) are bi-convex functions, their linear combination
is also a bi-convex function [103]. Hence, we prove that J (A,R) is bi-convex.

Corollary 1. The optimization problem (5.7) is bi-convex.

Proof. Since the cost function J (A,R) = 1
2‖Y −WART ‖2F is bi-convex (Lemma 2)

and CA × CR is a bi-convex set (Lemma 1), the optimization problem

minimize J (A,R) subject to A ∈ CA, R ∈ CR

is bi-convex (from Definition 3).

Bi-convex optimization problems may have a large number of local minima as
they are global optimization problems in general [103]. Since we are interested in
finding a stationary point of (5.7), we define the notion of partial optimality.

Definition 4 (Partial optimality). Let F : X ×Y 7→ R be a given function and let
(x?, y?) ∈ X × Y. Then, (x?, y?) is called a partial optimum of F on X × Y, if

F(x?, y?) ≤ F(x, y?) ∀x ∈ X and F(x?, y?) ≤ F(x?, y) ∀ y ∈ Y.

It is easy to show that a partial optimum z? = (x?, y?) is also a stationary
point of F in X × Y if F is differentiable at z?. Also, the converse is true [103].
Finally, the following theorem (adapted from [290]) connects the local optimality
(i.e. stationary points) to the partial optimality:

Theorem 2. Let (A?,R?) ∈ CA × CR be a partial optimum of J (A,R) = 1
2‖Y −

WART ‖2F . Furthermore, let U(R?) denote the set of all optimal solutions to (5.7)
with R = R? and let V(A?) be the set of optimal solutions to (5.7) with A = A?.
If (A?,R?) is a local optimal solution to (5.7), then it necessarily holds that

J (A?,R?) ≤ J (A,R) ∀A ∈ U(R?), R ∈ V(A?).

This theorem implies that the natural solution of any alternating minimization
algorithm will lead to a partial optimal solution. The proof of the theorem can be
found in [290].
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C.3 Derivation of AAPM
First, we rephrase the original ADJUST problem in the following form

minimize
A,R

J (A,R) + δCA(A) + δCR(R),

subject to WART = Y ,

where δC is an extended value function for the constraint set C that is 0 when
constraint is satisfied and ∞ otherwise. Here, we have introduced the constraints
on the misfit between simulated and true measurements in the linear form. The
Lagrangian for this optimization problem reads

L(A,R,U) = J (A,R) + δCA(A) + δCR(R) + 〈U ,Y −WART 〉

= J (A,R) + 〈U ,Y −WART 〉︸ ︷︷ ︸
,J̃ (A,R,U)

+δCA(A) + δCR(R) (C.1)

where U ∈ RJ×C is a Lagrange multiplier for constraint WART = Y . The
Lagrange multiplier U can also be thought of as a running-sum-of-error as it
captures the misfit between the true measurements and simulated measurements.
The goal is to find a saddle point of this Lagrangian, since the saddle point will
give the optimal solution to (5.7). The saddle point of the Lagrangian is given by

(A?,R?,U?) = arg max
U

arg min
A,R

L(A,R,U).

It is important to note that the Lagrangian is non-differentiable due to the presence
of δCA and δCR . Since the min-max problem cannot be solved using a simple
gradient-based iterative scheme due to non-differentiability of the Lagrangian, we
need to make use of proximal alternating iterative algorithm. To derive such
scheme, we approximate the Lagrangian (C.1) near point (Ak,Rk,Uk) using the
Taylor series for the differentiable function J̃ (A,R,U). This approximation reads

L(A,R,U) ≈ L̃(A,R,U |Ak,Rk,Uk)

= J̃ (Ak,Rk,Uk)+

〈∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1/(2α)‖R−Rk‖2F +

〈∇AJ̃ (Ak,Rk,Uk),A−Ak〉+ 1/(2β)‖A−Ak‖2F +

δCA(A) + δCR(R), (C.2)

where α and β are the Lipschitz constants of the partial gradients of J̃ (A,R,U)
with respect to A and R respectively. This approximation leads to the following
alternating scheme where we minimize with respect to the primal variables A and
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R, and maximize with respect to the dual variable U :

Rk+1 = arg min
R

L̃(A,R,U |Ak,Rk,Uk)

Ak+1 = arg min
A

L̃(A,R,U |Ak,Rk+1,Uk)

Uk+1 = Uk + ρ (WAk+1Rk+1T − Y )

with k = 0, . . . ,K, and ρ > 0 is the acceleration parameter. This alternating
scheme requires initial values of R and A, while the initial value of U can be
set to 0. We update the dual variable U using the linearized ascent, a standard
technique used by many alternating methods, e.g., alternating direction method of
multipliers [46]. Since the approximate Lagrangian (C.2) is composed of quadratic
term and non-smooth terms forA andR, we can express the iterates using proximal
operations. To derive R, we use the identity ‖X +Y ‖2F= ‖X‖2F+‖Y ‖2F+2〈X,Y 〉,
or equivalently, 〈X,Y 〉+ 1

2‖Y ‖
2
F= 1

2‖X + Y ‖2F− 1
2‖X‖

2
F . The derivation is now

as follows:

Rk+1 = arg min
R

L̃(A,R,U |Ak,Rk,Uk),

= arg min
R

{
〈∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1

2α‖R−Rk‖2F+δCR(R)
}
,

= arg min
R

{
1
α 〈α∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1

2α‖R−Rk‖2F+δCR(R)

}
,

= arg min
R

{
1
α

(
〈α∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1

2‖R−Rk‖2F
)

︸ ︷︷ ︸
applying the identity with X,α∇RJ̃ (Ak,Rk,Uk),Y ,R−Rk

+δCR(R)

}
,

= arg min
R

{
1

2α‖α∇RJ̃ (Ak,Rk,Uk) +R−Rk‖2F

− 1
2‖α∇RJ̃ (Ak,Rk,Uk)‖2F︸ ︷︷ ︸

independent of R

+δCR(R)

}
,

= arg min
R

{
1

2α‖R−Rk + α∇RJ̃ (Ak,Rk,Uk)‖2F+δCR(R)
}
,

= proxδCR

(
Rk − α∇RJ̃ (Ak,Rk,Uk)

)
, (C.3)

where the proximal for a function f : Rn 7→ R reads

proxγf (z) = arg min
x∈Rn

{
1

2γ
‖x− z‖22+f(x)

}
with γ > 0. The proximal operator allows us to work with non-differentiable func-
tions. Moreover, proximal operators for many functions have explicit expressions,
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making it a very computationally-friendly tool. The proximal operator for δC with
C ⊂ Rn takes the following form:

proxδC (z) = arg min
x∈Rn

{
1

2
‖x− z‖22+δC(x)

}
Indeed, the proximal operator of a δC is just an orthogonal projection of a vector
onto the set C. If the set C is convex, the proximal point is unique. Similar to (C.3),
we can explicitly write down the update of A in terms of the proximal operator.

C.4 Gradient computations
Here we show how the gradients are computed at the final comments in Sec-
tion 5.5.1. We only show the derivation of ∇AJ̃ (A,R,U) since the derivation of
∇RJ̃ (A,R,U) is very similar.

∇AJ̃ (A,R,U)

= ∇A

(
1
2‖Y −WART ‖

2
F+〈U ,Y −WART 〉

)
= ∇A

(
1
2‖Y −WART ‖

2
F

)
+∇A〈U ,Y −WART 〉

∗
= 1

2∇A

(
‖Y ‖2F+‖WART ‖2F−2 Tr

(
Y TWART

))
+∇A Tr

(
UT (Y −WART )

)
〈X,Y 〉 = Tr

(
ATB

)
= 1

2∇A

(
‖WART ‖2F

)
−∇A

(
Tr
(
Y TWART

))
+∇A Tr

(
UTY

)
−∇A Tr

(
UTWART

)
= 1

2∇A

(
Tr
(
T TRTATW TWART

))
−W TY T TRT

− (UTW )T (RT )T
∂

∂X
Tr (AXB) = ATBT

= W T (WART )T TRT −W T (Y )T TRT

−W TUT TR

= W T (WART − Y )T TRT −W TUT TR.

In the third step (*), we use the following identity:

‖X − Y ‖2F = Tr
(
(X − Y )T (X − Y )

)
= Tr

(
(XT − Y T )(X − Y )

)
= Tr

(
XTX − Y TX −XTY + Y TY

)
= Tr

(
XTX

)
− Tr

(
Y TX

)
− Tr

(
XTY

)
+ Tr

(
Y TY

)
= ‖X‖2F+‖Y ‖2F−2 Tr

(
Y TX

) (
Y TX

)T
= XTY
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C.5 Dictionary matrix
In this section, we list the 42 materials that are used in the dictionary matrix T for
the Disks and Shepp-Logan phantoms. The spectra are retrieved from the National
Institute for Standards and Technology (NIST) [130, 301].

Mat.
no.

Material
name

At.
no.

23 Vanadium 23
24 Chromium 24
25 Manganese 25
26 Iron 26
27 Cobalt 27
28 Nickel 28
29 Copper 29
30 Zinc 30
31 Gallium 31
32 Germanium 32
33 Arsenic 33
34 Selenium 34
35 Bromine 35
36 Krypton 36
37 Rubidium 37
38 Strontium 38
39 Yttrium 39
40 Zirconium 40
41 Niobium 41
42 Molybdenum 42
43 Technetium 43

Mat.
no.

Material
name

At.
no.

44 Ruthenium 44
45 Rhodium 45
46 Palladium 46
47 Silver 47
48 Cadmium 48
49 Indium 49
50 Tin 50
51 Antimony 51
52 Tellurium 52
53 Iodine 53
54 Xenon 54
55 Cesium 55
56 Barium 56
57 Lanthanum 57
58 Cerium 58
59 Praseodymium 59
60 Neodymium 60
61 Promethium 61
62 Samarium 62
63 Terbium 63
64 Gadolinium 64

We plot the attenuation spectra for all dictionary elements for each bin within the
selected range in Figure A1. Additionally, Figure A2 shows the spectra for a few
selected materials. All of these materials have a K-edge in the considered spectral
range.
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Figure A1: Dictionary matrix T : Attenuation values over 100 spectral channels for 42 materials, with
energies ranging from 20 keV to 119 keV.
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Figure A2: Attenuation values over 100 spectral channels for four materials from the dictionary matrix
T , with energies ranging from 5 keV to 35 keV.

C.6 Performance measures

To assess the quality of the reconstructions that ADJUST (and the comparison
methods) generates, we compare the reconstructions with the ground truth. Since
for the UR, RU, cJoint and ADJUST methods the best matching reconstruction of
a certain channel in the ground truth may be located in a different channel in the
material map matrix, a matching that minimizes the total error over the channels
needs to be carried out. Let AGT ∈ RN×M be the matrix containing the ground
truth material maps and Arec ∈ RN×M be the reconstructed material map. We
compute a matrix Aerror containing the mutual errors between channels of AGT

and Arec, defined by

Aerror
ij =

∥∥(Arec
ki )i≤k≤N − (AGT

kj )1≤k≤N
∥∥

2
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Given this error matrix, we use an iterative greedy approach to match the channels
of the AGT and Arec matrices based on their mutual channel errors. We repeatedly
compute the minimum of the error matrix and remove the possibility to match the
corresponding channels. To do so, letMGT

0 =M, Mrec
0 =M andMmatch

0 = ∅.
In each iteration 1 ≤ l ≤M , we compute

(il, jl) = arg min
i∈Mrec

l

j∈MGT
l

Aij

and define Mrec
l+1 = Mrec

l \{il}, MGT
l+1 = MGT

l \{jl} and Mmatch
l+1 = Mmatch

l ∪
{(il, jl}. Given the final channel-matching represented by Mmatch

M , we compute
the following three error metrics for each (i, j) ∈Mmatch

M :

• Mean square error (MSE) for each matched material pair:

MSE(i, j) =
∥∥(Arec

ki )i≤k≤N − (AGT
kj )1≤k≤N

∥∥2

2

• Peak signal-to-noise ratio (PSNR) for each matched material pair:

PSNR(i, j) = 10 log10

((
max
k

(AGT
kj )1≤k≤N

)2

/
∥∥(Arec

ki )i≤k≤N − (AGT
kj )1≤k≤N

∥∥2

2

)

• Structural similarity index (SSIM) for each matched material pair:

SSIM(i, j) =
(
(2µiµj + C1)(2σij + C2) /

(
µ2
i + µ2

j + C1)(σ2
i + σ2

j + C2)
))

with µi, µj and σi, σj being the means and the standard deviations of the
matrices (Arec

ki )i≤k≤N and (AGT
kj )1≤k≤N respectively, with σij being the

cross-correlation between these two matrices, and with C1 = (0.01L)2, C2 =
(0.03L)2 and L = 1.

The averages of the MSE, PSNR and SSIM over all materials are then given by:

MSEavg =
∑

(i,j)∈Mmatch
M

MSE(i, j)/M,

PSNRavg =
∑

(i,j)∈Mmatch
M

PSNR(i, j)/M,

SSIMavg =
∑

(i,j)∈Mmatch
M

SSIM(i, j)/M.
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C.7 Numerical studies: Comparison of methods
As stated in the main chapter, we have compared ADJUST with RU, UR, and
cJoint on three numerical phantoms, mainly the Shepp-Logan phantom, the Disks
phantom, and the Thorax phantom. Figure A3 shows the reconstruction results
(i.e. reconstructed spatial maps and the spectra of materials) of these methods on
Disks phantom. Moreover, we also plot the performance measures of these methods
per material in Figure A4.
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Figure A3: Visual comparison of ADJUST with RU, UR, and cJoint method on the Disks phantom. We
only show the reconstructions of all disks here for the comparison. Moreover, we match the colors of
the bounding box for material maps with the (recovered) spectral signatures of the materials (shown
in the bottom row).
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Figure A4: Performance plots showing PSNR (left column), SSIM (middle column), MSE (right col-
umn) of the reconstructed materials against the ground truth for various numerical algorithms on the
phantoms.

C.8 Numerical studies: Limitedmeasurement patterns
We consider three different types of limited measurement patterns: (i) Sparse-angle:
tomographic projections from 10 equidistant angles in the range of 0 to π for 100
spectral channels, (ii) Limited-view : 60 equidistant projection angles in the limited
range of [0, 2π/3] for 100 spectral channels, (iii) Sparse channels: 60 equidistant
angles between 0 and π, but with only 30 spectral channels. We test ADJUST on
the two numerical spectral phantoms, i.e. the Shepp-Logan phantom and the Disks
phantom. Figures A5 and A6 demonstrate the reconstructions of ADJUST for all
three limited measurement patterns on these two phantoms.
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Figure A5: Results of ADJUST with sparse-angle data, limited view data and sparse spectral channels
on Shepp-Logan phantom. The colors of the bounding box of material maps are matched with the
spectral signatures of the materials (shown in the bottom row).
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Figure A6: Results of ADJUST with sparse-angle data, limited view data and sparse spectral channels
on Disks phantom. We only show material maps of first five materials. The colors of the bounding box
of material maps are matched with the spectral signatures of the materials (shown in the bottom row).
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C.9 Numerical studies: Mixed material phantom

We consider the Mixed Disks phantom, which consists of solid disks in an inner
circle and mixed disks on an outer circle. All material mixtures are present on the
outer circle. With M = 5 disks on the inner circle, this amounts to 10 mixed disks
on the outer circle. The materials are the same as the first 5 selected materials in
the Disks phantom. The ADJUST method with 2000 iterations is compared with
RU, UR, and cJoint. The results of this experiment are shown in Figure A7, with
the results for each material on a separate row.
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Figure A7: Comparison of various methods for spectral CT for a mixed-material Disks phantom. The
materials contained in this phantom are arsenic (top row), selenium, bromine, krypton and rubidium
(second-to-last row).
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We see that the RU, UR, and cJoint methods are not capable of fully separating
the mixtures and retrieving the disks on the inner circle. On the other hand,
ADJUST nearly perfectly reconstructs the disks on the inner circle and the mixture
disks on the outer circle.

C.10 Numerical studies: 3D phantom
We also apply the ADJUST algorithm to the 3D Shepp-Logan phantom to show the
ability to reconstruct a 3D phantom. This 3D phantom is four times as large as the
2D Shepp-Logan phantom. The phantom is discretized on a grid of 128× 128× 128
voxels. The phantom is shown in Figure A8. We consider 60 equidistant projection
angles in the range of [0, π] with a parallel-beam acquisition geometry. We show
the visual results of the 3D material decomposition in Figure A9. The average MSE
is 0.0029, the average PSNR is 26.67 and the average SSIM is 0.9763, indicating
that the 3D reconstructions are almost accurate.
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Figure A8: The true material compositions of the 3D Shepp-Logan phantom. The materials contained
in this phantom are vanadium (left column), chromium (middle column), and manganese (right col-
umn).
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Figure A9: The reconstructed material composition of the 3D Shepp-Logan phantom from ADJUST
algorithm. The materials contained in this phantom are vanadium (left column), chromium (middle
column), and manganese (right column).
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