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Conclusions and outlook

6.1 Conclusions

6.1.1 Overview

Quality control is a challenging but essential procedure in industrial imaging. With
X-ray imaging, the inner structure of an object can be visualized and hence, un-
wanted and potentially hazardous elements can be identified by detection systems.
Since single X-ray radiography results in superimposed images, extracting and
analyzing features from these images may lead to suboptimal decision-making.
Recent years have seen a significant increase in tomographic imaging quality, espe-
cially resulting from spectral imaging and machine learning technologies. These
techniques have the potential to significantly increase the effectiveness of industrial
imaging without sacrificing too much on processing speeds.

As one of the most important branches of industry, food processing is the
recurring theme in this dissertation. In particular, foreign object detection is an
essential component that should attain both high accuracy and high throughput.
In order to improve this trade-off, X-ray imaging can be used in conjunction with
machine learning. Chapter 2 addresses a common issue with machine learning
regarding the need for large volumes of suitable training data. By incorporating
computed tomography into a workflow, high-quality pairings of X-ray projections
and ground truth locations of foreign objects can be generated with minimal manual
labor. The resulting datasets enable the training of neural networks for high-speed
foreign object detection.

By enhancing the features for analysis of industrial products, spectral X-ray
imaging offers an improvement to standard X-ray inspection. The additional
information spectral X-ray imaging offers also results in much larger data volumes,
of which a significant fraction may be redundant. In Chapter 3, a network ar-
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chitecture named Data Reduction Convolutional Neural Network (DRCNN) is
proposed to mitigate this problem. With this architecture, a neural network learns
to combine the image features that are needed for a specific task (foreign object
detection, for example) and compresses these into a much smaller data volume.
This approach increases the quality of feature extraction and reduces data sizes
and possibly processing times.

Spectral X-ray imaging also offers improvement in the three-dimensional re-
construction of products of interest. In spectral X-ray CT, reconstructions can be
computed with projection data probed at different X-ray photon energies. These
different energy levels are treated in a more generalized manner as channels in
Chapter 4. There, a class of algorithms named Multi-Channel DART (MCDART)
is proposed that generalizes the Discrete Algebraic Reconstruction Technique
(DART) — for objects consisting of a limited number of materials with known
attenuation values — to multi-channel data. From a series of experiments, it can be
concluded that this class of algorithms can improve reconstructions using multi-
channel data.

When an industrial spectral X-ray setup is available, attenuation values of a
material can be obtained by directly measuring these with the spectral detector.
By doing this for many common materials, a spectral dictionary can be constructed,
which can be used as prior information to steer the often ill-posed spectral re-
construction problem to a desirable solution. Chapter 5 proposes a spectral
reconstruction and material decomposition framework, named ADJUST, by posing
the problem in such a way that the spectral matrix is a multiplication of an indi-
cator matrix and a spectral dictionary. Contrary to most other spectral material
decomposition methods, ADJUST is a method that performs the reconstruction
and material decomposition in one step. Moreover, ADJUST can take on objects
with more materials and produce more accurate reconstructions than other methods.

6.2 Contributions

The methods presented in this dissertation utilize spectral imaging and deep learn-
ing to improve aspects such as the workload, practicality, accuracies, ill-posedness
and compression possibilities in problems found in X-ray imaging and CT recon-
struction applications. The earlier two sections are concerned with machine learning
methods, which are shown to yield improved results for industrial foreign object
detection. The latter two sections are concerned with improving the accuracy
of CT reconstructions by utilizing spectral X-ray imaging, both with respect to
single-channel CT reconstruction as well as to other spectral CT reconstruction
methods.
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Deep learning in conjunction with X-ray imaging methods has rarely been ap-
plied in certain industrial areas, such as food processing. The workflow presented in
Chapter 2 for efficiently generating training data for deep learning on radiographs
has application potential in an industrial setting, as evidenced by the accuracy
results on the real-world dataset. By making use of computed tomography, foreign
objects can be represented in a 3D volumetric space rather than a 2D radiograph.
This makes separation of foreign objects from the remaining object substantially
easier. As a result, the annotation of the X-ray projections becomes radically less
time-intensive and less prone to interpretation. On top of this, much more training
data can be generated from each scanned product, implying that the number of
products that need to be scanned is limited. Regarding improving quality control
by object inspection at a production line of a factory, this contributes significantly
to the workload of setting up a deep learning driven analysis and decision-making
machinery in an industrial context. Additionally, Chapter 2 also provides an open
X-ray dataset, which is generally not easy to come by, to test methods for object
detection.

The DRCNN architecture covered in Chapter 3 applies machine learning
to spectral data reduction. As suggested by the results in that chapter, when
hyperspectral imaging is used for industrial X-ray imaging, training with DRCNN
can be used to optimize the compression and throughput speed for a specific task,
such as detection tasks. In addition, training with this architecture achieves better
understanding of essential features in the data and can possibly speed up the
(hyper)spectral X-ray data acquisition. This approach is helpful for all applications
where hyperspectral imaging — not necessarily with X-rays — is concerned. For
instance, in optical hyperspectral imaging applications such as remote sensing or
surface-based hyperspectral inspection, the method contributes to better compres-
sion, transmission, speed and accuracy.

Similar to how the workflow in Chapter 2 exposes the advantages of using 3D
CT with respect to separating foreign objects, the MC-DART method in Chap-
ter 4 exploits the improved separability of voxels in a reconstruction through
multi-channel imaging. By incorporating a high-dimensional segmentation step,
the method presents a framework for reconstruction of multi-channel data in a
more effective manner than independent channel reconstructions. The method can
be scaled to any number of channels, and therefore allows for a higher number
of materials in an object. The usage and properties of the MC-DART method
are demonstrated using simulated spectral X-ray imaging mechanisms. However,
MC-DART can also be used for other multi-channel modalities, given that the
object of reconstruction can be represented in a discrete manner.

When prior information on spectral material signatures is available in the
form of a spectral dictionary, the ADJUST method proposed in Chapter 5 can
produce material maps of an object from its spectral X-ray CT data, given that the
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corresponding materials are sufficiently distinct in terms of their signatures. The
method allows for higher accuracies and for reconstructions of more materials than
in most existing one- or two-step methods without additional hyperparameters.
The results on a laboratory spectral micro-CT dataset imply that applications are
possible in both spectral and hyperspectral X-ray imaging.

6.3 Future work and outlook

Spectral imaging and deep learning hold much potential for solving advanced
imaging problems. To utilize these advances effectively, algorithms that can adapt
to a wide range of problem settings should be developed. A running theme in
the research of this dissertation is the modularity of the proposed methods. The
DRCNN architecture is designed in such a manner that any CNN architecture
can be inserted in the back-end of the network, of which the MSD and U-Net
architectures are well-investigated examples in Chapter 3. Similarly, in the class of
algorithms that the MC-DART method represents, the algebraic reconstruction
method can be chosen at will. Finally, the workflow presented in Chapter 2 has
many possibilities for changes and extensions. A number of these are schematically
shown in Figure 6.1.

As highly suggested in this dissertation, the workflow from Chapter 2 can be
enhanced with spectral X-ray imaging. This can be done in at least two ways:
(i) spectral scanning can increase the quality of the CT reconstruction and the
subsequent segmentations and virtual projections to obtain better ground truth
(Fig. 6.1a), and (i) spectral input data can be used in the generated training set for
better deep learning training and performance (Fig. 6.1d). With spectral CT data,
a naive approach of reconstructing each separate channel can be carried out in order
to improve the foreign object segmentation. Even better is to incorporate existing
algorithms to use the combined information to make a (discrete) reconstruction
(Fig. 6.1f), for which integration of the MC-DART (Fig. 6.1g) and the ADJUST
(Fig. 6.1h) algorithms are suitable. In the case of hyperspectral or multi-spectral
data with a high number of bins, the DRCNN architecture can extract essential
features and reduce the spectral dimension of the data to speed up the throughput
in the neural network (Fig. 6.11).

Other interesting additional extensions of the workflow include multi-angle data
acquisition (often used, for example, for glass container inspection [68]), which,
along with multi-energy acquisition, still needs to be fully used in X-ray imaging
for detection [8]. Another improvement is to include a separate high-quality scan
(Fig. 6.1b) or advanced CT reconstructions for improved segmentation accuracy.
For instance, if needed, denoising or inpainting can be applied to the reconstructed
CT volumes (Fig. 6.1e). Deep-learning driven noise reduction algorithms [119] and
inpainting algorithms are readily available for these purposes. Finally, to further
improve the effectivity of the detection by deep learning, more data augmentation
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Figure 6.1: The complete workflow of data acquisition from Chapter 2 with a number of possible
extensions and enhancements: (a) spectral scanning, (b) performing an additional higher-quality scan
for improved CT reconstruction, (¢) multi-angle or (d) spectral input for the neural network, (e) ap-
plication of denoising methods to improve the CT reconstruction, (f) direct discrete reconstruction
resulting in segmented volumes, (g) integration of ADJUST for spectral tomography, (h) integration of
MC-DART for multi-channel data, (i) integration of DRCNN in the workflow.

can be carried out in the projection domain [145]. Better still, data augmentation
in the reconstruction space [17, 192], combined with realistic forward projections,
yields even richer X-ray training datasets.

The evaluation of the methods presented in this dissertation focuses primarly
on accuracy. While the deep learning methods are designed to be fast, the pro-
cessing times are only briefly touched upon, either in terms of particular time
speedups for DRCNN and time complexity classes with MC-DART. A deeper
analysis of the processing speedups would be interesting, especially regarding the
additional spectral dimension inherent to the data used in most of this dissertation.
Nevertheless, this highly depends on the problem setting. For instance, if the
X-ray imaging setup is such that the data quality deteriorates, more spectral bins
may be needed for successful feature extraction with DRCNN, or more iterations
are needed for proper convergence to acceptable solutions with MC-DART and
ADJUST. Speed comparisons will become interesting when a practical application
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and setup are considered. When the speed at a production line is high, motion
blurring may become an issue, but we expect that this can be taken care of with
machine learning as well. This also applies when many objects are located on
the conveyor belt, and the resulting radiographs are composites of single-object
radiographs. In this case, either reconstruction methods for overlapping objects
[253] or data augmentation will help (although with too many objects, photon
starvation could prevent any possible detection at all). Also, in our experiments,
perfect (angular) alignment of the foreign object radiograph and the ground truth
was not strictly needed. Some erroneous experiments revealed that a slight offset
did not significantly reduce the detection rate. This is positive for industrial
implementation as it may allow for some accidental misalignment. In general, the
generalization of the trained neural networks with approaches in this dissertation
to other data from other objects or factory line setups is a topic for further research.

With spectral imaging and spectral CT, there are at least a number of additional
challenges. First, spectral detection may not be consistent. Initial laboratory experi-
ments showed that detectors can yield different projection images when experiments
are repeated under the same circumstances. Machine learning based object detec-
tion methods may overcome this problem to a certain extent, although this again
depends on the separability of the materials in the object. Second, the modelling
in this dissertation does not include the (not necessarily known) detector response
function, which describes the distribution of measured energy for an incident beam
of a specific energy. ADJUST still needs to include a detector response matrix
in the modelling. In general, incorporation of a detector response function [170]
makes the problem more realistic but is often left out to keep the problem convex [6].

The methods presented in this dissertation can be further enhanced. First, the
workflow can be extended from segmentation to other sorts of classification, such
as binary classification. Secondly, in the spectral simulations used for the workflow,
DRCNN and ADJUST results, no densities are taken into account. Including this
does not fundamentally change the methods, but they need to be added in the case
of practical applications with ADJUST. Thirdly, an evident and straightforward
extension to MC-DART is the application to three-dimensional reconstruction prob-
lems. Additionally, the requirement for the grey values to be known for MC-DART
poses practical challenges. For that reason, a version with automatic grey level
estimation is desirable, which can be implemented as a joint optimized problem
in which both the reconstruction and the grey levels are optimized (in a similar
fashion as TVR-DART [328]). Lastly, task-driven data reduction can be combined
with network pruning methods (for example, LEAN [252]) to reduce training time,
reduce processing time and improve feature extraction.

While the methods presented in this dissertation aim primarly for industrial
imaging, their usage extends beyond this. First of all, the data reduction method
and the material decomposition approach of ADJUST can be applied in remote
sensing. ADJUST may be used as regularization, like, for instance, directional TV
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in remote sensing [48]. Data reduction can be applied to all sorts of remote sensing
problems, as access to data or equipment is getting less difficult and costly [109, 243].
The biconvex formulation and solution strategy of ADJUST can be used for other
CT-related problems, for instance optimal angle selection or automatic grey value
estimation in discrete tomography. In addition, ADJUST can be used for general
material decomposition, for instance for biological and chemical contamination
checks, or in spectroscopy.

The fields of machine learning, spectral X-ray imaging and tomography are
rapidly evolving. It is expected that spectral detectors will become the standard
for medical imaging in the future, and will be adopted in industrial imaging as well.
Depending on the detector possibilities, spectral X-ray imaging may be used for
chemical and biological contamination in addition to physical contamination. Deep
learning gains momentum in industrial imaging in general and will most surely
become a standard in food inspection. The combination of deep learning with
spectral X-ray inspection is, therefore, a logical pathway to the future to increase
accuracy and throughput. A few key limitations remain that make it how far these
developments will push the possibilities. First, imaging and detection are limited to
certain imaging resolution (for instance, with micro- and nanoplastics). Secondly,
the difficulty of detecting of certain combinations of materials with X-rays will
remain a sticking point. Therefore, additional means of noninvasive methods may
be needed. For instance, phase-contrast imaging may be more interesting than
absorption imaging in certain situations, as this modality yields superior results
for the detection of organic materials [80].






