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Dictionary-based spectral
tomography

Spectral X-ray imaging has the potential to significantly improve the accuracy
of material decomposition in tomography. Nevertheless, the problem of volu-
metric material decomposition in spectral tomography is often highly ill-posed.
Therefore, most state-of-the-art methods rely on strict prior information, and
are able to provide material decomposition with a limited number of materials,
with limited accuracy, or a limited set of spectral configurations.

To resolve these issues, we propose ‘A Dictionary-based Joint reconstruction
and Unmixing method for Spectral Tomography’ (ADJUST). Its formulation
relies on forming a dictionary of spectral signatures of materials common
in CT and prior knowledge of the number of materials present in an object.
In particular, we decompose the spectral volume linearly in terms of spatial
material maps, a spectral dictionary, and the indicator of materials for the
dictionary elements. We propose a memory-efficient accelerated alternating
proximal gradient method to find an approximate solution to the resulting
bi-convex problem. From numerical demonstrations on several synthetic
phantoms, we observe that ADJUST performs exceedingly well compared to
other state-of-the-art methods. Additionally, we address the robustness of
ADJUST against limited and noisy measurement patterns. The demonstration
of the proposed approach on a spectral micro-CT dataset shows its potential
for real-world applications.

This chapter is based on:
M. T. Zeegers, A. Kadu, T. van Leeuwen, and K. J. Batenburg. “ADJUST: A Dictionary-
based Joint reconstruction and Unmixing method for Spectral Tomography”. Inverse
Problems 38.12 (2022), p. 125002.
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5.1 Introduction

X-ray Computed Tomography (CT) estimates the spatial attenuation map of the
object of interest from its measured X-ray projections obtained from different
angles. The conventional tomography acquisition setup consists of a polychromatic
X-ray source and an X-ray detector that collects the transmitted X-rays. However,
these conventional detectors do not discriminate between different incident photon
energies and collect the attenuated X-rays solely in one energy bin (Figure 5.1).
Images of conventional detectors are reconstructed as grey scale volumes, repre-
senting the aggregate attenuation coefficients of the materials. Several materials
may correspond to the same grey level, which makes it difficult to determine the
material composition of an object. Nonetheless, the attenuations of materials
are energy-dependent and their spectral attenuation curves are mutually different.
Therefore, by probing multiple energy levels, additional information is obtained
for discriminating the materials. A typical approach is dual-energy CT, which
allows for more accurate material decomposition [40, 274], also known as material
unmixing. It uses two polychromatic sources with different peak voltages, and
correspondingly two sets of conventional detector panels to measure attenuated
X-rays, each from one source. Dual-energy CT is commonly used in clinical set-
tings for separating high-attenuating materials from low-attenuating materials, for
example, determining the location of contrast agents [199] such as iodine in the
body [142]. However, more accurate material decomposition and concentration
determination requires multi-energy CT, enabled by multi-energy X-ray (photon
counting) detectors [40, 274].

Multi-energy X-ray detectors allow for collecting X-ray projection data in multi-
ple energy bins with a very high spectral resolution. We can divide these detectors
into two classes: (i) detectors that measure all X-ray photons simultaneously and
directly categorize these into various spectral channels, and (ii) detectors that
indirectly do this. Detectors from the first category are often used for hyperspectral
imaging, and some examples include the Hexitec detector [78, 134, 282], Amptek
X-123 CdTe detector [236] and the SLcam [213, 247]. On the other hand, the
spectroscopic X-ray detectors from the second category indirectly measure many
spectral channels by applying threshold scans. Detectors from the Medipix and
Pixirad families are examples of this [24, 25]. The number of energy bins that
can be recorded simultaneously is limited (usually up to 10), but different energy
thresholds, with which X-ray photons with higher energies than that threshold
can be detected, can be set between measurements. If the object of interest is
static, hyperspectral images can, in principle, be easily obtained using these devices.

The measurements from these detectors, i.e. the tomographic projections after
their preprocessing and log-correction, are linearly related to the spectral charac-
teristics of the materials present in the object. Although these detectors can now
measure the X-ray projections in multiple energy bins (combined referred to as
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Figure 5.1: Comparison of data acquisitions in conventional X-ray CT (a) and spectral X-ray CT (b). In
conventional X-ray CT, the energy window is dictated by the source spectrum (grey). None of the de-
tected X-ray photons are distinguished by energy, leading to one sinogram (containing the projections
ordered by angle). On the other hand, in spectral CT, the X-ray photons are distinguished according to
their energy from multiple windows (colors), yielding multiple sinograms with different characteristics.
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spectral projections), it is not straightforward to optimally use the available spectral
data for material decomposition. The conventional strategies for reconstruction
and material decomposition are not designed to simultaneously process this type of
spectral measurements and find accurate material maps (refer to Figure 5.3). Hence,
advanced computational techniques are required to infer the material composition
from these spectral projections.

5.1.1 Motivation and problem description

Spectral tomographic projections are X-ray measurements at multiple energies that
result from the spatial and spectral properties of the materials present in the object.
As noted in Section 1.5, spectral computed tomography is the process of estimating
spatial maps and spectral signatures of materials present in the object from spectral
tomographic projections. In general, the spectral CT workflow consists of two steps:
(i) reconstruction: computing spatial maps from their tomographic projections,
(ii) unmizing: decomposition of the spectral volume into spatial material maps and
their spectral signatures. Mathematically, reconstruction boils down to solving an
inverse problem, while decomposition involves matrix factorization, an unsupervised
learning approach. These two steps can be performed in a serial fashion to obtain
the material maps from the spectral projections (refer to Figure 5.2). However,
these two steps can also be combined into a one-step approach, which we refer to
as joint.

To illustrate the performance of these two-step and one-step approaches, we
consider a Shepp-Logan phantom, as described in Figure 5.3. The numerical
phantom consists of five materials (vanadium, chromium, manganese, iron and
cobalt). For the tomographic projections, a full-view setting is chosen where
180 projections between 0 to m are acquired. Figure 5.3 shows that the two-
step approaches do not yield clear material decompositions or spectral signature
reconstructions. Although the two-step methods are computationally efficient, these
generally do not yield the same solution due to the ill-posedness of the problem. For
the same reason, the joint approach is not expected to work well in all cases either.
In particular, the current algorithms for joint methods suffer from ill-conditioning
of the spectral profiles (refer to Section 5.4.2). The suboptimal performance of
these methods motivates us to develop novel reconstruction methods to improve
the spatial resolution and precise characterization of materials. To address the
ill-posedness, we incorporate spatial and spectral prior information.

5.1.2 Contributions and outline

In this chapter, we propose a new technique called ‘A Dictionary-based Joint recon-
struction and Unmizing method for Spectral Tomography’ (ADJUST) to reconstruct
spatial material maps from their spectral tomographic measurements. ADJUST
is a novel bi-convex optimization formulation that incorporates an effective spa-
tiospectral prior. This prior includes (i) spatial: the contribution of materials at
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Figure 5.2: A schematic overview of various approaches to spectral computed tomography: The spec-
tral sinograms (projections from various angles) obtained at different energy levels make up the input
of these algorithms (a). The spectral sinograms can be decomposed first in the projection domain to
obtain material sinograms and the spectral signatures (b). The spatial material maps (d) are then
obtained by reconstructing each material sinogram separately. Alternatively, reconstruction can be
done before the material decomposition by first making a CT reconstruction of every spectral chan-
nel using the associated spectral sinograms to obtain the spectral volumes (c). Then, in the image
domain, these spectral volumes can be decomposed to obtain the spatial material volumes. These
two-step approaches can also be combined into a one-step approach in which the decomposition and
reconstruction are carried out as a joint approach.

each location should sum to 1, and (#) spectral: the spectral signature of material
should be a linear combination of the elements of a spectral dictionary. To solve
the constrained optimization problem, we design a memory-efficient alternating
proximal iterative scheme. In particular, we develop numerical methods to compute
the required proximal operators quickly. In numerical experiments, we demon-
strate that ADJUST performs better than the existing state-of-the-art methods.
Furthermore, we show that ADJUST is also applicable to limited-angle problems
found in industrial X-ray tomography, optical tomography and electron tomography.

The remainder of the chapter is organized as follows. Section 5.2 discusses the
existing work on spectral CT and material decomposition. Section 5.3 introduces the
forward modelling of spectral X-ray tomography. In particular, we derive the linear
map from the spatial map of materials to the spectral tomographic measurements.
Then, we introduce the inverse problem in Section 5.4 that estimates the spatial
material maps and spectral signatures from the spectral tomographic measurements.
Here, we also discuss the ill-posedness involved in the inversion process. To reduce
this ill-posedness, we introduce ADJUST in Section 5.5. Moreover, we propose
an iterative scheme that finds an approximate solution to the resulting bi-convex
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Figure 5.3: Comparison of various methods for spectral CT on a five-material spectral Shepp-Logan
phantom. The tomographic projections are gathered in 100 equally-sized bins between 5 to 35 keV. The
top row shows the true material maps and the spectral signatures of each material. The second and
third row show the material maps retrieved from two-step methods, reconstruction-then-unmixing
(RU) and unmixing-then-reconstruction (UR), respectively. The fourth row shows the results of the
classical joint method (see Section (5.6)). In contrast, the fifth row shows results of the proposed
method (see Section 5.5).

formulation. In Section 5.6, we numerically compare ADJUST with other methods
on various synthetic phantoms. We also demonstrate the robustness of the method
on limited measurement patterns such as sparse-angle tomography and limited view
tomography, as well as in situations with limited spectral resolution and higher
noise levels. In addition, we apply ADJUST to an experimental X-ray micro-CT
dataset. Finally, we discuss the possibilities and limitations of the approach in
Section 5.7 and conclude the chapter.

5.2 Related work

For the sake of convenience, we categorize the previous work on spectral CT into
(4) (two-step) sequential approaches and (ii) (one-step) joint approaches to recon-
struction and material decomposition. Since we focus on multi-spectral CT, we do
not discuss the advances in dual-energy CT. However, we refer the reader to the
comprehensive review paper [199] that covers dual-energy CT.

For spectral CT, sequential approaches (also known as two-step methods) are
mainly (7) reconstruction followed by decomposition [60, 77, 95, 298, 299, 318|,
and (7)) decomposition followed by reconstruction [125, 190, 248|. In the former
category, material decomposition is carried out in the image domain, while in the
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latter category, it is carried out in the projection domain (see Figure 5.2). In both
approaches, independent methods for material decomposition in the projection
domain [75], (multi-channel) spectral reconstruction [312] with various forms of
structural or spectral regularization [143, 244, 246], and material decomposition
in the image domain [95] can be plugged in. Although these sequential two-step
methods are computationally inexpensive, separating the reconstruction and de-
composition steps causes information loss [202, 292].

Joint methods (also known as one-step methods) that simultaneously reconstruct
multi-channel spectral images and perform material decomposition have been
developed to address the issues associated with sequential methods [136, 202]. All
current one-step methods are iterative in nature and allow for the incorporation
of prior knowledge through regularization. For example, (i) structure on material
maps is imposed through various penalties [125, 202], (i) material maps are
constrained using simplex constraints [95, 298, 299|, and (éii) structure on spectral
signatures is enforced using a spectral dictionary [299, 316]. In particular, when the
materials present in the object of interest are precisely known, various techniques
improve the quality of the reconstructions. These tailored methods can image
contrast agents, such as iodine [318], gold, gadolinium in angiography [190], in the
presence of bone and tissue. Sometimes, knowledge about the materials can be used
to choose the spectral bins effectively [95]. Moreover, a deep learning approach
has been proposed to perform joint decomposition and reconstruction task by
generating a training set based on synthetic phantoms [5]. Most existing methods
have been developed for, or demonstrated on, a limited number of materials (for
example, two [136, 166, 189], three [27, 316], and six [95]), sometimes heavily
relying on prior information about the materials, spectral signatures and energy
bins. Some of these methods are extendable to more materials [5], but this can be
difficult for each additional parameter that may need to be estimated with each
new material [27]. However, these methods suffer when () the number of materials
present in the object is larger than 3, (i) the number of projections is smaller
than the conventional criterion, (#4) the measurements are corrupted with high
noise [118].

5.3 Spectral forward model

In this section, we provide the spectral X-ray forward model, by describing how we
represent the objects and how spectral X-ray projections are obtained from this. The
object is characterised by its attenuation coefficients pu(z, E) € Ry, where » € R? is
the location and E > 0 the X-ray photon energy, with d € {2, 3} being the dimension
of our space depending on whether we consider a slice-based or full 3D reconstruction.
Given a polychromatic X-ray source with a source spectrum Iy(E) at energy level
E, and C energy windows from the set & = {€.}cec = {[EM®, EmaX] }cec (with C
being its index set with |C|= C) in which a spectral detector captures associated
X-ray photons, we model the total X-ray photons captured by a detector pixel in



120 Chapter 5. Dictionary-based spectral tomography

energy bin &, as follows:

I(&) = /E‘CMx Iy(E) exp (—/éu(x,E) dx) dE. (5.1)

min
c

Here, the inner integral is taken over the line ¢ from the X-ray source to a detector
pixel. The maximum and minimum energy range depend on detector specifications.
We model the energy-dependent attenuation as a linear combination of energy-
dependent material attenuations and their spatial contributions. We represent it
mathematically as

= 3 f(B)an (@), (5.2)

meM

where the material attenuation coefficient p,, is a function of energy. The material
m must be contained in a set of considered materials M of size M. The proportion
of material m at location z is given by a,,. From Equations (5.1) and (5.2), we
arrive at the following continuous relationship of measured photons in terms of the
material spatial distributions and their attenuations:

I(E) = / E Iy(E exp( > um(E / () dx) dE.

min
c meM

If the spectral bins are sufficiently narrow then the source spectrum and the
material-attenuation values can be approximated by their representative (average)
values. These values are respectively Io(€.) and 7i,,(&.), and form the following
relation for the photon count in energy bin &. corresponding to the ¢*® channel:

I(E) = I(E)

—To(€ exp< S fnlE /m(m)dx>.

meM

In general, the photon count is perturbed by an energy dependent noise distribution.
Moreover, the spectral X-ray detector is a photon-counting detector, for which the
noise in energy bin &, can be modelled using a Poisson distribution with parameter
I(&.) [221]. If the mean in each energy bin is sufficiently high, a realization 1™ (&)
of I(£.) measured by a spectral detector can be approximated using Gaussian
distribution N(0, 02), with variance o being inversely proportional to I(£.). In our
experiments, we assume that the average photon count in each bin of detectors are
sufficient for this approximation.

5.4 Spectral inverse problem

From the measured spectral X-ray projections, spectral computed tomography aims
to retrieve the energy-dependent attenuation values p,,(E.) for each material m
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and energy channel F. and the distribution «,, throughout the object for each
material m. It boils down to solving the bilinear system, in terms of 1, and o,

3 ﬁm(é'c)/ o (2)dz = —In (Iﬂm(g)> L VG EL S cE  (5.3)

mem £; TO(&:)

with L and £ denoting the set of rays (with size |L|= J) and the set of energy
channels, respectively. In tomography, the material distributions are determined
by discretizing the object space into the grid of either pixels (2D) or voxels (3D).
For now, we consider a three-dimensional scene with N voxels. The proportion
of material m in the i*" voxel is then given by a;,. For each ray over line 45
corresponding to the j** measurement, the quantity wj; determines the contribution
of i*h voxel to the j® measurement. Usually, the quantity Io(E.) can be determined
accurately by performing a flatfield measurement (i.e. measurement without
object). Therefore, the right-hand side of Equation (5.3) is known. By expressing
—In (I;“eas(é'c)/fo(fc)) by yjc and fi,, (&) by fme, we arrive at the following
expression:

M N
Z <Zwﬂaimfmc> = Yje, j=1,....,J, andc=1,...,C. (5.4)

m=1 \i=1

Here, the total number of measurements for each channel is given by J, and C
denotes the total number of (energy) channels. Subsequently, we can write the
expression in Equation (5.4) in the following matrix notation

WAF =Y, (5.5)

where Y € R7XC represents tomographic measurements for C' number of channels,
and W € R7*¥ is a projection matrix containing the weights w;; described in
Equation (5.4), A € RV*M consists of M columns of size N, with each column
representing a spatial map corresponding to the material present in the object,
while F € RM*C consists of M rows with each row denoting the channel attenua-
tion information of the material. It is important to note that matrices W and Y
are known and matrices A and F' are unknown. We formulate the joint spectral
tomographic imaging and decomposition problem in a constrained least-squares
form as

mir}‘imize J(A,F) £ LY — WAF|%, (least-squares misfit)

subject to A >0, (non-negativity of
material maps) (5.6)
F >0. (non-negativity of att-

enuation coefficients)
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Here, we impose non-negativity constraints on both A and F. The function
J(A, F) : RNXM 5 RMXC , R defines the misfit between the true measurements
Y and the simulated measurements WAF' using the Frobenius norm. This norm
is valid if the noise in the measurements is approximately Gaussian. We note that
this joint formulation is a bi-convex optimization problem since the misfit function
is bi-convex, and the constraint set is a bi-convex set [103]. We denote the solution
set of the joint formulation by

B= { (Ajointa ﬂoint) } = arg min j(Av F)
A>0,F>0
This solution set B may contain more than one solution if the misfit function J is
not strongly bi-convex. The solution set B cannot be determined trivially. To find
the elements in set B, we need to solve the optimization problem (5.6) using an
iterative scheme with an initial estimate of the solution [290].

5.4.1 Practical methods

As outlined in Section 5.2, joint methods aim to simultaneously estimate the spatial
material distribution and the energy-dependent attenuation coefficients. However,
these one-step methods are not practical due to their high computational cost. In
practice, two-step methods are popular, where reconstruction and decomposition
are performed separately, because of their modular nature. For each step, tailored
solvers are readily available for different platforms. The first category of two-step
methods, which we call RU (short for Reconstruction-then-Unmixing), estimates a
spectral volume from the spectral tomographic measurements, and then decomposes
the resulting spectral volume to obtain the material maps and spectral signatures.
That is, RU solves the following problems in a serial fashion:

1
Viu = argmin —|[WV =Y |% 4+ AR (V)
v>o 2

. 1
(Aru, Fry) = argmin || AF — Viul|%,
A>0,F>0 2

where Vru € RV*C is a spectral volume, and Agy, Fru are the material maps and
spectral signatures respectively reconstructed by this method. Ry : RV*¢ — R is
a regularization function that incorporates prior information about the spectral
volumes and A > 0 is a regularization parameter. Contrarily, UR (short for
Unmixing-then-Reconstruction), the other class of two-step methods, separates
the spectral tomographic measurements into projections and spectral signatures.
These projections then lead to the material maps. UR mathematically reads

1
(Pur, Fur) = argmin —||PF — YH%
P>0,F>0 2

1
Aygr = arg min 5” WA — PURH%’ + YRa(A)
A>0
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where Pyg € R7*M is a material volume, and Fyr, Ayr are the material maps

and spectral signatures respectively reconstructed by this method. Here, Ro :
RNXM 5 R integrates prior information about the material maps with v > 0
being the regularization parameter. These practical methods only work well when
a complete projection series is available and the object is composed of materials
whose spectra are clearly separable. However, the spectra of materials as measured
by industrial spectral tomography equipment can be very similar. Although these
practical methods do not give accurate solutions, the results can be used as an
initial guess for advanced reconstruction methods.

5.4.2 lll-posedness

The Hadamard conditions to define a well-posed problem consist of three crite-
ria: (i) existence: There must be an A* and F* that satisfy WA*F* = Y.
(i) uniqueness: The solution A* and F* must be unique. (i) stability: small
perturbations in the measurements Y should not lead to significant deviations in
A* and F*. If any of these conditions is violated, we call the problem ill-posed. In
general, we assume the existence of a solution to the least-squares problem since
we use the Euclidean norm to measure the misfit in the discrete setting. How-
ever, the uniqueness condition needs to be verified. Moreover, the stability of the
solution relies on the conditioning of projection matrix W and the measurements Y .

In general, the spectral inverse problem has multiple solutions if no prior infor-
mation is incorporated. To see this, suppose (A*, F*) is a solution to Equation (5.5),
then (aA*, (1/a)F™) is also a solution to (5.5) for any o > 0. Hence, the practical
reconstruction methods and classical joint method solve an ill-posed problem. To
reduce the non-uniqueness, and hence make the problem less ill-posed, we need to
incorporate appropriate spatiospectral prior information.

5.5 Proposed method - ADJUST

Since the conventional spectral inverse problem remains ill-posed due to the non-
uniqueness of solutions, we propose to incorporate spectral information through a
spectral dictionary. The spectral profiles of many materials are readily available [130,
301], and the spectral responses in each spectral channel can easily be computed
from these spectral profiles. We model the spectral response for material m as the
binary combination of the dictionary elements. That is,

fm =Tmiti + Trata + - -+ Tptp,

where ti,...,tp correspond to the spectral responses of D distinct dictionary
materials, and 7,1, Tm2, . . ., 'mp are the coefficients of material m that take the

value of either 0 or 1. Suppose the ;" material in the dictionary corresponds to
the material m, then 7,,,; = 1, and the other coefficients will be zero. Hence, we
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can represent the spectral matrix F' € RM*C as

- A= S |
: = t1 tp |,

- fu - — Fu - | |
F B T

where T € RP*C is a dictionary of D materials (with D > M) with spectral
information for C' channels, and R € {0,1}»*? is a spectral coefficient matrix.

Due to the binary constraints, finding such a matrix R jointly with A is a
non-convex problem. To make it convex for fixed A, we relax the binary nature of
the variable R. Moreover, we apply additional constraints on the material maps to
ensure that the total contribution of materials at every voxel does not exceed 1.
Thus, the resulting formulation, termed as A Dictionary-based Joint reconstruction
and Unmizing method for Spectral Tomography (ADJUST), is phrased as

mir}‘imize J(A,R) £ 1||[Y — WART|7, (least-squares misfit)

)

subject to A € Cy, (constraints on
spatial map) (5.7)
R € Cpg, (constraints on dic-

tionary coeflicients)

where Y € R7*XC represents spectral tomographic measurements, W € R/*N
is a projection matrix containing the weights wj; described in Equation (5.4),
A € RVXM 5 the matrix that constitutes the spatial contributions of the materials,
T € RP*C represents the fixed dictionary matrix containing attenuation spectra of
many materials, and R € R/]\V[ XD is the dictionary coefficient matrix that represents
the continuous version of R. The constraint sets are

D M
Cr 2 {X ERMXD|Iij >0, inj <1, Zl’u = 1}7
j=1 i=1

(a) (b) (e)

M
CA 2 {X S RNX]W ‘xij Z 0, inj S 1 }
j=1
—— ;,_/
(d) (e)
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We provide the details of each constraint below:

(a) Non-negativity of R: Since R is a dictionary-coefficient matrix that is a
convex proxy for R, the values must be greater than or equal to 0.

(b) Row-sum constraints for R: In principle, we would like to impose that each
material present in the object must be a part of the dictionary. The convex
approximation of this condition is that the total contribution of the dictionary
elements to represent material should not exceed 1.

(¢) Column-sum constraints for R: Each column of R represents the contribution
of the dictionary element to generate materials in the object. Since the number
of materials in the object is smaller than the total number of dictionary
elements, the contribution of many dictionary elements will be 0. Moreover,
the materials present in the object must be distinct. Hence, the contribution
of dictionary elements must not exceed 1. Hence, the column-sum constraints
impose these conditions.

(d) Non-negativity of A: Each material should have a non-negative contribution
to every voxel.

(e) Row-sum constraints for A: The total contribution of materials in each voxel
must not exceed 1.

We enumerate the benefits of ADJUST as follows. (i) The ADJUST formulation
is less ill-posed when compared with the two-step methods or the Joint formulation
given in (5.6). This is due to the fact that the incorporation of the spectral
dictionary resolves the scaling issue. (i) It is a parameter-free approach since
the constraints are simplex and do not involve any parameters that need to be
estimated. The only parameter ADJUST requires is the number of materials
present in the object. However, this prior knowledge is generally available to the
user. (#7) The optimization problem (5.7) is bi-convex (see Appendix C.2 for the
proof). Hence, it can be solved efficiently using the iterative minimization method.

5.5.1 Numerical optimization

To obtain an approximate solution to (5.7), many alternating minimization schemes
exist [20, 43, 156]. However, these schemes rely on complete minimization with
respect to at least one variable in every step. Moreover, their convergence to a
partially optimal solution is slow. Hence, such schemes might not be computation-
ally feasible for large-scale problems. For practical applications, we propose an
accelerated variant of Proximal Alternating Linearized Minimization (PALM) [43],
by combining it with the acceleration strategy in alternating direction method
of multipliers (ADMM) [220]. We term this variant as ‘Alternating Accelerated
Proximal Minimization’ (AAPM):
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for k=0,..., K —1:
Ry, = proj¢,, (Rk — aVRj(Ak, Ry, Uk)) (update dictionary
coefficients)
Aky1 = proje, (Ak — ﬂVAj(Ak, Ry.1, Uk)) (update material (5-8)

maps)
U1 =U, + p(WA, 1 R T-Y) (running-sum-

of-errors)

where « and (8 are estimated using a line-search method (e.g., backtracking), p

is an acceleration parameter chosen from the range [1073,1), and J (A, R, U)
J(A,R)+ (U, Y — WART). The variable U contains the running sum of errors
(i.e. residuals):

k
Uk+1 = % + ,OZRZ where RZ = WAZRLT -Y.
i=1
For p = 0, AAPM is equivalent to PALM. When p > 0, the error signal U is
driven to zero by feeding back the integral of the error to its input. In Figure 5.4,
we plot the residuals versus iterations for various values of p. From these results, we
conclude that acceleration can be achieved by including the running-sum-of-errors
into an alternative iteration scheme. As the p values are increased, the residual
decreases faster. However, for higher values of p, the monotonic decrease of the resid-
ual disappears. We consider p as a hyperparameter for which a reasonable value can
be determined heuristically. The derivation of the method is given in Appendix C.3.

It is easy to compute the partial derivatives from basic linear algebra and
calculus rules (refer to Appendix C.4). The partial derivatives are

VaJ(A,R,U) =WT(WART -Y —U)T'R”,
VrJI(A,RU) =ATWT(WART-Y —-U)T".

The proximal operators are derived in Section 5.5.2. We use the following parameters
to determine the stopping criteria:

ezbs =Y — WA 1 Re1 T||r/||Y || 7
& = Awsr — Apl p+ ]| Ripr — Rillp

where k is an iteration of the optimization scheme (5.8). The benefits of AAPM
are the following:

e Simple gradient computations: The gradients have explicit expressions and
can be computed using simple matrix-matrix multiplications.
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e Fast proximal operations: The proximal operations are just orthogonal pro-
jections onto convex sets. These operations have either an explicit expression
or a simple alternating routine to find the proximal point efficiently.

e Backtracking line-search: The improved line-search (i.e. finding «, 8) makes
sure that the progress in the descent direction is appropriate for every iterate.

o Acceleration through running-sum-of-errors: The regular update of vari-
able U, which contains the running-sum-of-errors, helps in accelerating the
convergence to the partial optimal solution.

o Memory-efficiency: The method relies only on forward and adjoint operations
with the tomography operator W. Hence, it saves memory to explicitly store
the tomography operator in either single or double precision.

10° I

PALM

AAPM (p = 0.001)
AAPM (p = 0.01)
AAPM (p = 0.1)

-
e

Residual

0 20 40 60 80 100 120 140 160 180 200
Iteration

Figure 5.4: Numerical demonstration of proposed acceleration scheme on the Shepp-Logan phantom
for various p values.

5.5.2 Orthogonal projections

In this section, we derive the projections onto the convex sets Cr and C4. For
Ca = {X ERVM X >0, X1< 1}, its orthogonal projection takes the following
form:

projc,(Z) = max(Z — A1,0), (5.9)

where A = diag (A1, ..., An) is the diagonal matrix with weights computed from
solving the inequalities

(1,max (2 —X1,0)) <1, i=1,...,N, (5.10)
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with z;. being the i*" row of the matrix Z [34, Theorem 6.27|. To find the optimal
weight \;, we carry out bisection on A; for which max (<17 max (zZT — A1, 0)> -1, O)
= 0 holds, starting with the initial interval [0, max(z;.)]. The function given by
<1,max (zZT — Ai1,0)> = 1 is piecewise linear, with breakpoints at the values
Zi1,--.,%im- Hence, once we have localized \; to be between two adjacent values,
we can immediately compute the optimal value A;. Furthermore, the following
theorem entails the projection onto set Cg:

Theorem 1. The convex set C = {X ERM*XP|X >0, X1<1,XT1< 1} 18
composed of convex set C; = {X e RMxD | X >0, X1< 1} and convex set Cy =
{X e RM*XP|X >0, XT1 < 1}. The projection of point Z € RM*P onto set C
is giwven by the fized-point iteration scheme

. . (X +Z
Xi41 = proje, (pro‘]c2 (t2>) , t=0,...,D (5.11)

with Xg = Z.
Proof. The proof is given in Appendix C.1. O

For the set Cy = {X eRM*XP X >0, XT1 < 1}, the orthogonal projection,
derived from [34, Theorem 6.27], takes the form

proje,(Z) = max(Z —19,0), (5.12)
with Q = diag (w1, ...,wp) is the diagonal matrix with weights computed from
solving the equation

(1,max (z; —w;1,0)) =1, i=1,...,D. (5.13)

5.6 Experiments and results

This section compares ADJUST with the sequential methods (RU, UR), the classical
joint method (cJoint), and five state-of-the-art joint methods on a benchmark
synthetic spectral phantom. After this, we compare ADJUST with the sequential
methods and the classical joint method on more advanced spectral phantoms
(in terms of number of materials and material shapes). Next, we examine the
robustness of ADJUST against various limited measurement patterns. Finally, we
show the application of ADJUST on spectral X-ray micro-CT dataset. Additional
numerical experiments are presented in Appendices C.7, C.8, C.9, and C.10.

5.6.1 Experimental setup

Before presenting the results, we first outline the experimental setup. We describe
the phantoms that are used, the settings for the attenuation spectra and the
source spectrum, the chosen materials for each phantom and a discussion on the
implementation of the algorithms.
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Figure 5.5: Visualizations of the numerical phantoms used in the studies.

Spectral phantoms

A number of phantoms are used in our numerical studies, some of which are
standardized while others are custom-made. All these phantoms are shown in
Figure 5.5.

Mory phantom We use a slightly modified version of the phantom provided in
the work by Mory et al. [202] for comparing new one-step methods against
the five one-step approaches addressed in their work. The phantom contains
three different materials on a 128 x 128 grid. As opposed to the original
phantom, each location contains only one material.

Shepp-Logan phantom This standard phantom is commonly used in tomogra-
phy for benchmarking. We modify this phantom to have five unique grey
values. We discretize it on a 512 x 512 uniform grid.

Disks phantom In this custom phantom, several disks with different materials
are placed on a circle. The phantom is created so that we can place up to 15
different disks on this circle. However, for our numerics, we have taken eight
disks and discretized the resulting phantom on a 512 x 512 pixel grid.

Thorax phantom We use a modified thorax phantom provided in the CONRAD
software framework [182]. We created a thorax phantom of 5123 voxels, took
slice z = 255, and removed a few ribs. The resulting 512 x 512 phantom has
eight different material candidates, on which we assign five different materials.

Inverse crime refers to the process of using the same forward operator for the
generation of synthetic measurements as for the subsequent reconstruction pro-
cess [139]. To avoid inverse crime in all of our numerical experiments, we generate
measurements by increasing the spatial resolution of the spectral phantoms by a
factor of 2. For example, the Shepp-Logan phantom is discretized on a grid of
1024 x 1024 pixels to generate the spectral tomographic measurements. These
measurements are, however, acquired on 512 (equally-spaced) detector pixels for 180
projection angles in [0, 7). The spectral tomographic inversion is then performed
on a grid of 512 x 512.
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Attenuation spectra, source spectrum and selected materials

To generate the spectral sinograms and construct the dictionary matrix T', we
use attenuation spectra provided by the National Institute for Standards and
Technology (NIST) [130, 301]. We perform linear interpolation to approximate
the real spectra and discretize these such that the energetic centers are located
at 100 equidistant values ranging from 5 to 35 keV. We use the corresponding
interpolated attenuation values as representative attenuation values in the bins.
For experiments with the Thorax phantom, we use a spectral range of [20, 80] keV.
Regarding the experiments with the Mory phantom, we use the attenuation spectra
provided by Mory et al. in their implementation [100], providing 100 equidistant
bins with energetic centers between 20 and 119 keV. In accordance with their data
preprocessing procedure, we have scaled both the material maps and the dictionary
entries for iodine and gadolinium by their densities and a value of 0.01 to obtain a
concentration of 10 mg/ml.

The materials chosen for each phantom (Figure 5.5) are given in Table 5.1.
For the up to 42 chosen materials included in the dictionary matrix, we refer to
Appendix C.5. For the Thorax phantom, the dictionary consists of the materials
that appear in the phantom. This also holds for the Mory phantom.

To generate the source spectrum, we make use of the SpekPy software [47,
230]. With this, we have simulated an X-ray source spectrum from a molybdenum
source with a peak voltage of 35kV. This source material provides us a with low
energy bound of 5 keV for a positive flux, enabling us to include more material
absorption edges (mostly K-edges) in our simulations than with other source
materials such as tungsten. However, for experiments with the Thorax phantom,
we use a tungsten source with a peak voltage of 80kV. Both source spectra are
shown in Figure 5.6. For the Mory phantom, we use the source spectrum provided
in their implementation [100], and have changed the matrix for detector response
to an identity matrix.

Shepp-Logan Disks Thorax Mory
1 Vanadium Arsenic Bone Iodine
2 Chromium Selenium  90% Blood + 10% Iodine  Gadolinium
3 Manganese Bromine Soft tissue Water
4 Iron Krypton Blood -
5 Cobalt Rubidium Lung tissue -
6 - Strontium - -
7 - Yttrium - -
8 - Zirconium - -

Table 5.1: Selection of materials for each phantom.
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Figure 5.6: The simulated molybdenum-based and tungsten-based source spectra with respectively
peak voltages of 35kVp and 80kVp used in the experiments.

Implementation of the numerical algorithms

We briefly describe the implementation of various algorithms used in our studies
below. For the existing one-step methods, we keep a similar naming convention
as in the work of Mory et al. [202] by using the last name of the first author of
the associated paper. We use the ASTRA toolbox [1, 2| for the simulation of
the X-ray projections and implementation of forward and the adjoint operator
of tomography [41]. For compatibility with the implementations of the existing
methods in [100], we use the AIR Toolbox [113] for the computation of the
forward operator and the adjoint instead of ASTRA whenever the Mory phantom
is considered. For the last five listed existing one-step methods, we use the
implementation and parameter values provided in [100]. Table 5.2 summarizes the
prior information used in these methods.
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RU For the reconstruction, we solve the Tikhonov-regularized optimization prob-
lem with regularization parameter A set to 1073. We perform a maximum
of 20 conjugate-gradient iterations on the resulting normal equations with
the tolerance of 1076 [123]. We use non-negative matrix factorization (NMF)
with an alternating least-squares algorithm [39] for 100 maximum iterations
in the decomposition step. Since NMF is a non-convex problem, we use ten
different initializations to determine the solution.

UR We use the same settings for the decomposition and the reconstruction steps
as described in RU.

cJoint We solve the problem using an alternating minimization scheme. The
maximum number of iterations is set to 2000 with tolerance, defined as the
relative residual, of 104, In each iterate, we solve the minimization with a
spectral projected gradient scheme [250].

ADJUST We use the AAPM scheme described in (5.8) to find the solution. For
all the experiments, we choose p value of 1072 and set ezbs, effl to 10~* and
1079, respectively. We run AAPM for maximum 1000 iterations.

Cai This Bayesian reconstruction approach solves a minimization problem with a
non-quadratic cost function using a monotone conjugate gradient algorithm
with heuristic descent steps [52]. We perform 5000 iterations to find the
solution.

Long This is a regularized approach that uses Separable Quadratic Surrogates
to minimize Kullback-Leibler cost function with edge-preserving regulariza-
tion [172]. We run this method with 5000 iterations.

Weidinger This approach is similar to Long with modification in the approxi-
mation of regularization function by the Green potential, and leaving out
Ordered Subsets that Long uses to speed up convergence [289]. We run the
algorithm for 5000 iterations.

Mechlem This approach builds upon Weidinger while replacing the regularization
using the Huber function. However, it uses Ordered Subsets and Nesterov
acceleration to find the solution [189]. We run the algorithm for 200 iterations.

Barber This approach solves a constrained optimization problem using a primal-
dual algorithm where constraints are composition of total-variation and
simplex [27]. We run a maximum of 10000 primal-dual iterations.
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Spatial prior information Spectral prior information
RU Non-negativity Non-negativity
UR Non-negativity Non-negativity
cJoint Non-negativity Non-negativity
Cai (Modified) TV Spectral signatures of present
materials
Long Simplex and (modified) TV Spectral signatures of present
materials
Weidinger (Weak) non-negativity and Spectral signatures of present
(modified) TV materials
Mechlem (Modified) TV Spectral signatures of present
materials
Barber Constrained TV Spectral signatures of present
materials
ADJUST Simplex Spectral dictionary

Table 5.2: Spatial and spectral information for each method. TV stands for Total-Variation regulariza-
tion [241]. Note that each method has prior information on the number of materials. The spectral
dictionary contains signatures of a large superset of present materials.

5.6.2 Comparison of ADJUST with other methods

Results on the Mory phantom

To compare the ADJUST method with the other approaches listed in Section 5.6.1,
we perform numerical studies on the Mory phantom. We take projections from 363
equidistant angles in [0, 7) using 181 detectors. Moreover, we apply Poisson noise
to the resulting projections, with the incident photons being proportional to the
source spectrum. We show the reconstruction results in Figure 5.7, and tabulate
the performance measures in Table 5.3. We use Mean Squared Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) to
assess the reconstruction results with respect to the ground truth phantom (details
of the measures are given in Appendix C.6). We list the results as the measures
averaged over all material maps. We observe that ADJUST obtains the best values
for PSNR, SSIM and MSE.

The two-step methods (RU and UR) find the iodine and the gadolinium loca-
tions, but the results appear to be spatially smeared out, which is also reflected in
the relatively low PSNR and MSE values. However, the UR method still recovers
the shapes reasonably well, as shown in the high value for the SSIM. The cJoint
method finds the water location, but fails to recover the locations of iodine and
gadolinium. The state-of-the-art one-step methods overall perform better than
UR, RU, and cJoint. However, these methods gives rise to edge artefacts (e.g.
water edges partially appearing in iodine or gadolinium maps, and blurring near
the edges), resulting in suboptimal PSNR and SSIM values. These artefacts hardly
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Figure 5.7: Visual comparison of various methods on Mory phantom. GT refers to ground truth.
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appear in ADJUST reconstructions, resulting in significantly higher values of the
PSNR and SSIM.

RU, UR and cJoint method do not incorporate any prior information about the
object other than non-negativity constraints. Hence, these methods struggle to find
the optimal solution. However, one-step methods strongly assume the knowledge
of materials present in the object. Although they perform better than RU, UR
and cJoint, they cannot be applied when the composition of object is not known.
In contrast, ADJUST does not know about the material composition of the object.
It solely relies on the number of materials present in the object (this number can
be estimated through trial and error).
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MSE | 0.0267 | 0.0790 | 0.0860 | 0.0115 | 0.0117 | 0.0112 | 0.0406 | 0.0115 | 0.0103
PSNR | 20.35 16.44 16.03 19.54 19.33 19.62 14.45 19.41 21.94
SSIM | 0.4413 | 0.6720 | 0.4119 | 0.6034 | 0.6131 | 0.6187 | 0.2159 | 0.6460 | 0.9616

Table 5.3: Reconstruction error in terms of Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) of various methods for the Mory phantom.

Results on the remaining phantoms

We compare the proposed method ADJUST with RU, UR, and Joint method on the
Shepp-Logan, Disks and Thorax phantoms. Comparison with the other methods is
not possible as those are designed for handling only a limited number of materials.
The first two phantoms consist of only hard materials, and hence K-edges are
present in the spectra. All these phantoms are more advanced compared to the
Mory phantom. The Shepp-Logan and Thorax phantoms are structurally more
complicated. On other hand, the Disks phantom contains up to eight hard materials.
For the Thorax phantom, we also include soft materials. Nevertheless, we aim to
reconstruct the bone, the iodine-blood mixture and the remaining soft materials
into three separate classes. For all three phantoms, we measure tomographic
projections for 180 equidistant angles from 0 to m. These measurements consist
of Poisson noise that is proportional to the incoming photons on the detector.
We tabulate the measures on the solutions produced by the RU, UR, cJoint and
ADJUST algorithms for the three phantoms in Table 5.4. Moreover, for the Thorax
phantom, we show the reconstructed material maps and the recovered spectra in
Figure 5.8.
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cJoint

ADJUST

Figure 5.8: Visual comparison of ADJUST with RU, UR, and cJoint method on the Thorax phantom.
The top row shows the ground truth and reconstructed material maps and spectral signatures for bone,
the second row shows these for iodine and the third row shows (averages of) these for soft materials.
We match the colors of the bounding box for material maps with the (recovered) spectral signatures
shown on the bottom row.

Phantom RU UR cJoint ADJUST
MSE 0.0711 0.0598 0.0548 0.0061

Shepp-Logan | PSNR 16.41 16.66 13.74 23.12
SSIM 0.2433 0.4497 0.1077 0.9599

MSE 0.0125 0.0082 0.0063 0.0030

Disks PSNR 19.50 21.22 23.72 33.32
SSIM 0.8970 0.8975 0.8882 0.9925

MSE 0.0587 0.0622 0.0525 0.0020

Thorax PSNR 19.92 20.96 19.11 36.68
SSIM 0.6902 0.6094 0.7628 0.9198

Table 5.4: Reconstruction error in terms of MSE, PSNR and SSIM of various methods for various

phantoms.
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We see that for all measures, ADJUST outperforms the other three methods.
The results for the other methods are similar to each other. In general, the
Disks phantom leads to very good similarity measures for ADJUST, indicating
the capability of dealing with eight materials. For the other two phantoms, where
the proportions of materials are different, the measures are slightly worse, but
we observe that the reconstructions for the Shepp-Logan and Disks phantoms
are visually satisfactory (the visual results for the Disks phantom are given in
Appendix C.7, while visual results for the Shepp-Logan phantom are given in
Figure 5.3). However, for the Thorax phantom we see a striped pattern in the
material map of the soft tissues. A possible reason is that the spectral signature of
the combined tissue materials may not be present in the dictionary, and therefore
produces visually suboptimal results. On the other hand, it can also be observed
that the spectrum of bone is not fully correctly recovered. This may be because
it does not have a discontinuity in the chosen spectral range, and is therefore too
similar in shape to the tissue spectra. Despite this, ADJUST outperforms the other
three methods on all phantoms.

5.6.3 Limited measurement patterns

Through the numerical experiments in this section, we demonstrate that AD-
JUST is robust. We consider three scenarios: (i) Sparse-angle tomography, where
the number of measurements is reduced by sampling fewer projections angles,
(i) Limited-view tomography, where measurements from a particular range of
angles are missing (representing the case of hardware limitations), and (iii) Sparse
channels, where the number of spectral bins of the detector is limited. We apply
these settings to the Shepp-Logan phantom and the Disks phantom, and report
the results in Table 5.5.

For the sparse-angle tomography setup, we consider tomographic projections
from 10 equidistant angles in the range of 0 to 7. For the Shepp-Logan phantom, the
spectral signatures are determined correctly and we observed very minor artefacts.
For the Disks phantom, the material maps and the spectral signatures are precisely
reconstructed, as reflected in the very low MSE and very high PSNR and SSIM val-
ues. Therefore, for these phantoms and the selected angles, ADJUST performs well.

For the limited-view tomography setup, we limit the projection angle range from
0 to 27/3. Restricting the angle range for the projections results in a well-known
missing-wedge artefact. We take projections for 60 equidistant projection angles
and add Poisson noise. For both phantoms, we observed no missing wedge artefacts
when reconstructed with ADJUST. The PSNR and SSIM measures remain very
high and the MSE measure remains low. We conclude that for these phantoms,
ADJUST can deal well limited-view measurements.

In the sparse channel setting, we reduce the number of spectral bins based on
the spectral dictionary. Since we consider a dictionary of 42 hard materials, we
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Full Sparse- Limited- Sparse
Phantom . .

sampling angle view channels

MSE 0.0061 0.0113 0.0330 0.0066

Shepp-Logan | PSNR 23.12 20.27 18.41 23.04

SSIM 0.9599 0.9435 0.9112 0.9670

MSE 0.0030 0.0028 0.0057 0.0002

Disks PSNR 33.32 33.05 26.31 36.76

SSIM 0.9925 0.9924 0.9807 0.9929

Table 5.5: Reconstruction error in terms of MSE, PSNR, SSIM with ADJUST for various phantoms with
limited measurement pattern experiments.

reduce the spectral channels from 100 to 42. These 42 spectral channels are chosen
based on the independent columns of the spectral dictionary. For tomography, we
choose 60 equidistant angles between 0 and 7m. We observed that the Shepp-Logan
phantom has been reconstructed precisely, but a few artefacts are visible on the
edges of the disks for the Disks phantom. These artefacts are reflected in the
slightly higher MSE and slightly lower PSNR and SSIM. For the Shepp-Logan
phantom there is no obvious decrease of quality in terms of the measurements. So
ADJUST appears to be capable of dealing with a sparse channel setting with the
given phantoms and the spectral setup.

5.6.4 Limited spectral resolution

In this section, we investigate the performance of the algorithm when each spectral
bin spans a wider energy range. This problem is also called limited spectral reso-
lution. To this end, we have simulated data with 10 spectral bins instead of 100
bins for the Thorax and Shepp-Logan phantoms over the same energy range as
before. The selected number of energy bins is in the same order as the number
of bins resulting from the use of multi-spectral X-ray photon-counting detectors,
rather than with the hundreds of energy bins of hyperspectral X-ray detectors.
This results in a coarser energy resolution for both the source spectra and the
attenuation spectra, and the dictionary has been updated accordingly. Apart from
the different energy bins, we apply the same settings and configuration as the
experiments in Section 5.6.1.

To illustrate the spectral differences, Figure 5.9 shows the attenuation spectra
for the materials in the phantoms with the two different energy resolutions. The soft
materials, bone and iodine present in the Thorax phantom are easily identifiable
since their attenuation spectra are very different from each other in the entire
spectrum (i.e. 20 — 80 keV). The materials in the Thorax phantom will still be
separable with decrease in the spectral resolution. In the Shepp-Logan phantom,
however, all included materials have K-edges very close to each other. Hence,
differences resulting from the K-edge of the materials in the Shepp-Logan phantom
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Figure 5.9: Attenuation spectra of different materials in the Thorax phantom (left) and the Shepp-
Logan phantom right (right), partitioned over 100 energy bins (top) and 10 energy bins (bottom) over
the same energy range.

Phantom RU UR cJoint ADJUST
MSE 0.1446 0.1856 0.1980 0.0976

Shepp-Logan | PSNR 9.042 9.392 7.259 10.94
SSIM 0.0213 0.3773 0.0209 0.6228

MSE 0.0543 0.0715 0.0533 0.0010

Thorax PSNR 21.22 19.64 17.95 33.05
SSIM 0.6820 0.6579 0.7608 0.9707

Table 5.6: Reconstruction error in terms of MSE, PSNR, SSIM for various phantoms with 10 times
smaller spectral resolution (10 spectral bins in total).
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largely disappear. This is also reflected in the performance of various algorithms in
Table 5.6, with considerably lower SSIM and PSNR compared to the full spectral
resolution experiments for the Shepp-Logan phantom in Table 5.4. On the other
hand, for the Thorax phantom the results are similar. Hence, we conclude that
the successful application of the proposed algorithm to spectral measurements
acquired in bins with larger spectral ranges depends heavily on the complexity of
the problem (i.e. separability of the materials in the chosen energy range based on
spectral responses in the bins).

5.6.5 Noisy measurement patterns

We consider three different noise levels to check the robustness of ADJUST against
noise. In particular, we corrupt the spectral tomographic measurements with
additive Gaussian noise of strength {1,10,20}% followed by Poisson noise with
intensity corresponding to the source spectrum. In all three cases, 180 angular
projections in the [0,7) range are acquired in 100 spectral bins. The effect of
noise on the spectral tomographic projections is demonstrated in Figure 5.10. In
Table 5.7, we list the performance measures of ADJUST on three different phantoms.
We observe a steady decrease in PSNR and SSIM values for the Shepp-Logan and
Thorax phantoms. However, the PSNR and SSIM do not suffer from high noise
levels (i.e. 20% noise) for the Disks phantom. Since the Disks phantom consists of
low-rank shapes of small sizes, they can be retrieved well from noisy measurements.
However, the performance of ADJUST on noisy datasets may not be extended for
complex shapes, as seen from the numerical studies on the Thorax and Shepp-Logan
phantom. Hence, these numerical experiments demonstrate that ADJUST is stable
against a moderate amount of noise, but may not be reliable against high noise
levels.

1 256 512 i 256 512 g 256 512 il 256 512
detector detector detector detector

(a) Clean (b) 1% noise (c) 10% noise (d) 20% noise

Figure 5.10: Clean and noisy sinograms (i.e. tomographic projections) of Shepp-Logan phantom for
energy of 5.6 keV (top-row) and 7.7 keV (bottom-row).
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Phantom 1% noise 10% noise 20% noise
MSE 0.0032 0.0067 0.0187
Shepp-Logan | PSNR 25.68 22.53 18.68
SSIM 0.9738 0.9012 0.7076
MSE 0.0001 0.0034 0.0003
Disks PSNR 39.20 32.44 35.53
SSIM 0.9989 0.9779 0.9785
MSE 0.0061 0.0129 0.0123
Thorax PSNR 29.70 25.93 23.33
SSIM 0.8716 0.8474 0.8464

Table 5.7: Reconstruction error in terms of MSE, PSNR, SSIM for various phantoms with three different
noise levels.

5.6.6 Experiment on micro-CT data

In this subsection, we test the performance of ADJUST on a publicly available
X-ray microtomography dataset [262] generated by a conventional laboratory-based
CT scanner equipped with a photon-counting line detector (TESCAN Polydet)
containing a semiconductor crystal (CdTe) [263]. The particle mixture sample
contains pure gold, tungsten and lead, along with quartz. For a total of 128
energy bins with a spectral range of ca. 20 to 160 keV, tomographic projections
are acquired on 255 equally-spaced detector pixels for 600 angles in [0, 27). We
perform a reconstruction using the simultaneous iterative reconstruction algorithm
(SIRT) [140] for each channel and determine the location of each material manually
(refer to Figure 5.11). We plot the gold, lead, and tungsten spectrum obtained
through channel-wise reconstructions along with the corresponding NIST spectra
in Figure 5.12.

For a fair comparison, we apply RU, UR, and cJoint along with ADJUST on
this spectral microtomography dataset. We use the same settings as mentioned
in Section 5.6.1. For ADJUST, we use the spectral dictionary with four materials
(i.e. gold, lead, tungsten and quartz) with their spectrum obtained from NIST (the
spectrum of quartz is obtained from the reconstructed channels). Since it is evident
from Figure 5.12 that the NIST spectra with appropriate scaling match closely
to the spectra in the sample in the range of [53.35,127.05] keV, we reduce the
spectral range of the dataset from 53.35 to 127.05 keV (amounting to 64 spectral
bins in total). The reconstruction results are demonstrated in Figure 5.13. From
these results, it is clear that RU, UR, and cJoint cannot precisely reconstruct the
spectral signatures of materials. These results, furthermore, suggest the need of
stronger spectral regularization to separate the materials. Out of all the spatial
maps reconstructed with these classical methods, only the spatial map of tungsten
(red) produced by the RU method approximately matches the expected material
map (shown in Figure 5.11). On the other hand, the spatial maps recovered from
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Figure 5.11: CT reconstruction of the 7th energy bin (a) of the spectral micro-CT dataset, in which
the locations of the tungsten (orange), gold (green) and lead (blue) particles are highlighted (b).
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Figure 5.12: Attenuation spectra of the materials in the sample, showing both the spectra from NIST
(scaled by 0.015) and the spectra extracted from the channel-wise CT reconstructions, including quartz.
The spectral range is from 20.35 keV to 161.15 keV (white region), with the bins having a spectral
resolution of 1.1 keV.
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Figure 5.13: Reconstruction results of methods RU, UR, cJoint, and ADJUST on the microtomography
dataset of particle mixtures. The zoomed sections demonstrate the separation capabilities of ADJUST
compared to RU, UR and cJoint on particles of three different materials (tungsten, gold and lead). We
match the color of zoomed sections with the spectral plots for improved readability.
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Lead
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Figure 5.14: Detailed reconstruction results of ADJUST on X-ray microtomography dataset of particle
mixtures. Reconstructed material maps for lead, tungsten and gold are shown in high resolution (left
column). In addition, material maps with indications of identified particles are shown (right column).
Green circles indicate correctly identified particles. None of the maps contain false negatives, and the
remaining identified particles are false positives (denoted by red circles).
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ADJUST match almost precisely with the expected material maps. Figure 5.14
shows that all particles are identified and that there are no false negatives. False
positives are mostly small and faint, and many of these occur at the borders of other
particles, mainly between gold and tungsten. As reference, Figure 5.14 also shows
the reconstruction images for each material in high resolution. Finally, we note
that the NIST spectra do not overlap entirely with the spectra recovered through
channel-wise reconstruction. Therefore, the spectral dictionary must be calibrated
for the spectral detector setup for various materials. We expect improvement in
reconstruction results of ADJUST with a calibrated spectral dictionary.

5.7 Conclusions and discussion

Spectral imaging is an emerging topic in X-ray tomography since it adds an ad-
ditional dimension to the measurements, which can be exploited to retrieve the
material composition of the object of interest. Recently, joint approaches (also
known as one-step methods) have emerged as a promising technique for solving the
spectral imaging problem by incorporating all the prior information in a single step.
These joint approaches reduce the ill-posedness of the spectral imaging problem.
However, the spectral signatures of many materials are very similar, making the
joint approaches likely to fail when many materials are involved. To tackle the
problems with the joint approach, we propose the ADJUST framework that inte-
grates the structure of spectral signatures by creating a dictionary of all the known
materials and uses this to jointly reconstruct and carry out material decomposition
in a single step. Since the resulting formulation is a bi-convex optimization problem,
we propose an Alternating Accelerated Proximal Minimization (AAPM) scheme to
find a solution. Through numerical experiments, we show that ADJUST performs
better over practical methods as well as state-of-the-art joint approaches on various
simulated phantoms.

Obtaining projections from all directions requires high experimental time. More-
over, X-ray machines may not allow for sampling in all directions. Hence, practical
methods do not help in determining the material composition of structurally more
complicated objects (either because of intricate structures or a wider variety of
materials) with most X-ray configurations. However, ADJUST is robust against
limited tomography measurement patterns on phantoms that are more complicated.

A natural question is to check if the utilization of a spectral dictionary (i.e.
representing F' as RT') in two-step methods can produce optimal results. For
example, in UR method, we can first decompose spectral measurements Y = ZRT,
where Z incorporates the projections per material. Later, the spatial maps can be
extracted by solving WA = Z. However, in the decomposition step, we allow for
unrealistic projections due to lack of knowledge of tomography operator W and
spatial properties of A, especially when dealing with limited measurements. More-
over, allowing unrealistic projections leads to unrealistic materials since simplex
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constraints on R give rise to convex combination of (many) dictionary elements, and
not of only a single element. A similar argument holds for RU method combined
with the spectral dictionary. These unrealistic solutions are, however, penalized by
proper spatio-spectral reqularization in the ADJUST framework. Hence, ADJUST
will always perform better than spectral dictionary versions of two-step methods
even when complete measurements are available.

There are some limitations to the ADJUST framework. It can only separate
hard materials from each other and separate hard materials from soft materials.
Moreover, if neither the spectral signature of the material is present in the dic-
tionary, nor it can be composed as a linear combination of the elements from the
dictionary, ADJUST will fail in recovering that material. Although we tested
ADJUST against moderate Gaussian and Poisson noise, it is not straightforward
to assume that ADJUST will behave stably against real (extremely) noisy datasets
that are common in energy-dispersive X-ray tomography.

The experiments conducted on the micro-CT dataset suggest the potential of
ADJUST for application to experimental spectral CT data. Apart from the noise
level on experimental data, the successful application of ADJUST depends on
several factors. As shown in the experiments with the limited spectral resolution,
the number and range of the energy bins, combined with the problem’s complexity,
determines the degree of possible material decomposition. If the spectral resolution
is too small such that materials cannot be distinguished anymore, ADJUST will not
yield proper material decompositions (and neither will other methods). Moreover,
for successful reconstruction and decomposition, there is a limit to the number of
(differentiable) materials that can be included in the dictionary for a given spectral
resolution.

For an uncalibrated spectral detector, the spectral dictionary can be measured,
if it is not available through the manufacturer. Additionally, when working with real
data, an interesting consideration for future work would be to estimate the source
spectrum along with the spatial material maps and their signatures. Although our
framework is based on the assumption that the spectral tomographic measurements
consist of additive white noise, we can extend it to tackle Poisson noise by replacing
the least-squares loss by Kullback-Leibler function. However, the bi-convexity can
no longer be guaranteed and the solution obtained through AAPM may not be
partially optimal. We leave this extension for future work.

Code and data availability

The source code of ADJUST, along with the RU, UR, and cJoint algorithms,
are available on https://github.com/mzeegers/ADJUST [138]. These MATLAB
codes make use of open-source toolboxes, in particular the ASTRA toolbox [1, 2],
Spot Operator toolbox [37], MinConf optimization package [250]. The scripts for
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testing the mentioned algorithms on the phantoms and the data are also made
open-source in the ADJUST Github repository. The micro-CT spectral dataset is
available at https://rodare.hzdr.de/record/1627 [262].
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