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1
Introduction

For well over a century, X-ray imaging has been successfully employed as a non-
destructive method to gain insight into the internal structures of various objects.
Some well-known applications include baggage scanning at airports and medi-
cal diagnosing in hospitals. One particularly vital application area is the food
processing chain, where quality preservation and safety checks are the order of
the day. Even though most food inspection is surface-based, X-ray imaging has
proven to be an essential complement to finding significant anomalies within a
food product. Still, a more detailed understanding of the interior of an object can
be achieved using Computed Tomography (CT), in which X-ray projections are
collected around the imaged object and used to compute a 3D reconstruction of it.
These CT acquisitions and algorithms generally take more time than conventional
X-ray imaging, which can pose a problem at industrial high-throughput production
lines. These conflicting goals of accuracy and processing speed require a trade-off
to be made, and new methods and algorithms are needed to optimize this trade-off.

Towards achieving the optimized trade-off, spectral imaging and machine learn-
ing are important directions to respectively obtain rich data and achieve faster
and better results. Recently, the field of spectral imaging, where the energies
within the X-ray beams are taken into account, has been getting more attention.
A major driving force is the development of spectral photon-counting detectors,
which are able to register the energy properties of each individual photon in the
incoming beam independently and can therefore disentangle energetic information
into multiple images at different wavelengths. This is a significant information gain
compared to conventional X-ray imaging, and can therefore be used to improve
X-ray image analysis and to create more accurate CT reconstructions with the same
acquisition time. These detectors and reconstruction algorithms are continuously in
development. However, the lack of suitable spectral image processing methods and
reconstruction algorithms is hampering the application of spectral X-ray imaging
in industry in general and food processing in particular. Additionally, recent
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2 Chapter 1. Introduction

developments in machine learning open up possibilities for rapid and accurate
X-ray image analysis. In particular, deep learning enables rapid recognition of
complicated patterns in data and can therefore aid in image processing tasks. The
potential of deep learning has yet to be explored for the examination of X-ray
images of natural products in industrial settings.

In this dissertation, several research contributions are put forward for spectral
X-ray CT and the incorporation of deep learning in (spectral) image processing
routines to improve reconstruction accuracy and performance of image processing
tasks. The main contribution of this work is the proposal and detailed analysis of a
new deep learning workflow for imaging tasks in which the scientific contributions in
all chapters are incorporated. The method can be readily implemented in industrial
setups and has a particular focus on food processing. This introductory chapter
will first provide the background of product inspection in industry, which will
be the common thread for all subsequent motivations. After this, X-ray imaging
and its application to product inspection are covered. Next, the basic concepts of
computed tomography are introduced. Thereafter, an outline of the current state
of the art of spectral X-ray imaging and spectral CT is given. Along with this,
several machine learning concepts are introduced, which are used in later sections.
This chapter is concluded with an overview of all sections in this dissertation,
supplemented by the relevant research questions for each non-preliminary chapter.

Accuracy

Processing

speed X-ray image analysis

Computed tomography

Spectral imaging

Machine learning

Computed tomography

Figure 1.1: Schematic view on the goals in this dissertation. The pursued contributions by the research
are indicated by the red arrows. Spectral imaging, machine learning and tomography methods are used
to increase the accuracy and speed (i.e. image throughput) of algorithms for tasks on X-ray images. In
addition, spectral imaging is used to increase the reconstruction accuracy in computed tomography.



1.1. Product inspection and foreign objects 3

1.1 Product inspection and foreign objects

With the increasing reliance of society on automatic food processing in factories,
accurate quality control of food is absolutely essential [305, 327]. Regularly, food
products are recalled from supermarkets or other food distributors because of
contamination: unintended and possibly undetected alterations to the products,
which makes them unsuitable for consumption. The contamination and the subse-
quent recalls waste time, money, effort and energy. On top of that, consumers and
product sellers may lose trust in the product manufacturer. It goes without saying
that all sorts of contamination should therefore be avoided as much as possible. In
general, there are three different distinguishable types of product contamination [89,
287]. Chemical contaminations can appear as pesticides, wrong food additives or
inappropriate cleaning substances. Biological contamination encompasses bacterial,
fungal, virus and parasite contamination. Both can deteriorate food quality but
can also lead to severe food poisoning. In this dissertation, we focus mainly on the
third category of physical contamination, where food contains items that are not
supposed to be there. The existence of this third category is the primary motivator
for the realization of the methods presented in this dissertation.

Physical contamination is characterized by the presence of foreign objects, also
known as foreign bodies. These foreign objects are defined as objects that are not
supposed to be present in a product and may harm the end user upon consuming or
using it if its presence remains unknown. Foreign objects come in many shapes and
conditions. Usually, a distinction is made between intrinsic foreign objects, which
are already present in the object but not properly removed (e.g. bones, shells, fruit
stalks or pits), and extrinsic foreign objects, which are objects that end up in the
product during the food processing stages (e.g. stones, plastic and insects) [76].
Foreign objects of the latter category can be introduced during transport, improp-
erly sanitized factory processing environments, sanitizing processes, automatic or
manual deformation processes, and packaging stages. Typical example objects are
stones, wood, insects, plastics, hair, pieces of (fallen) gloves, rubber, glass and metal
particles. In addition to the harm that can be done after processing, hard foreign
objects can also damage the processing machines. Standard control measures such
as sieves, filters and magnets can be used to mitigate the problem, but these have
technical and operational limitations to minimizing the risks [68]. Furthermore,
these methods are automatic and do not necessarily enable the notion of foreign
objects being present, as for instance sieves only remove larger foreign objects.

To address the problem of foreign objects, food inspection methods are con-
tinuously being developed and employed in the food processing industry. Such
product inspection methods are in place as well where non-food items are checked
for product defects, but also in places such as airports for luggage inspections.
Ideally, these methods can eventually be used for assessing products on more
advanced quality aspects such as tenderness, ripeness, bacteria presence and other
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biological properties as well. Nevertheless, all applications have two common goals:
the methods should be fast and accurate. These two conflicting goals ask for the
continuous development of new inspection methods.

Until the end of the previous millennium, optical sensing technologies were the
only well-established methods [106] for foreign object detection. These methods
work well when the product is coarse and loose or when the defects are located on
the surface, and when foreign objects can be detected based on differences in shapes
or colors. For foreign objects that are hidden in a product, the only techniques
that are not surface-based and have widespread commercial availability at low cost
were metal detection methods. Because these methods can only detect metals,
other noninvasive inspection methods (also known as nondestructive methods), in
which an object can be inspected without damaging it, were highly desired.

Nowadays, many approaches to nondestructive internal product inspection have
been developed. The development and availability are due to scientific progress,
decreasing machinery costs and the development of sophisticated signal and image
processing techniques over the years. Most of the current methods are based on the
interaction between the electromagnetic radiation that penetrates the product and
the foreign object [106]. As Figure 1.2 indicates, some state-of-the-art approaches
include [117, 194, 200, 305] magnetic resonance imaging (in the radiofrequency
range), microwave imaging [281], terahertz imaging [324], thermal infrared imaging,
optical hyperspectral imaging [85, 89], X-ray imaging and gamma-ray inspection.

The optimal approach and the chosen type of radiation from the electromag-
netic spectrum are usually highly problem-specific and are chosen according to the
material properties and inspection goal. Important is the penetration depth of the
active electromagnetic radiation and its interaction that enables distinction of the
materials of interest. Radiowaves have high penetration depth but come with low
image acquisition speed. Additionally, they need powerful and costly equipment to
generate a strong magnetic field, and are prone to motion artefacts. Microwaves
only penetrate by a few centimeters. For other electromagnetic radiation types, the
penetration depth is typically very limited. However, it increases with the energy of
the wave, with X-rays and gamma rays providing sufficient power to fully penetrate
through objects. Both gamma rays and X-rays are ionizing and therefore harmful,
but - despite common belief - the effect of X-rays on food products is extremely
limited, and radiated food is therefore safe to consume. The high penetration
power of gamma rays is mostly used to inspect metallic and welded structures.
For softer materials it is less suitable, as differences between materials cannot
be observed as well as with X-rays. Another method based on acoustic waves is
ultrasound and is, together with X-rays, the most widely used inspection method.
However, ultrasound is only useful for imaging soft materials, such as soft tissue. It
is less suitable when air or other materials with significant differences in acoustic
impedance are involved in the object. On the other hand, X-rays can penetrate all
common packaging materials [68]. Compared to widespread simple metal detectors,
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Figure 1.2: Overview of inspection methods based on interaction with the electromagnetic spectrum
with radiation types, wavelengths, generic applications, and penetration depth [55, 291].

Method Speed Costs Complexity Data
Material

identification
Standard

X-ray
imaging

Fast Low Low Small
Low

discrimination

Standard
X-ray

tomography
Slow

Moderately
high

Moderate Moderate
Moderately

low
discrimination

Spectral
X-ray

imaging
Fast High High Moderate

Moderately
high

discrimination
Spectral

X-ray
tomography

Slow High High Very large
High

discrimination

Table 1.1: Different X-ray imaging methods and their properties.
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X-ray machinery can expose a wider range of materials including stones, glass,
bones, and plastics.

For this reason, this dissertation will focus mostly on X-ray imaging for industrial
imaging. State-of-the-art X-ray imaging comes in many modalities. In Section 1.2,
standard X-ray imaging is explained, which is fast and inexpensive, but does
not necessarily yield 2D images with sufficient material differentiation for further
analysis. Section 1.3 discusses X-ray computed tomography, which by repeatedly
capturing radiographs under different angles and reconstructing a 3D volume enables
better analysis of an object. Section 1.4 introduces spectral X-ray imaging, which
generates radiographs at different X-ray energies for better material discrimination
than with standard X-ray imaging. Section 1.5 encompasses spectral X-ray computed
tomography, which combines spectral X-ray imaging and computed tomography
for more advanced material discrimination in reconstructed 3D volumes. Table 1.1
gives an overview of all techniques and their relative characteristics.

1.2 Radiography with X-rays
Just as famous as the discovery of X-ray radiation by Wilhelm Conrad Röntgen
in 1895 are the subsequently made X-ray images of a hand with a ring, of which
the first one Röntgen made revealing the bone structure of his wife’s hand. To
this day, these images show the enormous potential to visualize the inner structure
of objects noninvasively. Therefore, inspection of food is just one of the many
applications of X-ray imaging which is, together with gamma-ray imaging, also
known as radiography. One year after Röntgen’s discovery, the first X-ray devices
were already in use for clinical observations, and the medical applications of radio-
graphy to inspect conditions of various parts of the body (such as possibly broken
bones and dental conditions) have been indispensable ever since. With further
industrial advances during the 20th century, radiography for baggage screening
and cargo inspection, quality inspection of castings and welds and quality control
of parts of products such as cars [192] have become crucial as well. Mechanized
implementations of these enable automated X-ray inspection (AXI). Despite the
possibly harmful ionizing radiation of X-rays, radiography has become widely
used because it is relatively cheap, fast, easily accessible and has a relatively high
penetration depth compared to other inspection methods for such applications [200].

For the electromagnetic spectrum, a single quantum is a photon. Depending on
the application, photons are described using either properties of particles or waves.
Each photon contains a certain amount of energy E, measured in electronvolt (eV).
The energy of a photon depends on its frequency f (in s−1), through

E = hf.

where h is Planck’s constant (h ≈ 4.136 ·10−15 eV ·s). Photons and their associated
energy are usually expressed either in frequency f or in wavelength λ, which is
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Figure 1.3: Photon model and the comparison of the (equivalent) characteristics between two photons
with large wavelength λ1 and small wavelength λ2.

inversely proportional to the frequency f through the speed of light c in a vacuum
(in m · s−1):

λ =
c

f
.

Electromagnetic radiation is a stream of photons, each carrying its own energy.
As indicated in Figure 1.2, the wavelength (or, equivalently, energy or frequency, see
Figure 1.3) of the photons determines the type of electromagnetic radiation involved.
X-ray beams are made up of photons with wavelengths between 0.01 nm and 10
nm (approximately equivalent to between 100 eV and 100 keV). Photons with high
energy - and therefore with small wavelengths - are able to penetrate further into
matter than those with low energy. Therefore, a distinction is often made between
soft and hard X-rays. The former consists of photons with maximum energies
below 10 keV (above 0.1 nm wavelength) typically used for medical applications,
and the latter of photons with maximum energies above 10 keV, which are more
prevalent in industrial imaging.

To produce X-rays, an X-ray source consisting of a vacuum tube with a cathode
and an anode is typically used (see Figure 1.4). Electrons are emitted from the
cathode using the thermionic effect by heating the filament of the cathode to
overcome their binding energy, and are accelerated towards an anode due to a
voltage applied between the two [51, 55, 192, 242]. The acceleration increases with
the peak voltage applied (usually indicated in kVp), while the number of released
electrons from the filament increases with the applied current. The target material
of the anode (usually tungsten) is bombarded with electrons, whose kinetic energy
is mostly converted to heat, but a small fraction is converted into X-radiation via
various processes when the electrons interact with the atoms of the anode material.
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In the first of those interaction types, the electron is decelerated due to deflection
around the atomic nucleus. The deceleration then converts the kinetic energy of
the electron into X-ray radiation, known as braking radiation or bremsstrahlung.
The energy of the radiation is directly proportional to the amount of deceleration.
It is also possible that an incident electron hits an electron in the shell of an atom
and kicks it out. When this happens, an electron from an outer shell will take its
place, and the atom emits X-rays in the process. The involved shells of the atom
characterize the energy of the emitted radiation, and this characteristic radiation
is therefore highly specific to the material type of the anode. This emission process
is known as X-ray fluorescence (XRF).

(Rotating)

anode

+

-

-

Cone

angle

Generated

polychromatic

X-radiation

Figure 1.4: Schematic representation of an X-ray source. Electrons are emitted from the filament in
the cathode by applying power to heat it up, after which by interaction with the anode a fraction is
converted to X-radiation.

The location from which the radiation is emitted in the tube is the focal spot of
the resulting X-ray beam. Ideally, the focal spot should be a point. In reality, this
is an area of a specific size. A small focal spot is better than a large focal spot, as
this will reduce the number of blurry edges when forming an X-ray image. On the
other hand, a small focal spot will focus the heat in a smaller area and could cause
melting of the anode material. For this reason, a rotating anode can be used to
distribute the heat more evenly [192]. The generated X-ray beam is cone-shaped,
and is defined by its cone angle. The intensity of the beam is usually referred to as
the flux of the beam.
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Figure 1.5: Schematic view of X-ray interaction with atoms: (a) photoelectric absorption with X-ray
fluorescence, (b) Rayleigh scattering, (c) Compton scattering with X-ray fluorescence and (d) pair
production.

Alternatively, for much higher-quality beams there are synchrotrons. In these
ring-shaped facilities, (injected) electrons move at high speeds in a closed loop.
Powerful magnets are used to bend the directions of the electrons, at each of which
intense radiation is emitted. Typically, synchrotrons are mostly used for scientific
research. Researchers acquire beam-time at one of the suitable beamlines (with
specific beam characteristics), at which obtaining beam-time is a challenging and
involved process. The beams that result from this generation process are typically
high-intensity parallel beams.

Different types of interactions can occur when a photon in an X-ray beam travels
through an object (see Figure 1.5). If a photon has low energy, the dominating
interactions are photoelectric absorption and Rayleigh scattering. In photoelectric
absorption, a photon collides with an electron in the shell of an atom, and transfers
all of its energy to this electron. If this energy is higher than the binding energy of
the electron, the photon is completely attenuated and the electron is ejected from
the atomic shell. Due to this unstable ionized state, an electron from a higher shell
will take its place and the energy surplus will be emitted as characteristic radiation.
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This radiation usually has low energy, but is unique to the material’s atomic number
(usually indicated by Z). The second effect of Rayleigh scattering occurs when the
photon energy is not sufficient to eject an electron from its shell. In this case, the
direction of the photon is changed without changing its energy. At higher photon
energies, Compton scattering is the most contributing factor. In this process, the
photon energies are much higher than the binding energies of the electrons in the
shells. Therefore, an electron is emitted from the shell and characteristic radiation
will occur (as with photoelectric absorption). In this process, the photon only
loses part of its energy, and will continue its path through the material, possibly
starting another interaction process. At the highest photon energies, a fourth
interaction called pair production will take effect (and dominates for photons with
gamma ray energies). In this case, the high-energy photon will create an electron-
positron pair in the atom, each travelling further in different directions. When the
positron meets another electron, two photons with high energy (gamma rays) are
formed in opposite directions. This effect may occur more often in industrial imag-
ing, where high-energy radiation is involved for materials with high atomic numbers.

Given a material, the combined effect of its absorption by the aforementioned
mechanisms can be collapsed into an attenuation rate µ (and here also includes
the material mass density). The absorption of X-rays by a homogeneous material
with an attenuation rate µ is given by the Lambert-Beer law :

I = I0 exp (−µ∆x) .

Here, I0 is the intensity (proportional to the number of photons) of the incident
X-ray beam and ∆x is the thickness of the object. An illustration of the Lambert-
Beer law is given in Figure 1.6a. The Lambert-Beer law states that the intensity
of the beam decays exponentially with the thickness of the material (and the
attenuation coefficient). Therefore, a higher incident flux cannot easily compensate
for an increase in thickness. If the object being imaged is not homogeneous, the
attenuation coefficient becomes dependent on the positions over which the ray
passes through the object. Therefore, in this case the Lambert-Beer law reads

I(s) = I(0) exp

(
−
∫ s

0

µ(x)dx

)
,

where µ(x) is the attenuation coefficient at location x, and s is the length of the
ray through the object.

The Lambert-Beer law theoretically quantifies the intensity of the beam after it
has traversed the object. To measure this quantity, an X-ray detector is needed.
Usually, these detectors do not measure the X-rays directly, but rather contain
material that converts the X-rays to other detectable radiation. Nowadays, flat-
panel scintillator detectors are the most commonly used detector type, where the
scintillator converts the X-rays to visible light, which in turn can be detected by a
charge-coupled device (CCD) that converts the visible light through photodiodes
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Figure 1.6: Illustration of the Lambert-Beer law: (a) ray passing through a homogeneous object with
thickness ∆x and attenuation µ, (b) ray passing through an inhomogeneous object with additional
absorption, (c) ray passing through a different inhomogeneous object resulting in the same intensity
at the detector, (d) ray passing through a highly absorbing object, leading to photon starvation and
removing any interesting information about the structure of the object.

into electronic signals. The detector efficiency, the rate of incoming photons that
are detected, depends on the thickness and the material of the scintillator.

According to the Lambert-Beer law, the detector yields an image that approxi-
mately gives the intensity of the incident X-rays. For further analysis, the image is
first normalized by applying a flatfield correction (with an X-ray image without the
object) and a darkfield correction (with an image with photon count offsets when
the X-ray is not in use) to obtain the transmission image. After this, the image is
linearized by applying a negative logarithm to obtain the absorption image. The
correction process is visualized in Figure 1.7. The result for an X-ray traversing
through the object is approximately:

− ln
I(s)

I(0)
=

∫ s

0

µ(x)dx. (1.1)

The images obtained by X-ray radiography are 2D projections, which can be
analyzed and processed, such as decision-making on the presence of a foreign object
in a 3D food product [191]. However, in the resulting radiograph (or X-ray image),
information about the third dimension (perpendicular to the detector plane) is lost.
There are situations where prior information can be exploited well enough to detect
desired features, such as the presence of bones. In other situations, absorption
of a certain material and thickness cannot be distinguished from absorption from
another combination of material and thickness. This is the superposition problem
(Fig. 1.6b and c). On top of this, when highly absorbing objects are involved in
the radiograph acquisition, there is the issue of photon starvation (Fig. 1.6d). The
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(a) X-ray radiograph (b) Flatfield radiograph (c) Darkfield image

(d) Corrected radiograph (e) Log-corrected radiograph

Figure 1.7: Demonstration of flatfield correction on radiographs of a small brick. (a) The radiograph
obtained with the object in the field of view. (b) Flatfield radiograph without the object in the field of
view. (c) Darkfield image without the X-ray tube. Note that the recorded values are in reality much
lower compared to the values in radiographs (a) and (b). (d) Corrected radiograph using the flatfield
and darkfield images. (e) Log-corrected radiograph resulting in the typical radiograph representation.
Note that the acquired images contain some sort of afterglow resulting from X-ray exposure during a
previous acquisition, see the panel afterglow in (a-c). The flatfield correction in (d) removes the panel.

number of emitted and detected photons each follow a Poisson distribution. The
average number of emitted photons is typically sufficiently high to approximate it
by a Gaussian distribution and yields a smooth flatfield image. However, this is
not the case when a highly-absorbing object prevents most photons from reaching
the detector. In this case, the intensities on the detector pixels may vary heavily,
and are likely to lead to high noise in the radiograph such that desired features are
difficult or impossible to extract. Altering the X-ray source properties, such as the
current, the peak voltage, or the exposure time may alleviate this problem. How-
ever, in many cases, these settings cannot be changed because of time, energy and
dosage constraints, or the absorption power of the object is unlikely to be overcome.

1.3 Tomography
To gain better understanding of the inner structure of an object, the procedure
of tomography noninvasively generates images containing the inner structure of
an object. There are many different types of tomography with different material
penetration and interaction mechanisms, such as magnetic resonance imaging
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(MRI) and ultrasound tomography. In this dissertation, whenever tomography is
discussed, we will focus on X-ray transmission computed tomography (CT). Since
the proof of concept of CT scanning in 1969 by Hounsfield and the subsequent first
clinical examination with CT in 1972, the methodology has been hugely important
in getting good insight into the three-dimensional condition of (parts of) the human
body. Additionally, it finds many applications in scientific research, geological
studies [97], cultural heritage [44, 151, 201, 255] and (airport) security [193, 204].
In industry, important applications are materials characterization, nondestructive
testing and metrology [55], and tomography also finds more and more applications
in food processing (such as quality control of pears [174]).

In X-ray CT, an object is exposed to X-rays from a source, while a detector
captures the unabsorbed photons in a resulting radiograph. This process is re-
peated under different angles, by rotating the object with respect to the source and
detector (Fig. 1.8). In some instances, such as with CT scanners in hospitals where
patients are imaged, it is more practical to rotate the source and detector rather
than the object itself (Fig. 1.9). The precise locations of the source, detector and
the object in the direction of the beam are recorded during the scan and are part
of the complete scanning geometry, which can be circular but also helical or spiral
when the object is large.

In a more formal context, the object of interest is modelled by the function
f : Rn → R which maps the location to a scalar value that represents the attenuation
in that location. In case of a two-dimensional object, we have n = 2. The Radon
transform R maps the object function f to its projection function P : [0, π]×R→ R

Figure 1.8: The process of obtaining multiple X-ray projections by rotating the source and the detector.
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Figure 1.9: The process of obtaining multiple X-ray projections by rotating the object, with the source
on the left and the detector on the right.

[84, 209, 232], and is given by the line-integral

R[f ](θ, t) =

∫
Lθ,t

fds

=

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)δ(x1 cos(θ) + x2 sin(θ)− t) dx1 dx2.

where Lθ,t is the line possibly passing through the object, given by Lθ,t = {x =
(x1, x2) ∈ R2 : x1 cos θ+ x2 sin θ = t}. Note that for a given line, so for fixed θ and
t, the Radon transform is equivalent to the Lambert-Beer law, with the left-hand
side being the absorption image (see Fig. 1.10a). The Radon transform of an object
f is also referred to as the sinogram (Fig. 1.10c). For a given object f , the acquired
projections can be viewed as a set of line integrals in which detector position t and
angle θ are varied:

P (θ, t) = R[f ](θ, t).

The goal of tomographic reconstruction is to retrieve the function f from its Radon
transform, which is an inverse problem. The series of collected radiographs of an
object are used as input for a reconstruction algorithm [35, 112]. There are various
classes of reconstruction algorithms. The first class is the group of analytical
algorithms in which explicit analytic expressions are derived for the material
attenuations in terms of projections. To retrieve the object from its sinogram,
intuitively one can smear out each projection back over the object space. The
simplest backprojection (Fig. 1.10b) is given by the following:

fBP(x1, x2) =

∫ π

0

P (θ, x1 cos θ + x2 sin θ)dθ.

This backprojection operation assumes that all pixels contributed equally to the
projections [286]. Therefore, the resulting reconstructed image is typically blurry
(Fig. 1.10d). To prevent this, the projection data are usually filtered in the
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Fourier domain by a filtering function h : R→ R, such that the lower frequencies
(accounting for smooth edges) have less contribution than the high frequencies
(accounting for finer details) to the backprojection. This leads to the filtered
backprojection (FBP) method (Fig. 1.10e), where the ramp filter in the Fourier
space is used, defined by h(ω) = |ω|, and the complete backprojection step including
filtering is given by

fFBP(x1, x2) =

∫ π

0

∫ ∞
−∞

P (θ, ω)e2πiω(x1 cos θ+x2 sin θ)h(ω)dωdθ.

To remove noise from the reconstruction, the high frequencies are removed
by employing the Ram-Lak filter defined by h(ω) = |ω| if |ω|≤ c and h(ω) = 0
if |ω|> c. Similarly, other filters can be employed as well. In the resulting FBP
algorithm, the projection P (θ, t) is repeatedly backprojected for each angle θ. Since
the detector positions and the scanning angles are discrete in practice, the integrals
in the FBP expression above are substituted by the corresponding summations:

fFBP(x1, x2) ≈ fdiscFBP(x1, x2) =
∑
θ∈Θ

∑
t∈T

P (θ, ω)e2πiω(x1 cos θ+x2 sin θ)h(ω)dωdθ.

The FBP method is designed for parallel-beam geometries, while most CT
setups have a fan-beam or cone-beam geometry. However, for fan-beam geometries
the method can be employed by applying coordinate transformations, while gener-
alization to three-dimensional cone-beam geometries results in what is known as
the Feldkamp-David-Kress (FDK) algorithm [87].

FBP-derived methods are fast, easy to implement, and perform well on data
that contain low noise and are near-complete (no missing angles). Therefore, these
have been the method of choice until recently. FDK is the most practical analytic
algorithm [286] for circular cone-beam geometries.

Another class of algorithms is that of algebraic methods, in which the Radon-
transform formulation is changed into a system of equations, and the object function
domain is discretized as a collection of voxels in a grid. The voxels can be modelled
as a vector x = (x1, . . . , xn), where n is the number of voxels. By putting all
measurements in a vector p = (p1, . . . , pl), where l is the number of detector pixels
times the number of angles, the problem of tomographic reconstruction can be
formulated as finding an x such that the following equality holds

Wx = p.

Here, W is the projection matrix in which entry wij indicates how much a ray
corresponding to measurement i contributes to the absorption in voxel j (which in
the modelling depends on voxel size, ray direction and type of ray-voxel intersection
computation). Recovering an accurate image of the scanned object from data p is
usually difficult for several reasons. First, the number of measurements l may be too
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(b) Two backprojections(a) Shepp-Logan phantom

with two forward projections

(c) Sinogram (d) Reconstruction with backprojections (e) Reconstruction with FBP

Figure 1.10: Illustration of tomographic reconstruction algorithms on a 512× 512 Shepp-Logan phan-
tom. (a) Forward projections under two angles on the Shepp-Logan phantom. White areas indicate
regions with high attenuation. These are reflected in the large peaks in the graphs of the projection
functions P (θ1, ·) and P (θ2, ·). (b) Backprojections of the two projections onto the image domain.
(c) The function values of all 256 projections under equidistant angles combined into a sinogram. (d)
Reconstruction using backprojections resulting in a blurry figure. (e) Filtered backprojection (FBP)
reconstruction with significantly less blurry edges.

low compared to the number of voxels. This leads to an underdetermined system,
which may have infinitely many solutions. Likewise, the number of measurements
may be too high, leading to an inconsistent system with no solution that satisfies
all measurement equations. Furthermore, the measurements may be corrupted by
noise (for instance, electronic noise in the detector). In this case, p could be written
as p = p + e, where both the uncorrupted data p and the noise contribution e
are unknown. Working with the known data p instead of p is likely to render a
potentially solvable system unsolvable.

Instead of solving the above equation, the reconstruction problem is often posed
as an optimization problem by finding a minimum-norm least-squares solution x∗
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that minimizes the data discrepancy or data fidelity term:

x∗ ∈ arg min
x∈Rn

||Wx− p||.

Algebraic iterative methods repeatedly improve the reconstructions with respect
to the data discrepancy above, by alternating between forward and backward
operations through matrix W . One of the most commonly used methods is the
Simultaneous Iterative Reconstruction Technique (SIRT). In this algorithm, the
current reconstruction is forward projected, after which the difference between this
forward projection with the measured data is backprojected using the transpose of
the projection matrix. The update step for SIRT is given by the following:

x(k+1) = x(k) +CW TR(Wx(k) − p).

The diagonal matrices C and R contain normalizations with respect to the sums
of columns of W and rows respectively. In the ART method, the update step
is carried out by taking only one ray each time. For the SART algorithm [15],
this is extended to a full update for every projection angle. However, SIRT has
a more stable convergence than ART, but an adequate solution takes longer to reach.

Iterative algebraic methods can deal better with inconsistent, incomplete, and
noisy projection data than analytical methods. Furthermore, these methods are
also flexible with respect to the acquisition geometries, as these can be modelled in
the projection matrixW . However, the iterative methods require a proper stopping
criterion, as running for too long can lead to overfitting to noise and therefore noisy
reconstructions may appear. Variational methods combine the above optimization
problem with a regularization term in which prior knowledge about the object can
be incorporated:

x∗ ∈ arg min
x∈Rn

||Wx− p||2 + λF(x).

In this formulation, F is the regularization operator and λ ∈ R≥0 is a parameter
that controls the importance of the regularization with respect to the data-fidelity
term. Two often-used regularization methods are Tikhonov and Total Variation
minimization (TVmin) regularization. The former promotes solutions with small
norms and reduces noise by setting the regularization function to F(x) = ||x||22,
while the latter promotes sparsity of the gradients and smooth regions (yielding
more piecewise smooth solutions), by setting F(x) = ||∇x||1. Regularization can
steer towards more robust solutions containing less noise, but needs to be adjusted
to each specific problem and requires the regularization parameter to be properly
chosen.

Prior knowledge can also be incorporated by restricting the solution space.
In discrete tomography, the resulting image has discrete values, meaning that all
values xi are contained in a fixed discrete set R. This type of tomography is a vast
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subfield on its own [121, 122], as the prior knowledge can be exploited for more
efficient and robust algorithms (in terms of accuracy, noise handling and required
number of projections [30]) when the object of interest is discrete, or even binary
[29, 176].

While iterative algebraic methods have advantages over analytic methods, their
major disadvantage is that the repeated computation of the forward projections
and backprojections makes them computationally expensive. However, with the
increase in computation power of modern computers, most notably the Graphical
Processing Units (GPU), this problem is alleviated. This is reflected in the fact
that algebraic methods have been the reconstruction method of choice since 2009
commercially [292], while before that time these were FBP-derived methods. On
top of that, advances in parallel computing and efficient splitting of the tomographic
reconstruction problem make the computation of algebraic methods more tractable
[50].

Tomography overcomes the superposition problem found in 2D radiography,
and a precise reconstruction of a product can be made and inspected with this
technique. A number of parameters influence the quality of the reconstruction of
a given object. During the acquisition, the quality of the resulting radiographs
is generally improved by a higher current, peak voltage and exposure time. The
detector resolution and the rate at which the detector can detect photons also in-
fluence the radiograph quality. For the reconstruction, the given computation time,
stopping criterion and the type of algorithm (along with its parameter settings)
all influence the result. The reconstruction quality is constrained by the allowed
acquisition and computation time, the X-ray dosage limit and the energy budget.
As opposed to medical CT, there is less concern about the dosage constraints in
industrial applications, allowing for more precision and higher resolution in the
reconstruction [55]. Nevertheless, in high-throughput applications, the acquisition
times and computational times are severe limiting factors. These constraints can
be met by for example reducing the exposure time and increasing the photon
flux, and by adjusting the reconstruction algorithms, but this may lead to poor
reconstructions. Therefore, even though CT gives more object information than
2D radiography, it is considered to be less suitable for online inspection [186].

1.4 Spectral X-ray imaging
X-rays consist of photons of different wavelengths. Since photons with different
energies can exhibit different interactions with matter, this can possibly contribute
to a deeper analysis of the imaged object. When the notion of X-ray energy is
accounted for in the radiography acquisition, this is referred to as spectral X-ray
imaging, and encompasses a wide range of approaches.
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Figure 1.11: Schematic view of the different effects on a polychromatic beam.

To comprehend the methods, it is first important to understand where and how
photon energies come into play (see Figure 1.11). First of all, the X-ray source
emits a polychromatic X-ray beam. The distribution of energies of the photons
emitted during the X-ray generation, also called the source spectrum, depends on
the anode material and the applied peak voltage. An increase in peak voltage
increases both the range of photon energies and the overall photon counts per
energy. At the same time, the anode material determines the characteristic peaks
that emerge from characteristic radiation due to the inner electron shell transitions
in the atoms of the anode material when bombarded with fast electrons.

When X-ray photons interact with materials on their path, the resulting absorp-
tion is dependent on processes such as photoelectric absorption, pair production
and Rayleigh and Compton scattering. The combined contribution of these pro-
cesses to the beam attenuation depends both on energy and material type. See
Figure 1.12 for a number of example spectra. The total attenuation µα of the
X-ray by a material α for different energies is given by its attenuation curve, and
is unique to each elementary material. Of particular note in these curves are the
absorption edges caused by the photoelectric absorption. Due to the ejection of
electrons in the shell and the subsequent electron transition from a higher shell, a
characteristic radiation with fixed energy is emitted. As an electron will only be
ejected when the incoming photon energy exceeds its binding energy, a sharp edge
in the attenuation curve will appear. The electron binding energy is proportional
to the atomic number, and inversely proportional to the distance to the nucleus of
the atom. The electrons reside in shells with a fixed distance to the nucleus, with
the innermost shell (K-shell) being the shell with the lowest distance. The binding
energy is highest for the K-shell, and therefore requires the highest incident photon
energy to be ejected. However, when the energy of the incident photon does not
meet the binding threshold, no absorption will occur in this shell. While absorption
edges also appear for other electron shells (L1-, L2-, M1- edges, among others), the
corresponding K-edge is located at the highest energies and provides the highest
difference in attenuation, which makes it useful for applications dependent on this
contrast (K-edge imaging) [94, 249]. Note that the attenuation curve is unique
for each element, and so are its K-edge and other absorption edge locations. For
elements with a high atomic number, such as metals, the K-edges are located at
higher energies. These elements are therefore much more distinguishable than those
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Figure 1.12: Attenuation spectra for various materials. The spectra are unique to each material, but
some materials are easier to separate than others: silver and cadmium mostly differ through the slightly
different locations of their absorption edges, and the difference in the spectra of water and tissue are
almost indiscernible.

of elements with low atomic numbers, whose K-edges may not even be located
within the X-ray wavelength range.

As can be observed from the attenuation curves, X-ray photons with low ener-
gies tend to be attenuated more strongly than those with high energy. For this
reason, when a beam traverses through matter, the mean photon energy shifts to
a higher value. This phenomenon is known as beam hardening. In standard CT,
the X-ray beam is assumed to be monochromatic, consisting of photons with the
same energy. However, because it is polychromatic in practice, the assumption of
monochromaticity leads to beam hardening artefacts in the subsequent reconstruc-
tion, showing as dark and less attenuating regions in the CT reconstruction. To
avoid this, ideally, the beam should be monochromatic, but a sufficiently high flux
of such a beam can only be achieved at synchrotron facilities. To mitigate beam
hardening artefacts resulting from a wide energy range, the low-energy photons
in the incident beam are usually removed by filtering the beam with a (metallic)
material with known spectral properties. With this approach, beam hardening is
actually used to an advantage. Nevertheless, filtering does not completely eliminate
beam hardening artefacts but reduces them, and longer scanning times are needed
for similar signal-to-noise ratios.

The interactions of different X-ray photon energies with matter can be exploited
in various ways. The most elementary way is to scan an object with beams of
different energies. In the case of two energies, this is referred to as dual-energy
X-ray absorptiometry (DEXA). This can be achieved by applying different values
for the X-ray tube voltage (and possibly some additional beam filtering). For each
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detector pixel, this methodology results in two intensity values corresponding to two
different voltages. As these define a point in a two-dimensional attenuation space,
the projected materials are likely to be more separable from intensity value tu-
ples from other material compositions than in radiographs from single peak voltages.

Instead of modifying the energy distribution in the polychromatic beam from
the source, in detector-based approaches energetic information of photons reaching
the detector can be directly obtained. Dual-layer scintillator detectors consist
of two layers on top of each other. These spectral detectors have different pho-
toelectric absorptions depending on their sensor materials, and the upper layer
typically, on average, detects the low-energy photons while the bottom layer detects
the high-energy photons [99, 118]. The advantage of such detectors is that these
simultaneously capture images of the same object, avoiding any spatial differences
due to motion between subsequent captures.

Similarly, as opposed to regular charge-integrating detectors (also known as
energy-integrating detectors), (hybrid) photon-counting detectors register single
incoming photons and are able to measure the energy of each photon individually
[94] instead of integrating the energies of all incident photons [249]. Compared
to the two-step process in charge-integrating detectors, a photon-counting detec-
tor consists of a semiconductor layer, in which incident X-ray photons generate
electron-hole pairs. A bias voltage between a cathode on top of the detector and an
anode on the other side separates the charge carriers to the contacts for electronic
readout [263]. The process directly converts photons into electric charge, allowing
for faster detection speed than with charge-integrating detectors. On top of this,
the electronics in these detectors allow for spectral separation of photons into
spectral bins, in which the number of photons between a preset energy range is
counted. Compared to the first dual-energy methods, which were available in
the ’70s, photon-counting technology is relatively new. Nevertheless, the ability
to simultaneously collect radiographs at different energies holds a huge potential
for the future [94]. Therefore, several research groups worldwide are developing
readout electronics for hybrid photon-counting detectors [91], such as the PILATUS
chips at PSI, Medipix [26] and Timepix chips at CERN, PIXIE chips [36] at INFN
and the PXD18k at AGH University.

An alternative class of spectral detectors operate by measuring the deposited
energy in every pixel during a given exposure time and repeating this for many
frames at high rates, yielding a binned energy distribution for each pixel [78]. For
this reason, these hyperspectral X-ray detectors can attain a high spectral resolution.
State-of-the-art detectors, such as the HEXITEC family of detectors [282] and
SLcam [213], provide data containing up to hundreds of spectral energy bins and
a spectral resolution of less than 1 keV, providing a rich spectral footprint of the
measured object. Nevertheless, this relatively new technology requires compara-
tively longer acquisition times, as well as powerful data processing frameworks,
which are currently in development [18].
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For photon-counting detectors, different semiconductor materials like silicon
(Si), gallium arsenide (GaAs), cadmium telloride (CdTe), or cadmium zinc telluride
(CdZnTe) can be used. While Si-based detectors are generally cheaper, it suffers
from low absorption, especially at higher energies where the detector layer becomes
transparent. In comparison, CdTe and GaAs are more costly but have better
absorption at higher photon energies. The extent to which the detector is able to
register photons at different energies is given by the spectral detector efficiency or
detector response.

The Lambert-Beer equation (where the line from the source to a the detector
pixel is now given by `) can generalized by incorporating the energy dependence :

I(Emax) =

∫ Emax

0

I0(E)D(E)e−
∫
`
µ(x,E)dxdE.

In this formulation, the energy is integrated up to the maximum photon energy
Emax, which typically is the peak voltage energy or the maximum energy registered
by the detector. Now, I0 models the source spectrum as an incident photon rate
as a function of energy, while D is a simple form of modelling the photon detector
efficiency. In some formulations, I0 and D functions are combined into a function
known as the effective spectrum. The attenuation µ is now a function, dependent
on both location and energy. As opposed to the monochromatic Lambert-Beer
law, due to the energy integral, this expression cannot be converted into a linear
right-hand side. This means that the data dependency on the energy-dependent
attenuation coefficients is nonlinear (as opposed to Equation (1.1)).

While dual-energy absorptiometry has found many applications in food pro-
cessing [16] and medical imaging, spectral X-ray imaging is especially promising
for tasks involving the use of contrast agents which enhance the contrast between
certain parts of an object. Examples of these include iodine and gadolinium,
which have K-edges in the energy range of X-rays used in diagnostic radiography.
Photon-counting detectors are valuable when at least two contrast agents need to be
detected simultaneously [264]. More generally, spectral X-ray imaging is useful for
material identification in an object [96], especially with multiple different materials.
Therefore, it opens up new possibilities such as multi-energy X-ray testing [192]
and multi-material decomposition [274], for example leading to improvements in
tissue discrimination [293].

Even though the photon-counting detector technology is promising for energy-
resolved imaging, there are still several challenges to overcome [293]. Firstly,
an incident photon may be registered in a location other than where it hits the
detector. This can be caused by fluorescence or Compton scattering, or by an
effect known as charge-sharing, where the incident photon generates charges close
to the border of a pixel that may be partly registered by an adjacent detector
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pixel. Secondly, when multiple photons arrive with too little intervening time, an
effect known as pulse pile-up may occur [54, 99]. In this effect, the photons will
be registered as one photon with an energy equal to the sum of the individual
photons. Even though these detectors are able to detect hundreds of millions of
photons per second per square millimeter, pulse pile-up is likely to occur. Both
charge-sharing and pulse pile-up can lead to artefacts since the spectral distribution
of photon counts is perturbed. Furthermore, a trade-off is required for the spatial
resolution of the detector. Increased resolution increases the effects of fluorescence,
charge-sharing and noise thresholding, and decreases the effects of pile-up [67].
Also, pixels may yield a different output with the same incident photon energy
distribution. Therefore, accurate equalization and calibration need to be developed
and carried out.

Apart from improvements with respect to energy differentiation and speed, there
are more benefits from photon-counting detectors. The thresholding mechanism
of photon-counting detectors prevents contribution of electronic noise [264]. This
means there is no contribution of dark current, and darkfield correction is therefore
not needed. Additionally, depending on the task carried out on the resulting
spectral radiographs, the additional spectral information may reduce the total
dose compared to regular radiograph acquisition. On top of this, due to the direct
photon conversion, photon-counting detectors generally have much higher spatial
resolution than energy-integrating detectors [159].

While hyperspectral detectors generate data with high spectral resolution and
therefore circumvent the issue of tuning spectral thresholds to obtain a desired
result, the registration of photon counts in every small energy bin yields huge data
volumes. Additionally, there is the issue of spectral redundancy [60], indicating
that spectrally adjacent X-ray images from the data cube are likely to be very
similar. Therefore, given a specific task on the hyperspectral data cube, it is not
clear in which spectral bins the important features are located.

1.5 Spectral tomography
X-ray CT has yet to reach its full potential as spectral information of X-rays is not
always recorded [274] or used in reconstruction algorithms. Similar to how radiogra-
phy paved the way for X-ray transmission tomography, spectral radiography opens
up possibilities for spectral CT, where the input radiographs are energy-resolved.

Exploitation of spectral characteristics in CT scans can be done in various ways,
as demonstrated in Figure 1.13. Historically, the first and most simple spectral CT
setup is to perform the same scan twice with different tube voltages. The possibil-
ity of artefacts resulting from object motion between the scans and the increased
scanning time or X-ray dose are obvious downsides of this approach. Therefore,
to reduce the disadvantages of sequential scanning, rapid tube voltage switching
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(a) Scanning twice (b) Tube voltage switching (c) Two source-detector setups

(d) Dual-layer detector (e) Photon-counter detector

Figure 1.13: Schematic representation of various spectral CT setups.

sources were developed [11, 51, 55, 99]. However, even though the tube voltage
switches at high speed at every scanning angle, this still results in considerably more
scanning time than with conventional CT scanning, and relatively slow potential
switching may still lead to motion artefacts. Another approach is to combine two
source-detector combinations into one setup, known as dual-source CT, each source
with a different peak voltage [11, 51, 55]. This method requires a more expensive
setup, requires spatial co-registration of the obtained data, and the scattering
resulting from the two different beams may increase the noise in the projections ob-
tained by either detector. However, the setup of each detector-source combination
can be configured independently. Both fast-switching potential dual-energy CT and
dual-source CT are well-established in clinical practice. More recently, integration
of dual-layer detectors in clinical settings has also been established [11, 40], with
the benefit of simultaneously obtaining perfectly spatially aligned radiographs with
different average photon energies [233]. Nevertheless, dual-layer detectors are more
costly and designed for specific tasks, which makes these inflexible with respect
to various material separation tasks [99]. In medical imaging, dual-energy CT is
often used for contrast enhancement, artefact reduction, material decomposition
and radiation dose reduction [233]. For industrial CT, dual-energy CT mainly
improves reconstructions in terms of beam hardening artefact reduction and feature
detection with low contrast [55]. The advent of photon-counting detectors enables
multi-spectral CT, which generalizes the concept of dual-energy CT to more than
two energy bins. As photon-counting detectors record data into narrower energy
bins, the polychromatic beam drastically reduces beam-hardening artefacts found in
conventional CT. Despite this, industrial CT most often employs energy-integrating
detectors [55]. In medical CT, it is expected that dual-energy and spectral CT will
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be fully integrated into clinical practice and eventually replace conventional CT
[99, 274].

In terms of modelling the spectral reconstruction problem, we take the spectral
Lambert-Beer law and integrate over the energy interval [Emin

c , Emax
c ] of the c-th

measurement with 1 ≤ c ≤ C:

Ic =

∫ Emax
c

Emin
c

I0(E)D(E)e−
∫
`
µ(x,E)dxdE. (1.2)

Here, C is the total number of measurements, each with different energy properties.
In dual CT, this number is C = 2. When prior knowledge of factors contributing
to the attenuation is available, a basis decomposition can be incorporated that
assumes the dependence of attenuation on location and energy can be written as a
(finite) linear combination of functions that depend only on energy or location:

µ(x,E) =

M∑
m=1

µ̃m(E)αm(x).

Substituting this assumption into (1.2) yields

Ic =

∫ Emax
c

Emin
c

I0(E)D(E)e−
∫
`

∑M
m=1 µ̃m(E)αm(x)dxdE. (1.3)

The goal of dual CT is to obtain a decomposition of the reconstructed object
in terms of the contributions α1 and α2. This can be approached in two ways.
First, each spectral channel can be reconstructed separately. This can be done by
assuming attenuation at an effective energy Eeff

c (such as the mean energy in the
bin) to remove the energy integral and therefore the nonlinearity of the expression.
Then the object can be reconstructed with conventional CT techniques. For every
position x, this yields a system of equations{

f(x,Eeff
1 ) =

∑M
m=1 µ̃m(Eeff

1 )αm(x)

f(x,Eeff
2 ) =

∑M
m=1 µ̃m(Eeff

2 )αm(x)
.

in which f(x,Eeff
c ) is the solution of the tomographic inverse problem in channel

c at position x. With this system of equations, an image-based decomposition
{αm}1≤m≤M can be computed. Note that in dual CT this can only yield a unique
solution if M = 2. While the image-based decomposition is relatively easy to im-
plement, proper estimations for the attenuations and the photon flux are required.
When the energy range in each channel is wide, the reconstructed images will suffer
from beam hardening artefacts [274, 283].

Alternatively, by changing the order of the summation and the integral, a
projection-based decomposition can be attempted:

Ic =

∫ Emax
c

Emin
c

I0(E)D(E)e−
∑M
m=1 µ̃m(E)

∫
`
αm(x)dxdE.
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In this approach, the integrals
∫
`
αmdx are computed first by solving the system of

nonlinear equations, for instance by polynomial approximations [14, 63, 179, 266].
After the projection-based decompositions are obtained, each of these components
are reconstructed separately, usually referred to as Virtual Monochromatic Images.
Image-based decomposition is typically found to be faster, but projection-based
decomposition yields superior decomposition results [179, 208].

The choice of base decomposition is mostly empirical. From the start of dual-
energy CT, the decomposition into photoelectric effect (dominant at low energies)
and Compton scattering contributions (dominant at high energies) [14] has been
well-investigated. The former can be approximated by a function cubically inversely
proportional to the photon energy, and the latter by the Klein-Nishina function.
For materials that occur in the body (with an atomic number lower than 25), this
decomposition is sufficient for the expression of the attenuation coefficients [99].
The energy-dependent attenuation coefficients can also be decomposed by atten-
uations of sufficiently different materials. For medical CT, the decomposition of
water and bone is helpful, since most materials in the body have attenuation curves
similar to either of those [118]. Alternatively, the K-edge in the diagnostic range
of iodine makes this material suitable for material decomposition combined with
tissue or water, since the attenuation of bone is similar to that of iodine-enhanced
blood.

In advanced photon-counting CT, the number of preset spectral bins C is
usually larger than two. In this type of spectral CT, the reconstruction techniques
can be classified into two categories [143]. The first category is concerned with
multi-channel reconstruction [64], which opts for the reconstruction of each spectral
channel. In general, a channel in multi-channel CT does not necessarily refer
to a spectral channel, but to any set of measurements of the same object with
different acquisition settings. However, in this dissertation, we will mostly refer to
a multi-channel image as a stack of images with each image resulting from different
spectral properties.

The second category of spectral CT techniques is material decomposition from
multi-channel data with more than two spectral bins. Many industrial and medical
applications require more than M = 2 materials to be separated [172]. However,
material decomposition with more than two materials poses challenges for standard
binary reconstruction techniques [266], as found in dual CT imaging.

The difficulty of the multi-spectral CT problems is that these consist of many
nonlinear equations, resulting in a nonlinear forward operator and an ill-posed
problem. Approaches to these problems can be divided into two classes. The
first class of methods are two-step methods. As a natural extension of a dual-
energy CT approach, one subclass of two-step methods consists of methods that
first reconstruct each spectral channel separately, after which an image-based
decomposition (also known as post-reconstruction processing [27]) is carried out by
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solving for the material distribution with more than two channels (i.e. C > 2):

f(x,Eeff
c ) =

M∑
m=1

µ̃m(Eeff
c )αm(x). (1.4)

The second subclass performs a projection-based material decomposition (also
known as pre-reconstruction processing), followed by the reconstruction of each
material separately. The problem here is that the material decomposition in the
projection domain is a nonlinear inverse ill-posed problem [6]. A common drawback
of all two-step methods is that the separation of the material decomposition and
the image reconstruction steps imply loss of information during the first step, for
which the other second step cannot compensate [292]. The drawback of image-
based decomposition is that it may suffer from beam hardening artefacts in the
first step if the energy bins are too wide. In contrast, projection-based material
decomposition suffers from sensitivity to noise [251] and the nonlinearity of the
problem, of which the introduced errors are computationally costly to alleviate [274].

The class of one-step methods is designed to avoid the information loss and
related problems inherent to two-step methods. One-step methods attempt to
find a solution to the system of equations resulting from Equation 1.3 directly to
obtain material maps, but the complexity of the problem (for which finding an
analytic solution is challenging, if possible at all) necessitates the use of iterative
algorithms. Such algorithms are even more computationally heavy than standard
iterative reconstruction methods for non-energy-resolved CT problems. Moreover,
many state-of-the-art approaches are limited to only a few materials.

For spectral detectors with a higher energy resolution, the approximation by
energy discretization resulting in Equation 1.4 is more accurate than with detectors
with lower resolution. Additionally, this modality is useful for K-edge imaging as
sharp edges are more clearly visible in the multi-channel reconstruction. Since
the bins are narrow, beam hardening problems are also avoided. However, unless
extremely high acquisition times are applied, the low signal-to-noise ratios in the
channels will have a high impact on the reconstructions by the aforementioned
methods.

To mitigate the impact of high noise levels in bins because of low photon
counts [244, 320], prior knowledge about the solution can be incorporated into
the reconstruction [60]. Regularization is required to obtain satisfactory solutions
for the ill-posed spectral CT problems [274]. Similar to the standard iterative
techniques, variational methods can be employed with spectral CT, especially
in the reconstruction routines of two-step methods. Intensity-gradient sparsity
constraints [61], such as Total Variation Minimization (TV) and Non-Local Means
(NLM) are among the most commonly used methods in spectral CT [244]. Other
variational regularization methods exploit the structural redundancy between the
channels [61, 64], with hyperspectral images providing an even stronger structural



28 Chapter 1. Introduction

correlation between channels [288]. Numerous regularization methods have been
proposed [274, 302], many of which are multi-channel enhancements of TV or NLM
regularization. A few examples include spectral-means (based on NLM) [320], and
Total Nuclear Variation (TNV) [64, 126] (which is an extension of TV, leading to
low-rank solutions and therefore encouraging common edges in multiple images)
[238, 320, 325], as well as parallel level sets methods such as directional Total
Variation (dTV) [33, 64, 143]. Another approach is Total Generalised Variation
(TGV) (designed for multi-modal and multi-channel imaging) [131, 147], which
generalizes TV to higher orders of differentiation, and uses it for spectral CT
to combine the channels. Both the sparse gradient and structural redundancy
regularization methods can be combined into so-called spatiospectral regularization,
for instance by combining spatial TV and spectral TGV [288]. All regularization
methods require at least one parameter to be properly set and tuned, while the
regularization method of choice is always dependent on the specific application.
Regularization is generally easier to incorporate in one-step methods [27]. However,
only a few methods incorporate spectral prior information into the one-step method
that allows for the reconstruction of more material volumes.

Since photon-counting detectors are a new technology relative to energy-
integrating detectors [284], multi-spectral CT has yet to find widespread use in
medical and industrial fields. Nevertheless, the possibility to combine multi-spectral
imaging with CT has enabled contrast agent imaging by exploiting energy-dependent
K-edges of different materials [249]. Additionally, photon-counting detectors are
also expected to improve spatial resolution [261]. Therefore, spectral CT and
hyperspectral CT are beginning to find applications in medical imaging, such
as enhancing tissue contrast [99, 296], and spectral CT is expected to be fully
integrated into health care in the coming years [274]. This will further increase
the interest in the underlying machinery and methods. However, it also requires
further algorithmic developments for spectral image processing and CT reconstruc-
tion. At the same time, spectral and hyperspectral CT have great potential for
security and industrial imaging [296]. Still, iterative reconstruction algorithms
for photon-counting detectors are currently too computationally intensive for fast
reconstruction [292], although the continued growth of interest [99] and algorithmic
developments in methods with applications in medical CT are expected to improve
this. Moreover, the difficulty of large-scale production of affordable high-quality
photon-counting detectors still limits their commercial usage [159], and hyperspec-
tral cameras are currently even more expensive. However, the first industrial X-ray
cameras able to perform spectral imaging for food processing are scheduled to be
launched in the coming years. For this reason, we will mainly focus on spectral
X-ray CT in this dissertation. Furthermore, possible downsides of (hyper)spectral
imaging, such as long acquisition times and computation times, may be alleviated
by machine learning (covered in the next section) which is likewise getting much
more attention in recent years in inverse problems and CT reconstruction.
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1.6 Machine learning

Many routines in industrial imaging, for example X-ray based foreign object de-
tection and crack detection, can in principle be carried out by humans. As the
previous sections show, X-ray imaging and subsequent innovations enable doing
these tasks in a noninvasive manner, but the work can be tedious, laborious or
even harmful to humans. Moreover, the results are subjective, often irreproducible
and possibly severely inaccurate. These aspects are some of the many motivating
examples for the development of artificial intelligence, particularly with respect to
food processing, with the aim of intelligent agents taking over the decision-making
in various stages of the processing chain.

With machine learning, a model has the ability to learn (i.e. increasingly
improve performance on a specific task) from data to carry out a task without
being explicitly programmed to do so. Machine learning algorithms are concerned
with predicting outputs y from inputs x using a function f . In supervised machine
learning, this function can be estimated from labelled training data {(xi, yi)}mi=1

with input features xi ∈ X and corresponding labels yi ∈ Y [205], with X and Y
being the input and output spaces, respectively. Machine learning aims to minimize
the errors on unseen examples, as opposed to minimizing the errors on a training
set only such as in optimization. Therefore, the training data should represent the
unseen data well and the function f should both predict the training input features
correctly as well as generalize to unseen data. As opposed to unsupervised machine
learning, the labels yi are known in supervised machine learning, which we will
address in this section (for more details we refer to more technical and in-depth
work [38]).

More formally, the labelled data space can be written as a product of the input
and the output space Z := X ×Y . The training data are assumed to be realizations
of independent and identically distributed random variables Z = (Z1, . . . , Zm),
with Zi = (Xi, Yi) from an unknown (joint) probability distribution denoted by
PZ . LetM(X ,Y) be the set of all (measurable) functions from X to Y. The loss
function L :M(X ,Y)× (X ×Y)→ R≥0 measures the performance, i.e. how much
the prediction f(x) by a given function f ∈M(X ,Y) differs from the target y with
respect to a chosen metric. Given the data space Z = X × Y, the goal is to find a
function f : X → Y that minimizes the risk R(f), which is the expected loss of
the function f :

R(f) = EPZ [L(f,X, Y )].

Since the distribution according to PZ is unknown, minimizing the risk over all
measurable functions (resulting in the Bayes risk R∗) is not possible. Therefore, the
idea is to choose a hypothesis set or hypothesis class (a set of candidate functions)
F ⊂ M(X ,Y) and construct a learning algorithm to find a function f̂ ∈ F for
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training data Z that minimizes the empirical risk, which is given by:

R̂(f̂ ,Z) =
1

m

m∑
i=1

L(f̂ , Zi).

The empirical risk R̂(f̂ ,Z) measures the average loss on the training data Z and
converges by the law of large numbers almost surely to the true risk R(f̂) as the
number of training samples m goes to infinity. Given training data Z, an empirical
risk minimizer is a function f̂Z that minimizes the empirical risk over all functions
in the hypothesis set F :

f̂Z ∈ arg min
f̂∈F

R̂(f̂ ,Z).

To assess the performance of an empirical risk minimizer f̂Z , the difference between
the expected risk E[R(f̂Z)] (where expectation is with respect to Z and the
randomness in the learning algorithm to choose f̂Z from F) and the Bayes risk
can be examined. This excess risk can be rewritten in the following way:

E[R(f̂Z)]−R∗ = E[R(f̂Z)]− inf
f∈F
R(f)︸ ︷︷ ︸

estimation error

+ inf
f∈F
R(f)−R∗︸ ︷︷ ︸

approximation error

.

The first two terms form the estimation error and give the difference between
the expected risk of the empirical risk minimizer and the risk minimizer over the
hypothesis set F . The last two terms together form the approximation error and
give the difference between the risk minimizer over the hypothesis set F and the
Bayes risk (over all measurable functions). In other words, the estimation error
reflects how good the data are for finding the best prediction function in F for
the entire data space (with respect to the data distribution). In contrast, the
approximation error reflects how restrictive the hypothesis set F is for finding the
optimal prediction function. As illustrated in Figure 1.14, the hypothesis set F is
an important parameter. In case F is very small, the estimation error can become
small, but the approximation error may become large, leading to underfitting of
the dataset and, therefore, poor results on the training dataset. Conversely, if the
hypothesis set is large, the approximation error is low, but the empirical error is
high, leading to overfitting and bad generalization. Hence, given training data, a
well-chosen hypothesis set is necessary for proper learning, of which the complexity
provides a good trade-off for function estimation from the data and approximation
of the other elements in the distribution. The analysis of this problem is complex
and we will refer to literature for more details [38].

While there is no universal learning algorithm for every data distribution, there are
many approaches to tackle this problem that provide suitable learning methods in
practice. First, given a dataset and a function f , it is not clear whether f overfits
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Figure 1.14: Schematic view of the estimation error and approximation error as a function of the
hypothesis set complexity. The minimal excess risk is attained at a hypothesis class complexity for
which the class contains a function that does not underfit the data, but no function that overfits the
data.

or underfits the data. A common approach is to split the dataset into a training
set and a validation set. Using a learning algorithm, candidate functions can be
computed by minimizing the empirical risk on the training dataset. After that, the
performance of a candidate function can be evaluated on the validation set. The
idea is that a function overfitting on the training set can be observed by a weak
performance on the validation set. Instead, the functions that perform best on the
validation set can be used as candidates for the trade-off between estimation and
approximation.

In traditional machine learning, there are many approaches for the hypothesis
set. These include classes of functions described by decision trees, k-nearest
neighbors and support vector machines, to name a few. Due to the increasing data
size and complexity of their analysis, traditional machine learning methods have
mostly become less suitable for many problems, including those related to food
inspection [327]. However, one class of hypothesis sets that deal particularly well
with these challenges is that of neural networks. Neural networks are inspired by the
functionality of biological neurons in the brain. The basic blocks are the artificial
neurons (Fig. 1.15a), that consist of a number of input weights w = (w1, . . . , wn),
a bias value b and an activation function σ, producing an output value φ(x) from
its input values x = (x1, . . . , xn) in the following way:

φ(x) = σ

(
n∑
i=1

wixi + b

)
.

For the activation function σ, the Heaviside (threshold) function is an intuitive
choice: only when the sum of the bias and the value of the inputs multiplied by
the weights exceeds a certain threshold, the neuron will output a nonzero value.
Alternative activation functions include the logistic functions and - more recently
used - the Rectified Linear Unit (ReLU) activation function [102, 178], which is
the identity for positive numbers and zero otherwise. By connecting the neurons,
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Figure 1.15: Building blocks of a neural network: (a) artificial neurons that weigh each input value
and passes on the input value modified by a given activation function σ (as an example, the ReLU
function is shown) and (b) the composition of multiple neurons into (fully connected) layers, and the
composition of layers into a network of depth d = 2.

a neural network is formed (Fig. 1.15b). Different neurons can act on the same
input, and can be organized in a layer with each neuron producing its own output
φj(x) on the same input x. By placing the layers φij in sequential order, with
i = 0, . . . , d being the index of the layer and d being the depth of the network,
a multilayer perceptron is created which takes input and propagates it through
all the layers. The architecture of the network is given as A = (C, σ), where σ is
the activation function, and C = (c0, c1, . . . , cd−1) specifies the number of neurons
per layer. The architecture A gives rise to the set ΘA, which contains all value
combinations of parameters of the network, i.e. the weights and biases. A real-
ization of the network architecture A is a network FAθ : Rc0 → Rcd−1 with values
θ ∈ ΘA assigned to the parameters. The hypothesis set of a network architecture
is then F = {FAθ : θ ∈ ΘA}. The aim is to find a parameter configuration θ∗

that minimizes the loss of the predictions of the realization of the network on the
training set [188]:

θ∗ = arg min
θ∈ΘA

m∑
i=1

L(FAθ (xi), yi).

By feeding the neural network examples from a training set, the loss of the model’s
predictions and the ground truth can be computed. Since the functions φij in the
neurons in the neural network are differentiable (almost everywhere), the gradient
of the loss can be computed with respect to the network parameters using the
backpropagation algorithm. Using a stochastic gradient algorithm, the error can be
repeatedly used to re-adjust the parameters and optimize the network performance
on the training dataset. Often used derivations of stochastic gradient descent for
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this purpose are AdaGrad [74] and ADAM [146]. The training procedure is carried
out and evaluated repeatedly on the validation set. To assess the result of the
training procedure, the obtained network is eventually evaluated on a separate test
set.

Deep neural networks have recently gained popularity, where deep refers to
the networks having many layers [205]. Such networks allow for more complex
functions and trainable parameters, and deep learning methods can in some cases
therefore perform better data analysis than traditional machine learning methods
[327]. Deep learning applications include speech recognition, natural language
processing, classification, partial differential equation solvers, image generation and
image processing [12, 327]. Consequently, these approaches are nowadays used for
health care, recommender systems, fraud detection and self-driving cars, to name
a few applications.

For imaging tasks, deep Convolutional Neural Networks (CNNs) have found
substantial usage for tasks such as denoising, object detection, edge detection,
classification and segmentation (assigning a label to each pixel in an image) [296].
The key feature of a CNN is that the neurons use convolution operators (which
generalize the weights of standard neural networks), where the output of a neuron
is expressed in the following way:

φ(x) = σ

(
n∑
i=1

Chi(xi) + b

)
. (1.5)

The convolution Chi of the neuron from input i is characterized by a filter hi.
For 2D imaging applications, the convolution operator of hi with the function gx,
defined by gx(k, l) = xk,l, is given by:

Chi(x) = (hi ∗ gx)

=

∞∑
m=−∞

∞∑
n=−∞

hi(m,n)xk−m,l−n.
(1.6)

In practice, the summations are taken over a range where the chosen filter is
mostly nonzero (which is often indicated by the size of the filter). For instance,
a filter can consist of a 3× 3 matrix kernel containing weights that indicate the
contribution of pixel xk,l and its neighbouring pixels to the corresponding pixel
Chi(x)k,l in the resulting convolved image (see Fig. 1.16 for an example). The
expression in Equation 1.5 is an image of one channel. When images from multiple
channels are combined, these are referred to as feature maps (for instance, an RGB
image is a feature map with three channels). Each convolutional layer creates a
new feature map from input feature maps. The input maps could be those of the
last previous layer or of all the previous layers combined. By repeatedly passing
on an input image through multiple convolutional layers, complicated features can
be extracted from images. Deep convolutional neural networks apply many of such
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Figure 1.16: Visualization of a convolution. For every target pixel, the input pixel values are multi-
plied by the corresponding weights in the convolution filter, yielding the convolved image. The colors
indicate the values of the pixels. In this case, the resulting image is a blurry version of the input image.

convolutional layers. Along with the biases in the neurons, the weights in the
convolution operators are parameters that need to be optimized during the learning
process, giving rise to a significantly higher number of trainable parameters than
in conventional neural networks with similar architectures.

Nevertheless, despite seemingly overparametrization and the possibility of over-
fitting of CNNs, these have proven to yield outstanding results for many imaging
problems. However, the reason for the success of such deep architectures is not
understood well [38]. On top of this, many different strategies can be applied
to such networks, giving rise to many classes of CNNs. For instance, the setup
of the kernels can be tweaked, such as varying the stride (the step size in the
summations of Equation 1.6), the dilation (the spacing between the kernel points),
and padding (adding values at the edge of the image), which can all be considered
as hyperparameters (parameters set beforehand that control the learning process).
Additionally, there is a high degree of freedom in the architecture, such as the
dependence of convolutional layers on the previous layers. Other examples are
the addition of other operations between the convolutional layers, such as up- or
downsampling operators or pooling layers (which also reduce the spatial resolution
of the feature maps). Chapters 2 and 3 and will go into more detail about relevant
CNN architectures and notation, respectively.

The many possibilities in the design of deep CNN architectures results in a
large number of CNN classes without a uniform understanding of how each class
works. However, this has not prevented its widespread use for imaging problems or
limited its suitability for detection and segmentation problems in X-ray imaging
and computed tomography. The main assets of CNNs for these fields are the
recognition of complicated patterns and the ability to deal well with noisy images,
which is for instance useful with (hyper)spectral images that are noisier than
normal radiographs. Similar to the feasibility of iterative reconstruction techniques



1.6. Machine learning 35

for tomography, learning with convolutional neural networks has become more
prevalent due to improved hardware, particularly the GPUs, allowing to train
networks with up to millions of parameters. Toolboxes for advanced deep learning,
such as PyTorch [222, 223] and TensorFlow [4], provide even easier access to the
application of these methods to imaging problems than before.

Deep learning is applied to many problems in 2D X-ray imaging. An important
field of application is X-ray security imaging, such as cargo and baggage scanning
at airports and other public areas, to detect and classify potentially harmful objects
from radiographs [8]. In medical imaging, deep learning has many applications
in radiography [195], including the analysis of chest X-ray images [53], as well as
bone fracture classification [277] and bone age estimation [155]. For industry, deep
learning methods with X-ray imaging have been developed for tasks such as defect
segmentation of castings from radiographs [72, 90], weld inspection [90, 185, 192],
and food processing [327]. However, deep learning combined with radiography is
underused in those application areas, particularly in food processing [192], although
it has been getting more attention in recent years [81]. The usage of deep learning
is more common in X-ray CT, where it can be applied for 3D reconstruction and
segmentation tasks with limited data [120, 187, 226, 326], such as limited angle and
limited view measurements [160, 300], noisy data acquisitions [124, 157, 160, 304],
as well as reduction of cone-beam artefacts [197] and reduction beam hardening
[319, 329] and metal artefacts [32, 157]. On top of that, (parts of) the tomographic
inversion operator can also be learned with deep learning [269, 285, 300]. Such
approaches can also be combined with spectral imaging for improved image artefact
reduction [49]. Another important field of application of deep learning is image
compression [177], with network structures that encode data to a lower dimensional
space and decode it to either the original data (autoencoder) or data corresponding
to a specific task [198, 229]. In hyperspectral imaging, image compression by means
of deep learning is carried out to reduce the size of hyperspectral data cubes of
satellites and planes that are transmitted to remote locations for further analysis
[73]. For the new hyperspectral X-ray imaging methods, such approaches may turn
out useful when applied to high-throughput industrial tasks such as food inspection.

Despite the high success of deep learning in recent years, it also comes with many
challenges. Apart from the incomplete mathematical understanding [38] of deep
learning and their high computational costs [13], another practical problem is the
reliance on data to successfully employ deep learning. Deep learning is very data-
demanding [183], with the performance on vision tasks increasing logarithmically
with the data volume [271]. On top of this, in supervised learning, the data often
need to be annotated by experts, which is a tedious and time-consuming process.
For food processing, there is a lack of large datasets [8] to employ deep learning for
real-time applications. Moreover, very few open datasets are available for X-ray
testing [192], most likely due to the limited number of experts for data annotation.
Because of this, even though there is much potential, multi-channel acquisitions
still need to be fully used in deep learning based X-ray imaging applications [8].
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1.7 Research questions and dissertation outline
This dissertation presents a number of tools and techniques as building blocks
that can be integrated into automated X-ray inspection systems for industry. As
previously pointed out in this chapter, recent advances in X-ray imaging and
machine learning enable the use of spectral X-ray imaging and deep learning. This
allows for the construction of learning-driven automated spectral X-ray inspection
systems. The main driving question throughout this dissertation is therefore the
following:

Main question: How can we use the possibilities of spectral imaging and deep
learning in industrial imaging and industrial tomography?

To provide an answer to this question, we investigate various aspects of spectral
imaging, deep learning, or a combination of these. Each of the four forthcoming
chapters will address a separate research question.

Chapter 2: How can tomography assist industrial 2D radiography, in particular
foreign object detection?

In Section 1.1, we have seen that detection of unwanted (‘foreign’) objects
within products is a standard procedure in many branches of industry for main-
taining product quality. In Section 1.2, we have seen that X-ray imaging is a
fast, non-invasive and widely applicable method for foreign object detection. As
noted in Section 1.6, deep learning has recently emerged as a powerful approach
for recognizing patterns in radiographs, enabling automated X-ray based foreign
object detection at high rates. However, these methods require a large number of
training examples and manual annotation of these examples is a subjective and
laborious task.
In Chapter 2, we will propose a new workflow that solves this manual annotation
problem. The workflow combines CT scanning with segmentation to efficiently and
objectively produce annotated training data. With this data, a deep convolutional
neural network can be trained to learn the foreign object detection task at hand,
after which it can be applied to similar tasks. The method relies on high-quality
CT scans and subsequent processing. As opposed to medical CT, in industry, there
are generally no dosage constraints on the CT scan and therefore higher-quality
reconstructions can be achieved by utilizing long scanning times and high pen-
etration power by powerful X-ray sources. The workflow is demonstrated on a
real X-ray CT dataset, with results suggesting that the method can be applied to
industrial food inspection.
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Chapter 3: How can we use deep learning for task-driven (hyper)spectral data
compression?

In Section 1.4, we have seen that the arrival of (hyper)spectral X-ray imaging
may provide additional insights into objects exposed to foreign object detection
tasks. However, an important challenge in hyperspectral imaging tasks is to cope
with the large number of spectral bins in the generated data. Common spectral data
reduction methods do not consider prior knowledge about the task. Consequently,
sparsely occurring features that may be essential for the imaging task may not be
preserved in the data reduction step. As noted in Section 1.6, convolutional neural
network approaches are capable of learning the specific features relevant to the
particular imaging task, but applying them directly to the spectral input data is
constrained by the computational efficiency.
In Chapter 3, we therefore introduce a novel supervised deep learning approach
for image analysis. The method combines data reduction and image analysis in
an end-to-end network architecture. The proposed data reduction network archi-
tecture, which we name DRCNN, consists of a data reduction block paired with
a CNN. The network component that performs the reduction is trained jointly
with the CNN such that image features most relevant to the task are preserved
in the reduction step. The approach is demonstrated on a number of artificial
datasets, and suggests the possibility for higher compression and accuracy in various
applications, including hyperspectral X-ray imaging.

Chapter 4: Can we use multi-channel imaging to improve reconstructions in
discrete tomography?

As noted in Section 1.3, discrete tomography is concerned with objects that
consist of a small number of materials, which makes it possible to compute accurate
reconstructions from severely undersampled projection data. For cases where the
allowed intensity values in the reconstruction are known a priori, the discrete
algebraic reconstruction technique (DART) has been shown to yield accurate re-
constructions from few projections. However, a key limitation is that the benefit
of DART diminishes as the number of different materials increases. Since new
tomographic imaging techniques can simultaneously record tomographic data at
multiple channels and provide multi-channel data, a new reconstruction algorithm
can exploit this additional information.
In Chapter 4, we present Multi-Channel DART (MC-DART). This method is a
generalization of DART to multi-channel data and combines the information for
each separate channel-reconstruction in a multi-channel segmentation step. By
iteratively applying these steps, a final accurate segmented reconstruction can be
produced from multi-channel data. Through a number of simulation experiments,
it is shown that MC-DART is capable of producing more accurate reconstructions
compared to (single-channel) DART.
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Chapter 5: How can we use prior information on spectral material signatures
in tomographic reconstruction and material decomposition algorithms?

The advances noted in Section 1.5 in multi-spectral detectors are causing a
paradigm shift in X-ray CT. Spectral information acquired from these detectors can
be used to extract volumetric material composition maps of the object of interest.
The image reconstruction step is relatively straightforward if the materials and
their spectral responses are known a priori. If these are not known, however, the
maps as well as the responses need to be estimated jointly. The most conventional
workflows in spectral CT involve performing volume reconstruction followed by
material decomposition, or vice versa. However, these methods inherently suffer
from the ill-posedness of the joint reconstruction problem.
In Chapter 5, we present a new one-step method for tomographic reconstruction
in spectral CT. In this method, which we name ADJUST, prior information about
spectral attenuation curves of materials that may appear in the object of interest
is taken into account by formulating the problem in a specific way. In essence, the
to-be reconstructed volume is written as a multiplication of a material map matrix,
a material-indicator matrix, and a spectral dictionary matrix. In the proposed
optimization method, the first two matrices are jointly iteratively estimated.

In Chapter 6, we will return to the main research question and discuss how the
methodologies developed in each chapter can support industrial X-ray imaging and
tomography. In addition, the relevance of each method is discussed with respect
to the fields of spectral and hyperspectral tomography, discrete and multi-channel
tomography, hyperspectral imaging, machine learning and dimensionality reduction,
along with all their application areas. Furthermore, we outline the contributions,
implications and future research directions.


