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4
Multi-channel discrete

tomography

In this chapter, we will look at discrete tomography where the number of
materials in an object is limited. This can be exploited to make accurate
reconstructions with a limited number of projections. The DART algorithm
has proven to be a successful algorithm in this regard, but its usage is limited
to objects with a few different materials. To push the number of materials
that DART can handle, multi-channel data recorded with advanced tomo-
graphic imaging techniques – such as spectral X-ray tomography – can be used.

To effectively deal with multi-channel data, we present Multi-Channel
DART (MC-DART). This class of algorithms is a generalization of DART to
multiple channels and combines the information for each separate channel-
reconstruction in a multi-channel segmentation step. We demonstrate in a
range of simulation experiments with spectral X-ray imaging that MC-DART is
capable of producing more accurate reconstructions compared to single-channel
DART.

This chapter is based on:
M. T. Zeegers, F. Lucka, and K. J. Batenburg. “A Multi-Channel DART algorithm”. In:
International Workshop on Combinatorial Image Analysis. (Porto, Portugal). Ed. by
R. P. Barneva, V. E. Brimkov, and J. M. R. S. Tavares. Springer, 2018, pp. 164–178.
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4.1 Introduction

Tomography is a non-invasive technique for creating 2D or 3D images of the inner
structure of an object. Projections of the object are acquired by sending photonic or
particle beams (e.g. X-rays, electrons, neutrons) through the object in a particular
direction and measuring the signal resulting from interaction of the beam and the
object at a detector. By acquiring this data from multiple positions and under
various angles, a collection of projections is obtained. An image of the interior of
the object is then reconstructed by applying a reconstruction algorithm to this
projection data. Tomography is successfully used in many fields, including medical
imaging [127] and electron tomography in materials science [93, 196]. If a large
number of accurate projection images are available, solving the reconstruction
problem is straightforward by a closed-form inversion formula [51]. Practical con-
straints on the dose, acquisition time or available space can impose limitations
on the number of projections that can be taken, the angular range, or the noise
level of the data, resulting in artefacts in the reconstructed images if standard
reconstruction methods are used [127].

Discrete tomography is a powerful technique for dealing with such limited to-
mographic data. It can be applied if the object consists of only a limited number
of materials with homogeneous densities. The Discrete Algebraic Reconstruction
Technique (DART) [30, 31] is an algebraic reconstruction method for discrete tomog-
raphy that alternates between continuous reconstruction steps and discretization
of the image intensities by segmentation. The DART algorithm has demonstrated
to obtain higher image quality reconstructions with limited projections and angles
compared to standard reconstruction methods. Numerous successive studies have
improved the DART algorithm, which include automatic parameter estimation
(PDM-DART [3] and TVR-DART [328]), multi-resolution reconstruction (MDART
[65]), relaxing voxel constraints (SDART [42]) and adaptive boundary reconstruc-
tions (ADART [181]). Nevertheless, a key limitation of DART is that it can only
improve reconstruction quality if the number of different materials in the object
is relatively small. The main reason is that for a larger number of materials, the
segmentation step is no longer effective [30, 31].

In some cases it is possible to obtain tomographic information in multiple
measurement channels. For instance, in X-ray imaging the beams are typically
polychromatic, i.e. X-ray photon energies are distributed over a spectrum. Each
material in the object has different attenuation properties for different X-ray energy
levels. Whenever a single X-ray energy value is desired the range of energies within
the beam can be narrowed by applying filters at the X-ray source [51]. Some
detectors are capable of separating the incoming photons into energy bins while
counting (e.g. HEXITEC [295]). In these cases spectral multi-channel projection
data are acquired, providing additional information about the object at different
energies. Compared to the single-channel setting, where each material has a single
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attenuation value in the reconstructed image, in the multi-channel setting the atten-
uation value for each material varies along the channels. In this way, a tomographic
dataset of the object is acquired for each channel, where the attenuation values of
the materials change throughout these datasets. This multi-channel imaging can
potentially yield extra information about the materials. With more materials in
the object, especially with similar attenuation features at a fixed energy, having
data from multiple channels enables a better separation during segmentation. A
conceptual example of this is shown in Figure 4.1. It is hard to separate points
based on their attenuation values in a one-dimensional energy space. For instance,
the right side of the blue area might as well be assigned to the green or yellow
material during segmentation. With two energy dimensions the points are easily
separable, since each voxel value lies close to its attenuation cloud center. Note

(a) Material distribution
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(b) One-dimensional attenuations for energy
channel E1
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(c) One-dimensional attenuations for energy
channel E2
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Figure 4.1: Elementary example of separation difficulties during segmentation. (a) Distribution of
the three materials (blue, yellow, green) in the object. The background is indicated in red. (b) His-
togram of attenuation values of pixels at energy E1 (above) and E2 (below). Vertical lines show true
material attenuations. (c) Attenuations of the materials (red dots) and computed attenuations by a
reconstruction algorithm for each voxel (colors indicate the materials these belong to).
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that these spectra are artificial and not likely to occur in real-world examples.

In this chapter we present a new class of algorithms that combines DART with
multi-channel imaging for solving discrete multi-channel reconstruction problems.
Our method can combine the information from multiple channels to produce a final
segmentation that is superior to that of the (single-channel) DART algorithm. Note
that since this new method is designed by means of modules or subroutines that
are interchangeable (as with DART), the method is essentially a class of algorithms
providing a framework for dealing with multi-channel data. For simplicity, however,
we will frequently call this framework an algorithm.

This chapter is structured as follows. Section 2 introduces the multi-channel
discrete tomography problem. In Section 3 the DART algorithm is restated
and the Multi-Channel DART (MC-DART) algorithm is introduced. Results of
experiments with this algorithm are reported in Section 4. Finally, Section 5
presents the conclusions of this study.

4.2 Problem formulation
The standard (single-channel) tomography problem can be modelled as a system
of linear equations. The image is characterized by a vector of voxel attenuation
values x ∈ Rn, where n is the number of voxels. We will work with 2D images,
but the problem formulation and methods in this work can easily be extended to
the 3D setting. We will refer to the image pixels as voxels to distinguish these
from detector pixels. We will often interchangeably speak of voxels and their
corresponding indices. The projection values (also called data) are given as the
vector p ∈ Rl, where l is the number of projection angles times the number of
detector pixels. The reconstruction problem can then be described by solving the
following set of linear equations for x:

Wx = p. (4.1)

Here W is the projection matrix, also called the forward operator [140]. This
matrix incorporates the contribution of each voxel to each projection, where element
wij indicates the contribution of voxel j to projection i. Applying the operator
W on a vector x results in the forward projection (the sinogram). Since inverting
the matrix W is computationally too expensive (or not even possible, for example
when the problem is ill-posed) the reconstruction problem is to find a solution x∗
whose forward projection Wx∗ matches the projection data best with respect to
some norm ||·||.

x∗ = arg min
x∈Rn

||Wx− p|| (4.2)

Since this is a least squares problem over Rn, a solution always exists. For simplicity
of notation we also assume that it is unique. A vector that encapsulates noise
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from real-world examples can also be modelled with (4.2). In our experiments with
phantom examples in Section 4.4 there is no noise.

In the discrete tomography problem, the image to be reconstructed consists
of a limited number of materials with homogeneous densities, each having an
attenuation which is known beforehand by means of the set R = {ρ1, . . . , ρm},
where m is the number of different materials in the object. Therefore the problem
to be solved becomes finding a vector x ∈ Rn that matches the data best:

x∗ = arg min
x∈Rn

||Wx− p||. (4.3)

Note that this is a minimization problem over a non-empty finite set. Hence, a
minimum always exists. Again, the minimizer does not need to be unique but we
use this notation throughout the chapter for simplicity.

In the multi-channel setting different properties of the target can be individually
interrogated and measured. The information of each property is obtained through
a separate channel. An example of a channel is an energy level, as in the example
in Section 4.1. In Figures 4.1b and 4.1c, the channels are the two energy levels
revealing attenuations of the object at different energies. In a more abstract way
the object is described as set a of voxels with labels instead of attenuation values,
since each material has different attenuation values in different channels. The
material labels are values in the setM = {1, 2, . . . ,m}. The channel indices are
given by E = {E1, E2, . . . , EC} where the number of channels is given by C. Again,
the attenuations are known beforehand in the sets RE1

= {ρ1,1, . . . , ρ1,m},RE2
=

{ρ2,1, . . . , ρ2,m}, . . . ,REC = {ρC,1, . . . , ρC,m}. In this setting, let R = ∪REc .
The function µ : M × E 7→ R maps the label-channel combinations to their
attenuation value, so the attenuation of a material with label s at channel Ec is
given by µ(s, Ec). Note that there is not necessarily a one-to-one correspondence
between the attenuation values and the material-channel combinations, because
some combinations can have the same attenuation value. In this multi-channel
case the projection data are given by a vector of projection data vectors at various
channels:

P = (pE1 , . . . ,pEC ) ∈ Rn×C . (4.4)

For each channel Ec the reconstruction problem for xEc is given by the following
set of linear equations:

WxEc = pEc , Ec ∈ {E1, . . . , EC}. (4.5)

For y ∈Mn, define µ(y, Ec) = (µ(y1, Ec), . . . , µ(yn, Ec))
> as the vector of voxel

attenuation values at channel Ec. The multi-channel problem is now defined as
follows. Given data vector P and projection matrix W , find a labelling vector
y∗ ∈Mn such that for each channel Ec the difference between forward projection
Wµ(y∗, Ec) and data is minimal with respect to some norm ||·||:
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y∗ = arg min
y∈Mn

C∑
h=1

||Wµ(y, Ec)− pEc ||. (4.6)

Note that for one channel the minimization problem is equivalent to (4.3) where
the labelling is given by the attenuation values x, by setting µ(y, E1) = x and
Mn = Rn and pE1

= p:

y∗ = arg min
y∈Mn

||Wµ(y, E1)− pE1
|| (4.7)

= arg min
x∈Rn

||Wx− p||. (4.8)

4.3 Algorithms
In this section, the Multi-Channel DART (MC-DART) framework for solving the
minimization problem of Eq. (4.6) is introduced. We first explain the DART
algorithm as given in [30] by discussing the overall structure and its building blocks.
We then describe each building block of the MC-DART algorithm separately in
more detail. Note that ASTRA [1, 215] provides an implementation for numerically
computing all projection matrices in these algorithms, either by storing the full
matrix or doing all necessary computations in a matrix-free way.

4.3.1 DART
The DART algorithm attempts to solve the optimization problem of Eq. (4.3)
by iteratively alternating between continuous reconstruction steps and discrete
segmentation steps. The number of materials in the object to be reconstructed
and their attenuation values should be known beforehand, given by the function µ.
The algorithm consists of several phases, which are indicated in the flow-chart in
Figure 4.2. The pseudocode of DART is given in Algorithm 1.

Algorithm 1 DART
Input: W , p, R

1: x0 ← Mask-ARM(W ,p,1n,0n)
2: for k = 1 to K do
3: yk ← Seg(xk,R)
4: Mk ← Mask(yp)
5: xk ← Mask-ARM(W ,p,Mk,xk−1)

6: Output: xK ,Seg(xK ,R)
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Figure 4.2: Flow chart of the DART algorithm. The DART iteration activities are indicated in red and
the initialization and post-segmentation activities are indicated in blue.

Initialization

In the initialization phase, given the projection data p and the projection proper-
ties by means of W , an initial reconstruction x0 is calculated using an Algebraic
Reconstruction Method of choice (hereafter referred to as the ARM), for example
ART, SART or SIRT [140]. With the initial reconstruction x0 at hand, the main
loop of the DART algorithm begins.

Segmentation

In this main loop, in iteration k the image xk−1 is segmented using a simple
thresholding scheme, forming the image yk ∈ Rn, by computing for every voxel j
the closest material attenuation value:

ykj =


ρ1, xk−1

j < 1
2 (ρ1 + ρ2)

ρ2,
1
2 (ρ1 + ρ2) ≤ xk−1

j < 1
2 (ρ2 + ρ3)

...
ρm,

1
2 (ρm−1 + ρm) ≤ xk−1

j

(4.9)

= arg min
ρ∈R

||xk−1
j − ρ||2. (4.10)

The second expression is easier to generalize to a higher-dimensional setting, which
will be done in Section 4.3.2.

Boundary detection and masking

A set of voxels in the segmentation is selected for a new reconstruction to refine
the resulting image. First, the set Bk ⊂ {1, . . . , n} of boundary voxel indices
is determined based on the segmentation. Various schemes can be applied for
boundary detection. Additionally, a set Uk ⊂ {1, . . . , n} of free voxel indices is
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determined, where each voxel is included with a certain probability 1 − β, with
0 ≤ β ≤ 1. The process of selecting the voxels Uk ∪ Bk to be reconstructed and
the voxels to be left out is called masking. Note that in the initialization phase all
voxels are included in the mask.

Masked ARM reconstructions

The set of free voxel indices Uk ∪Bk are subjected to a new ARM reconstruction.
This is done by computing the forward projection of the voxels (ykj ) with j /∈ Uk∪Bk,
and subtracting this from the input data p to obtain the residual sinogram pk.
The subproblem that has to be solved in this phase is:

W
k
xk = pk. (4.11)

In Eq. (4.11) matrix W
k
is defined by W

k
= (wij)j∈Uk∪Bk and vector xk to be

found has length |Uk ∪ Bk|. Thus, the system of equations contains the same
number of equations as Eq. (4.2) but has fewer unknowns. The system is solved
using a fixed number of ARM iterations, taking the values of (xk−1

j )j∈Uk∪Bk as
the starting condition. The complete reconstruction xk at the end of iteration k is
then formed by merging xk with yk.

Some DART implementations also include a smoothing step at this point. The
entire loop is repeated a predefined number of times. After the loop ends, the
image is segmented one more time. An example of the DART algorithm on a
two-material phantom is given in Figure 4.3. Note that the DART algorithm has
many degrees of freedom. This includes the number of ARM iterations in the
initialization phase, the number of DART iterations, the number of ARM iterations
during these DART iterations, the fixing probability β, and possibly parameters in
the smoothing operation. The quality of the reconstructions also depends on the
tomographic setup, such as the number of projections and the number of projection
angles, and on the complexity of the object, including the number of materials
and different attenuation values. Despite the DART algorithm performing well in
practice, it is a heuristic method for which no solution guarantees exist [28]. The
DART algorithm is also highly modular. Approaches for segmentation, boundary
detection, reconstruction (ARM) and possible smoothing can easily be changed
without sacrificing the overall structure of the algorithm. For the multi-channel
algorithm proposed in this section, the segmentation phase is adapted to using all
multi-channel reconstructions as input.

The complexity of the framework depends on the algorithms that are used for
reconstruction and segmentation. In this work, we use SIRT as the reconstruction
algorithm and the thresholding segmentation as described above. Therefore, in
this case, the DART algorithm has a time complexity of O(Kn(m+ l)). The space
complexity of our implementation is O(ln).
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Initial ARM
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Figure 4.3: An example of DART applied to simulated X-ray data from a two-material phantom.

4.3.2 Multi-channel DART

We now present the Multi-Channel DART (MC-DART) algorithm and outline its
separate building blocks. Most focus will be on the multi-channel segmentation.
Note that labelling single-channel images separately by attenuation values does
not work here, since across multiple channels different materials can have the same
attenuation. Therefore, there are some slight changes in the other blocks as well due
to a new labelling mechanism. The algorithm structure is shown in the flow-chart
in Figure 4.4. The pseudocode of MC-DART is given in Algorithm 2.

Multichannel

segmentation

Masking: 

boundary detection 

free pixel selection

Merging

Stop
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met?

Multichannel

segmentation

Final

segmentation

Yes

No

Multichannel

data

Initial ARM

reconstructions

Merging

Merging

Masked ARM

Reconstructions

Figure 4.4: Flow chart of the MC-DART algorithm. A stacked number of activities indicate that these
are applied at different channels simultaneously.



104 Chapter 4. Multi-channel discrete tomography

Algorithm 2 MC-DART
Input: W , E, P , R, M, µ

1: for c = 1 to C do
2: x0

Ec
← Mask-ARM(W ,pEc ,1n,0n)

3: for k = 1 to K do
4: yk ← MCSeg(Xk,R,M, µ)
5: Mk ← Mask(yk)
6: for c = 1 to C do
7: xkEc ← Mask-ARM(W ,pEc ,M

k,xk−1
Ec

)

8: Output: XK ,MCSeg(XK ,R,M, µ)

Initialization

In the multi-channel setting we start out with a vector of projection data P at
various channels and the matrixW as before. For each channel Ec a reconstruction
x0
Ec

is computed using the selected ARM. This results in C initial reconstructions
for the MC-DART loop.

Multi-Channel segmentation

Given the reconstructions for all channels, similar to the DART segmentation, the
multi-channel segmentation will determine a label image yk ∈ Mn. Let µ(s) =
(µ(s, E1), . . . , µ(s, EC)) ∈ RE1

×RE2
× . . .×REC be the vector of all attenuation

values at each energy for material s ∈M, and let Xk(·, j) = (xkj,E1
, . . . ,xkj,EC ) be

the vector of all attenuation values of voxel j at each channel. We compute the
segmented image by computing for each voxel j ∈ {1, . . . , n} the label using a basic
thresholding scheme:

ykj = arg min
s∈M

||Xk(·, j)− µ(s)||2. (4.12)

Essentially, this operation selects the material label for which the multi-dimensional
difference between the material attenuation and voxel attenuations is smallest.

Masking and boundary detection

The masking works exactly the same as in the single-channel case. Given the
segmentation yk the masking produces a set Uk∪Bk of voxel indices to be included
in the multi-channel reconstructions.

Multi-Channel reconstructions

In the MC-DART algorithm the reconstructions are handled separately for each
energy. Thus, in MC-DART iteration k the ARM is invoked C times to find xkEc
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for each channel c in

W
k
xkEc = pkEc . (4.13)

The resulting (merged) reconstructions are then given by Xk := (xkE1
, . . . ,xkEC ) ∈

Rn×C .

An example of the MC-DART algorithm on a two-material phantom with two
channels is given in Figure 4.5. As with DART, the complexity of this framework
depends on the reconstruction and segmentation methods that are chosen, as well
as the extent of parallelization. If we use SIRT and the multi-channel segmentation
method as described above and use a completely sequential implementation, the
time complexity of MC-DART is O(CKn(l +m)). Because of the dependencies
on the methods, we rather speak of a relative complexity of MC-DART to DART,
which we define as the ratio of the sequential MC-DART complexity to that of
DART, irrespective of the subroutines used. This relative time complexity is O(C).
The space complexity of this algorithm instance of MC-DART is O(Cn), resulting
in a relative space complexity of O(C) as well.

Final

segmentation

Multichannel

projection data

Initial ARM

reconstructions

Figure 4.5: An example of MC-DART applied to simulated two-channel X-ray data from a two-material
phantom.
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4.4 Experiments and results
In this section the performance of the described MC-DART framework in terms of
reconstruction and segmentation is presented. A series of experiments have been
designed in which the number of channels C and different materials m are varied.
For each experiment, multiple random phantoms are created. The size of these
two-dimensional phantoms is 128 × 128 pixels, and each phantom consists of a
circular disk containing a random parcellation among m materials in such a way
that the total surface is approximately equal for each material. An example of
this random phantom is given in Figure 4.1a, where m = 3. Given the number of
materials and channels, random attenuation spectra are generated by assigning a
random number µ(s, Ec) ∼ U(0, 1) for each channel-material combination, where
s ∈ {1, . . . ,m} and Ec ∈ {E1, . . . , EC}. With this way of generating spectra
no dependencies between channels are established. Note that in most practical
applications such dependencies do exist, as materials all have their own attenuation
spectrum. For each phantom, reconstructions are made. The reference values for
the tomographic setup and the parameter values of the MC-DART reconstruction
algorithm for these reconstructions are summarized in Table 4.1. For multi-channel
segmentation the method as described in Section 4.3.2 is used.

Parameter Reference value
Angles 32 (equidistant)
ARM SIRT
Start iterations 10
MC-DART iterations K 10
ARM iterations 10
Fix probability β 0.99

Table 4.1: Reference values for the parameters of the tomographic setup and the reconstructions
algorithm for all experiments.

We vary the number of channels C ∈ {1, . . . , 10} and materials m ∈ {2, . . . , 10}
independently. For each combination, a random phantom yinit is created, after
which data P is generated by applying the forward projection as described in
Section 4.2 on the phantom by applying µ and W on yinit. In all experiments
parallel-beam geometries are used and the detector size is 128 pixels. After this,
the MC-DART algorithm as described in Section 4.3.2 is applied with K = 10
MC-DART iterations. The final segmentation is compared to the original phantom
and the pixel error is computed, which is defined as the number of pixels in the final
segmentation yK that are labelled differently compared to the corresponding pixels
in the original phantom yinit. Only the pixels in the inner disk of the phantoms
are taken into account. All experiments are repeated for and averaged over 100
runs with different phantoms.
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Figure 4.6: Pixel error percentage for different number of material-channel combinations.

The creation of random phantoms is implemented in MATLAB. The remainder
of the experiment setup scripts are implemented in Python. The reconstruction
algorithms, including the MC-DART algorithm, are implemented in Python, where
the ASTRA Toolbox [1, 2] is used to take care of the ARM invocations and forward
projections, including the masking in each MC-DART iteration and the creation of
matrices W and W

k
based on the geometric properties.

Figure 4.6 shows the percentage of misclassified pixels with respect to the
number of pixels in the inner disk. The percentage is lowest when the number
of materials is low and the number of channels is high, while the percentage is
highest when the number of channels is low and the number of materials is high.
Given a number of channels, the percentage seems to scale logarithmically with
the number of materials. On the other hand, given a number of materials, the
percentage seems to scale exponentially with the number of channels for larger
number of materials. Therefore, in this setup, the addition of only a few channels
improves the reconstruction quality considerably. Figure 4.7 shows examples of the
reconstructions at the corners of the curved plane of Figure 4.6.

We have investigated the effect of changing the parameters that are shown
in Table 4.1. The number of starting iterations has no effect on the pixel error
percentage curve. For these parameters, we found that increasing the number of
MC-DART iterations further than 4 had no significant effect on the reconstructions.
This threshold depends on the number of ARM iterations in each MC-DART
iteration. Also, the quality of the reconstructions increases only marginally when β
is increased. However, the pixel error percentage drops considerably as the number
of ARM iterations during an MC-DART iteration increases. Also, when scanning
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(a) 2-material phantom (b) 1-channel rec. (c) 10-channel rec.

(d) 10-material phantom (e) 1-channel rec. (f) 10-channel rec.

Figure 4.7: Reconstructions for various setups. (a, d) Phantoms used with two and ten materials
respectively. (b, e) Reconstructions using one channel. The mislabelled yellow pixels are because the
attenuation of the yellow material is very close to zero. (c, f) Reconstructions using ten channels.

data from many angles are available, the reconstruction quality improvements with
multiple materials become much better. For only 2 angles, the reconstruction
between C = 1 and C = 10 channels improves from pixel error percentage 27% to
23% for two materials and from 55% to 41% for ten materials. In comparison, for
as much as 128 angles the reconstructions between C = 1 and C = 10 channels
improve by from 3% to less than 1% for two materials and from 46% to 4% for
ten materials. We conclude that in all these cases the MC-DART algorithm gives
better results when more channels are available.

Additionally, apart from the pixel error, we investigate how the number of
assigned pixels per material class behaves as the MC-DART reconstruction proceeds.
The results are shown in Figure 4.8. A random phantom with four different
materials and background is used. The number of channels is set to C = 10, and
for each channel c and material m a random attenuation value µ(s, Ec) ∼ U(0, 1)
is generated. Then the MC-DART algorithm is applied to this phantom in two
different experimental setups. In the first experiment, the number of MC-DART
iterations is set to 10 and the number of ARM iterations per MC-DART iteration
is set to 10. After each MC-DART iteration, the number of pixels assigned are
calculated for each class. During the first four MC-DART iterations the number



4.4. Experiments and results 109

(a) Phantom

0 1 2 3 4 5 6 7 8 9 10

Completed DART iterations

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F
ra

c
ti
o
n
 o

f 
p
ix

e
ls

Number over pixels per material class over time

Material1

Material2

Material3

Material4

(b) Number of pixels per class for DART
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(c) Number of pixels per class for non-DART
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Figure 4.8: Convergence behavior for material classes with C = 10 channels. (a) Phantom that has
been used with m = 4 materials (b) Graph showing the behavior for each material class in a DART
routine for this phantom. The number of iterations for the initial reconstruction is set to 2, the number
of DART iterations is 10, the number of ARM iterations is set to 10, the number of angles is 8, fixing
probability is set to β = 0.99. The chosen ARM is SIRT. Shown are the number of pixels assigned
per class during segmentation after each DART step, with the true value of these indicated by dashed
lines. (c) Number of pixel assigned per class over number of ARM iterations. The number of DART
iterations is 0, and instead we apply 100 ARM iterations with 2 initial iterations. The results are based
on intermediate segmentations after each 10 ARM iterations, but these segmentations are not used in
further iterations. Background pixels are excluded from the results (d) Pixel error over number of ARM
iterations for both approaches.
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of assigned pixels is converging towards their real values. After this, the graphs
enter an oscillatory phase in which for each class the number of assigned pixels
alternates between two values whose average is not necessarily the real number of
pixels for that class. For comparison, in the second experiment the same setup is
used, but without using MC-DART iterations and applying the same ARM for 100
iterations instead. In this way the ARM is effectively invoked equally often. After
each 10 iterations a segmentation is made based on the current reconstruction and
the pixels per class are measured, but no new forward projections are calculated
from these segmentations and used in subsequent ARM iterations. In this case
the number of pixels converges much more quickly for each class. Also, there is
no oscillatory phase and the number of pixels are just as close to their true values
as with the DART approach. However, plotting the total pixel error over time
reveals that the pixel error in the non-DART case is higher. The pixel error for
the MC-DART case needs more time to stabilize to its oscillatory phase, but the
values are eventually lower than in the non-MC-DART case.

4.5 Discussion
This chapter presents the first steps to implement a multi-channel reconstruction
technique using multi-channel segmentation. Currently, there are no standard
approaches for the discrete multi-channel problem presented in Section 4.2. We
propose a framework in which reconstruction and segmentation techniques can be
exchanged. The modules in the framework can be adjusted to the problem to be
solved. For instance, segmentation can be performed with neural network based
methods. The proposed method is not aimed at optimizing reconstructions with
state-of-the-art ARMs or segmentation techniques but at presenting a framework
to work with multi-channel data. If more data from different channels are available,
this implementation outperforms DART but it does not mean that the problem is
optimally solved. To further develop this technique and transfer it to real-world
settings, real-data properties should be taken into account. These properties include
the correlation of attenuation values between channels and noise contained in the
projection data. In our study we only make use of the multi-channel data during
segmentation. Another approach could be to use the multi-channel data during
reconstruction, modelling the reconstruction problem as a large inverse problem
where the unknowns are the material concentrations in each pixel (e.g. see [143,
275]). However, solving this problem is much more involved and the MC-DART
framework presented in this chapter provides a simple but effective alternative of
separating materials using multi-channel data.
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4.6 Conclusions
A new class of algorithms for solving discrete multi-channel reconstruction problems
has been proposed. This framework uses the strength of DART regarding dealing
with limited data in a multi-channel setting by using a multi-channel segmentation
method. The experiments have shown that combining information from different
channels by a multi-channel segmentation method increases the reconstruction
quality compared to the single-channel DART algorithm. Therefore, we conclude
that the MC-DART framework is a promising approach for dealing with multi-
channel data.

Code and data availability
The source code to reproduce all results in this chapter are available on https:
//github.com/mzeegers/DRCNN [311]. These Python scripts make use of the
ASTRA toolbox [1, 2]. The data configurations generated for this chapter are
available in the MC-DART source code repository.

https://github.com/mzeegers/DRCNN
https://github.com/mzeegers/DRCNN



