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1
Introduction

For well over a century, X-ray imaging has been successfully employed as a non-
destructive method to gain insight into the internal structures of various objects.
Some well-known applications include baggage scanning at airports and medi-
cal diagnosing in hospitals. One particularly vital application area is the food
processing chain, where quality preservation and safety checks are the order of
the day. Even though most food inspection is surface-based, X-ray imaging has
proven to be an essential complement to finding significant anomalies within a
food product. Still, a more detailed understanding of the interior of an object can
be achieved using Computed Tomography (CT), in which X-ray projections are
collected around the imaged object and used to compute a 3D reconstruction of it.
These CT acquisitions and algorithms generally take more time than conventional
X-ray imaging, which can pose a problem at industrial high-throughput production
lines. These conflicting goals of accuracy and processing speed require a trade-off
to be made, and new methods and algorithms are needed to optimize this trade-off.

Towards achieving the optimized trade-off, spectral imaging and machine learn-
ing are important directions to respectively obtain rich data and achieve faster
and better results. Recently, the field of spectral imaging, where the energies
within the X-ray beams are taken into account, has been getting more attention.
A major driving force is the development of spectral photon-counting detectors,
which are able to register the energy properties of each individual photon in the
incoming beam independently and can therefore disentangle energetic information
into multiple images at different wavelengths. This is a significant information gain
compared to conventional X-ray imaging, and can therefore be used to improve
X-ray image analysis and to create more accurate CT reconstructions with the same
acquisition time. These detectors and reconstruction algorithms are continuously in
development. However, the lack of suitable spectral image processing methods and
reconstruction algorithms is hampering the application of spectral X-ray imaging
in industry in general and food processing in particular. Additionally, recent
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2 Chapter 1. Introduction

developments in machine learning open up possibilities for rapid and accurate
X-ray image analysis. In particular, deep learning enables rapid recognition of
complicated patterns in data and can therefore aid in image processing tasks. The
potential of deep learning has yet to be explored for the examination of X-ray
images of natural products in industrial settings.

In this dissertation, several research contributions are put forward for spectral
X-ray CT and the incorporation of deep learning in (spectral) image processing
routines to improve reconstruction accuracy and performance of image processing
tasks. The main contribution of this work is the proposal and detailed analysis of a
new deep learning workflow for imaging tasks in which the scientific contributions in
all chapters are incorporated. The method can be readily implemented in industrial
setups and has a particular focus on food processing. This introductory chapter
will first provide the background of product inspection in industry, which will
be the common thread for all subsequent motivations. After this, X-ray imaging
and its application to product inspection are covered. Next, the basic concepts of
computed tomography are introduced. Thereafter, an outline of the current state
of the art of spectral X-ray imaging and spectral CT is given. Along with this,
several machine learning concepts are introduced, which are used in later sections.
This chapter is concluded with an overview of all sections in this dissertation,
supplemented by the relevant research questions for each non-preliminary chapter.

Accuracy

Processing

speed X-ray image analysis

Computed tomography

Spectral imaging

Machine learning

Computed tomography

Figure 1.1: Schematic view on the goals in this dissertation. The pursued contributions by the research
are indicated by the red arrows. Spectral imaging, machine learning and tomography methods are used
to increase the accuracy and speed (i.e. image throughput) of algorithms for tasks on X-ray images. In
addition, spectral imaging is used to increase the reconstruction accuracy in computed tomography.
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1.1 Product inspection and foreign objects

With the increasing reliance of society on automatic food processing in factories,
accurate quality control of food is absolutely essential [305, 327]. Regularly, food
products are recalled from supermarkets or other food distributors because of
contamination: unintended and possibly undetected alterations to the products,
which makes them unsuitable for consumption. The contamination and the subse-
quent recalls waste time, money, effort and energy. On top of that, consumers and
product sellers may lose trust in the product manufacturer. It goes without saying
that all sorts of contamination should therefore be avoided as much as possible. In
general, there are three different distinguishable types of product contamination [89,
287]. Chemical contaminations can appear as pesticides, wrong food additives or
inappropriate cleaning substances. Biological contamination encompasses bacterial,
fungal, virus and parasite contamination. Both can deteriorate food quality but
can also lead to severe food poisoning. In this dissertation, we focus mainly on the
third category of physical contamination, where food contains items that are not
supposed to be there. The existence of this third category is the primary motivator
for the realization of the methods presented in this dissertation.

Physical contamination is characterized by the presence of foreign objects, also
known as foreign bodies. These foreign objects are defined as objects that are not
supposed to be present in a product and may harm the end user upon consuming or
using it if its presence remains unknown. Foreign objects come in many shapes and
conditions. Usually, a distinction is made between intrinsic foreign objects, which
are already present in the object but not properly removed (e.g. bones, shells, fruit
stalks or pits), and extrinsic foreign objects, which are objects that end up in the
product during the food processing stages (e.g. stones, plastic and insects) [76].
Foreign objects of the latter category can be introduced during transport, improp-
erly sanitized factory processing environments, sanitizing processes, automatic or
manual deformation processes, and packaging stages. Typical example objects are
stones, wood, insects, plastics, hair, pieces of (fallen) gloves, rubber, glass and metal
particles. In addition to the harm that can be done after processing, hard foreign
objects can also damage the processing machines. Standard control measures such
as sieves, filters and magnets can be used to mitigate the problem, but these have
technical and operational limitations to minimizing the risks [68]. Furthermore,
these methods are automatic and do not necessarily enable the notion of foreign
objects being present, as for instance sieves only remove larger foreign objects.

To address the problem of foreign objects, food inspection methods are con-
tinuously being developed and employed in the food processing industry. Such
product inspection methods are in place as well where non-food items are checked
for product defects, but also in places such as airports for luggage inspections.
Ideally, these methods can eventually be used for assessing products on more
advanced quality aspects such as tenderness, ripeness, bacteria presence and other
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biological properties as well. Nevertheless, all applications have two common goals:
the methods should be fast and accurate. These two conflicting goals ask for the
continuous development of new inspection methods.

Until the end of the previous millennium, optical sensing technologies were the
only well-established methods [106] for foreign object detection. These methods
work well when the product is coarse and loose or when the defects are located on
the surface, and when foreign objects can be detected based on differences in shapes
or colors. For foreign objects that are hidden in a product, the only techniques
that are not surface-based and have widespread commercial availability at low cost
were metal detection methods. Because these methods can only detect metals,
other noninvasive inspection methods (also known as nondestructive methods), in
which an object can be inspected without damaging it, were highly desired.

Nowadays, many approaches to nondestructive internal product inspection have
been developed. The development and availability are due to scientific progress,
decreasing machinery costs and the development of sophisticated signal and image
processing techniques over the years. Most of the current methods are based on the
interaction between the electromagnetic radiation that penetrates the product and
the foreign object [106]. As Figure 1.2 indicates, some state-of-the-art approaches
include [117, 194, 200, 305] magnetic resonance imaging (in the radiofrequency
range), microwave imaging [281], terahertz imaging [324], thermal infrared imaging,
optical hyperspectral imaging [85, 89], X-ray imaging and gamma-ray inspection.

The optimal approach and the chosen type of radiation from the electromag-
netic spectrum are usually highly problem-specific and are chosen according to the
material properties and inspection goal. Important is the penetration depth of the
active electromagnetic radiation and its interaction that enables distinction of the
materials of interest. Radiowaves have high penetration depth but come with low
image acquisition speed. Additionally, they need powerful and costly equipment to
generate a strong magnetic field, and are prone to motion artefacts. Microwaves
only penetrate by a few centimeters. For other electromagnetic radiation types, the
penetration depth is typically very limited. However, it increases with the energy of
the wave, with X-rays and gamma rays providing sufficient power to fully penetrate
through objects. Both gamma rays and X-rays are ionizing and therefore harmful,
but - despite common belief - the effect of X-rays on food products is extremely
limited, and radiated food is therefore safe to consume. The high penetration
power of gamma rays is mostly used to inspect metallic and welded structures.
For softer materials it is less suitable, as differences between materials cannot
be observed as well as with X-rays. Another method based on acoustic waves is
ultrasound and is, together with X-rays, the most widely used inspection method.
However, ultrasound is only useful for imaging soft materials, such as soft tissue. It
is less suitable when air or other materials with significant differences in acoustic
impedance are involved in the object. On the other hand, X-rays can penetrate all
common packaging materials [68]. Compared to widespread simple metal detectors,
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Figure 1.2: Overview of inspection methods based on interaction with the electromagnetic spectrum
with radiation types, wavelengths, generic applications, and penetration depth [55, 291].

Method Speed Costs Complexity Data
Material

identification
Standard

X-ray
imaging

Fast Low Low Small
Low

discrimination

Standard
X-ray

tomography
Slow

Moderately
high

Moderate Moderate
Moderately

low
discrimination

Spectral
X-ray

imaging
Fast High High Moderate

Moderately
high

discrimination
Spectral

X-ray
tomography

Slow High High Very large
High

discrimination

Table 1.1: Different X-ray imaging methods and their properties.
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X-ray machinery can expose a wider range of materials including stones, glass,
bones, and plastics.

For this reason, this dissertation will focus mostly on X-ray imaging for industrial
imaging. State-of-the-art X-ray imaging comes in many modalities. In Section 1.2,
standard X-ray imaging is explained, which is fast and inexpensive, but does
not necessarily yield 2D images with sufficient material differentiation for further
analysis. Section 1.3 discusses X-ray computed tomography, which by repeatedly
capturing radiographs under different angles and reconstructing a 3D volume enables
better analysis of an object. Section 1.4 introduces spectral X-ray imaging, which
generates radiographs at different X-ray energies for better material discrimination
than with standard X-ray imaging. Section 1.5 encompasses spectral X-ray computed
tomography, which combines spectral X-ray imaging and computed tomography
for more advanced material discrimination in reconstructed 3D volumes. Table 1.1
gives an overview of all techniques and their relative characteristics.

1.2 Radiography with X-rays
Just as famous as the discovery of X-ray radiation by Wilhelm Conrad Röntgen
in 1895 are the subsequently made X-ray images of a hand with a ring, of which
the first one Röntgen made revealing the bone structure of his wife’s hand. To
this day, these images show the enormous potential to visualize the inner structure
of objects noninvasively. Therefore, inspection of food is just one of the many
applications of X-ray imaging which is, together with gamma-ray imaging, also
known as radiography. One year after Röntgen’s discovery, the first X-ray devices
were already in use for clinical observations, and the medical applications of radio-
graphy to inspect conditions of various parts of the body (such as possibly broken
bones and dental conditions) have been indispensable ever since. With further
industrial advances during the 20th century, radiography for baggage screening
and cargo inspection, quality inspection of castings and welds and quality control
of parts of products such as cars [192] have become crucial as well. Mechanized
implementations of these enable automated X-ray inspection (AXI). Despite the
possibly harmful ionizing radiation of X-rays, radiography has become widely
used because it is relatively cheap, fast, easily accessible and has a relatively high
penetration depth compared to other inspection methods for such applications [200].

For the electromagnetic spectrum, a single quantum is a photon. Depending on
the application, photons are described using either properties of particles or waves.
Each photon contains a certain amount of energy E, measured in electronvolt (eV).
The energy of a photon depends on its frequency f (in s−1), through

E = hf.

where h is Planck’s constant (h ≈ 4.136 ·10−15 eV ·s). Photons and their associated
energy are usually expressed either in frequency f or in wavelength λ, which is
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Photon with:

- large wavelength

- low frequency

- low energy

Photon with:
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- high frequency

- high energy

Figure 1.3: Photon model and the comparison of the (equivalent) characteristics between two photons
with large wavelength λ1 and small wavelength λ2.

inversely proportional to the frequency f through the speed of light c in a vacuum
(in m · s−1):

λ =
c

f
.

Electromagnetic radiation is a stream of photons, each carrying its own energy.
As indicated in Figure 1.2, the wavelength (or, equivalently, energy or frequency, see
Figure 1.3) of the photons determines the type of electromagnetic radiation involved.
X-ray beams are made up of photons with wavelengths between 0.01 nm and 10
nm (approximately equivalent to between 100 eV and 100 keV). Photons with high
energy - and therefore with small wavelengths - are able to penetrate further into
matter than those with low energy. Therefore, a distinction is often made between
soft and hard X-rays. The former consists of photons with maximum energies
below 10 keV (above 0.1 nm wavelength) typically used for medical applications,
and the latter of photons with maximum energies above 10 keV, which are more
prevalent in industrial imaging.

To produce X-rays, an X-ray source consisting of a vacuum tube with a cathode
and an anode is typically used (see Figure 1.4). Electrons are emitted from the
cathode using the thermionic effect by heating the filament of the cathode to
overcome their binding energy, and are accelerated towards an anode due to a
voltage applied between the two [51, 55, 192, 242]. The acceleration increases with
the peak voltage applied (usually indicated in kVp), while the number of released
electrons from the filament increases with the applied current. The target material
of the anode (usually tungsten) is bombarded with electrons, whose kinetic energy
is mostly converted to heat, but a small fraction is converted into X-radiation via
various processes when the electrons interact with the atoms of the anode material.
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In the first of those interaction types, the electron is decelerated due to deflection
around the atomic nucleus. The deceleration then converts the kinetic energy of
the electron into X-ray radiation, known as braking radiation or bremsstrahlung.
The energy of the radiation is directly proportional to the amount of deceleration.
It is also possible that an incident electron hits an electron in the shell of an atom
and kicks it out. When this happens, an electron from an outer shell will take its
place, and the atom emits X-rays in the process. The involved shells of the atom
characterize the energy of the emitted radiation, and this characteristic radiation
is therefore highly specific to the material type of the anode. This emission process
is known as X-ray fluorescence (XRF).

(Rotating)

anode

+

-

-

Cone

angle

Generated

polychromatic

X-radiation

Figure 1.4: Schematic representation of an X-ray source. Electrons are emitted from the filament in
the cathode by applying power to heat it up, after which by interaction with the anode a fraction is
converted to X-radiation.

The location from which the radiation is emitted in the tube is the focal spot of
the resulting X-ray beam. Ideally, the focal spot should be a point. In reality, this
is an area of a specific size. A small focal spot is better than a large focal spot, as
this will reduce the number of blurry edges when forming an X-ray image. On the
other hand, a small focal spot will focus the heat in a smaller area and could cause
melting of the anode material. For this reason, a rotating anode can be used to
distribute the heat more evenly [192]. The generated X-ray beam is cone-shaped,
and is defined by its cone angle. The intensity of the beam is usually referred to as
the flux of the beam.
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-

+
-

(a) Photoelectric absorption

�uorescence

�uorescence

(b) Rayleigh scattering

(d) Pair production(c) Compton scattering

Figure 1.5: Schematic view of X-ray interaction with atoms: (a) photoelectric absorption with X-ray
fluorescence, (b) Rayleigh scattering, (c) Compton scattering with X-ray fluorescence and (d) pair
production.

Alternatively, for much higher-quality beams there are synchrotrons. In these
ring-shaped facilities, (injected) electrons move at high speeds in a closed loop.
Powerful magnets are used to bend the directions of the electrons, at each of which
intense radiation is emitted. Typically, synchrotrons are mostly used for scientific
research. Researchers acquire beam-time at one of the suitable beamlines (with
specific beam characteristics), at which obtaining beam-time is a challenging and
involved process. The beams that result from this generation process are typically
high-intensity parallel beams.

Different types of interactions can occur when a photon in an X-ray beam travels
through an object (see Figure 1.5). If a photon has low energy, the dominating
interactions are photoelectric absorption and Rayleigh scattering. In photoelectric
absorption, a photon collides with an electron in the shell of an atom, and transfers
all of its energy to this electron. If this energy is higher than the binding energy of
the electron, the photon is completely attenuated and the electron is ejected from
the atomic shell. Due to this unstable ionized state, an electron from a higher shell
will take its place and the energy surplus will be emitted as characteristic radiation.
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This radiation usually has low energy, but is unique to the material’s atomic number
(usually indicated by Z). The second effect of Rayleigh scattering occurs when the
photon energy is not sufficient to eject an electron from its shell. In this case, the
direction of the photon is changed without changing its energy. At higher photon
energies, Compton scattering is the most contributing factor. In this process, the
photon energies are much higher than the binding energies of the electrons in the
shells. Therefore, an electron is emitted from the shell and characteristic radiation
will occur (as with photoelectric absorption). In this process, the photon only
loses part of its energy, and will continue its path through the material, possibly
starting another interaction process. At the highest photon energies, a fourth
interaction called pair production will take effect (and dominates for photons with
gamma ray energies). In this case, the high-energy photon will create an electron-
positron pair in the atom, each travelling further in different directions. When the
positron meets another electron, two photons with high energy (gamma rays) are
formed in opposite directions. This effect may occur more often in industrial imag-
ing, where high-energy radiation is involved for materials with high atomic numbers.

Given a material, the combined effect of its absorption by the aforementioned
mechanisms can be collapsed into an attenuation rate µ (and here also includes
the material mass density). The absorption of X-rays by a homogeneous material
with an attenuation rate µ is given by the Lambert-Beer law :

I = I0 exp (−µ∆x) .

Here, I0 is the intensity (proportional to the number of photons) of the incident
X-ray beam and ∆x is the thickness of the object. An illustration of the Lambert-
Beer law is given in Figure 1.6a. The Lambert-Beer law states that the intensity
of the beam decays exponentially with the thickness of the material (and the
attenuation coefficient). Therefore, a higher incident flux cannot easily compensate
for an increase in thickness. If the object being imaged is not homogeneous, the
attenuation coefficient becomes dependent on the positions over which the ray
passes through the object. Therefore, in this case the Lambert-Beer law reads

I(s) = I(0) exp

(
−
∫ s

0

µ(x)dx

)
,

where µ(x) is the attenuation coefficient at location x, and s is the length of the
ray through the object.

The Lambert-Beer law theoretically quantifies the intensity of the beam after it
has traversed the object. To measure this quantity, an X-ray detector is needed.
Usually, these detectors do not measure the X-rays directly, but rather contain
material that converts the X-rays to other detectable radiation. Nowadays, flat-
panel scintillator detectors are the most commonly used detector type, where the
scintillator converts the X-rays to visible light, which in turn can be detected by a
charge-coupled device (CCD) that converts the visible light through photodiodes
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X-ray intensity

at detector

(a)
X-ray source

intensity

Object

(b) (c) (d)

Figure 1.6: Illustration of the Lambert-Beer law: (a) ray passing through a homogeneous object with
thickness ∆x and attenuation µ, (b) ray passing through an inhomogeneous object with additional
absorption, (c) ray passing through a different inhomogeneous object resulting in the same intensity
at the detector, (d) ray passing through a highly absorbing object, leading to photon starvation and
removing any interesting information about the structure of the object.

into electronic signals. The detector efficiency, the rate of incoming photons that
are detected, depends on the thickness and the material of the scintillator.

According to the Lambert-Beer law, the detector yields an image that approxi-
mately gives the intensity of the incident X-rays. For further analysis, the image is
first normalized by applying a flatfield correction (with an X-ray image without the
object) and a darkfield correction (with an image with photon count offsets when
the X-ray is not in use) to obtain the transmission image. After this, the image is
linearized by applying a negative logarithm to obtain the absorption image. The
correction process is visualized in Figure 1.7. The result for an X-ray traversing
through the object is approximately:

− ln
I(s)

I(0)
=

∫ s

0

µ(x)dx. (1.1)

The images obtained by X-ray radiography are 2D projections, which can be
analyzed and processed, such as decision-making on the presence of a foreign object
in a 3D food product [191]. However, in the resulting radiograph (or X-ray image),
information about the third dimension (perpendicular to the detector plane) is lost.
There are situations where prior information can be exploited well enough to detect
desired features, such as the presence of bones. In other situations, absorption
of a certain material and thickness cannot be distinguished from absorption from
another combination of material and thickness. This is the superposition problem
(Fig. 1.6b and c). On top of this, when highly absorbing objects are involved in
the radiograph acquisition, there is the issue of photon starvation (Fig. 1.6d). The
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(a) X-ray radiograph (b) Flatfield radiograph (c) Darkfield image

(d) Corrected radiograph (e) Log-corrected radiograph

Figure 1.7: Demonstration of flatfield correction on radiographs of a small brick. (a) The radiograph
obtained with the object in the field of view. (b) Flatfield radiograph without the object in the field of
view. (c) Darkfield image without the X-ray tube. Note that the recorded values are in reality much
lower compared to the values in radiographs (a) and (b). (d) Corrected radiograph using the flatfield
and darkfield images. (e) Log-corrected radiograph resulting in the typical radiograph representation.
Note that the acquired images contain some sort of afterglow resulting from X-ray exposure during a
previous acquisition, see the panel afterglow in (a-c). The flatfield correction in (d) removes the panel.

number of emitted and detected photons each follow a Poisson distribution. The
average number of emitted photons is typically sufficiently high to approximate it
by a Gaussian distribution and yields a smooth flatfield image. However, this is
not the case when a highly-absorbing object prevents most photons from reaching
the detector. In this case, the intensities on the detector pixels may vary heavily,
and are likely to lead to high noise in the radiograph such that desired features are
difficult or impossible to extract. Altering the X-ray source properties, such as the
current, the peak voltage, or the exposure time may alleviate this problem. How-
ever, in many cases, these settings cannot be changed because of time, energy and
dosage constraints, or the absorption power of the object is unlikely to be overcome.

1.3 Tomography
To gain better understanding of the inner structure of an object, the procedure
of tomography noninvasively generates images containing the inner structure of
an object. There are many different types of tomography with different material
penetration and interaction mechanisms, such as magnetic resonance imaging
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(MRI) and ultrasound tomography. In this dissertation, whenever tomography is
discussed, we will focus on X-ray transmission computed tomography (CT). Since
the proof of concept of CT scanning in 1969 by Hounsfield and the subsequent first
clinical examination with CT in 1972, the methodology has been hugely important
in getting good insight into the three-dimensional condition of (parts of) the human
body. Additionally, it finds many applications in scientific research, geological
studies [97], cultural heritage [44, 151, 201, 255] and (airport) security [193, 204].
In industry, important applications are materials characterization, nondestructive
testing and metrology [55], and tomography also finds more and more applications
in food processing (such as quality control of pears [174]).

In X-ray CT, an object is exposed to X-rays from a source, while a detector
captures the unabsorbed photons in a resulting radiograph. This process is re-
peated under different angles, by rotating the object with respect to the source and
detector (Fig. 1.8). In some instances, such as with CT scanners in hospitals where
patients are imaged, it is more practical to rotate the source and detector rather
than the object itself (Fig. 1.9). The precise locations of the source, detector and
the object in the direction of the beam are recorded during the scan and are part
of the complete scanning geometry, which can be circular but also helical or spiral
when the object is large.

In a more formal context, the object of interest is modelled by the function
f : Rn → R which maps the location to a scalar value that represents the attenuation
in that location. In case of a two-dimensional object, we have n = 2. The Radon
transform R maps the object function f to its projection function P : [0, π]×R→ R

Figure 1.8: The process of obtaining multiple X-ray projections by rotating the source and the detector.
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Figure 1.9: The process of obtaining multiple X-ray projections by rotating the object, with the source
on the left and the detector on the right.

[84, 209, 232], and is given by the line-integral

R[f ](θ, t) =

∫
Lθ,t

fds

=

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)δ(x1 cos(θ) + x2 sin(θ)− t) dx1 dx2.

where Lθ,t is the line possibly passing through the object, given by Lθ,t = {x =
(x1, x2) ∈ R2 : x1 cos θ+ x2 sin θ = t}. Note that for a given line, so for fixed θ and
t, the Radon transform is equivalent to the Lambert-Beer law, with the left-hand
side being the absorption image (see Fig. 1.10a). The Radon transform of an object
f is also referred to as the sinogram (Fig. 1.10c). For a given object f , the acquired
projections can be viewed as a set of line integrals in which detector position t and
angle θ are varied:

P (θ, t) = R[f ](θ, t).

The goal of tomographic reconstruction is to retrieve the function f from its Radon
transform, which is an inverse problem. The series of collected radiographs of an
object are used as input for a reconstruction algorithm [35, 112]. There are various
classes of reconstruction algorithms. The first class is the group of analytical
algorithms in which explicit analytic expressions are derived for the material
attenuations in terms of projections. To retrieve the object from its sinogram,
intuitively one can smear out each projection back over the object space. The
simplest backprojection (Fig. 1.10b) is given by the following:

fBP(x1, x2) =

∫ π

0

P (θ, x1 cos θ + x2 sin θ)dθ.

This backprojection operation assumes that all pixels contributed equally to the
projections [286]. Therefore, the resulting reconstructed image is typically blurry
(Fig. 1.10d). To prevent this, the projection data are usually filtered in the
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Fourier domain by a filtering function h : R→ R, such that the lower frequencies
(accounting for smooth edges) have less contribution than the high frequencies
(accounting for finer details) to the backprojection. This leads to the filtered
backprojection (FBP) method (Fig. 1.10e), where the ramp filter in the Fourier
space is used, defined by h(ω) = |ω|, and the complete backprojection step including
filtering is given by

fFBP(x1, x2) =

∫ π

0

∫ ∞
−∞

P (θ, ω)e2πiω(x1 cos θ+x2 sin θ)h(ω)dωdθ.

To remove noise from the reconstruction, the high frequencies are removed
by employing the Ram-Lak filter defined by h(ω) = |ω| if |ω|≤ c and h(ω) = 0
if |ω|> c. Similarly, other filters can be employed as well. In the resulting FBP
algorithm, the projection P (θ, t) is repeatedly backprojected for each angle θ. Since
the detector positions and the scanning angles are discrete in practice, the integrals
in the FBP expression above are substituted by the corresponding summations:

fFBP(x1, x2) ≈ fdiscFBP(x1, x2) =
∑
θ∈Θ

∑
t∈T

P (θ, ω)e2πiω(x1 cos θ+x2 sin θ)h(ω)dωdθ.

The FBP method is designed for parallel-beam geometries, while most CT
setups have a fan-beam or cone-beam geometry. However, for fan-beam geometries
the method can be employed by applying coordinate transformations, while gener-
alization to three-dimensional cone-beam geometries results in what is known as
the Feldkamp-David-Kress (FDK) algorithm [87].

FBP-derived methods are fast, easy to implement, and perform well on data
that contain low noise and are near-complete (no missing angles). Therefore, these
have been the method of choice until recently. FDK is the most practical analytic
algorithm [286] for circular cone-beam geometries.

Another class of algorithms is that of algebraic methods, in which the Radon-
transform formulation is changed into a system of equations, and the object function
domain is discretized as a collection of voxels in a grid. The voxels can be modelled
as a vector x = (x1, . . . , xn), where n is the number of voxels. By putting all
measurements in a vector p = (p1, . . . , pl), where l is the number of detector pixels
times the number of angles, the problem of tomographic reconstruction can be
formulated as finding an x such that the following equality holds

Wx = p.

Here, W is the projection matrix in which entry wij indicates how much a ray
corresponding to measurement i contributes to the absorption in voxel j (which in
the modelling depends on voxel size, ray direction and type of ray-voxel intersection
computation). Recovering an accurate image of the scanned object from data p is
usually difficult for several reasons. First, the number of measurements l may be too
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(b) Two backprojections(a) Shepp-Logan phantom

with two forward projections

(c) Sinogram (d) Reconstruction with backprojections (e) Reconstruction with FBP

Figure 1.10: Illustration of tomographic reconstruction algorithms on a 512× 512 Shepp-Logan phan-
tom. (a) Forward projections under two angles on the Shepp-Logan phantom. White areas indicate
regions with high attenuation. These are reflected in the large peaks in the graphs of the projection
functions P (θ1, ·) and P (θ2, ·). (b) Backprojections of the two projections onto the image domain.
(c) The function values of all 256 projections under equidistant angles combined into a sinogram. (d)
Reconstruction using backprojections resulting in a blurry figure. (e) Filtered backprojection (FBP)
reconstruction with significantly less blurry edges.

low compared to the number of voxels. This leads to an underdetermined system,
which may have infinitely many solutions. Likewise, the number of measurements
may be too high, leading to an inconsistent system with no solution that satisfies
all measurement equations. Furthermore, the measurements may be corrupted by
noise (for instance, electronic noise in the detector). In this case, p could be written
as p = p + e, where both the uncorrupted data p and the noise contribution e
are unknown. Working with the known data p instead of p is likely to render a
potentially solvable system unsolvable.

Instead of solving the above equation, the reconstruction problem is often posed
as an optimization problem by finding a minimum-norm least-squares solution x∗
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that minimizes the data discrepancy or data fidelity term:

x∗ ∈ arg min
x∈Rn

||Wx− p||.

Algebraic iterative methods repeatedly improve the reconstructions with respect
to the data discrepancy above, by alternating between forward and backward
operations through matrix W . One of the most commonly used methods is the
Simultaneous Iterative Reconstruction Technique (SIRT). In this algorithm, the
current reconstruction is forward projected, after which the difference between this
forward projection with the measured data is backprojected using the transpose of
the projection matrix. The update step for SIRT is given by the following:

x(k+1) = x(k) +CW TR(Wx(k) − p).

The diagonal matrices C and R contain normalizations with respect to the sums
of columns of W and rows respectively. In the ART method, the update step
is carried out by taking only one ray each time. For the SART algorithm [15],
this is extended to a full update for every projection angle. However, SIRT has
a more stable convergence than ART, but an adequate solution takes longer to reach.

Iterative algebraic methods can deal better with inconsistent, incomplete, and
noisy projection data than analytical methods. Furthermore, these methods are
also flexible with respect to the acquisition geometries, as these can be modelled in
the projection matrixW . However, the iterative methods require a proper stopping
criterion, as running for too long can lead to overfitting to noise and therefore noisy
reconstructions may appear. Variational methods combine the above optimization
problem with a regularization term in which prior knowledge about the object can
be incorporated:

x∗ ∈ arg min
x∈Rn

||Wx− p||2 + λF(x).

In this formulation, F is the regularization operator and λ ∈ R≥0 is a parameter
that controls the importance of the regularization with respect to the data-fidelity
term. Two often-used regularization methods are Tikhonov and Total Variation
minimization (TVmin) regularization. The former promotes solutions with small
norms and reduces noise by setting the regularization function to F(x) = ||x||22,
while the latter promotes sparsity of the gradients and smooth regions (yielding
more piecewise smooth solutions), by setting F(x) = ||∇x||1. Regularization can
steer towards more robust solutions containing less noise, but needs to be adjusted
to each specific problem and requires the regularization parameter to be properly
chosen.

Prior knowledge can also be incorporated by restricting the solution space.
In discrete tomography, the resulting image has discrete values, meaning that all
values xi are contained in a fixed discrete set R. This type of tomography is a vast
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subfield on its own [121, 122], as the prior knowledge can be exploited for more
efficient and robust algorithms (in terms of accuracy, noise handling and required
number of projections [30]) when the object of interest is discrete, or even binary
[29, 176].

While iterative algebraic methods have advantages over analytic methods, their
major disadvantage is that the repeated computation of the forward projections
and backprojections makes them computationally expensive. However, with the
increase in computation power of modern computers, most notably the Graphical
Processing Units (GPU), this problem is alleviated. This is reflected in the fact
that algebraic methods have been the reconstruction method of choice since 2009
commercially [292], while before that time these were FBP-derived methods. On
top of that, advances in parallel computing and efficient splitting of the tomographic
reconstruction problem make the computation of algebraic methods more tractable
[50].

Tomography overcomes the superposition problem found in 2D radiography,
and a precise reconstruction of a product can be made and inspected with this
technique. A number of parameters influence the quality of the reconstruction of
a given object. During the acquisition, the quality of the resulting radiographs
is generally improved by a higher current, peak voltage and exposure time. The
detector resolution and the rate at which the detector can detect photons also in-
fluence the radiograph quality. For the reconstruction, the given computation time,
stopping criterion and the type of algorithm (along with its parameter settings)
all influence the result. The reconstruction quality is constrained by the allowed
acquisition and computation time, the X-ray dosage limit and the energy budget.
As opposed to medical CT, there is less concern about the dosage constraints in
industrial applications, allowing for more precision and higher resolution in the
reconstruction [55]. Nevertheless, in high-throughput applications, the acquisition
times and computational times are severe limiting factors. These constraints can
be met by for example reducing the exposure time and increasing the photon
flux, and by adjusting the reconstruction algorithms, but this may lead to poor
reconstructions. Therefore, even though CT gives more object information than
2D radiography, it is considered to be less suitable for online inspection [186].

1.4 Spectral X-ray imaging
X-rays consist of photons of different wavelengths. Since photons with different
energies can exhibit different interactions with matter, this can possibly contribute
to a deeper analysis of the imaged object. When the notion of X-ray energy is
accounted for in the radiography acquisition, this is referred to as spectral X-ray
imaging, and encompasses a wide range of approaches.
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Figure 1.11: Schematic view of the different effects on a polychromatic beam.

To comprehend the methods, it is first important to understand where and how
photon energies come into play (see Figure 1.11). First of all, the X-ray source
emits a polychromatic X-ray beam. The distribution of energies of the photons
emitted during the X-ray generation, also called the source spectrum, depends on
the anode material and the applied peak voltage. An increase in peak voltage
increases both the range of photon energies and the overall photon counts per
energy. At the same time, the anode material determines the characteristic peaks
that emerge from characteristic radiation due to the inner electron shell transitions
in the atoms of the anode material when bombarded with fast electrons.

When X-ray photons interact with materials on their path, the resulting absorp-
tion is dependent on processes such as photoelectric absorption, pair production
and Rayleigh and Compton scattering. The combined contribution of these pro-
cesses to the beam attenuation depends both on energy and material type. See
Figure 1.12 for a number of example spectra. The total attenuation µα of the
X-ray by a material α for different energies is given by its attenuation curve, and
is unique to each elementary material. Of particular note in these curves are the
absorption edges caused by the photoelectric absorption. Due to the ejection of
electrons in the shell and the subsequent electron transition from a higher shell, a
characteristic radiation with fixed energy is emitted. As an electron will only be
ejected when the incoming photon energy exceeds its binding energy, a sharp edge
in the attenuation curve will appear. The electron binding energy is proportional
to the atomic number, and inversely proportional to the distance to the nucleus of
the atom. The electrons reside in shells with a fixed distance to the nucleus, with
the innermost shell (K-shell) being the shell with the lowest distance. The binding
energy is highest for the K-shell, and therefore requires the highest incident photon
energy to be ejected. However, when the energy of the incident photon does not
meet the binding threshold, no absorption will occur in this shell. While absorption
edges also appear for other electron shells (L1-, L2-, M1- edges, among others), the
corresponding K-edge is located at the highest energies and provides the highest
difference in attenuation, which makes it useful for applications dependent on this
contrast (K-edge imaging) [94, 249]. Note that the attenuation curve is unique
for each element, and so are its K-edge and other absorption edge locations. For
elements with a high atomic number, such as metals, the K-edges are located at
higher energies. These elements are therefore much more distinguishable than those
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Figure 1.12: Attenuation spectra for various materials. The spectra are unique to each material, but
some materials are easier to separate than others: silver and cadmium mostly differ through the slightly
different locations of their absorption edges, and the difference in the spectra of water and tissue are
almost indiscernible.

of elements with low atomic numbers, whose K-edges may not even be located
within the X-ray wavelength range.

As can be observed from the attenuation curves, X-ray photons with low ener-
gies tend to be attenuated more strongly than those with high energy. For this
reason, when a beam traverses through matter, the mean photon energy shifts to
a higher value. This phenomenon is known as beam hardening. In standard CT,
the X-ray beam is assumed to be monochromatic, consisting of photons with the
same energy. However, because it is polychromatic in practice, the assumption of
monochromaticity leads to beam hardening artefacts in the subsequent reconstruc-
tion, showing as dark and less attenuating regions in the CT reconstruction. To
avoid this, ideally, the beam should be monochromatic, but a sufficiently high flux
of such a beam can only be achieved at synchrotron facilities. To mitigate beam
hardening artefacts resulting from a wide energy range, the low-energy photons
in the incident beam are usually removed by filtering the beam with a (metallic)
material with known spectral properties. With this approach, beam hardening is
actually used to an advantage. Nevertheless, filtering does not completely eliminate
beam hardening artefacts but reduces them, and longer scanning times are needed
for similar signal-to-noise ratios.

The interactions of different X-ray photon energies with matter can be exploited
in various ways. The most elementary way is to scan an object with beams of
different energies. In the case of two energies, this is referred to as dual-energy
X-ray absorptiometry (DEXA). This can be achieved by applying different values
for the X-ray tube voltage (and possibly some additional beam filtering). For each
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detector pixel, this methodology results in two intensity values corresponding to two
different voltages. As these define a point in a two-dimensional attenuation space,
the projected materials are likely to be more separable from intensity value tu-
ples from other material compositions than in radiographs from single peak voltages.

Instead of modifying the energy distribution in the polychromatic beam from
the source, in detector-based approaches energetic information of photons reaching
the detector can be directly obtained. Dual-layer scintillator detectors consist
of two layers on top of each other. These spectral detectors have different pho-
toelectric absorptions depending on their sensor materials, and the upper layer
typically, on average, detects the low-energy photons while the bottom layer detects
the high-energy photons [99, 118]. The advantage of such detectors is that these
simultaneously capture images of the same object, avoiding any spatial differences
due to motion between subsequent captures.

Similarly, as opposed to regular charge-integrating detectors (also known as
energy-integrating detectors), (hybrid) photon-counting detectors register single
incoming photons and are able to measure the energy of each photon individually
[94] instead of integrating the energies of all incident photons [249]. Compared
to the two-step process in charge-integrating detectors, a photon-counting detec-
tor consists of a semiconductor layer, in which incident X-ray photons generate
electron-hole pairs. A bias voltage between a cathode on top of the detector and an
anode on the other side separates the charge carriers to the contacts for electronic
readout [263]. The process directly converts photons into electric charge, allowing
for faster detection speed than with charge-integrating detectors. On top of this,
the electronics in these detectors allow for spectral separation of photons into
spectral bins, in which the number of photons between a preset energy range is
counted. Compared to the first dual-energy methods, which were available in
the ’70s, photon-counting technology is relatively new. Nevertheless, the ability
to simultaneously collect radiographs at different energies holds a huge potential
for the future [94]. Therefore, several research groups worldwide are developing
readout electronics for hybrid photon-counting detectors [91], such as the PILATUS
chips at PSI, Medipix [26] and Timepix chips at CERN, PIXIE chips [36] at INFN
and the PXD18k at AGH University.

An alternative class of spectral detectors operate by measuring the deposited
energy in every pixel during a given exposure time and repeating this for many
frames at high rates, yielding a binned energy distribution for each pixel [78]. For
this reason, these hyperspectral X-ray detectors can attain a high spectral resolution.
State-of-the-art detectors, such as the HEXITEC family of detectors [282] and
SLcam [213], provide data containing up to hundreds of spectral energy bins and
a spectral resolution of less than 1 keV, providing a rich spectral footprint of the
measured object. Nevertheless, this relatively new technology requires compara-
tively longer acquisition times, as well as powerful data processing frameworks,
which are currently in development [18].
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For photon-counting detectors, different semiconductor materials like silicon
(Si), gallium arsenide (GaAs), cadmium telloride (CdTe), or cadmium zinc telluride
(CdZnTe) can be used. While Si-based detectors are generally cheaper, it suffers
from low absorption, especially at higher energies where the detector layer becomes
transparent. In comparison, CdTe and GaAs are more costly but have better
absorption at higher photon energies. The extent to which the detector is able to
register photons at different energies is given by the spectral detector efficiency or
detector response.

The Lambert-Beer equation (where the line from the source to a the detector
pixel is now given by `) can generalized by incorporating the energy dependence :

I(Emax) =

∫ Emax

0

I0(E)D(E)e−
∫
`
µ(x,E)dxdE.

In this formulation, the energy is integrated up to the maximum photon energy
Emax, which typically is the peak voltage energy or the maximum energy registered
by the detector. Now, I0 models the source spectrum as an incident photon rate
as a function of energy, while D is a simple form of modelling the photon detector
efficiency. In some formulations, I0 and D functions are combined into a function
known as the effective spectrum. The attenuation µ is now a function, dependent
on both location and energy. As opposed to the monochromatic Lambert-Beer
law, due to the energy integral, this expression cannot be converted into a linear
right-hand side. This means that the data dependency on the energy-dependent
attenuation coefficients is nonlinear (as opposed to Equation (1.1)).

While dual-energy absorptiometry has found many applications in food pro-
cessing [16] and medical imaging, spectral X-ray imaging is especially promising
for tasks involving the use of contrast agents which enhance the contrast between
certain parts of an object. Examples of these include iodine and gadolinium,
which have K-edges in the energy range of X-rays used in diagnostic radiography.
Photon-counting detectors are valuable when at least two contrast agents need to be
detected simultaneously [264]. More generally, spectral X-ray imaging is useful for
material identification in an object [96], especially with multiple different materials.
Therefore, it opens up new possibilities such as multi-energy X-ray testing [192]
and multi-material decomposition [274], for example leading to improvements in
tissue discrimination [293].

Even though the photon-counting detector technology is promising for energy-
resolved imaging, there are still several challenges to overcome [293]. Firstly,
an incident photon may be registered in a location other than where it hits the
detector. This can be caused by fluorescence or Compton scattering, or by an
effect known as charge-sharing, where the incident photon generates charges close
to the border of a pixel that may be partly registered by an adjacent detector
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pixel. Secondly, when multiple photons arrive with too little intervening time, an
effect known as pulse pile-up may occur [54, 99]. In this effect, the photons will
be registered as one photon with an energy equal to the sum of the individual
photons. Even though these detectors are able to detect hundreds of millions of
photons per second per square millimeter, pulse pile-up is likely to occur. Both
charge-sharing and pulse pile-up can lead to artefacts since the spectral distribution
of photon counts is perturbed. Furthermore, a trade-off is required for the spatial
resolution of the detector. Increased resolution increases the effects of fluorescence,
charge-sharing and noise thresholding, and decreases the effects of pile-up [67].
Also, pixels may yield a different output with the same incident photon energy
distribution. Therefore, accurate equalization and calibration need to be developed
and carried out.

Apart from improvements with respect to energy differentiation and speed, there
are more benefits from photon-counting detectors. The thresholding mechanism
of photon-counting detectors prevents contribution of electronic noise [264]. This
means there is no contribution of dark current, and darkfield correction is therefore
not needed. Additionally, depending on the task carried out on the resulting
spectral radiographs, the additional spectral information may reduce the total
dose compared to regular radiograph acquisition. On top of this, due to the direct
photon conversion, photon-counting detectors generally have much higher spatial
resolution than energy-integrating detectors [159].

While hyperspectral detectors generate data with high spectral resolution and
therefore circumvent the issue of tuning spectral thresholds to obtain a desired
result, the registration of photon counts in every small energy bin yields huge data
volumes. Additionally, there is the issue of spectral redundancy [60], indicating
that spectrally adjacent X-ray images from the data cube are likely to be very
similar. Therefore, given a specific task on the hyperspectral data cube, it is not
clear in which spectral bins the important features are located.

1.5 Spectral tomography
X-ray CT has yet to reach its full potential as spectral information of X-rays is not
always recorded [274] or used in reconstruction algorithms. Similar to how radiogra-
phy paved the way for X-ray transmission tomography, spectral radiography opens
up possibilities for spectral CT, where the input radiographs are energy-resolved.

Exploitation of spectral characteristics in CT scans can be done in various ways,
as demonstrated in Figure 1.13. Historically, the first and most simple spectral CT
setup is to perform the same scan twice with different tube voltages. The possibil-
ity of artefacts resulting from object motion between the scans and the increased
scanning time or X-ray dose are obvious downsides of this approach. Therefore,
to reduce the disadvantages of sequential scanning, rapid tube voltage switching
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(a) Scanning twice (b) Tube voltage switching (c) Two source-detector setups

(d) Dual-layer detector (e) Photon-counter detector

Figure 1.13: Schematic representation of various spectral CT setups.

sources were developed [11, 51, 55, 99]. However, even though the tube voltage
switches at high speed at every scanning angle, this still results in considerably more
scanning time than with conventional CT scanning, and relatively slow potential
switching may still lead to motion artefacts. Another approach is to combine two
source-detector combinations into one setup, known as dual-source CT, each source
with a different peak voltage [11, 51, 55]. This method requires a more expensive
setup, requires spatial co-registration of the obtained data, and the scattering
resulting from the two different beams may increase the noise in the projections ob-
tained by either detector. However, the setup of each detector-source combination
can be configured independently. Both fast-switching potential dual-energy CT and
dual-source CT are well-established in clinical practice. More recently, integration
of dual-layer detectors in clinical settings has also been established [11, 40], with
the benefit of simultaneously obtaining perfectly spatially aligned radiographs with
different average photon energies [233]. Nevertheless, dual-layer detectors are more
costly and designed for specific tasks, which makes these inflexible with respect
to various material separation tasks [99]. In medical imaging, dual-energy CT is
often used for contrast enhancement, artefact reduction, material decomposition
and radiation dose reduction [233]. For industrial CT, dual-energy CT mainly
improves reconstructions in terms of beam hardening artefact reduction and feature
detection with low contrast [55]. The advent of photon-counting detectors enables
multi-spectral CT, which generalizes the concept of dual-energy CT to more than
two energy bins. As photon-counting detectors record data into narrower energy
bins, the polychromatic beam drastically reduces beam-hardening artefacts found in
conventional CT. Despite this, industrial CT most often employs energy-integrating
detectors [55]. In medical CT, it is expected that dual-energy and spectral CT will
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be fully integrated into clinical practice and eventually replace conventional CT
[99, 274].

In terms of modelling the spectral reconstruction problem, we take the spectral
Lambert-Beer law and integrate over the energy interval [Emin

c , Emax
c ] of the c-th

measurement with 1 ≤ c ≤ C:

Ic =

∫ Emax
c

Emin
c

I0(E)D(E)e−
∫
`
µ(x,E)dxdE. (1.2)

Here, C is the total number of measurements, each with different energy properties.
In dual CT, this number is C = 2. When prior knowledge of factors contributing
to the attenuation is available, a basis decomposition can be incorporated that
assumes the dependence of attenuation on location and energy can be written as a
(finite) linear combination of functions that depend only on energy or location:

µ(x,E) =

M∑
m=1

µ̃m(E)αm(x).

Substituting this assumption into (1.2) yields

Ic =

∫ Emax
c

Emin
c

I0(E)D(E)e−
∫
`

∑M
m=1 µ̃m(E)αm(x)dxdE. (1.3)

The goal of dual CT is to obtain a decomposition of the reconstructed object
in terms of the contributions α1 and α2. This can be approached in two ways.
First, each spectral channel can be reconstructed separately. This can be done by
assuming attenuation at an effective energy Eeff

c (such as the mean energy in the
bin) to remove the energy integral and therefore the nonlinearity of the expression.
Then the object can be reconstructed with conventional CT techniques. For every
position x, this yields a system of equations{

f(x,Eeff
1 ) =

∑M
m=1 µ̃m(Eeff

1 )αm(x)

f(x,Eeff
2 ) =

∑M
m=1 µ̃m(Eeff

2 )αm(x)
.

in which f(x,Eeff
c ) is the solution of the tomographic inverse problem in channel

c at position x. With this system of equations, an image-based decomposition
{αm}1≤m≤M can be computed. Note that in dual CT this can only yield a unique
solution if M = 2. While the image-based decomposition is relatively easy to im-
plement, proper estimations for the attenuations and the photon flux are required.
When the energy range in each channel is wide, the reconstructed images will suffer
from beam hardening artefacts [274, 283].

Alternatively, by changing the order of the summation and the integral, a
projection-based decomposition can be attempted:

Ic =

∫ Emax
c

Emin
c

I0(E)D(E)e−
∑M
m=1 µ̃m(E)

∫
`
αm(x)dxdE.
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In this approach, the integrals
∫
`
αmdx are computed first by solving the system of

nonlinear equations, for instance by polynomial approximations [14, 63, 179, 266].
After the projection-based decompositions are obtained, each of these components
are reconstructed separately, usually referred to as Virtual Monochromatic Images.
Image-based decomposition is typically found to be faster, but projection-based
decomposition yields superior decomposition results [179, 208].

The choice of base decomposition is mostly empirical. From the start of dual-
energy CT, the decomposition into photoelectric effect (dominant at low energies)
and Compton scattering contributions (dominant at high energies) [14] has been
well-investigated. The former can be approximated by a function cubically inversely
proportional to the photon energy, and the latter by the Klein-Nishina function.
For materials that occur in the body (with an atomic number lower than 25), this
decomposition is sufficient for the expression of the attenuation coefficients [99].
The energy-dependent attenuation coefficients can also be decomposed by atten-
uations of sufficiently different materials. For medical CT, the decomposition of
water and bone is helpful, since most materials in the body have attenuation curves
similar to either of those [118]. Alternatively, the K-edge in the diagnostic range
of iodine makes this material suitable for material decomposition combined with
tissue or water, since the attenuation of bone is similar to that of iodine-enhanced
blood.

In advanced photon-counting CT, the number of preset spectral bins C is
usually larger than two. In this type of spectral CT, the reconstruction techniques
can be classified into two categories [143]. The first category is concerned with
multi-channel reconstruction [64], which opts for the reconstruction of each spectral
channel. In general, a channel in multi-channel CT does not necessarily refer
to a spectral channel, but to any set of measurements of the same object with
different acquisition settings. However, in this dissertation, we will mostly refer to
a multi-channel image as a stack of images with each image resulting from different
spectral properties.

The second category of spectral CT techniques is material decomposition from
multi-channel data with more than two spectral bins. Many industrial and medical
applications require more than M = 2 materials to be separated [172]. However,
material decomposition with more than two materials poses challenges for standard
binary reconstruction techniques [266], as found in dual CT imaging.

The difficulty of the multi-spectral CT problems is that these consist of many
nonlinear equations, resulting in a nonlinear forward operator and an ill-posed
problem. Approaches to these problems can be divided into two classes. The
first class of methods are two-step methods. As a natural extension of a dual-
energy CT approach, one subclass of two-step methods consists of methods that
first reconstruct each spectral channel separately, after which an image-based
decomposition (also known as post-reconstruction processing [27]) is carried out by



1.5. Spectral tomography 27

solving for the material distribution with more than two channels (i.e. C > 2):

f(x,Eeff
c ) =

M∑
m=1

µ̃m(Eeff
c )αm(x). (1.4)

The second subclass performs a projection-based material decomposition (also
known as pre-reconstruction processing), followed by the reconstruction of each
material separately. The problem here is that the material decomposition in the
projection domain is a nonlinear inverse ill-posed problem [6]. A common drawback
of all two-step methods is that the separation of the material decomposition and
the image reconstruction steps imply loss of information during the first step, for
which the other second step cannot compensate [292]. The drawback of image-
based decomposition is that it may suffer from beam hardening artefacts in the
first step if the energy bins are too wide. In contrast, projection-based material
decomposition suffers from sensitivity to noise [251] and the nonlinearity of the
problem, of which the introduced errors are computationally costly to alleviate [274].

The class of one-step methods is designed to avoid the information loss and
related problems inherent to two-step methods. One-step methods attempt to
find a solution to the system of equations resulting from Equation 1.3 directly to
obtain material maps, but the complexity of the problem (for which finding an
analytic solution is challenging, if possible at all) necessitates the use of iterative
algorithms. Such algorithms are even more computationally heavy than standard
iterative reconstruction methods for non-energy-resolved CT problems. Moreover,
many state-of-the-art approaches are limited to only a few materials.

For spectral detectors with a higher energy resolution, the approximation by
energy discretization resulting in Equation 1.4 is more accurate than with detectors
with lower resolution. Additionally, this modality is useful for K-edge imaging as
sharp edges are more clearly visible in the multi-channel reconstruction. Since
the bins are narrow, beam hardening problems are also avoided. However, unless
extremely high acquisition times are applied, the low signal-to-noise ratios in the
channels will have a high impact on the reconstructions by the aforementioned
methods.

To mitigate the impact of high noise levels in bins because of low photon
counts [244, 320], prior knowledge about the solution can be incorporated into
the reconstruction [60]. Regularization is required to obtain satisfactory solutions
for the ill-posed spectral CT problems [274]. Similar to the standard iterative
techniques, variational methods can be employed with spectral CT, especially
in the reconstruction routines of two-step methods. Intensity-gradient sparsity
constraints [61], such as Total Variation Minimization (TV) and Non-Local Means
(NLM) are among the most commonly used methods in spectral CT [244]. Other
variational regularization methods exploit the structural redundancy between the
channels [61, 64], with hyperspectral images providing an even stronger structural
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correlation between channels [288]. Numerous regularization methods have been
proposed [274, 302], many of which are multi-channel enhancements of TV or NLM
regularization. A few examples include spectral-means (based on NLM) [320], and
Total Nuclear Variation (TNV) [64, 126] (which is an extension of TV, leading to
low-rank solutions and therefore encouraging common edges in multiple images)
[238, 320, 325], as well as parallel level sets methods such as directional Total
Variation (dTV) [33, 64, 143]. Another approach is Total Generalised Variation
(TGV) (designed for multi-modal and multi-channel imaging) [131, 147], which
generalizes TV to higher orders of differentiation, and uses it for spectral CT
to combine the channels. Both the sparse gradient and structural redundancy
regularization methods can be combined into so-called spatiospectral regularization,
for instance by combining spatial TV and spectral TGV [288]. All regularization
methods require at least one parameter to be properly set and tuned, while the
regularization method of choice is always dependent on the specific application.
Regularization is generally easier to incorporate in one-step methods [27]. However,
only a few methods incorporate spectral prior information into the one-step method
that allows for the reconstruction of more material volumes.

Since photon-counting detectors are a new technology relative to energy-
integrating detectors [284], multi-spectral CT has yet to find widespread use in
medical and industrial fields. Nevertheless, the possibility to combine multi-spectral
imaging with CT has enabled contrast agent imaging by exploiting energy-dependent
K-edges of different materials [249]. Additionally, photon-counting detectors are
also expected to improve spatial resolution [261]. Therefore, spectral CT and
hyperspectral CT are beginning to find applications in medical imaging, such
as enhancing tissue contrast [99, 296], and spectral CT is expected to be fully
integrated into health care in the coming years [274]. This will further increase
the interest in the underlying machinery and methods. However, it also requires
further algorithmic developments for spectral image processing and CT reconstruc-
tion. At the same time, spectral and hyperspectral CT have great potential for
security and industrial imaging [296]. Still, iterative reconstruction algorithms
for photon-counting detectors are currently too computationally intensive for fast
reconstruction [292], although the continued growth of interest [99] and algorithmic
developments in methods with applications in medical CT are expected to improve
this. Moreover, the difficulty of large-scale production of affordable high-quality
photon-counting detectors still limits their commercial usage [159], and hyperspec-
tral cameras are currently even more expensive. However, the first industrial X-ray
cameras able to perform spectral imaging for food processing are scheduled to be
launched in the coming years. For this reason, we will mainly focus on spectral
X-ray CT in this dissertation. Furthermore, possible downsides of (hyper)spectral
imaging, such as long acquisition times and computation times, may be alleviated
by machine learning (covered in the next section) which is likewise getting much
more attention in recent years in inverse problems and CT reconstruction.
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1.6 Machine learning

Many routines in industrial imaging, for example X-ray based foreign object de-
tection and crack detection, can in principle be carried out by humans. As the
previous sections show, X-ray imaging and subsequent innovations enable doing
these tasks in a noninvasive manner, but the work can be tedious, laborious or
even harmful to humans. Moreover, the results are subjective, often irreproducible
and possibly severely inaccurate. These aspects are some of the many motivating
examples for the development of artificial intelligence, particularly with respect to
food processing, with the aim of intelligent agents taking over the decision-making
in various stages of the processing chain.

With machine learning, a model has the ability to learn (i.e. increasingly
improve performance on a specific task) from data to carry out a task without
being explicitly programmed to do so. Machine learning algorithms are concerned
with predicting outputs y from inputs x using a function f . In supervised machine
learning, this function can be estimated from labelled training data {(xi, yi)}mi=1

with input features xi ∈ X and corresponding labels yi ∈ Y [205], with X and Y
being the input and output spaces, respectively. Machine learning aims to minimize
the errors on unseen examples, as opposed to minimizing the errors on a training
set only such as in optimization. Therefore, the training data should represent the
unseen data well and the function f should both predict the training input features
correctly as well as generalize to unseen data. As opposed to unsupervised machine
learning, the labels yi are known in supervised machine learning, which we will
address in this section (for more details we refer to more technical and in-depth
work [38]).

More formally, the labelled data space can be written as a product of the input
and the output space Z := X ×Y . The training data are assumed to be realizations
of independent and identically distributed random variables Z = (Z1, . . . , Zm),
with Zi = (Xi, Yi) from an unknown (joint) probability distribution denoted by
PZ . LetM(X ,Y) be the set of all (measurable) functions from X to Y. The loss
function L :M(X ,Y)× (X ×Y)→ R≥0 measures the performance, i.e. how much
the prediction f(x) by a given function f ∈M(X ,Y) differs from the target y with
respect to a chosen metric. Given the data space Z = X × Y, the goal is to find a
function f : X → Y that minimizes the risk R(f), which is the expected loss of
the function f :

R(f) = EPZ [L(f,X, Y )].

Since the distribution according to PZ is unknown, minimizing the risk over all
measurable functions (resulting in the Bayes risk R∗) is not possible. Therefore, the
idea is to choose a hypothesis set or hypothesis class (a set of candidate functions)
F ⊂ M(X ,Y) and construct a learning algorithm to find a function f̂ ∈ F for
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training data Z that minimizes the empirical risk, which is given by:

R̂(f̂ ,Z) =
1

m

m∑
i=1

L(f̂ , Zi).

The empirical risk R̂(f̂ ,Z) measures the average loss on the training data Z and
converges by the law of large numbers almost surely to the true risk R(f̂) as the
number of training samples m goes to infinity. Given training data Z, an empirical
risk minimizer is a function f̂Z that minimizes the empirical risk over all functions
in the hypothesis set F :

f̂Z ∈ arg min
f̂∈F

R̂(f̂ ,Z).

To assess the performance of an empirical risk minimizer f̂Z , the difference between
the expected risk E[R(f̂Z)] (where expectation is with respect to Z and the
randomness in the learning algorithm to choose f̂Z from F) and the Bayes risk
can be examined. This excess risk can be rewritten in the following way:

E[R(f̂Z)]−R∗ = E[R(f̂Z)]− inf
f∈F
R(f)︸ ︷︷ ︸

estimation error

+ inf
f∈F
R(f)−R∗︸ ︷︷ ︸

approximation error

.

The first two terms form the estimation error and give the difference between
the expected risk of the empirical risk minimizer and the risk minimizer over the
hypothesis set F . The last two terms together form the approximation error and
give the difference between the risk minimizer over the hypothesis set F and the
Bayes risk (over all measurable functions). In other words, the estimation error
reflects how good the data are for finding the best prediction function in F for
the entire data space (with respect to the data distribution). In contrast, the
approximation error reflects how restrictive the hypothesis set F is for finding the
optimal prediction function. As illustrated in Figure 1.14, the hypothesis set F is
an important parameter. In case F is very small, the estimation error can become
small, but the approximation error may become large, leading to underfitting of
the dataset and, therefore, poor results on the training dataset. Conversely, if the
hypothesis set is large, the approximation error is low, but the empirical error is
high, leading to overfitting and bad generalization. Hence, given training data, a
well-chosen hypothesis set is necessary for proper learning, of which the complexity
provides a good trade-off for function estimation from the data and approximation
of the other elements in the distribution. The analysis of this problem is complex
and we will refer to literature for more details [38].

While there is no universal learning algorithm for every data distribution, there are
many approaches to tackle this problem that provide suitable learning methods in
practice. First, given a dataset and a function f , it is not clear whether f overfits
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Figure 1.14: Schematic view of the estimation error and approximation error as a function of the
hypothesis set complexity. The minimal excess risk is attained at a hypothesis class complexity for
which the class contains a function that does not underfit the data, but no function that overfits the
data.

or underfits the data. A common approach is to split the dataset into a training
set and a validation set. Using a learning algorithm, candidate functions can be
computed by minimizing the empirical risk on the training dataset. After that, the
performance of a candidate function can be evaluated on the validation set. The
idea is that a function overfitting on the training set can be observed by a weak
performance on the validation set. Instead, the functions that perform best on the
validation set can be used as candidates for the trade-off between estimation and
approximation.

In traditional machine learning, there are many approaches for the hypothesis
set. These include classes of functions described by decision trees, k-nearest
neighbors and support vector machines, to name a few. Due to the increasing data
size and complexity of their analysis, traditional machine learning methods have
mostly become less suitable for many problems, including those related to food
inspection [327]. However, one class of hypothesis sets that deal particularly well
with these challenges is that of neural networks. Neural networks are inspired by the
functionality of biological neurons in the brain. The basic blocks are the artificial
neurons (Fig. 1.15a), that consist of a number of input weights w = (w1, . . . , wn),
a bias value b and an activation function σ, producing an output value φ(x) from
its input values x = (x1, . . . , xn) in the following way:

φ(x) = σ

(
n∑
i=1

wixi + b

)
.

For the activation function σ, the Heaviside (threshold) function is an intuitive
choice: only when the sum of the bias and the value of the inputs multiplied by
the weights exceeds a certain threshold, the neuron will output a nonzero value.
Alternative activation functions include the logistic functions and - more recently
used - the Rectified Linear Unit (ReLU) activation function [102, 178], which is
the identity for positive numbers and zero otherwise. By connecting the neurons,
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Figure 1.15: Building blocks of a neural network: (a) artificial neurons that weigh each input value
and passes on the input value modified by a given activation function σ (as an example, the ReLU
function is shown) and (b) the composition of multiple neurons into (fully connected) layers, and the
composition of layers into a network of depth d = 2.

a neural network is formed (Fig. 1.15b). Different neurons can act on the same
input, and can be organized in a layer with each neuron producing its own output
φj(x) on the same input x. By placing the layers φij in sequential order, with
i = 0, . . . , d being the index of the layer and d being the depth of the network,
a multilayer perceptron is created which takes input and propagates it through
all the layers. The architecture of the network is given as A = (C, σ), where σ is
the activation function, and C = (c0, c1, . . . , cd−1) specifies the number of neurons
per layer. The architecture A gives rise to the set ΘA, which contains all value
combinations of parameters of the network, i.e. the weights and biases. A real-
ization of the network architecture A is a network FAθ : Rc0 → Rcd−1 with values
θ ∈ ΘA assigned to the parameters. The hypothesis set of a network architecture
is then F = {FAθ : θ ∈ ΘA}. The aim is to find a parameter configuration θ∗

that minimizes the loss of the predictions of the realization of the network on the
training set [188]:

θ∗ = arg min
θ∈ΘA

m∑
i=1

L(FAθ (xi), yi).

By feeding the neural network examples from a training set, the loss of the model’s
predictions and the ground truth can be computed. Since the functions φij in the
neurons in the neural network are differentiable (almost everywhere), the gradient
of the loss can be computed with respect to the network parameters using the
backpropagation algorithm. Using a stochastic gradient algorithm, the error can be
repeatedly used to re-adjust the parameters and optimize the network performance
on the training dataset. Often used derivations of stochastic gradient descent for
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this purpose are AdaGrad [74] and ADAM [146]. The training procedure is carried
out and evaluated repeatedly on the validation set. To assess the result of the
training procedure, the obtained network is eventually evaluated on a separate test
set.

Deep neural networks have recently gained popularity, where deep refers to
the networks having many layers [205]. Such networks allow for more complex
functions and trainable parameters, and deep learning methods can in some cases
therefore perform better data analysis than traditional machine learning methods
[327]. Deep learning applications include speech recognition, natural language
processing, classification, partial differential equation solvers, image generation and
image processing [12, 327]. Consequently, these approaches are nowadays used for
health care, recommender systems, fraud detection and self-driving cars, to name
a few applications.

For imaging tasks, deep Convolutional Neural Networks (CNNs) have found
substantial usage for tasks such as denoising, object detection, edge detection,
classification and segmentation (assigning a label to each pixel in an image) [296].
The key feature of a CNN is that the neurons use convolution operators (which
generalize the weights of standard neural networks), where the output of a neuron
is expressed in the following way:

φ(x) = σ

(
n∑
i=1

Chi(xi) + b

)
. (1.5)

The convolution Chi of the neuron from input i is characterized by a filter hi.
For 2D imaging applications, the convolution operator of hi with the function gx,
defined by gx(k, l) = xk,l, is given by:

Chi(x) = (hi ∗ gx)

=

∞∑
m=−∞

∞∑
n=−∞

hi(m,n)xk−m,l−n.
(1.6)

In practice, the summations are taken over a range where the chosen filter is
mostly nonzero (which is often indicated by the size of the filter). For instance,
a filter can consist of a 3× 3 matrix kernel containing weights that indicate the
contribution of pixel xk,l and its neighbouring pixels to the corresponding pixel
Chi(x)k,l in the resulting convolved image (see Fig. 1.16 for an example). The
expression in Equation 1.5 is an image of one channel. When images from multiple
channels are combined, these are referred to as feature maps (for instance, an RGB
image is a feature map with three channels). Each convolutional layer creates a
new feature map from input feature maps. The input maps could be those of the
last previous layer or of all the previous layers combined. By repeatedly passing
on an input image through multiple convolutional layers, complicated features can
be extracted from images. Deep convolutional neural networks apply many of such
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Figure 1.16: Visualization of a convolution. For every target pixel, the input pixel values are multi-
plied by the corresponding weights in the convolution filter, yielding the convolved image. The colors
indicate the values of the pixels. In this case, the resulting image is a blurry version of the input image.

convolutional layers. Along with the biases in the neurons, the weights in the
convolution operators are parameters that need to be optimized during the learning
process, giving rise to a significantly higher number of trainable parameters than
in conventional neural networks with similar architectures.

Nevertheless, despite seemingly overparametrization and the possibility of over-
fitting of CNNs, these have proven to yield outstanding results for many imaging
problems. However, the reason for the success of such deep architectures is not
understood well [38]. On top of this, many different strategies can be applied
to such networks, giving rise to many classes of CNNs. For instance, the setup
of the kernels can be tweaked, such as varying the stride (the step size in the
summations of Equation 1.6), the dilation (the spacing between the kernel points),
and padding (adding values at the edge of the image), which can all be considered
as hyperparameters (parameters set beforehand that control the learning process).
Additionally, there is a high degree of freedom in the architecture, such as the
dependence of convolutional layers on the previous layers. Other examples are
the addition of other operations between the convolutional layers, such as up- or
downsampling operators or pooling layers (which also reduce the spatial resolution
of the feature maps). Chapters 2 and 3 and will go into more detail about relevant
CNN architectures and notation, respectively.

The many possibilities in the design of deep CNN architectures results in a
large number of CNN classes without a uniform understanding of how each class
works. However, this has not prevented its widespread use for imaging problems or
limited its suitability for detection and segmentation problems in X-ray imaging
and computed tomography. The main assets of CNNs for these fields are the
recognition of complicated patterns and the ability to deal well with noisy images,
which is for instance useful with (hyper)spectral images that are noisier than
normal radiographs. Similar to the feasibility of iterative reconstruction techniques
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for tomography, learning with convolutional neural networks has become more
prevalent due to improved hardware, particularly the GPUs, allowing to train
networks with up to millions of parameters. Toolboxes for advanced deep learning,
such as PyTorch [222, 223] and TensorFlow [4], provide even easier access to the
application of these methods to imaging problems than before.

Deep learning is applied to many problems in 2D X-ray imaging. An important
field of application is X-ray security imaging, such as cargo and baggage scanning
at airports and other public areas, to detect and classify potentially harmful objects
from radiographs [8]. In medical imaging, deep learning has many applications
in radiography [195], including the analysis of chest X-ray images [53], as well as
bone fracture classification [277] and bone age estimation [155]. For industry, deep
learning methods with X-ray imaging have been developed for tasks such as defect
segmentation of castings from radiographs [72, 90], weld inspection [90, 185, 192],
and food processing [327]. However, deep learning combined with radiography is
underused in those application areas, particularly in food processing [192], although
it has been getting more attention in recent years [81]. The usage of deep learning
is more common in X-ray CT, where it can be applied for 3D reconstruction and
segmentation tasks with limited data [120, 187, 226, 326], such as limited angle and
limited view measurements [160, 300], noisy data acquisitions [124, 157, 160, 304],
as well as reduction of cone-beam artefacts [197] and reduction beam hardening
[319, 329] and metal artefacts [32, 157]. On top of that, (parts of) the tomographic
inversion operator can also be learned with deep learning [269, 285, 300]. Such
approaches can also be combined with spectral imaging for improved image artefact
reduction [49]. Another important field of application of deep learning is image
compression [177], with network structures that encode data to a lower dimensional
space and decode it to either the original data (autoencoder) or data corresponding
to a specific task [198, 229]. In hyperspectral imaging, image compression by means
of deep learning is carried out to reduce the size of hyperspectral data cubes of
satellites and planes that are transmitted to remote locations for further analysis
[73]. For the new hyperspectral X-ray imaging methods, such approaches may turn
out useful when applied to high-throughput industrial tasks such as food inspection.

Despite the high success of deep learning in recent years, it also comes with many
challenges. Apart from the incomplete mathematical understanding [38] of deep
learning and their high computational costs [13], another practical problem is the
reliance on data to successfully employ deep learning. Deep learning is very data-
demanding [183], with the performance on vision tasks increasing logarithmically
with the data volume [271]. On top of this, in supervised learning, the data often
need to be annotated by experts, which is a tedious and time-consuming process.
For food processing, there is a lack of large datasets [8] to employ deep learning for
real-time applications. Moreover, very few open datasets are available for X-ray
testing [192], most likely due to the limited number of experts for data annotation.
Because of this, even though there is much potential, multi-channel acquisitions
still need to be fully used in deep learning based X-ray imaging applications [8].
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1.7 Research questions and dissertation outline
This dissertation presents a number of tools and techniques as building blocks
that can be integrated into automated X-ray inspection systems for industry. As
previously pointed out in this chapter, recent advances in X-ray imaging and
machine learning enable the use of spectral X-ray imaging and deep learning. This
allows for the construction of learning-driven automated spectral X-ray inspection
systems. The main driving question throughout this dissertation is therefore the
following:

Main question: How can we use the possibilities of spectral imaging and deep
learning in industrial imaging and industrial tomography?

To provide an answer to this question, we investigate various aspects of spectral
imaging, deep learning, or a combination of these. Each of the four forthcoming
chapters will address a separate research question.

Chapter 2: How can tomography assist industrial 2D radiography, in particular
foreign object detection?

In Section 1.1, we have seen that detection of unwanted (‘foreign’) objects
within products is a standard procedure in many branches of industry for main-
taining product quality. In Section 1.2, we have seen that X-ray imaging is a
fast, non-invasive and widely applicable method for foreign object detection. As
noted in Section 1.6, deep learning has recently emerged as a powerful approach
for recognizing patterns in radiographs, enabling automated X-ray based foreign
object detection at high rates. However, these methods require a large number of
training examples and manual annotation of these examples is a subjective and
laborious task.
In Chapter 2, we will propose a new workflow that solves this manual annotation
problem. The workflow combines CT scanning with segmentation to efficiently and
objectively produce annotated training data. With this data, a deep convolutional
neural network can be trained to learn the foreign object detection task at hand,
after which it can be applied to similar tasks. The method relies on high-quality
CT scans and subsequent processing. As opposed to medical CT, in industry, there
are generally no dosage constraints on the CT scan and therefore higher-quality
reconstructions can be achieved by utilizing long scanning times and high pen-
etration power by powerful X-ray sources. The workflow is demonstrated on a
real X-ray CT dataset, with results suggesting that the method can be applied to
industrial food inspection.



1.7. Research questions and dissertation outline 37

Chapter 3: How can we use deep learning for task-driven (hyper)spectral data
compression?

In Section 1.4, we have seen that the arrival of (hyper)spectral X-ray imaging
may provide additional insights into objects exposed to foreign object detection
tasks. However, an important challenge in hyperspectral imaging tasks is to cope
with the large number of spectral bins in the generated data. Common spectral data
reduction methods do not consider prior knowledge about the task. Consequently,
sparsely occurring features that may be essential for the imaging task may not be
preserved in the data reduction step. As noted in Section 1.6, convolutional neural
network approaches are capable of learning the specific features relevant to the
particular imaging task, but applying them directly to the spectral input data is
constrained by the computational efficiency.
In Chapter 3, we therefore introduce a novel supervised deep learning approach
for image analysis. The method combines data reduction and image analysis in
an end-to-end network architecture. The proposed data reduction network archi-
tecture, which we name DRCNN, consists of a data reduction block paired with
a CNN. The network component that performs the reduction is trained jointly
with the CNN such that image features most relevant to the task are preserved
in the reduction step. The approach is demonstrated on a number of artificial
datasets, and suggests the possibility for higher compression and accuracy in various
applications, including hyperspectral X-ray imaging.

Chapter 4: Can we use multi-channel imaging to improve reconstructions in
discrete tomography?

As noted in Section 1.3, discrete tomography is concerned with objects that
consist of a small number of materials, which makes it possible to compute accurate
reconstructions from severely undersampled projection data. For cases where the
allowed intensity values in the reconstruction are known a priori, the discrete
algebraic reconstruction technique (DART) has been shown to yield accurate re-
constructions from few projections. However, a key limitation is that the benefit
of DART diminishes as the number of different materials increases. Since new
tomographic imaging techniques can simultaneously record tomographic data at
multiple channels and provide multi-channel data, a new reconstruction algorithm
can exploit this additional information.
In Chapter 4, we present Multi-Channel DART (MC-DART). This method is a
generalization of DART to multi-channel data and combines the information for
each separate channel-reconstruction in a multi-channel segmentation step. By
iteratively applying these steps, a final accurate segmented reconstruction can be
produced from multi-channel data. Through a number of simulation experiments,
it is shown that MC-DART is capable of producing more accurate reconstructions
compared to (single-channel) DART.
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Chapter 5: How can we use prior information on spectral material signatures
in tomographic reconstruction and material decomposition algorithms?

The advances noted in Section 1.5 in multi-spectral detectors are causing a
paradigm shift in X-ray CT. Spectral information acquired from these detectors can
be used to extract volumetric material composition maps of the object of interest.
The image reconstruction step is relatively straightforward if the materials and
their spectral responses are known a priori. If these are not known, however, the
maps as well as the responses need to be estimated jointly. The most conventional
workflows in spectral CT involve performing volume reconstruction followed by
material decomposition, or vice versa. However, these methods inherently suffer
from the ill-posedness of the joint reconstruction problem.
In Chapter 5, we present a new one-step method for tomographic reconstruction
in spectral CT. In this method, which we name ADJUST, prior information about
spectral attenuation curves of materials that may appear in the object of interest
is taken into account by formulating the problem in a specific way. In essence, the
to-be reconstructed volume is written as a multiplication of a material map matrix,
a material-indicator matrix, and a spectral dictionary matrix. In the proposed
optimization method, the first two matrices are jointly iteratively estimated.

In Chapter 6, we will return to the main research question and discuss how the
methodologies developed in each chapter can support industrial X-ray imaging and
tomography. In addition, the relevance of each method is discussed with respect
to the fields of spectral and hyperspectral tomography, discrete and multi-channel
tomography, hyperspectral imaging, machine learning and dimensionality reduction,
along with all their application areas. Furthermore, we outline the contributions,
implications and future research directions.



2
Tomographic workflows for deep
learning training data generation

In food inspection, identifying foreign objects is essential. X-ray imaging and
machine learning allow for doing this in automated manner. Nevertheless, for
reliable performance a substantial body of training data is needed, which is
difficult to come by.

In this chapter, we present a Computed Tomography (CT) based method
for producing training data for supervised learning of foreign object detec-
tion, with minimal labor requirements. In this approach, a few representative
objects are CT scanned and reconstructed in 3D. The radiographs that are
acquired as part of the CT-scan data serve as input for the machine learning
method. High-quality ground truth locations of the foreign objects are ob-
tained through accurate 3D reconstructions and segmentations. Using these
segmented volumes, corresponding 2D segmentations are obtained by creating
virtual projections. We outline the benefits of objectively and reproducibly
generating training data in this way. In addition, we show how the detection
accuracy depends on the number of objects used for the CT reconstructions.
We show that in this workflow generally only a relatively small number of
representative objects (i.e. fewer than 10) are needed to achieve adequate
detection performance in an industrial setting.

This chapter is based on:
M. T. Zeegers, T. van Leeuwen, D. M. Pelt, S. B. Coban, R. van Liere, and K. J.
Batenburg. “A tomographic workflow to enable deep learning for X-ray based foreign
object detection”. Expert Systems with Applications 206 (2022), p. 117768.
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2.1 Introduction

Foreign object detection in an industrial high-throughput setting is essential for
guaranteeing quality and safety of objects processed in factory lines. Foreign objects
may, for example, appear in products such as meat, fish or vegetables as small
pieces of glass, bones, plastic, wood or stone that could harm consumers [16, 294,
327]. Conventional nondestructive methods for detecting foreign objects include
ultrasound imaging, X-ray imaging, magnetic resonance imaging, fluorescence
imaging, (hyperspectral) spectroscopic imaging and thermal imaging [116, 162,
200, 207, 210, 303]. X-ray imaging provides the unique opportunity to visualize
the interior structure of an object in a fast, low-cost, and non-invasive manner.
This enables X-ray based foreign object detection, in which the goal is to detect
unwanted smaller objects inside base objects based on their distinct attenuation
or attenuation patterns, as observed in generated radiographs (i.e. standard 2D
X-ray images). The possibility to reveal hidden foreign objects in radiographs has
lead to its extensive use in various industrial applications [80, 111, 153, 186, 191,
207, 323], for which low-cost, adaptive and efficient image processing methods are
essential [186, 303]. One way to achieve better discrimination of foreign objects
in radiographs is to use multispectral X-ray imaging detectors, simultaneously
capturing radiographs at two or more energy levels [199, 274]. As the attenuation
properties of each material have their own characteristic dependence on the X-ray
energy, these multispectral images can be analyzed to extract material composition
information.

However, superposition of materials gives rise to similar levels of intensities
for different objects in 2D radiographs. This problem limits the application of
commonly used segmentation methods, such as threshold-based, clustering-based,
and boundary-based or edge-based segmentation [256, 260], to extract different
components of the object. Additionally, high-throughput acquisition may lead to
high noise levels in radiographs, and this increases the difficulty of successful foreign
object detection even further [186, 303]. Commonly used segmentation methods
can be unsuitable in case of poor image qualities caused by conditions such as noise,
low contrast and homogeneity in regions close to foreign objects [260]. Most conven-
tional unsupervised methods can therefore not achieve high accuracies [260] without
extensive manual parameter tuning to use a method for a specific problem [239, 245].

Machine learning is a powerful tool for recognizing patterns in images [322] and
can potentially detect foreign objects in radiographs [327]. Recent machine learning
methods address a wide variety of segmentation problems [98, 260], and provide
a remarkable improvement over more classical segmentation methods in many
practical applications [108]. A key obstacle in the application of machine learning is
the need for large datasets [57, 69, 297], which is particularly prominent in machine
learning for foreign object detection as each new combination of sample, foreign
object, and imaging settings requires additional data. On top of that, supervised
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learning uses labelled datasets for training. However, manual annotation (as in e.g.
[245, 260]) requires tremendous efforts [8], is time consuming and tedious [276], is
subjective and can be prone to errors.

The key contribution of this chapter is the proposal of a workflow based on
3D Computed Tomography (CT) for efficiently creating large training datasets,
overcoming the aforementioned obstacle. CT scans of a relatively small number of
objects are carried out with low exposure time – as in a high-throughput setting –
yielding a large number of radiographs that are used as input for the supervised
machine learning method. The same set of radiographs is also used offline for
generating multiple high-quality tomographic 3D reconstructions, from which for-
eign objects can easily be segmented in 3D and projected back onto a virtual 2D
detector to give the corresponding ground truth locations of the foreign objects
in the radiographs. Without the effort of extensive manual labelling, this results
in a large dataset with which deep learning can be carried out to detect foreign
objects from fast-acquisition radiographs at a high rate. The example in Figure 2.1
illustrates the difference in ease of segmentation for a CT reconstructed 3D volume
versus a 2D radiograph. Whereas segmenting the foreign object in a radiograph is
a challenging task, simple global thresholding can be applied to the CT volume to
separate the foreign object from the base object. Additionally, more sophisticated
and accurate segmentation and denoising rules can be imposed on 3D volumes [98,
173, 217] than on 2D radiographs.

(a) 2D radiograph (b) 2D slices in the reconstructed 3D
volume space

(c) Red-bordered 2D slice of
the 3D reconstruction

Figure 2.1: Different views of an imaged product (Play-Doh) with a foreign object inserted (a piece
of gravel). A 2D radiograph with the location of the foreign object (red circle) is shown (a), as well
as multiple slices through the 3D volume of the reconstructed object (b), of which the slice with the
red border is highlighted (c). The images show the difference in contrast: the foreign object is much
easier to distinguish based on intensity values in the reconstructed 3D volume (b and c) than in the 2D
radiograph (a).
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The structure of the chapter is as follows. Section 2.2 provides the background of
applying machine learning for foreign object detection, and Section 2.3 explains the
proposed method of data generation to apply machine learning. In Section 2.4, the
workflow is demonstrated in a laboratory experiment, and shows how the number
of imaged objects affects the detection accuracies. Additionally, the robustness of
the workflow is analyzed. Section 2.5 discusses various aspects of the results and
the flexibility and modularity of the workflow. Section 2.6 presents the conclusions
from this work.

2.2 Preliminaries
In this section, we introduce the X-ray foreign object detection problem and the
machine learning concepts used in this chapter.

2.2.1 Foreign object detection with X-ray imaging
We consider the problem of foreign object detection in an industrial high-throughput
conveyor belt setting. The problem and the usage of X-ray imaging to solve this
are schematically shown in Figure 2.2. In foreign object detection, the aim is to
correctly determine for each object whether a foreign object is contained in it or
not, for instance a piece of bone within a meat sample.

For this problem, we focus on finding an accurate segmentation for each ra-
diograph. A segmentation partitions an image into sets of pixels with the same
label. In our case, the formed segmented image is binary and indicates on which
detector pixels a foreign object is projected. The segmentation depends on the type
of objects that are considered to be foreign (by for instance a manufacturer). Any
further classification (based on the minimum size of a foreign object for example)
can be carried out after the segmented image is produced.

Segmentation

method

Figure 2.2: A schematic overview of the foreign object detection problem and the segmentation-based
approach to solving it. Each object (a) is assumed to have a correct segmentation (e). By using X-ray
imaging (b), a radiograph of the object (c) can be acquired. Using a segmentation method (d), a
segmented image (e) can be produced. The main challenge is to find a suitable segmentation method
such that this approach to foreign object detection produces the correct results.
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Throughout this chapter, we use the term radiograph for radiographs corrected
using flatfield radiographs (without an object) and darkfield images (without the
X-ray beam) that serve as input to the segmentation method. The quality of a
radiograph depends on a number of properties of the scan, including exposure
time, tube intensity, photon energy windows and the geometric setup [242]. In
a high-throughput setting, the steps in Figure 2.2 should be fast to carry out,
typically resulting in high noise levels and a challenging segmentation task.

2.2.2 Supervised learning
Machine learning is a widely used approach for difficult imaging tasks, as it can
extract complicated patterns from complex images. In the foreign object detection
problem, supervised machine learning can be used to learn the segmentation task
such that it generalizes well for all possible fast-acquisition radiographs of similar
objects with similar acquisition settings. To do so, a set of examples {(xi, yi)}Ni=1 is
used, where {xi}Ni=1 are acquired radiographs and {yi}Ni=1 are their corresponding
foreign objects segmentations. The aim is to find the unknown segmentation func-
tion F that maps each radiograph xi to its segmentation yi. To find an approximate
solution that generalizes well, the set of images is partitioned into a training set, a
validation set and a test set. The training set is used to learn the function Ftrain
that minimizes the loss L on the training set, which is the sum of errors between the
segmented images Ftrain(xi) produced by the segmentation function and the true
segmented images yi. To find a suitable segmentation function, a (convolutional)
neural network is often used as a model and parametrized using weights and biases
that are optimized during the training process. While carrying out the training
with a chosen loss function and optimization algorithm, the performance of the
model is evaluated on the validation set. Several stopping criteria can be used
for this, for example stopping the training when the error on the validation set
increases, or training for a fixed time (and recording the network that gives the
best results on the validation set). To avoid any bias towards the training and
validation data, the accuracy of the trained model is finally assessed using the test
set.

Since the introduction of Fully Convolutional Networks [171], in which successive
contracting convolutional layers are utilized for pixel-wise semantic segmentation,
many convolutional neural network (CNN) architectures have been proposed that
can be used for the object segmentation task. U-Net changes the FCN architecture
by - along with downsampling operators and skip connections - introducing up-
sampling operators instead of pooling operators, giving it an U-shaped appearance
[240]. Similarly, Deconvnet [212] also introduces an auto-encoder structure with
deconvolution and unpooling operations (without skip connections). The success of
these methods on medical image segmentation and object detection spawned other
commonly used CNN architectures for segmentation such as SegNet [22], RefineNet
[167], PSPNet [321], and Mask R-CNN [115] for instance segmentation. Although
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some of the listed architectures need relatively few training examples for successful
segmentation, the annotation of these examples still requires considerable efforts.

2.3 Proposed method for training data acquisition
When attempting to perform machine learning for X-ray based foreign object
detection, the major obstacle is to acquire (manually) annotated training data. In
this section, we explain the methodology of our proposed CT-based workflow for
efficiently creating this annotated training data.

Our proposed workflow for using CT to obtain annotated training images is
schematically displayed in Figure 2.3. First, we select a set of representative objects
as training objects (Fig. 2.3a). For each object, a set of fast-acquisition radiographs
is collected from a set of predefined angles (Fig. 2.3b). These fast-acquisition
radiographs will form the input set of the intended training dataset (Fig. 2.3c).
The total number of examples in the resulting dataset is the number of training
objects multiplied by the number of selected angles.

The same set of radiographs is used to carry out a tomographic reconstruction
of the object and acquire high-quality CT volumetric data (Fig. 2.3d and e). The
next step is to segment the reconstructed volume such that a possible foreign
object is separated from the base object (Fig. 2.3f). This segmentation step can
be automated and many methods are available to implement this [158]. Here, we
consider volumetric segmentation methods that consist of a global thresholding step.

Figure 2.3: The complete workflow of data acquisition (a,b) and the generation of training data (c,h)
for deep learning driven foreign object detection, through 3D reconstruction from the CT scan (d, e),
segmentation (f), and virtual projections (g). The reconstruction reveals the hidden foreign objects
inside the main object. Note that the projection data (d) are usually just the set of fast-acquisition
radiographs (c).



2.4. Experiments and results 45

Binary segmentation by global thresholding is defined by the following function
S : R→ {0, 1} that acts on every voxel zijk in reconstruction volume z:

S(zijk) =

{
1 zijk ≥ θ,
0 zijk < θ.

Here, θ is the segmentation threshold. The more angles and other high-quality
settings are used to obtain projection data, the easier it is to accurately segment
the foreign object. Easier segmentation can also be accomplished by carrying out
a separate high-quality scan of the same object and making a reconstruction with
these high-quality radiographs. Additionally, for segmentation, prior information
about the objects can be used, such as bounding boxes on the foreign object
location [144]. Also, 3D denoising [70, 119] can be used to remove non-foreign
object pixels captured by the thresholding operation.

From the constructed foreign object segmentation, virtual ground truth projec-
tions are generated by simulating projections of the foreign objects onto a virtual
detector (Fig. 2.3g). This results in the set of ground truth images, which will
serve as target images in the machine learning procedure (Fig. 2.3h). These virtual
projections need to be taken under the same angles as in the fast-acquisition scan
(Fig. 2.3b). When this procedure is repeated for all objects, this results in a large
dataset with annotated training examples with which supervised machine learning
can be carried out (Fig. 2.3c and f). The trained model can then be applied to
similar new objects scanned in the same fast-acquisition setting, without the need
for acquisition of high-quality radiographs or CT scans.

2.4 Experiments and results
In this section, we demonstrate the proposed workflow using the in-house FleX-ray
CT system at CWI [62] (Fig. 2.4), and investigate the relation between machine
learning performance and the number of training objects used.

2.4.1 Base objects and foreign objects
As test objects, we use base objects that are created from a fixed amount of
modelling clay (Play-Doh, Hasbro, RI, USA). Play-Doh is primarily made of a
mixture of water, salt and flour and we therefore consider it to be a representative
example of products in the food industry, where foreign objects may be pieces of
stone, plastic, or metal. A basic shape is deformed and remolded for every object
instance (Fig. 2.5a) in such a way that they are similar from object to object, but
still exhibit some natural variation. For the foreign objects we choose to use gravel
(Fig. 2.5b), with the stones having an average diameter of ca. 7mm (ranging from
3mm to 11mm). These stones have slight variations in shape and material. We
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Figure 2.4: The scanning setup in the FleX-ray laboratory with the X-ray source on the left and the
detector on the right.

(a) Play-Doh (b) Stones (c) Play-Doh with stone
inserted

Figure 2.5: An example of a base object (a) and examples of foreign objects (b) used in the laboratory
experiments, as well as an example of a combined object (c).
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create 3 objects with three inserted stones, 35 with two stones, 62 with one stone
(Fig. 2.5c) and 11 without a stone.

2.4.2 CT scanning and data preparation
A fast CT scan is made for each of the objects, which yields both a series of radio-
graphs (i.e. the X-ray projections) and a reconstructed 3D volume of the object.
The objects are scanned in the FleX-ray laboratory [62] (Fig. 2.4). The FleX-ray
CT scanner has a cone-beam microfocus X-ray point source with a focal spot size of
17 µm, and a Dexela1512NDT detector. The source, object and detector positions
can be configured flexibly, and are arranged such that the distance between the
source and detector is 69.80 cm, and the distance between the source and the
object 44.14 cm. For the radiographs a voltage of 90 kV with a power of 20 W is
used, while the exposure time is kept low at 20 ms, with the intention to emulate
the imaging conditions of in-line industrial systems and produce sufficiently noisy
radiographs. To achieve high-quality reconstructions, 1800 projections of each
object are obtained at equidistant angles over a full 360◦ rotation. All projection
angles are precisely recorded during the scan for the later stages of the workflow.
Before and after each scan, 10 darkfield images and 10 flatfield projections are
obtained. Each object is positioned in a random manner, and the cylinders may
therefore be standing upright or be laying down on the long edge. Example ra-
diographs are shown in Figure 2.6. Separating the projected foreign objects from
the base object in these radiographs is not a trivial task, illustrating the problem
of obtaining annotated training data for automated segmentation using machine
learning directly from these images.

The Simultaneous Iterative Reconstruction Technique (SIRT) [140, 265] algo-
rithm (100 iterations) as implemented in the ASTRA toolbox [1, 2] is used to
compute the reconstructed 3D CT volume of the object. A visualization of the
reconstruction from the third object in Figure 2.6 and its foreign object is shown
in Figure 2.7. The CT reconstruction allows to slice the object along different
axes. As the CT voxel intensity is directly related to the attenuation coefficient of
the material in a voxel, the segmentation task for the 3D CT volume is, in this

Figure 2.6: Example of radiographs (size 965 × 760 pixels) of three objects that are scanned. In the
first and second radiographs the foreign object is clearly visible, but in the third it is more difficult to
distinguish it from the base object, even though it is visible on the bottom left.
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(a) Reconstructed 3D volume (b) Slice of the 3D reconstruction

Figure 2.7: Visualization of reconstructions by 3D rendering (a) and slicing (b) of the third object in
Figure 2.6.

case, much more straightforward and can be carried out by global thresholding (see
Appendix A.1 for additional details on intensity value distributions). Therefore, a
simple global threshold based on Otsu’s method [214] is sufficient to segment the
foreign objects.

From the 3D segmented objects obtained from the CT scans, 2D segmentations
for the individual radiographs are computed. This is done by computing the
projections of the segmented parts with the ASTRA toolbox using the same
geometric properties and recorded angles as in the radiograph acquisition of the
actual CT scan, to ensure geometric consistency in the training examples. Every
nonzero pixel on the detector is marked as a projected foreign object location.
The result is a dataset containing 1800 radiographs and corresponding segmented
images for each object.

2.4.3 Machine learning
We use the Mixed-Scale Dense (MSD) [227] and the common U-Net convolutional
neural network architectures [240] to train the task of image segmentation. For our
experiments with U-Net, we have slightly changed the architecture, as we observed
this improved performance in the experiments compared to the standard version.
We downsample twice, with a stride of 2. The initial number of feature maps is set
to 128, and the number of feature maps doubles for each downsampling layer. For
upsampling, bilinear interpolation is used. A spatial 3× 3 convolution operation
with zero padding and a ReLU activation function are carried out before and after
all downsampling and upsampling operations. The biases and convolution weights
are initialized by sampling from U(−

√
k,
√
k), with k = 1/cin·a

2 being the range,
cin the number of input channels and a the kernel size. ADAM optimization on
the average of the binary cross entropy loss and the dice loss [135, 270] between
the data and the predictions is used for training. The network is implemented
with PyTorch [222, 223]. For comparison between architectures, we also use the
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MSD network for training. MSD is a compact network architecture that has
been demonstrated to be suitable for real-time segmentation of X-ray and CT
images using relatively few training examples compared to larger networks [227],
including the U-Net architecture. We use a depth of 100 intermediate layers and
width of 1 channel per intermediate layer and increase the dilation parameter
repeatedly from 1 to 10 dilations in each layer, which are common settings for
the MSD network [154, 226, 227]. Xavier initialization is used for the convolution
weights. ADAM optimization [146] is used during training on the cross-entropy
loss between the ground truth and the segmented images, and the batch size of
training examples is set to 10. We use the GPU implementations in Python that
are available [225, 227]. For both architectures, the learning rate is set to 0.001
and all networks are trained on a GeForce GTX TITAN X GPU with CUDA
version 10.1.243. All hyperparameters of both network architectures are kept the
same during all experiments. Data augmentation is applied by rotation and flip-
ping of the input examples. All networks are trained for 9 hours, and the network
with parameters resulting in the lowest error on the validation set is used for testing.

With these networks, we carry out an image-to-image training from radiographs
(Fig. 2.3c) to their corresponding foreign objects segmentations (Fig. 2.3f). For
training, 60 randomly chosen base objects containing a foreign object are used.
The remaining 51 objects are used for testing. All images are resized using cubic
interpolation to 128× 128 to speed up the training process (global thresholding
with parameter θ = 0.5 is applied to the resized ground truth images to make
these binary again). We test the performance of the trained networks for different
numbers of objects included in the training scheme. To compare the workflow with
labor-intensive 2D data annotation, we compare the following training strategies:

• Workflow approach: For each network, we fix the total number of training
examples to 1800. A random but fixed order of the 60 training objects is
created and the first i objects among these are used for the training set. The
training examples are selected from the set of radiographs and ground truths
created by the workflow from these i training objects in equal amounts. Every
10th example is used for validation during training.

• Classical approach: For each network, only one randomly chosen training
radiograph with the corresponding ground truth (generated using the work-
flow) is selected for each of the first i included training objects. The resulting
set of training examples is separated such that 9/10 part is used for training
(rounded down to the nearest integer) and 1/10 part is used for validation
(rounded up).
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2.4.4 Quality measures
To evaluate the accuracy of the trained networks on the test set, in which the target
images are generated using the workflow on the test objects. Three different mea-
sures on the segmented images and the corresponding target images are computed.
The collection of these measures both assess the image segmentation accuracy and
the object detection accuracy. An image segmentation accuracy is based on the
classification of each pixel in the segmented image, and there are standardized
ways to measure this that do not depend on any parameters [105]. An object
detection accuracy compares connected components (groups of pixels connected by
their edges) in the segmented image with the ground truth images. Although these
accuracy measures require additional parameters to define the notion of detection,
they are more relevant to the foreign object detection application.

The first measure is an image-based average class accuracy (also called balanced
accuracy [105]) to assess the accuracy of a produced segmentation. The average
class accuracy of a segmented image relative to the target image is given by the
sum of the true positives divided by the true positives and false negatives (the
recall) of each class, averaged over the number of classes. In the binary case this
becomes

1

2

(
TPFO

TPFO + FNFO
+

TPBG

TPBG + FNBG

)
. (2.1)

Here, TPFO,FNFO,TPBG and FNBG are the true positives and false negatives of
the foreign object and the combined base object and background pixel classifications
respectively over the entire segmented image relative to the target image. The
average class accuracy as given in (2.1) is averaged over all target images.

The second measure is an object based detection rate. A connected component
is a maximal set of nonzero-valued pixels such that each pixel is reachable from
another pixel in the set via a sequence of neighboring pixels in the set. Each
connected component in the target image with a minimum size of 8 pixels (0.05%
of the image size) is considered as an object that should be detected. We define
such an object as detected if its pixel-wise recall relative to the segmented image is
higher than a certain threshold η:

TPtar
obj

TPtar
obj + FNtar

obj
> η. (2.2)

Here, TPtar
obj and FNtar

obj are the true positive and false negative pixels in the target
object relative to the segmented image. The threshold indicates the percentage of
pixels of a projected foreign object in the target image that should be indicated as
foreign object pixels in the segmented image produced by the network to be marked
as a detected object. In our experiments, we set η = 0.3. We define the detection
rate as the percentage of components in all target images for which condition (2.2)
holds.
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The third measure is an object based false positive detection rate. Each connected
component in the segmented image with a minimum size of 8 pixels is considered
as a potentially detected object. We define such a potentially detected object as
a false positive if its pixel-wise recall relative to the target image is lower than a
certain threshold δ:

TPseg
obj

TPseg
obj + FNseg

obj
< δ. (2.3)

Here, TPseg
obj and FNseg

obj are the true positive and false negative pixels in the seg-
mented object relative to the target image. The threshold indicates the percentage
of pixels of a foreign object in the segmented image produced by the network
that are correctly labelled as foreign objects compared to the foreign object in the
target image. In our experiments, we set δ = 0.3. We define the false positive
detection rate as the percentage of potential objects in all segmented images for
which condition (2.3) holds.

2.4.5 Results
For the test set, we select a random angle and an orthogonal one for each test
object, making the total number of testing radiographs 102. We measure the
average class accuracy, the object based detection rate and the object based false
positive detection rate of segmentations created by the network on the projections
from the test set. The results are given in Figure 2.8.

For all measures, the quality of the foreign object segmentations in the radio-
graphs using networks trained with the workflow data is low for a few training
objects. This initially improves with the addition of relatively few training objects,
but this improvement stagnates beyond 20 objects. However, the detection accuracy
still shows slight improvements beyond this point, but almost completely stabilizes
from 40 objects onwards. Based on a decided accuracy goal, a certain number of
objects need to be scanned and used for training to achieve that accuracy. The
false positive rate decreases strongly and maintains a low level value from including
3 objects in the training onwards. Note that the results between the U-Net and
MSD architectures agree well with each other.

When we compare the usage of a fixed number of training radiographs among
all training objects with the classical approach of using only one radiograph per
object, we see that this leads to inferior results in all aspects. The average class
accuracies and the object based detection rates are lower for all numbers of included
training objects, while the false positive rates are higher. The difference between
architectures only shows for the false positive detection rate, which is generally
higher with the U-Net architecture.
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(a) Average class accuracy (b) Object based detection rate

(c) Object based false positive detection rate

Figure 2.8: The average class accuracy (a), the object based detection rate (b), and the object based
false positive rate (c) of segmentations with trained U-Net and MSD networks on laboratory data for
different number of training objects. The results are shown for the fixed number of training radiograph
approach (workflow) and the one training radiograph per object approach (classical). The results are
averaged over 5 trained networks, with a different training object order for each run. The shaded
regions indicate the respective standard deviations.

2.4.6 Laboratory experiments with many foreign objects
A natural way to reduce the number of objects used for training that need to be
scanned for obtaining accurate segmentations may be to include more foreign object
in the imaged objects. To test this, we repeat the experiments of the previous
section, but we insert 5 to 8 foreign objects instead of 0 to 2. The foreign objects
are placed within the base object such that overlapping of foreign objects in the
radiographs is minimized. We have scanned an additional set of 20 objects with
these characteristics. An example of a radiograph of an object with many foreign
objects is shown in Figure 2.9a. We compare the following training strategies in
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which the workflow data come from the following sets of training objects:

• Few foreign objects: Base objects with 0 to 2 foreign objects

• Many foreign objects: Base objects with 5 to 8 foreign objects

• Mixed: 50%− 50% mix of base objects with 0 to 2 foreign objects and base
objects with 5 to 8 foreign objects.

(a) Base object with many foreign objects (b) Average class accuracy

(c) Object based detection rate (d) Object based false positive detection rate

Figure 2.9: Example of a radiograph of a base object with many foreign objects (a). The eight foreign
objects are vertically placed in the object, although there still may be some overlap. The average class
accuracy (b), the object based detection rate (c), and the object based false positive detection rate
(d) of segmentations with trained U-Net and MSD networks for different number of training objects
and training strategies are shown. The results are averaged over 5 trained networks, with a different
training object order for each run. The shaded regions indicate the standard deviations.
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All networks are evaluated on the testing set from the previous section (with
test objects containing few foreign objects). The average class accuracies, detection
accuracies and the false positive rates of the trained neural networks with these
schemes on the test set are shown in Figure 2.9. From the graphs in Figures 2.9b
and 2.9c we see that the average class accuracies and detection accuracies are
higher for the many foreign object training scheme, but Figure 2.9d indicates that
false positive rate is also roughly 5 times higher. The mixed approach appears to
find middle ground between the two other approaches for all measures. We see that
from 20 objects onwards the mixed approach is as good as the approach with few
foreign objects in terms of the false positive rate, while being superior in terms of
average class accuracy and detection accuracy for up to 40 training objects. This
shows that including many foreign objects in the training set for detecting few to
no foreign objects in the test set has limited additional value, but mixing these
with examples with objects containing a few foreign objects may result in higher
detection quality while maintaining a similar false positive detection rate.

2.4.7 Robustness of the workflow
In the previous experiments, the trained networks are tested on a set of projec-
tions that are generated using the same 3D segmentation threshold parameter
in the workflow as in the generation of the data for the training and validation
sets. To assess the robustness of the workflow to different segmentation parame-
ters, we generate the training datasets with different values of the segmentation
parameter θ (see Figure 2.10a). For each of these values, networks are trained
and assessed on the test set from the previous sections. The number of training
objects that are included in the workflow is fixed to 10 (which has led to equiva-
lent results in the previous experiments as with 60 objects in the classical approach).

In Figure 2.10, the average class accuracies, detection accuracies and the false
positive rates of the trained neural networks are shown for the different thresholds.
The results for U-Net and MSD are very similar. As the threshold value increases,
the average class accuracy decreases, with significantly lower values for θ = 0.014
and θ = 0.015. The same holds for the detection rate, but it reaches a plateau
between θ = 0.009 and θ = 0.013 where this accuracy measure gives similar values.
For low values of the threshold parameter, the false positive values are high, and
from θ = 0.011 and higher these are low and similar to each other. Taken together,
threshold parameters between θ = 0.011 and θ = 0.013 lead to very similar results.
We conclude that for the class of objects considered in these experiments, the
workflow is robust against moderate variation of the segmentation parameter and
that suboptimal segmentation methods can also be used in the workflow.



2.4. Experiments and results 55

(a) Attenuation value histogram with thresholds (b) Average class accuracy

(c) Object based detection rate (d) Object based false positive detection rate

Figure 2.10: The eight considered thresholds for the generation of the training datasets in the work-
flow, drawn in the histogram of attenuation values of the third object in Figure 2.6, and the average
class accuracy (b), the object based detection rate (c), and the object based false positive detection rate
(d) of segmentations with trained U-Net and MSD networks on data resulting from these segmentation
thresholds. The results are averaged over 5 trained networks, with a different training object order for
each run. The shaded regions indicate the standard deviations.

2.4.8 Simulation experiments

In this section, we will demonstrate the workflow in a controlled simulated setting.
In this way, we can verify the results with larger training and test sets when
more objects are available. Furthermore, the test set previously consisted of data
generated with the workflow, but in a simulated setting ‘absolute’ ground truth
can be created for the test set by directly projecting the simulated foreign objects
(see Figure 2.11). We verify that the proposed workflow (with CT scanning, re-
construction and segmentation) results in segmented foreign objects of which the
projections are similar to absolute ground truth projections, which further supports
the confidence we can have in the experimental test results.
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Figure 2.11: The complete workflow of data acquisition (a,b) and the generation of training data
(c,h) for the simulation experiment by 3D reconstruction from the CT scan (d, e), segmentation (f),
and virtual projections (g). The 3D reconstruction reveals the hidden foreign objects inside the object.
The dotted green arrow (a to f) indicates that because of the simulated nature of the objects, the
reconstruction and segmentation steps are skipped for the generation of ground truth for objects in the
test set.

We have generated a set of 500 objects, each in an object space of 1283 voxels.
Each object is a cube of size 643 voxels, which is placed in the center of the
volume. To create sufficient variety among the objects, the cube is cut off by
eight planes. For each corner of the cube, a plane is created by selecting points
on each of the three outgoing edges of the corner, randomly between the corner
point and the midpoint of that edge. The pixels are cut off whose location is
on side of the plane opposite to the center of the cube. See Figure 2.12 for a
visualization. Additionally, we rotate the resulting object with random angles
around all axes. After that we include a foreign object as an ellipsoid with a radius
randomly chosen between 3 and 7 voxels at a random location within or on the
edge of the base object. These ellipsoids have a random orientation as well. As a
result, the foreign objects vary in shape, size, orientation and location. With 50%
probability, we include two of these foreign objects instead of one in the base object.

Figure 2.12: The process of cutting off corners with planes from cubes for creating the simulated base
objects. The red stripes indicate edge midpoints and the blue dots are the randomly chosen points
between those midpoints and the corners.
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Figure 2.13: Example radiographs of five simulated objects. Foreign objects are located at various
positions in or on the border of the base object in the radiographs, and there can be one or two of
these present.

Based on the spectral properties of the assigned materials, we create simulated
radiographs (Fig. 2.11b). Details of the computation can be found in Appendix B.2.
First, we make projections of each material separately by computing cone beam
forward projections using the ASTRA toolbox [1, 2]. From this, the simulated
radiographs are computed by taking the spectral properties of each material into
account (taken from the National Institute for Standards and Technology (NIST)
[130]). We model the foreign objects as bone and the base object as tissue for each
object. We take the spectral material characteristics between 15 keV and 90 keV
into account, and use an exposure time of 0.002 seconds for each radiograph, for
which the Poisson noise that is applied is relatively high. These settings are chosen
such that there is sufficient contrast in the radiographs, but not as much that it can
be very easily identified with simple segmentation methods. The simulated detector
size – and therefore the projection image size – is 128× 128 pixels. Examples of
radiographs from five objects are given in Figure 2.13.

A total of 100 objects are reserved as training objects, while the other 400
objects are reserved for testing. For each training object, the ground truth corre-
sponding to each radiograph is generated with the workflow, with the same strategy
and parameters as in Section 2.4.2. Global thresholding with parameter value
θ = 0.04 is used for the reconstructions. For each test object, the ‘absolute’ ground
truth corresponding to each radiograph is generated by directly projecting the
virtual foreign objects (Fig. 2.11a and f), thereby skipping the reconstruction and
segmentation steps. The projections are segmented such that every nonzero pixel
on the detector is a projected foreign object location.

To verify that the direct use of the generated 3D volumes results in very similar
ground truth projections compared to when to workflow is followed, the resulting
ground truth projections are compared for the training set. The Jaccard index
between the resulting ground truth pairs, averaged over all projection angles for
all 100 training objects, is 0.961 for SIRT with 100 iterations. This result indicates
that the resulting ground truth projections resulting from both approaches are
very similar, and both are likely to yield the same quality measures.
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To further confirm this, the training of networks as described in Section 2.4.3 is
repeated with the simulated projections, with the trained networks this time being
evaluated on the test set with ‘absolute’ ground truth. The results for the three
measures are given in Figure 2.14, and are in accordance with the experiments
with the laboratory data. A notable difference is that the average class accuracy
and detection accuracy reach their maximum values for a relatively lower number
of training objects (and the same goes for the minimum value of the false positive
rate). This is most likely because the simulated objects are less complex, resulting
in radiographs with less complicated structures. Nevertheless, the results again
show inferior results for the approach where one radiograph per training object is
used, since 100 objects are needed to reach similar quality measure values as for
the workflow with only 7 objects.

(a) Average class accuracy (b) Object based detection rate

(c) Object based false positive detection rate

Figure 2.14: The average class accuracy, the object based detection rate, and the object based false
positive detection rate of segmentations with trained U-Net and MSD networks on simulated data for
different number of training objects and different training strategies. The results are averaged over 5
trained networks, with a different training object order for each run. The shaded regions indicate the
standard deviations.
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2.5 Discussion

Regarding the difficulty of transferring the method to industrial settings, practical
issues such as differences in the CT setup can be expected, but we expect that these
are straightforward to overcome. In general, we expect that the proposed workflow
can be transferred to industrial applications if the following three conditions are
met. First of all, the materials should have different absorptions in the energy
range of acquired radiographs (determined by the peak voltage of the source and
the energetic detection range of the detector) to be distinguishable at all. Secondly,
it should be possible to carry out a segmentation in the reconstruction domain, and
the foreign objects should therefore not be too small. Lastly, the foreign objects
should be detectable in the radiographs.

In our experiments, the Play-Doh is selected to be representative of many ex-
ample products in the food industry, and the stones for the related foreign objects.
This particular case meets the conditions stated above, and therefore stone can be
detected in our examples. Moreover, we expect no problems with metal detection
because of its higher X-ray attenuation and visibility in the radiographs, and this
high attenuation may allow for even smaller metal foreign object sizes as they are
more likely to still appear in the reconstruction and radiographs. On the other hand,
if the objects contain large metal pieces and other materials need to be detected, it
could lead to artifacts in the reconstructions, but there are many artifact reduction
methods available that can be used to mitigate this [101]. Regarding other less
dense materials such as plastics, successful application of the workflow strongly
depends on the visibility of the foreign objects in the radiographs in the first place.
If foreign objects are impossible to discern in radiographs, creating training data by
manual annotation is also not possible. Of course, many solutions can be proposed
for this invisibility problem, but this discussion is independent of the workflow
for training data generation. However, even without advanced imaging methods,
applying the workflow and generating 2D ground truth could lead to networks
retrieving patterns in the radiographs that are difficult to find by human inspection.
Additionally, we have shown in the experiments that multiple foreign objects in a
sample do not pose a problem. When the material types among these are varied, we
do not expect any problem as long as they are distinguishable in the radiographs.
Finally, when transferring the workflow to an industrial setup, we may expect
practical issues regarding the CT setup, but this is not a fundamental problem of
the proposed method.

Overall, the graphs presenting the foreign object detection accuracies of stones
in Play-Doh in Section 2.4 indicate an increase of segmentation and detection
accuracy with increasing the number of objects from which the training data are
created. The accuracies initially increase strongly with the number of training
objects but this increase decays when the number of training objects is further
increased. The detection rates and false positives rate introduced in Section 2.4.4
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depend on the thresholds η and δ, respectively. If a higher threshold η is used
in condition (2.2), the detection rate will decrease, because fewer objects in the
target images will meet this condition. Conversely, if the threshold decreases,
the detection rate will decrease. Similarly, if the δ threshold in condition (2.3)
is increased, there will be more false positives (and fewer when the threshold is
decreased). Changing the thresholds η and δ will therefore change Figures 2.8, 2.9
and 2.14 as well, but we expect the overall shape of the curves and their relative
distances to each other will remain similar.

When the thresholds are fixed, the maximum detection accuracy that can be
achieved depends on the nature of the foreign detection problem. For instance, if
the X-ray flux is low and the noise is high, foreign objects are more difficult to detect
from the radiographs. In the case of the laboratory experiments, foreign objects are
difficult to detect when the cylindrical shape is located with the long edge on the
ground and oriented orthogonal to the detector. The radiographs should contain
sufficient discriminatory information such that foreign object detection with deep
learning is possible. Additionally, for the dataset to be suitable for supervised
machine learning, the ground truth should also be of sufficient quality, although
this seemed to be less of an issue in our experiments as we observed no negative
effects from occasional noise in the ground truth on the training and detection
accuracy.

With the above considerations in mind, the workflow is designed to be modular.
Every stage of the proposed workflow can be designed according to the available
data-acquisition equipment, the intended detection accuracy, the type of base
objects and foreign objects, and the available computer memory, among other
things. We highlight some possible considerations for every stage:

• Objects (Fig. 2.3a): The set of objects can be enlarged or diversified when
the accuracy of the trained neural network is not satisfactory. Also, more
objects can be added to obtain a more diverse representation of objects when
a more diverse array of objects or orientations are considered to be subjected
to X-rays in the industrial application, such as on a conveyor belt. When a
completely new type of objects is considered, these objects should be added
to the workflow as well.

• Scanning routine (Fig. 2.3b): In our experimental setting we have used
data resulting from low exposure times as input for both the neural networks
and the reconstruction algorithm. If the foreign objects turn out to be too
difficult to separate in the reconstructions, more scanning angles may be
considered. Additionally, if the factory settings are allowed to be altered,
higher fluxes, different tube voltages or longer exposure times can be used
to obtain radiographs of higher quality, as long as the processing times
remain acceptable. Also, more discrimination can be achieved by applying
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spectral imaging (dual-energy [235] or multi-energy imaging [82, 199, 274])
such that the neural network can distinguish the foreign objects from the
base objects. If changing the quality of the radiographs is not possible, a
separate high-quality scan of the same object can be made under the same
angles, to achieve more contrast of the foreign object in the reconstructions.
The scanning routine can be carried out in any lab, as long as it is done
under similar conditions as in the intended industrial X-ray imaging setting.

• Reconstruction algorithm (Fig. 2.3e): Depending on the type of data,
different reconstruction algorithms may be considered [51, 112]. In this
work, we have used the SIRT algorithm to account for the noise in the data,
but other reconstruction algorithms such as Feldkamp-Davis-Kress (FDK)
algorithm [87] or the Conjugate Gradient method for Least Squares (CGLS)
[123] can be considered as well. Also, when dealing with spectral or generic
multi-channel data, multi-channel reconstruction methods [143, 238, 246,
254, 312] can be used to increase the reconstruction accuracy even further.
When dealing with objects that may change in time, dynamic reconstruction
methods can be considered [71, 114, 211].

• Segmentation algorithm (Fig. 2.3f): In this work we have used a sim-
ple global thresholding scheme, but many more segmentation methods are
available, as well as approaches to reduce possible noise [70], or bounding
boxes when the location of the foreign object is known [144]. In case of
multi-channel data, a multi-dimensional thresholding scheme can be used, as
well as clustering methods. Discrete reconstructions algorithms that combine
reconstruction and segmentation are also available [30, 121].

• Virtual projection (Fig. 2.3g): When creating the virtual projection, post-
processing on the generated ground truth projections can be applied to
increase the training target quality, for instance by denoising the obtained
ground truth projections.

• Supervised learning (Fig. 2.3c and h): To validate the workflow, we have
used the U-Net architecture with ADAM optimization on cross entropy loss
and dice loss, as well as the MSD network with ADAM optimization [146] on
the cross-entropy loss. Other neural network architectures (see Section 2.2.2)
can also be considered, as well as different optimization strategies and loss
functions. Note that the foreign object detection problem considered in this
work may be ambiguous, since for a base object containing a foreign object
another base object can theoretically be constructed (without foreign object)
that results in the same radiograph. This constructed base object may have
an unnatural shape when compared with other base objects, but if it happens,
it may lead to inconsistent training data for the network. However, this
possible problem is independent of the workflow and can be resolved by
multi-spectral imaging or multi-angle imaging, and training the networks
with multiple images from the same object resulting from these imaging
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methods. However, creating reconstructions with data from these advanced
imaging methods would not be necessary.

In Section 2.4, we have compared the segmentation results with workflow-
generated data from many angles for each object to results with workflow-generated
data with only one radiograph for each object. According to the results in Fig-
ures 2.8 and 2.14, segmentation and detection accuracy can be improved by using
multiple annotated radiographs for each training object. For a comparative classical
approach, ideally manual annotation of the data should be carried out, taking
into account the variation that may occur in different annotations for the same
set of radiographs. In addition to the tremendous effort required to manually
annotate a large number of radiographs, there are a number of issues that arise in
the food industry. To carry out segmentation on 2D radiographs, highly specific
knowledge is required for which it is difficult to find experts, as opposed to trained
radiologists in medical imaging. This is also reflected in the lack of suitable publicly
available datasets with annotated radiographs of food products. Also, the manual
annotations may vary depending on the detection goal by a manufacturer (such as
object sizes, positions or number of foreign objects). For these reasons, we eventu-
ally chose not to compare the proposed data generation with manual annotation.
Manual annotation could still be used in conjunction with this workflow to replace
the segmentation step. Whether or not this is feasible and will yield better results
will ultimately depend on the specific application at hand.

2.6 Conclusions

In this research, a new workflow is proposed for generating training data for su-
pervised deep learning for foreign object detection in an industrial setting. In this
workflow, a number of representative objects are scanned using X-ray imaging,
reconstructed using computed tomography, segmented and virtually projected in an
objective and reproducible manner to obtain the true foreign object locations in a
large set of radiographs, after which supervised machine learning can be applied to
detect foreign objects with high accuracy depending on the number representative
objects included. We demonstrate this workflow on both laboratory and simulated
data using neural networks for the deep learning task. Through laboratory experi-
ments, we have verified that the workflow produces adequate target images. The
introduced measures assess the quality of foreign object detection with networks
trained using datasets generated with this workflow. All experiments show a
consistent result in which the accuracy increases significantly with a few number of
training objects, and less significantly for every additional training object. In the
laboratory experiment, we consistently obtain high accuracies for detecting gravel
in modelling clay with low exposure times using this workflow, demonstrating its
application potential in an industrial setting.
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Code and data availability
The source code to reproduce all results in this chapter are available on https:
//github.com/mzeegers/DeepFODDataGenerator [309]. These Python scripts
make use of open-source toolboxes, in particular the ASTRA toolbox [1, 2], MSD-net
[227] and PyTorch [222, 223]. The datasets generated for this chapter are available
at Zenodo. Separate submissions are made for the processed data resulting in
radiographs with ground truth for object detection [308], as well as the unprocessed
CT scan data for complete reproduction of the results in this chapter [307].

https://github.com/mzeegers/DeepFODDataGenerator
https://github.com/mzeegers/DeepFODDataGenerator




3
Hyperspectral data reduction

through deep learning

The possibility of hyperspectral imaging opens exciting opportunities to see
features of objects that are otherwise invisible. The high data volumes that
these techniques generate pose challenges for transmission, storage and pro-
cessing. The need for reduction of those data volumes is not only important in
hyperspectral X-ray imaging, but also in remote sensing, where hyperspectral
images taken from planes and satellites are typically large and data reduction
through compression before transmission is crucial.

In this section, we propose a novel supervised deep learning approach for
combining data reduction and image analysis in an end-to-end architecture.
In our approach, the neural network component that performs the reduction is
trained such that image features most relevant for the task are preserved in the
reduction step. Results for two convolutional neural network architectures and
two types of generated datasets show that the proposed Data Reduction CNN
(DRCNN) approach can produce more accurate results than existing popular
data reduction methods, and can be used in a wide range of problem settings.
The integration of knowledge about the task allows for more image compression
and higher accuracies compared to standard data reduction methods.

This chapter is based on:
M. T. Zeegers, D. M. Pelt, T. van Leeuwen, R. van Liere, and K. J. Batenburg. “Task-
driven learned hyperspectral data reduction using end-to-end supervised deep learning”.
Journal of Imaging 6.12 (2020), p. 132.
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3.1 Introduction

In hyperspectral imaging, data are collected in a large number of spectral bins from
a wavelength range in the electromagnetic spectrum. It is used in various fields
[83], including agriculture classification [110, 184], medical imaging [56, 175, 184],
luggage and cargo inspection [79, 92, 184] and food quality assessment [272], as
well as with energy-dispersive X-ray spectroscopy (EDX) and electron energy loss
spectroscopy (EELS) [267]. In addition to the spatial dimensions, hyperspectral
data include the spectral dimension which is typically large [23], often in the
order of 102 to 103 spectral bins [259]. The data have rich information for image
processing tasks (for instance segmentation and classification) [259]. Hyperspectral
imaging can circumvent calibration issues found in (multi)spectral imaging with a
low number of energy bins, such as carefully setting spectral measurement ranges.

A key challenge for hyperspectral imaging systems is handling the size of the
data, which can be prohibitively large for online processing [273]. Efficient data
compression is essential to save storage and reduce transmission load [203], for
instance in remote sensing with satellites sending spectral images to the Earth or in
high-throughput food quality assessment tasks [83, 272]. For industrial applications,
training and running algorithms for classification tasks on full hyperspectral data
may be very time consuming [128]. Therefore, data reduction steps need to be
carried out to reduce data redundancy and size. However, it is not known a priori
which spectral bins contain important information, and combining information
from many bins may be required for the data interpretation. In addition, bins
may contain a low signal-to-noise ratio [161, 267], possibly exacerbated by limited
acquisition times in some applications. Moreover, bins that are located close to
each other are highly correlated which results in redundant information [257].

The goal of this chapter is to propose a new convolutional neural network
(CNN)-based approach for hyperspectral data reduction that combines high com-
putational efficiency with strong data reduction (down to just 1 or 2 channels), by
making effective use of the relation between the spectral signatures in the data
and the specific task that needs to be performed. By attaching a data reduction
network to a CNN component for segmentation, the combined network simultane-
ously learns how to effectively reduce the input data to a low number of images,
eliminate spectral redundancy and successfully perform a given task, without the
need for parameter tuning. The network adapts to different problem settings and
learns how to effectively compress the data for the problem while maintaining
accurate segmentation with fast processing times. We assess the performance of the
method on a simulated dataset consisting of attenuation-based hyperspectral X-ray
projection images, as well as on a simulated dataset based on spectral properties
found in remote sensing. These multi-image datasets allow for the method to be
evaluated without risks of information leakage between training and test sets [206].
We show that the method is applicable to different CNN architectures by applying



3.2. Related work 67

it on a Mixed-Scale Dense (MSD) [227] and a U-Net [240] architecture. The
results show that our method is robust to noise and to cases where many different
materials or classes are involved, for which standard data reduction methods, such
as Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA),
are not sufficient. To summarize, the main contribution of this chapter is providing
a flexible learned supervised data reduction approach with convolutional neural
networks with spectral data reduction to a very limited number of images, while
retaining high segmentation accuracies.

The remainder of this chapter is structured as follows. Section 3.2 gives an
overview of methods for spectral data reduction. In Section 3.3, we introduce
notation and the general set of functions in convolutional neural networks to
optimize. In addition, we give the problem statement for supervised segmentation
and a brief explanation of the most widely used hyperspectral data reduction
methods. Most importantly, we introduce our end-to-end hyperspectral data
reduction method. In Section 3.4, we describe our experimental setup and the CNN
architectures and datasets that are used, including a description of the creation of
our simulated attenuation-based hyperspectral X-ray image dataset and simulated
remote sensing dataset. Then, we outline the experiments and discuss the results
of the data reduction approaches. Section 3.5 discusses the introduced method and
the results, and additionally gives some further possibilities for future research.
Section 3.6 summarizes the chapter and presents the conclusions.

3.2 Related work
As a result of the importance of data reduction in practical applications, a wide vari-
ety of approaches have been developed in earlier work. Two approaches for reducing
the dimensionality of a hyperspectral image are hyperspectral band selection and
feature extraction methods. Hyperspectral band selection methods select a small
number of the bands (bins) to be used for the imaging task, based on searching,
ranking, clustering or learning methods [273]. Hyperspectral feature extraction
methods project the data into a new feature space with a lower dimension. While
it changes the meaning of the data, more (combined) information can be stored
in the lower dimensional images than the selected bins of band selection methods.
In feature extraction methods, a wider range of reduced images can be found
and used for the specific task to be carried out than in band selection methods.
Common approaches for feature extraction include Principal Component Analysis
(PCA) [152, 279] and Linear Discriminant Analysis (LDA) [83, 129, 137, 165],
which are popular for their low complexity and absence of parameters. Other com-
mon data reduction techniques include Nonnegative Matrix Factorization (NMF)
[164, 231], Independent Component Analysis (ICA) [141, 152, 231, 234] and many
variants of PCA [152]. More details about the aforementioned methods that appear
in this chapter are given in Appendix B.1.
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Popular feature extraction methods are fast and do not require parameter
tweaking. However, since no task-specific information is used in commonly used
unsupervised data reduction methods, features that are important for the given
task (i.e. segmentation, classification) may not be preserved in the reduction
step. Additionally, other problems such as the inability of PCA to deal with
noisy channels and LDA generating only at most one reduction image less than
the number of classes [137], as well as the linear nature of these transformations
make these approaches less suitable for complex data and feature distributions [278].

There is a wide range of other linear and non-linear data reduction approaches
that require different prior knowledge on the data for the image processing task [66].
For example, Kernel PCA (KPCA) makes the transformation of PCA non-linear,
but requires the selection of a suitable kernel [10, 86] and introduces the need
for parameter tuning. In Locally Linear Embedding (LLE) and similar manifold
learning methods, one or more parameters have to be chosen, and the optimal
values are different for every dataset [150]. In several cases, the classical linear data
reduction methods can outperform the non-linear data reduction techniques [180].

Convolutional neural networks (CNNs) are a powerful tool for classification and
segmentation tasks [9, 133, 228]. These have the property to generalize well, as
they can non-linearly extract distinctive spatial [163] and spectral properties [132]
on different scales for segmentation tasks on noisy data. The current convolutional
neural networks for hyperspectral imaging can be classified into three categories
[152, 163, 219]. Spectral CNN methods apply one-dimensional convolutions in
the spectral dimension to classify each pixel. These methods do not take into
account that essential spectral information for classification may be located in very
distant bins. Additionally, these methods also disregard spatial information [218].
Spatial CNN methods first reduce the data with a separate method, for example
with PCA. The pixels in the remaining feature maps are then classified using 2D
convolutions. This can, for example, be used when executing on-ground recovery
of image information by a CNN after compression on-board of a satellite [280].
In these approaches, feature extraction and CNN classification are disconnected
[168, 184], so the feature extraction is not tailored to the CNN classification task.
Spectral-spatial CNN methods take both spectral properties and spatial informa-
tion into account and many possible designs and strategies can be developed for
this, making this set of approaches highly flexible [219]. Data reduction can be
integrated (both explicitly and implicitly) into the architecture of this type of CNN.
Possibilities include performing 1D convolutions in the spectral dimension and in
different layers before applying 2D convolutions in the spatial dimensions (1D+2D
CNNs) [21, 59] or applying convolutions in all dimensions simultaneously (3D
CNNs) [21]. However, with 3D CNNs, it is not possible to retrieve purely spectrally
reduced images. Additionally, some of these spectral-spatial CNN approaches
require hyperparameters to be properly tuned [132].
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For classification methods that use spectral-spatial CNNs, the computation time
can increase significantly with high-dimensional data [169, 218]. In addition, the
large number of training parameters makes the network difficult to train and easy
to overfit [58], especially if only a few training examples are available, referring to
the limited amount of labelled data that is available in hyperspectral imaging [88].
Therefore, some CNN-based approaches still need simple reduction methods such
as PCA as a preprocessing step to keep computation times tractable [88, 216],
but a learned data reduction approach may outperform these standard reduction
approaches [7]. Most current methods reduce to a relatively large number of
reduction images (i.e. 32). In contrast, in this work we introduce a learned data
reduction approach for CNNs to reduce data to a very limited number of channels
(i.e. 1 or 2). By adding a data reduction network to the CNN and training the
combined network in an end-to-end fashion, the data reduction becomes task-
specific and can be applied with high compression, low computation times and
without parameter tuning.

3.3 Materials and methods
3.3.1 Notation and concepts
Hyperspectral imaging

We consider the supervised hyperspectral image segmentation problem. A hy-
perspectral image is a three-dimensional image x ∈ RNb×m×n with two spatial
dimensions of size m and n and one spectral dimension of size Nb. The number of
spectral bins Nb is typically large compared to multispectral images, i.e. between
about 100 to 1000 [259].

A segmented image is an image y ∈ Cm×n in which a class is assigned to each
pixel from a finite set C of classes. A segmentation y of an image x divides the
image into regions where the pixels have similar characteristics. For instance, it
can divide a hyperspectral satellite image up into regions of classes including water,
roads, vegetation, etc. We assume the existence of a true segmentation function
Fs : RNb×m×n → Cm×n that maps a hyperspectral image x to its segmented
image y = Fs(x). The problem, of course, is that this underlying function Fs is
generally not known. Therefore, the aim is to find an approximating segmentation
function F such that F ≈ Fs. Note that both spectral and spatial information are
needed for a good segmentation (for example, vegetation can have the same shape
but different spectral reflectance, and roads can have different shapes but similar
spectral properties).
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Supervised learning and neural networks

To solve the problem of finding an appropriate function F , supervised learning can
be used. In this setting, a set of examples {(xi, yi)}N

im
i=1 of hyperspectral images

with their segmentations is available, with N im being the number of images. The
aim is to approximate the function Fs based on segmentation training data with
yi = Fs(xi) for every i. In other words, the problem can be summarized as:

Find a function F : RNb×m×n → Cm×n

such that F (xi) ≈ yi for every i.
(3.1)

The set of images and their segmentations can be partitioned into training,
validation and test sets. To solve the supervised hyperspectral segmentation
problem, the aim is to find a function F : RNb×m×n → Cm×n such that the loss L,
the error between the predicted classes by F from the training examples and their
respective target images, is minimized:

min
F

Ntrain∑
i=1

L(F (xtraini ), ytraini ). (3.2)

To prevent overfitting on the training data, it is evaluated on a separate valida-
tion set {(xvali , yvali )}Nval

i=1 . The error on this set determines whether training should
be continued or not by defining a stopping criterion. Subsequently, the function
is tested on a separate test set {(xtesti , ytesti )}Ntest

i=1 to assess the overall performance.

A common approach to find a suitable function F to satisfy Equation (3.1) with
supervised learning is to parameterize it as a neural network. In many popular neural
network architectures for imaging, the input is passed on from layer to layer to create
feature maps, denoted by zi ∈ Rci×mi×ni , where ci is the number of channels in the
feature map of layer i. The structure is schematically shown in Figure 3.1, and we
adopt notation from [227]. To finally produce the output feature map, the feature
map z0 ∈ Rc0×m0×n0 in the input layer is iteratively passed on from layer i− 1 to i
to produce feature maps f(zi−1) = zi with fi : Rci−1×mi−1×ni−1 → Rci×mi×ni . In
networks for segmentation problems, the number of channels cd in the output layer
is equal to the number of classes Nc, and the feature map zd contains probability
maps for every class.

... ... ... ... ...
......

Figure 3.1: Schematic architecture of a neural network for image processing. Squares denote feature
map channels and arrows denote function inputs. The depth of the network is given by d.
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There also exist more intricate neural network architectures (for instance
in [227, 240]) where the feature map zi in layer i can be written as function
depending on the feature maps in all previous layers: zi = fi(z0, z1, . . . , zi−1), with
fi : Rc0×m0×n0 × . . .×Rci−1×mi−1×ni−1 → Rci×mi×ni . This is schematically shown
in Figure 3.2.

... ... ... ... ...
...... ...

......

......

...

...

...

......

......

Figure 3.2: Schematic architecture of a neural network with dependencies between all layers. Squares
denote feature map channels and arrows denote function inputs. The network depth is given by d.

The network is parameterized with weights and biases which are typically
involved in the functions fi. The entire network can then be written as a function
Fθ : Rc0×m0×n0 → Rcd×md×nd , where θ ∈ Θ contains given values for all weight and
bias parameters. Since the final feature map zd produced by the network contains
probability maps, it is usually compared with the one-hot encoding of the target
image, which marks a pixel in channel i as probability one if the target class label of
that pixel is i, and zero otherwise. Denote the one-hot encoding function by P . The
aim is now to find a set of parameter values θ such that P ◦Fs is approximated by Fθ.

For imaging, convolutional neural networks (CNNs) have proven successful.
In these networks the functions fi are typically operations involving activation
functions, bias functions, weighting functions and, by definition, convolutions.
These functions depend on the previous feature maps zi−1 only or on feature
maps of all previous layers. The latter case is more general, in which we have the
following:

fi(z0, . . . , zi−1)j = σ

(
i−1∑
l=0

cl−1∑
k=0

Cijkl(z
k
l ) + bij

)
. (3.3)

Here σ : R → R is the activation function, bij ∈ R are the bias parameters
and Cijkl : Rml×nl → Rmi×ni is the convolution function (including convolution
filters) from feature map channel k in layer l to feature map channel j in layer i.
During training, the parameters that are being optimized are the biases bij and
the convolutional filters in the convolutions Cijkl. For a CNN FNet : Rc0×m0×n0 →
Rcd×md×nd with depth d and c0 = Nb spectral inputs, similar to Equation (3.2),
the loss function is minimized over the network parameters θ ∈ ΘNet, to obtain the
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network FNetθ :

min
θ∈ΘNet

Ntrain∑
i=1

L(FNetθ (x
train
i ), P (ytraini )). (3.4)

Spectral data reduction

If the uncompressed hyperspectral image data are used directly as input for the
CNN, the large data size results in prohibitively long training times [317] and
memory requirements [280]. A potential solution to these possible issues can be
found by employing a spectral data reduction method. This method can be viewed
as a function G : RNb×m×n → RNr×m×n that acts on the data x and transforms
it to G(x) in a lower-dimensional space with Nr � Nb. Given a chosen reduction
function G, the aim is now to find a CNN F ′ : RNr×m×n → RNc×m×n that segments
the reduced data, such that F ′ ◦ G segments the original data, minimizes (3.4),
and therefore approximates P ◦ Fs:

Find a function F ′ : RNr×m×n → RNc×m×n

such that (F ′ ◦G)(xi) ≈ P (yi) for every i.
(3.5)

Since the function F ′ has only Nr inputs, the input data size is strongly reduced,
reducing the size of the minimization problem (3.4) and decreasing memory re-
quirements. If G(x) preserves the relevant features in the image x that are required
for the segmentation task, the function F ′ that minimizes (3.4) could, in principle,
be more easily found.

In this chapter, a new approach is proposed to reduce the data to a very limited
number of input feature map channels, without the need for parameter tuning or
prior information about the problem and providing possible advantages such as
higher processing speeds.

3.3.2 Learned data reduction method
We will now introduce our proposed task-driven end-to-end Data Reduction CNN
(DRCNN) approach. The key idea of the method is to include the data reduction
in the problem as a neural network to approximate the function P ◦ Fs:

Find functions
G : RNb×m×n → RNr×m×n

F ′ : RNr×m×n → RNc×m×n

such that (F ′ ◦G)(xi) ≈ P (yi) for every i.

(3.6)

Therefore, the method includes a supervised data reduction tailored to the
segmentation task, which can be separated from the CNN after being trained
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together with the CNN. The resulting new network is a combination of a subnetwork
that spectrally reduces data to a given number Nr of feature map channels and
a CNN that segments the image from c0 = Nr input feature map channels. A
high-level overview of this approach is given in Figure 3.3. Given a CNN FNet, a
compatible data reduction network is given by GD : RNb×m0×n0 → RNr×m0×n0

with functions that consist of linear combinations of spectral feature map channels,
as opposed to containing spatial convolutional operators as in the CNN. The data
reduction layer is characterized by the data reduction list D = [r0, r1, . . . , rdD ],
where dD is the depth of the subnetwork. The number of feature map channels ri
in each layer dictates the data reduction, with r0 = Nb and rdD = Nr = c0. The
feature maps zi in each layer with i > 0 are only dependent on those in the previous
layer zi−1. Therefore, the architecture is of the form shown in Figure 3.1 (where the
number of channels ci in layer i equals ri and the other spatial dimensions remain
unchanged). As a result that the functions in this network are linear combinations
(or equivalently, spectral pixel-wise 1× 1 convolutions), similar to Equation (3.3),
the functions gi : Rri−1×m×n → Rri×m×n mapping the images from layer i− 1 to i
in the data reduction network have the form

gi(zi−1)j = σ

(
rk−1∑
k=1

wijk · zki−1 + bij

)
.

Here, σ : R → R is the activation function in this subnetwork, wijk ∈ R are the
linear weights between the k-th image in layer i− 1 and the j-th image in layer i,
bij ∈ R is the bias of image j-th image in layer i. The weights wijk and biases bij in
these functions determine the set of parameters φ that has to be optimized in this
data reduction subnetwork. For neural networks, the Rectified Linear Unit (ReLU)
function is a commonly used activation function, but it can lead to dying nodes that
become inactive and whose activation functions only output zeros once the nodes
produce negative output values [178]. Since the final layers in the data reduction
subnetwork contain a low number of feature map channels (at times only one), it
is more likely that dying nodes will affect the performance of the network more
negatively than in other network architectures. Therefore, for activation function
σ, we propose to use Leaky ReLU functions in the data reduction subnetwork with
leakage parameter a = 0.01 in order to avoid the dying ReLU output problem [178].

For this subnetwork, linear layers are used instead of convolutional layers,
because we want to compress exclusively in the spectral direction and convolve
exclusively in the spatial directions. Since adjacent spectral bins are highly cor-
related, applying local spectral convolutional operations is not expected to result
in informative feature maps. Instead, bins that are more distant from each other
should be combined to achieve this. A network with linear combinations is therefore
more suitable than a convolutional neural network for learning this transformation
as it can learn complex non-linear functions to combine the information from all
spectral bins.
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Figure 3.3: Schematic structure of a Data Reduction CNN example. The entire setup consists of
a CNN of choice, for example with down- and upscaling layers as shown here, and a data reduction
subnetwork in front. This subnetwork repeatedly decreases the number of images from r0 down to rdD
by taking linear combinations of the input images. After that, the CNN carries out the segmentation
task.

Let ΘGD denote the parameter space in this data reduction subnetwork GD,
compatible with the given CNN FNet. The optimization problem for the joint data
reduction and image processing becomes

min
θ∈ΘFNet
φ∈ΘgD

Ntrain∑
i=1

L(FNet,θ(GD,φ(xtraini )), P (ytraini )). (3.7)

The number of parameters to be trained in the data reduction layer is equal to
|φ|=

∑dD
i=0 ri · ri+1 + ri. The number of weights in the first layer of the data

reduction network provides the leading order of the number of trainable parameter
in this subnetwork. As the number of parameters in a CNN can be in the order of
millions, the number of parameters in the data reduction layers is relatively small.
Moreover, since the CNN has fewer input images, depending on the architecture,
the data reduction network may also reduce the number of parameters in the CNN,
possibly making a pass through the network faster.

3.4 Experiments and results
3.4.1 Data reduction network architectures
The proposed data reduction approach is designed to be compatible with any
existing CNN. In this work, we present results for both the popular U-Net CNN
architecture [240] and the recent Mixed-Scale Dense (MSD) architecture [227].
Their architectures and the data reduction integration are explained first, after
which the datasets, experiments and results on the datasets are outlined.
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Data reduction multi-scale dense net

In the MSD network, all features maps are fully-connected and the operations are
dilated convolutions (also called atrous convolutions) to capture image features at
different scales. As in the paper that introduced the MSD network structure [227],
a network width of w = 1 works well in our experiments (or equivalently, setting
all values ci to 1 for i > 0). Figure 3.4 gives an example of a Data Reduction MSD
(DRMSD) net layout with a reduction to Nr = 2 feature map channels, where
the depth of the data reduction net is equal to dD = 2, the reduction scheme is
D = [8, 4, 2] and the depth of the MSD net is d = 5. In this work, we use a common
depth of d = 100 for this MSD network.

Mixed Scale-Dense net

Data Reduction net

Spectral pixel-wise operations

Spatial 3x3 (dilated) convolutions

Spatial 1x1 convolutions

Figure 3.4: Example of a Data Reduction Mixed-Scale Dense (MSD) network structure. The number
of channels are indicated with the feature maps. Since w = 1 is chosen, ci = 1 for i > 0. The data are
reduced from r0 = 8 input images to rdD = Nr = c0 = 2 feature map channels in the data reduction
net, while the segmentation task is performed by an MSD net of depth d = 5. Each 3× 3 convolution
is followed by a Rectified Linear Unit (ReLU) operation.

The dilations in each convolutional layer range from 1 to 10, repeatedly increas-
ing from 1 to 10 over the depth of d = 100. All dilated convolutions are followed
by a ReLU operation. All bias and weight parameters are initialized to zero. For
the convolution weights, Xavier initialization is used. During training, ADAM
optimization [146] is used on the cross-entropy loss between the data and the
predictions. We use the CPU and GPU implementations in Python of [225, 227],
with additional CPU and GPU implementation for the data reduction component.
Each network is trained on one GPU core of a GeForce GTX TITAN X with CUDA
version 10.1.243.
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Data reduction U-Net

A second CNN architecture that is used for the experiments is the commonly used
U-Net. An example of a Data Reduction U-Net (DRUNet) with reduction scheme
D = [8, 4, 2] is given in Figure 3.5. In this example, the data are reduced to Nr = 2
feature map channels, which in turn is the input for the U-Net subnetwork. In the
U-Net architecture used in our experiments, the feature maps are downsampled
twice, with a stride of 2, and the initial number of feature map channels is c1 = 128.
Bilinear interpolation is used for upsampling. The number of feature map channels
doubles in each downsampling layer, which gives c2 = c5 = 256, c3 = 512, c4 = 768,
c6 = 384 and c7 = c1 = 128. All downsampling and upsampling operations are
preceded and followed by a spatial 3× 3 convolution operation with zero padding,
each of which is followed by a ReLU activation function. All biases and weights in
the data reduction layers are initialized to zero, whereas the biases and convolution
weights are initialized by sampling from U(−

√
k,
√
k), where k = 1

cin·a2
is the range,

U-Net

Data Reduction net

Spectral pixel-wise operations 

Spatial 3x3 convolutions

...

...

...

...

...

...

...

...
...

... ...

Upsample by factor 2

Maxpool by factor 2

Spatial 1x1 convolutions

Copy and concatenate

Figure 3.5: Example of a Data Reduction U-Net structure. The number of channels are indicated with
the feature maps. The data are reduced from r0 = 8 input images to rdD = Nr = c0 = 2 feature
map channels in the data reduction net. Each 3 × 3 convolution is followed by a ReLU operation.
The number of channels is shown after each convolution and concatenation operations. The network
is designed to have c1 = c7, c2 = c5 = 2c1, c3 = 4c1, c4 = 6c1 and c6 = 3c1. The value of cd is equal
to the number of segmentation classes |C|.
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cin is the number of input channels and a is the kernel size. During training, ADAM
optimization is used on the average of the binary cross entropy loss and the dice
loss [135, 270] between the data and the predictions. The network is implemented
using PyTorch [222, 223] and is trained on one GeForce GTX TITAN X GPU core
with CUDA version 10.1.243.

3.4.2 Datasets
In this section, we will introduce the datasets that are used in the experiments.
Hyperspectral data reduction methods are commonly compared using satellite
datasets which consist of one hyperspectral image of a certain location (Pavia
University, Indian Pines, and Salinas for example [104]), with annotated ground
truth segmentation values, some of which are very rare in the image. The use of
only one image may cause information leaks between training and test sets when
evaluating convolutional neural networks on the same image [206], since overlapping
spatial information is likely to be used for classifying pixels in both sets. The
availability of other hyperspectral datasets with multiple labelled training samples
is limited [259, 306]. We opt to use generated artificial hyperspectral X-ray and
remote sensing datasets to resolve this problem, since they consist of multiple
images that can be divided into different independent sets.

Simulated attenuation-based hyperspectral X-ray dataset

The first simulated dataset on which we test the method is based on the physical
properties in hyperspectral X-ray imaging, including the geometric setup, source
spectrum and attenuation properties of various materials. We leave out other
effects such as scattering and detector responses as they do not substantially con-
tribute to the understanding of the data reduction network properties. The dataset
contains 100 2D images of size 512× 512 consisting of Nb = 300 spectral bins each.
These are simulated X-ray projections of 3D volumes of 1024× 1024× 1024 voxels
containing 120 cylinders with randomized lengths, thicknesses, angles and positions.
A schematic overview of the simulated X-ray setup is given in Figure 3.6. A virtual
source and a virtual detector of size 1536× 1536 are placed in front and behind
the object, respectively, and we use the ASTRA toolbox [1, 2] to compute the
projections of size 512× 512 from this geometric setup. An example of a projection
of 120 cylinders and one cylinder is given in Figure 3.7.

For the experiments, we assign materials to these 120 cylinders, by means of
assigning atomic numbers in two different setups. In the first few-material setup,
we assign atomic number 47 (silver) to two randomly chosen cylinders whereas the
remainder is assigned 48 (cadmium). In the second many-material setup, each
material from atomic numbers 30 (zinc) up to 89 (actinium) is uniquely assigned to
two randomly chosen cylinders. To prevent the cylinders with high atomic numbers
to be too highly attenuating, the cylinders consist of a mix of 99% polyethylene
and 1% of the assigned material. An overview of a selection of the attenuation
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spectra is given in Figure 3.8a. The spectra are taken from the National Institute
for Standards and Technology (NIST) [130]. Further details on the setup and on
computing the projections are given in Appendix B.2.

Poisson noise is applied to both the projection images and the flatfield images,
i.e. projection images without objects. In this case, the flatfield images are averaged
over 50 separate flatfield images. As a result of the shape of the source spectrum
I0, shown in Figure 3.8b, the flux of photons is lowest at low and high energies.
Therefore, the bins corresponding to energies close to 13kV and 70 kV are more noisy
than the others. Example images of noisy and clean data from the few-material
datasets are given in Figure 3.9. We combine the clean and noisy setups with the
few-material and the many-material settings, resulting in four combinations of
datasets. The data are 31.5 GB in size for every combination.

Figure 3.6: Schematic overview of the hyperspectral X-ray projection setup with a cone beam geome-
try.

(a) All cylinders (b) One cylinder

Figure 3.7: Example of the simulated material projections before material designation. The cylinders
are shown to be all combined in one image (a), and separately (b).
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Figure 3.8: Mass attenuation spectra for zinc, silver, cadmium, actinium and polyethylene from 6 keV
to 71 keV (a). In this spectral region, zinc, cadmium and actinium have one K-edge, polyethylene has
none, while actinium has multiple edges. Note that the K-edges of silver and cadmium are relatively
close to each other. This holds for all adjacent atomic numbers (not shown in this figure). (b) The
normalized plot of the source spectrum I0 used for generating the hyperspectral X-ray projections.

(a) Bin 1 - Clean (b) Bin 65 - Clean (c) Bin 75 - Clean (d) Bin 300 - Clean

(e) Bin 1 - Noisy (f) Bin 65 - Noisy (g) Bin 75 - Noisy (h) Bin 300 - Noisy

Figure 3.9: Visualization of the simulated X-ray data at different bins. The K-edge transition of cad-
mium is visible between bins 65 and 75 (among (a)-(d), compare (b,c)). The data in bins 1 and 300
(e,h) are much more noisy than in bins 65 and 75 (f,g), due to low source spectrum values at bin 1
and 300.
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Simulated reflectance-based hyperspectral remote sensing dataset

In addition to the previous dataset, we created a simulated dataset where the
spectral properties are taken from remote sensing settings. This dataset again
contains 100 2D images of size 512 × 512, now consisting of Nb = 200 spectral
bins. We create 360 cylinders of different sizes and place these in the images
such that none of these overlap. Each of these cylinders is assigned a material
in such a way that there are 60 different materials with 6 cylinders each. The
reflectance spectra are taken from the United States Geological Survey (USGS)
High Resolution Spectral Library [148, 149], which contains a wide variety of
reflectance spectra for liquids, minerals, soils and vegetation, among other cate-
gories. The spectra used for this dataset (Figure 3.10a) are randomly drawn from
the vegetation section. For the experiments, we consistently choose 10 labels out
of the 60 which need to be detected. The spectra of these materials are given
in Figure 3.10b. The spectral range we use is from 450 nm to 2400 nm, and we
only use materials for which the full spectrum in this range is included in the library.
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(b) 10 target spectra

Figure 3.10: Reflectance spectra used for this dataset (a). The 10 target spectra on the right (b) are a
subset of the 60 spectra. The filenames of these target spectra in the USGS Library are added.

The reflectance spectra are multiplied by the solar irradiance spectrum, which
is the base intensity received from the Sun. We use the spectrum AM1.5 (G-173-03
International standard) global [268] from the American Society for Testing and
Materials (ASTM) [19] that gives terrestrial solar spectral irradiance on a surface
under certain conditions such as orientation towards the Sun, temperature, pressure
and atmosphere composition, among other conditions [268]. The solar irradiance
spectrum is given in Figure 3.11. At certain wavelengths there is low transmit-
tance through the atmosphere of the Earth due to presence of certain substances,
for instance carbon dioxide, oxygen and most importantly water vapor. On the
resulting images, we apply Gaussian noise where the standard deviation is 1

1000 of
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the maximum signal in the dataset. The resulting images are the measured signals.
There are many ways to normalize the radiance data, and we apply a flatfield
correction [107] using the solar irradiance spectrum given in Figure 3.11. The bins
located in regions where solar irradiance is blocked have a very low signal-to-noise
ratio.
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Figure 3.11: The solar irradiance spectrum used for the remote sensing experiments. Note that the
drops to a value close to 0 in the graph, particularly at wavelengths 1350–1400 nm and 1800–1950
nm, are mostly due to absorption by water vapor.

In addition to the data described above, we created a dataset where the
reflectance images of the 10 target materials are imposed on those of the 50
remaining materials. This creates overlap between these two material sets but
keeps the materials within these sets non-overlapping. This simulates mixed
material reflectance signals that are likely to occur in realistic remote sensing data.
Figure 3.12 shows visualized examples of the data. Note that the difference with
the hyperspectral X-ray dataset is that we now have 11 classes instead of 2 to
classify pixels into.
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(a) Clean (b) 10 label ground truth (c) Moderate solar irradiance

(d) Low solar irradiance (e) Overlapping data (f) Ground truth of overlapping
data

Figure 3.12: Visualization of the simulated remote sensing data. The clean data and the ground truth
are shown in (a) and (b), respectively. When the described Gaussian noise is added to this data, many
bins still resemble the clean data, but (c) shows a moderately noisy bin and (d) shows an extremely
noisy bin, resulting from differences in solar irradiance. The data with overlapping cylinders and their
representation as ground truths are given in (e,f).

3.4.3 Implementation of standard data reduction methods

In the experiments, we will compare the proposed data reduction method with
standard data reduction methods (PCA, NMF and LDA). These methods are
implemented using Scikit-learn (version 0.22.1) [224]. In all cases, the default
settings have been used. For memory limitation reasons, a subset of the data
points is used to compute each transformation, where every k data points in the
images are included. For computing the standard data reduction transformation,
we sample every k = 2 data points when employing PCA, every k = 5 for NMF
and every k = 6 for LDA. When reducing to 200 feature map channels, we use
k = 3 data points for PCA, k = 6 for NMF and k = 6 for LDA.
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3.4.4 Results
In this section, we describe all experiments, and outline the results. For each
experiment, we use N train = 70 images for training, Nval = 20 for validation
and N test = 10 for testing from the relevant datasets. During training, data
augmentation is applied by rotating and flipping the input images, resulting in a
total of 70 · 8 = 560 training images. The chosen training time of MSD is 2 days on
the hyperspectral X-ray data (ranging from ca. 300 to 6500 epochs), and 3 days on
the generated remote sensing data (ranging from ca. 1500 to 9000 epochs), based on
the results on the validation sets. After these time durations most networks did not
show any more improvement on the validation sets. The training lengths for U-Net
are fixed to 3000 epochs (roughly 1.5 days on average), as the U-Nets converged
faster. Despite the possibility to employ multilayered data reduction networks, we
experienced that a depth of dD = 1 yielded the best segmentation results. The
additional advantage of this is that tuning the sizes of intermediate data reduction
layers can be avoided. In addition, the number of trainable parameters and the
processing and training times are also slightly lower as a consequence. For all
experiments, we take the network with the best performance on the validation set
and measure its average class accuracy over all 10 segmentation images in the test
set. The average class accuracy is the average number of correctly classified pixels
per class relative to the total number of pixels in that class, given by:

1

|C|
∑
c∈C

TPc
TPc + FNc

Here, C is the set of classes, TPc is the number of correctly classified (true positive)
pixels with true class c and FNc is the number of incorrectly classified (false
negative) pixels with true class c. To test the robustness of our method, we present
averages and standard deviations over 8 runs for a few selected experiments in
Appendix B.4.

Noise and multiple materials

For the assessment of the segmentation accuracies of DRCNN compared to those
using other data reduction methods, we apply reduction to Nr = 2 feature map
channels while varying the data reduction method on both the simulated hyperspec-
tral X-ray dataset and the remote sensing datasets. To determine what properties
of the data contribute to the performance of the methods, we vary the inclusion of
noise and the number of materials (2 or 60) for the X-ray dataset (Section B.2).
For the remote sensing dataset, we vary the inclusion of noise and overlapping
materials (Section 3.4.2). MSD and U-Net networks without data reduction are
trained on the full hyperspectral data as well. Note that since there are only two
target classes in the X-ray dataset, LDA will reduce the data to one channel.
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PCA NMF LDA DRCNN No red.

2 mat. 99.70 99.73 99.73 99.73 99.37
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an
60 mat. 60.36 82.69 99.69 99.68 99.42

2 mat. 50.00 57.31 90.39 99.11 98.60M
SD

N
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sy

60 mat. 50.00 52.31 75.53 99.16 98.77

No overlap 99.66 99.67 99.67 99.69 99.72

C
le

an

Overlap 79.64 82.92 99.72 99.69 99.69

No overlap 50.00 50.00 79.49 98.92 98.40

X
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-N

et

N
oi

sy

Overlap 50.00 54.79 85.11 98.69 98.86

C
le

an 2 mat. 99.87 99.85 99.94 99.75 99.90

60 mat. 98.29 97.99 99.97 98.74 99.33

N
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sy 2 mat. 9.09 9.09 91.15 99.76 99.86M
SD

60 mat. 9.09 9.09 90.53 97.98 99.17

C
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an No overlap 97.97 99.81 99.87 99.95 99.97

Overlap 95.39 96.78 99.98 98.82 99.28

No overlap 9.09 9.09 92.10 99.76 99.87
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U
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et

N
oi

sy

Overlap 9.09 9.09 90.20 98.76 98.13

Table 3.1: Average class accuracies for various datasets and data reduction methods for reductions to
two feature map channels (except for Linear Discriminant Analysis (LDA) on the X-ray dataset, which
is reduced to one feature map channel, since there are only two target labels). Accuracies below 97.5%
are indicated in italic red, and the highest value(s) per row for each dataset and CNN are indicated in
bold.

The results of the experiments on the X-ray datasets and the remote sensing
datasets are summarized in Table 3.1 for MSD and U-Net. All data reduction
methods obtain high accuracy (> 99%) in the case of clean data and two materials.
However, PCA and NMF obtain a significantly lower accuracy when multiple
materials are introduced (< 83%), while LDA, DRCNN and CNN without reduction
retain the high accuracy (> 99%). For two-material data, when noise is introduced,
the average class accuracies for NMF, PCA and to a lesser extent LDA decrease
(< 91%), while DRMSD, DRUNet, MSD and U-Net still maintain high accuracy
(> 98%). This difference for LDA is amplified with MSD when dealing with many
materials in a noisy setting, with LDA having a notably lower accuracy than in
the two-material setting (at ca. 76% accuracy), although this trend is not seen
with U-Net (ca. 85%). The other two data reduction methods have a significantly
reduced averaged class accuracy (< 58%). Both DRMSD and DRUNet have a high
performance (> 98.5%) in this case, showing that they are robust to both noise
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and the inclusion of multiple materials. The experiments on the remote sensing
datasets show a similar trend. Table 3.1 shows that the robustness of DRMSD
and DRUNet remains (ca. 98% or higher), but the differences with LDA when
including noise are smaller (> 90%). For PCA and NMF the accuracy decreases
only slightly when overlap is included, but does decrease significantly when noise
is introduced (down to ca. 9%). To summarize, DRMSD and DRUNet are shown
to be able to remain mostly robust to noisy and multiple materials (ca. 98% or
higher accuracies) in these simulated datasets.

Number of reduction feature map channels

To assess the image quality of the DRCNN as a function of the number of spectrally
reduced feature map channels, we carried out experiments for both datasets. For
the X-ray dataset, we use 1, 2, 10, 60 and 200 feature map channels. For the
remote sensing dataset we focus on small feature maps, using 1, 2 and 10 channels.
For the latter dataset, we also vary the properties of the dataset (clean/noise
and overlap) to assess the influence of those properties on the performance, and
a layered reduction to 2 and subsequently 1 map is added. For comparison, the
performance using the other standard data reduction methods is also assessed, and
for reduction of LDA to more than one feature map channel with the X-ray data,
we add prior knowledge about the presence of other materials in the ground truth.
For reduction to 2 feature map channels, the 59 other materials are added as one
additional class. For reduction to 10 channels, these other materials are added
as 9 classes consisting of 6 to 7 materials each, grouped by their atomic numbers.
For reduction to 60 channels, each remaining material is added as a separate class.
Note that this prior knowledge is in many practical cases not available, so this
constitutes an artificial comparison.

Figure 3.13 outlines the results of the experiment for the noisy multi-material
X-ray dataset. First of all, DRMSD and DRUNet have high average class accuracies
for all numbers of reduction feature map channels. The accuracy is highest when
reducing to 2 or 10 feature map channels, and the reduction to only 1 feature
map channel is only slightly lower in comparison. In any case, all accuracies for
DRMSD and DRUNet are higher than 98%. By contrast, PCA and NMF reach an
accuracy of more than 90% when 200 or more reduction map channels are used,
but for 60 or fewer reduction channels the accuracies remain below 70%, showing
that both data reduction methods are not suitable when 60 or fewer channels are
required to reduce the data to. For LDA, the data are reduced to 1 feature map
channel and the accuracy is lower than both DRMSD and DRUNet (< 85%). It
is only when prior knowledge about the 59 other materials is included that the
accuracy approaches that of the DRCNN methods, and even then it may only
attain a similar accuracy when the data are reduced to more than 2 feature map
channels.
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(a) MSD average class accuracy
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(b) U-Net average class accuracy

Figure 3.13: Average class accuracies for different data reduction methods using MSD (a) and U-Net
(b) on the noisy multi-material X-ray dataset. As a reference, the results for standard MSD and U-Net
networks are included, which act directly on all 300 spectral bins.

For the remote sensing datasets, the quantitative segmentation results of ap-
plying the trained networks to the test sets for DRMSD and DRUNet are given
in Figures 3.14 and 3.15 respectively, broken down into the four combinations of
noise and overlap properties. The visual results for MSD are given in Figure 3.16.
DRMSD and DRUNet show high accuracies (> 99%) on the standard noisy dataset
for all numbers of reduction map channels, but when the target cylinders are over-
lapping other cylinders, the accuracies for DRMSD and DRUNet become slightly
lower (about 95.5%) when compressing to one feature map channel. In this case,
both DRCNNs do not miss any cylinders but there are artifacts on some detected
cylinders. However, when the number of reduction feature map channels increases,
the accuracy increases rapidly (to ca. 98% and higher). The layered reduction
D = [2, 1] images show no strong additional value over direct reductions to 1
image in any experiment. On the other hand, the LDA accuracy is considerably
lower for reductions to 1 or 2 feature map channels for all noisy datasets (< 70%
and < 93%, respectively) and reaches a comparable accuracy with reductions to
between 3 and 10 feature map channels. From the visual results it can be observed
that segmentation from LDA reduced data causes the network to completely miss
certain cylinders. In all experiments with noisy data reduced with PCA and NMF,
the accuracy is ca. 9%.

We conclude that for both datasets and most of the properties we investigated,
the image quality of the DRCNNs is acceptable for reductions to one feature map
channel and higher accuracies are attained when the number of reduction feature
map channels is slightly increased. The methods perform favorably compared to
the common data reduction methods.
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(a) Clean dataset
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(b) Noisy dataset
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(c) Clean dataset with
overlapping cylinders
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Figure 3.14: Average class accuracies for different reduction schemes with MSD as CNN for different
simulated remote sensing datasets: clean dataset (a), noisy dataset (b), clean overlapping dataset (c)
and noisy overlapping dataset (d). The layered reductions to 2 and then 1 feature map channel(s) are
indicated by [2, 1].
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(a) Clean dataset
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(b) Noisy dataset
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(c) Clean dataset with
overlapping cylinders
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Figure 3.15: Average class accuracies for different reduction schemes with U-Net as CNN for different
simulated remote sensing datasets: clean dataset (a), noisy dataset (b), clean overlapping dataset (c)
and noisy overlapping dataset (d). The layered reduction to 2 and then 1 feature map channel(s) is
indicated by [2, 1].
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(a) Noisy GT (b) DRMSD,
1 channel

(c) DRMSD,
2 channels

(d) LDA,
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(e) LDA,
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(f) Noisy overlap
GT

(g) DRMSD,
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(h) DRMSD,
2 channels

(i) LDA,
1 channel

(j) LDA,
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Figure 3.16: Visual results for LDA and DRMSD reduction schemes for reductions to 1 and 2 feature
map channels on the noisy dataset (a–e) and the noisy overlapping dataset (f–j).

Dependence of feature map properties on data reduction method

In the final experiment, we look at the properties of trained networks on the
datasets when the number of reduced feature map channels is set to Nr = 1.
For the X-ray dataset, we compare the feature maps with standard reduction
images and assess whether the network makes use of the distinguishing attenuation
properties (Figure 3.8a) of the materials to identify the target cylinders. Along
with the X-ray dataset, we look at the weights as a function of spectral bins, to
assess the differences in learned weights by MSD and U-Net.

Figure 3.17 shows the reduction images relative to the ground truth, for all
different reduction methods (including DRMSD and DRUNet) to one feature map
channel. While the standard reduction methods do not yield very distinctive
reductions, the DRMSD and DRUNet methods give a reduction that, although
noisy, already gives a clear indication in black what the locations of the ground
truth objects are. In Figure 3.18a, the output weights for the first layer in the
DRMSD network are plotted as a function of the energy bins, which gives an
indication of what the network learns during the training process. First of all, there
is a clear peak at bins 60–63 and a valley at bins 64–67. The K-edge transition
of the ground truth material silver is located between bins 63 and 64. Since
the attenuation of silver changes between these bins, the network learns to take
combinations of bins with energy slightly lower than that of the edge and bins with
energy slightly higher than that of the edge, with positive and negative weights,
respectively, to make the silver objects stand out. The other bins have decidedly
lower weight magnitudes that revolve around zero, roughly cancelling out their
contribution to the compressed image. It shows that the network can learn that
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(a) Data at bin 65 (b) Ground truth (c) DRMSD compression

(d) DRUNet compression (e) PCA compression (f) LDA compression

Figure 3.17: Visual comparison of the data reduction methods for reduction of the noisy many material
dataset (a,b) to 1 image. Despite the high noise, DRMSD (c) and DRUNet (d) create the most distinc-
tive images with respect to the ground truth (note the dark shapes at the target cylinder locations,
indicated by red circles). The PCA (e) and LDA (f) compressions are included, but the Nonnegative
Matrix Factorization (NMF) compression is omitted, as it is highly similar to the PCA compression.

only the aforementioned bins are critical to performing this segmentation task.
Additionally, the weights become even smaller when bin 1 or 300 is approached,
showing that the network learns to disregard very noisy bins. In Figure 3.18b the
same quantities are plotted for a DRUNet trained network. The peaks and sharp
transitions are visible in this case as well, but the absolute values of the non-peak
weight values are generally lower than those of DRMSD.

For the noisy remote sensing dataset without overlap, Figure 3.19 shows an
example image with its corresponding DRMSD and DRUNet compression and
weight values in the data reduction layer when reducing to one feature map channel.
While the shape of the graphs are different, there are some similarities. First of all,
the weights of the bins 94–98 and 141–153, corresponding to the wavelengths from
which noisy data arise, are zero. Thus, both networks learn to leave out noisy bins.
Apart from this, despite the differences in network architecture, there are some
similarities in the shapes of the graphs of the weights, mostly in the bin ranges
0–30 and 141–200.
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Figure 3.18: Data reduction weights per bin after training with DRMSD (a) and DRUNet (b) on the
noisy few-material X-ray dataset. The K-edge of the material of the objects to be detected (silver) is
located between bins 63 and 64 (indicated in orange), which is the location of the drop. The K-edge
of cadmium is indicated in green. Additionally, note that the absolute value of the weights decreases
when approaching bin 1 or 300.

(a) Ground truth (b) DRMSD compression (c) DRUNet compression
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(d) Data reduction weights after
training with DRMSD
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Figure 3.19: Example of data reduction weights (d,e) and resulting compressions (compare with
ground truth (a)) for DRMSD (b) and DRUNet (c) with reduction to one feature map channel for the
noisy remote dataset without overlap.
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3.5 Discussion
We have applied the proposed Data Reduction CNN approach to two simulated
datasets. We expected these datasets to be challenging since they contain noisy
bins that have to be identified and left out. Furthermore, for the X-ray dataset one
material has to be identified among 60 others, all of which may be superimposed
on the same location in the projection images. For the remote sensing dataset,
we expected that high spectral similarities between materials make identifying
10 different classes simultaneously a challenging task, especially when reducing
to only one or two feature map channels. The Data Reduction CNN is able to
obtain high accuracy with the proposed approach of simultaneous data-driven
compression and training (Section 3.4.4). Note that we observe some slightly higher
accuracies for DRCNN compared to the standard CNN approach in some cases
and some slightly lower accuracies in other cases. We expect that this is because of
statistical deviations due to the random nature of training CNNs. As can be seen
in Section 3.4.4, the data reduction subnetwork learns to map spectral properties
of the relevant materials to reduction feature maps, while the CNN simultaneously
extracts the spatial properties from these feature maps for accurate segmentation.
Whereas other common data reduction methods are expected to need considerably
more feature map channels for a high accuracy, the DRCNN method is able to
compress the data without any (hyper)parameter tuning to a very limited number
of feature map channels (Section 3.4.4). The data reduction layer can, in principle,
be successfully combined with any CNN, provided that this CNN without data
reduction can also solve the imaging task.

Eventually, the compression method can be easily extracted from a trained
network, such that the compression procedure and the classification task can be
carried out at separate locations. In addition, the training procedure has to be
carried out only once after which the task it has been trained for can be performed
at high-speed throughput. Depending on the CNN architecture, the data reduction
approach may speed up the training and application process as the reduction to few
feature map channels may significantly decrease the number of trainable parameters
in the network. An initial foray into the time reduction of the DRCNN approach is
given in Appendix B.3, which compares the application of DRMSD and the MSD
networks after training in GPUs and CPUs.

In future work, we plan to apply this approach to real datasets and in practical
problem settings and assess whether the satisfactory accuracies and robustness
results (Appendix B.4) carry over. The data reduction method shows accurate
preliminary results on common benchmark datasets such as Pavia University, Indian
Pines and Salinas. Therefore, it will be interesting what DRCNN can achieve on
large and challenging experimental hyperspectral datasets.
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3.6 Conclusions
In this work, we have proposed a task-driven end-to-end approach for supervised
deep learning in hyperspectral imaging problems by adding a data reduction
component to a convolutional neural network. The method is designed to work
with any CNN and the combined Data Reduction CNN (DRCNN) network learns
to effectively spectrally reduce the data for a given task, without the need for
prior knowledge or network and parameter tuning. The data reduction subnetwork
is directly connected with the chosen CNN and learns to combine data from
hyperspectral bins, which is done simultaneously with training of the CNN for
the imaging task. Using a simulated hyperspectral X-ray dataset and a simulated
hyperspectral remote sensing dataset, we have demonstrated with a Multi-Scale
Dense (MSD) and a U-Net network that a DRCNN can learn complex reductions
from a typically large spectral dimension to a very limited number of feature
map channels. As opposed to standard reduction methods such as PCA, NMF or
LDA, this learned data reduction method finds essential distinctive task-specific
features in the hyperspectral data while retaining high imaging task accuracies when
compressing these features into a very limited number of feature map channels. We
have shown that, despite noise and the presence of multiple overlapping material
properties, high compression can be achieved with Data Reduction CNNs, resulting
in significant advantages for high-compression and high-throughput applications.

Code and data availability
The source code to reproduce all results in this chapter are available on https:
//github.com/mzeegers/DRCNN [310]. These Python scripts make use of open-
source toolboxes, in particular the ASTRA toolbox [1, 2], MSD-net [227] and
PyTorch [222, 223]. The NIST attenuation spectra and (the links to) the USGS
reflection spectra are available in the DRCNN code repository. The datasets
generated for this chapter are also part of the DRCNN source code.

https://github.com/mzeegers/DRCNN
https://github.com/mzeegers/DRCNN
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Multi-channel discrete

tomography

In this chapter, we will look at discrete tomography where the number of
materials in an object is limited. This can be exploited to make accurate
reconstructions with a limited number of projections. The DART algorithm
has proven to be a successful algorithm in this regard, but its usage is limited
to objects with a few different materials. To push the number of materials
that DART can handle, multi-channel data recorded with advanced tomo-
graphic imaging techniques – such as spectral X-ray tomography – can be used.

To effectively deal with multi-channel data, we present Multi-Channel
DART (MC-DART). This class of algorithms is a generalization of DART to
multiple channels and combines the information for each separate channel-
reconstruction in a multi-channel segmentation step. We demonstrate in a
range of simulation experiments with spectral X-ray imaging that MC-DART is
capable of producing more accurate reconstructions compared to single-channel
DART.

This chapter is based on:
M. T. Zeegers, F. Lucka, and K. J. Batenburg. “A Multi-Channel DART algorithm”. In:
International Workshop on Combinatorial Image Analysis. (Porto, Portugal). Ed. by
R. P. Barneva, V. E. Brimkov, and J. M. R. S. Tavares. Springer, 2018, pp. 164–178.
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4.1 Introduction

Tomography is a non-invasive technique for creating 2D or 3D images of the inner
structure of an object. Projections of the object are acquired by sending photonic or
particle beams (e.g. X-rays, electrons, neutrons) through the object in a particular
direction and measuring the signal resulting from interaction of the beam and the
object at a detector. By acquiring this data from multiple positions and under
various angles, a collection of projections is obtained. An image of the interior of
the object is then reconstructed by applying a reconstruction algorithm to this
projection data. Tomography is successfully used in many fields, including medical
imaging [127] and electron tomography in materials science [93, 196]. If a large
number of accurate projection images are available, solving the reconstruction
problem is straightforward by a closed-form inversion formula [51]. Practical con-
straints on the dose, acquisition time or available space can impose limitations
on the number of projections that can be taken, the angular range, or the noise
level of the data, resulting in artefacts in the reconstructed images if standard
reconstruction methods are used [127].

Discrete tomography is a powerful technique for dealing with such limited to-
mographic data. It can be applied if the object consists of only a limited number
of materials with homogeneous densities. The Discrete Algebraic Reconstruction
Technique (DART) [30, 31] is an algebraic reconstruction method for discrete tomog-
raphy that alternates between continuous reconstruction steps and discretization
of the image intensities by segmentation. The DART algorithm has demonstrated
to obtain higher image quality reconstructions with limited projections and angles
compared to standard reconstruction methods. Numerous successive studies have
improved the DART algorithm, which include automatic parameter estimation
(PDM-DART [3] and TVR-DART [328]), multi-resolution reconstruction (MDART
[65]), relaxing voxel constraints (SDART [42]) and adaptive boundary reconstruc-
tions (ADART [181]). Nevertheless, a key limitation of DART is that it can only
improve reconstruction quality if the number of different materials in the object
is relatively small. The main reason is that for a larger number of materials, the
segmentation step is no longer effective [30, 31].

In some cases it is possible to obtain tomographic information in multiple
measurement channels. For instance, in X-ray imaging the beams are typically
polychromatic, i.e. X-ray photon energies are distributed over a spectrum. Each
material in the object has different attenuation properties for different X-ray energy
levels. Whenever a single X-ray energy value is desired the range of energies within
the beam can be narrowed by applying filters at the X-ray source [51]. Some
detectors are capable of separating the incoming photons into energy bins while
counting (e.g. HEXITEC [295]). In these cases spectral multi-channel projection
data are acquired, providing additional information about the object at different
energies. Compared to the single-channel setting, where each material has a single
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attenuation value in the reconstructed image, in the multi-channel setting the atten-
uation value for each material varies along the channels. In this way, a tomographic
dataset of the object is acquired for each channel, where the attenuation values of
the materials change throughout these datasets. This multi-channel imaging can
potentially yield extra information about the materials. With more materials in
the object, especially with similar attenuation features at a fixed energy, having
data from multiple channels enables a better separation during segmentation. A
conceptual example of this is shown in Figure 4.1. It is hard to separate points
based on their attenuation values in a one-dimensional energy space. For instance,
the right side of the blue area might as well be assigned to the green or yellow
material during segmentation. With two energy dimensions the points are easily
separable, since each voxel value lies close to its attenuation cloud center. Note

(a) Material distribution
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(b) One-dimensional attenuations for energy
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(c) One-dimensional attenuations for energy
channel E2
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Figure 4.1: Elementary example of separation difficulties during segmentation. (a) Distribution of
the three materials (blue, yellow, green) in the object. The background is indicated in red. (b) His-
togram of attenuation values of pixels at energy E1 (above) and E2 (below). Vertical lines show true
material attenuations. (c) Attenuations of the materials (red dots) and computed attenuations by a
reconstruction algorithm for each voxel (colors indicate the materials these belong to).
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that these spectra are artificial and not likely to occur in real-world examples.

In this chapter we present a new class of algorithms that combines DART with
multi-channel imaging for solving discrete multi-channel reconstruction problems.
Our method can combine the information from multiple channels to produce a final
segmentation that is superior to that of the (single-channel) DART algorithm. Note
that since this new method is designed by means of modules or subroutines that
are interchangeable (as with DART), the method is essentially a class of algorithms
providing a framework for dealing with multi-channel data. For simplicity, however,
we will frequently call this framework an algorithm.

This chapter is structured as follows. Section 2 introduces the multi-channel
discrete tomography problem. In Section 3 the DART algorithm is restated
and the Multi-Channel DART (MC-DART) algorithm is introduced. Results of
experiments with this algorithm are reported in Section 4. Finally, Section 5
presents the conclusions of this study.

4.2 Problem formulation
The standard (single-channel) tomography problem can be modelled as a system
of linear equations. The image is characterized by a vector of voxel attenuation
values x ∈ Rn, where n is the number of voxels. We will work with 2D images,
but the problem formulation and methods in this work can easily be extended to
the 3D setting. We will refer to the image pixels as voxels to distinguish these
from detector pixels. We will often interchangeably speak of voxels and their
corresponding indices. The projection values (also called data) are given as the
vector p ∈ Rl, where l is the number of projection angles times the number of
detector pixels. The reconstruction problem can then be described by solving the
following set of linear equations for x:

Wx = p. (4.1)

Here W is the projection matrix, also called the forward operator [140]. This
matrix incorporates the contribution of each voxel to each projection, where element
wij indicates the contribution of voxel j to projection i. Applying the operator
W on a vector x results in the forward projection (the sinogram). Since inverting
the matrix W is computationally too expensive (or not even possible, for example
when the problem is ill-posed) the reconstruction problem is to find a solution x∗
whose forward projection Wx∗ matches the projection data best with respect to
some norm ||·||.

x∗ = arg min
x∈Rn

||Wx− p|| (4.2)

Since this is a least squares problem over Rn, a solution always exists. For simplicity
of notation we also assume that it is unique. A vector that encapsulates noise



4.2. Problem formulation 99

from real-world examples can also be modelled with (4.2). In our experiments with
phantom examples in Section 4.4 there is no noise.

In the discrete tomography problem, the image to be reconstructed consists
of a limited number of materials with homogeneous densities, each having an
attenuation which is known beforehand by means of the set R = {ρ1, . . . , ρm},
where m is the number of different materials in the object. Therefore the problem
to be solved becomes finding a vector x ∈ Rn that matches the data best:

x∗ = arg min
x∈Rn

||Wx− p||. (4.3)

Note that this is a minimization problem over a non-empty finite set. Hence, a
minimum always exists. Again, the minimizer does not need to be unique but we
use this notation throughout the chapter for simplicity.

In the multi-channel setting different properties of the target can be individually
interrogated and measured. The information of each property is obtained through
a separate channel. An example of a channel is an energy level, as in the example
in Section 4.1. In Figures 4.1b and 4.1c, the channels are the two energy levels
revealing attenuations of the object at different energies. In a more abstract way
the object is described as set a of voxels with labels instead of attenuation values,
since each material has different attenuation values in different channels. The
material labels are values in the setM = {1, 2, . . . ,m}. The channel indices are
given by E = {E1, E2, . . . , EC} where the number of channels is given by C. Again,
the attenuations are known beforehand in the sets RE1

= {ρ1,1, . . . , ρ1,m},RE2
=

{ρ2,1, . . . , ρ2,m}, . . . ,REC = {ρC,1, . . . , ρC,m}. In this setting, let R = ∪REc .
The function µ : M × E 7→ R maps the label-channel combinations to their
attenuation value, so the attenuation of a material with label s at channel Ec is
given by µ(s, Ec). Note that there is not necessarily a one-to-one correspondence
between the attenuation values and the material-channel combinations, because
some combinations can have the same attenuation value. In this multi-channel
case the projection data are given by a vector of projection data vectors at various
channels:

P = (pE1 , . . . ,pEC ) ∈ Rn×C . (4.4)

For each channel Ec the reconstruction problem for xEc is given by the following
set of linear equations:

WxEc = pEc , Ec ∈ {E1, . . . , EC}. (4.5)

For y ∈Mn, define µ(y, Ec) = (µ(y1, Ec), . . . , µ(yn, Ec))
> as the vector of voxel

attenuation values at channel Ec. The multi-channel problem is now defined as
follows. Given data vector P and projection matrix W , find a labelling vector
y∗ ∈Mn such that for each channel Ec the difference between forward projection
Wµ(y∗, Ec) and data is minimal with respect to some norm ||·||:
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y∗ = arg min
y∈Mn

C∑
h=1

||Wµ(y, Ec)− pEc ||. (4.6)

Note that for one channel the minimization problem is equivalent to (4.3) where
the labelling is given by the attenuation values x, by setting µ(y, E1) = x and
Mn = Rn and pE1

= p:

y∗ = arg min
y∈Mn

||Wµ(y, E1)− pE1
|| (4.7)

= arg min
x∈Rn

||Wx− p||. (4.8)

4.3 Algorithms
In this section, the Multi-Channel DART (MC-DART) framework for solving the
minimization problem of Eq. (4.6) is introduced. We first explain the DART
algorithm as given in [30] by discussing the overall structure and its building blocks.
We then describe each building block of the MC-DART algorithm separately in
more detail. Note that ASTRA [1, 215] provides an implementation for numerically
computing all projection matrices in these algorithms, either by storing the full
matrix or doing all necessary computations in a matrix-free way.

4.3.1 DART
The DART algorithm attempts to solve the optimization problem of Eq. (4.3)
by iteratively alternating between continuous reconstruction steps and discrete
segmentation steps. The number of materials in the object to be reconstructed
and their attenuation values should be known beforehand, given by the function µ.
The algorithm consists of several phases, which are indicated in the flow-chart in
Figure 4.2. The pseudocode of DART is given in Algorithm 1.

Algorithm 1 DART
Input: W , p, R

1: x0 ← Mask-ARM(W ,p,1n,0n)
2: for k = 1 to K do
3: yk ← Seg(xk,R)
4: Mk ← Mask(yp)
5: xk ← Mask-ARM(W ,p,Mk,xk−1)

6: Output: xK ,Seg(xK ,R)
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Figure 4.2: Flow chart of the DART algorithm. The DART iteration activities are indicated in red and
the initialization and post-segmentation activities are indicated in blue.

Initialization

In the initialization phase, given the projection data p and the projection proper-
ties by means of W , an initial reconstruction x0 is calculated using an Algebraic
Reconstruction Method of choice (hereafter referred to as the ARM), for example
ART, SART or SIRT [140]. With the initial reconstruction x0 at hand, the main
loop of the DART algorithm begins.

Segmentation

In this main loop, in iteration k the image xk−1 is segmented using a simple
thresholding scheme, forming the image yk ∈ Rn, by computing for every voxel j
the closest material attenuation value:

ykj =


ρ1, xk−1

j < 1
2 (ρ1 + ρ2)

ρ2,
1
2 (ρ1 + ρ2) ≤ xk−1

j < 1
2 (ρ2 + ρ3)

...
ρm,

1
2 (ρm−1 + ρm) ≤ xk−1

j

(4.9)

= arg min
ρ∈R

||xk−1
j − ρ||2. (4.10)

The second expression is easier to generalize to a higher-dimensional setting, which
will be done in Section 4.3.2.

Boundary detection and masking

A set of voxels in the segmentation is selected for a new reconstruction to refine
the resulting image. First, the set Bk ⊂ {1, . . . , n} of boundary voxel indices
is determined based on the segmentation. Various schemes can be applied for
boundary detection. Additionally, a set Uk ⊂ {1, . . . , n} of free voxel indices is
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determined, where each voxel is included with a certain probability 1 − β, with
0 ≤ β ≤ 1. The process of selecting the voxels Uk ∪ Bk to be reconstructed and
the voxels to be left out is called masking. Note that in the initialization phase all
voxels are included in the mask.

Masked ARM reconstructions

The set of free voxel indices Uk ∪Bk are subjected to a new ARM reconstruction.
This is done by computing the forward projection of the voxels (ykj ) with j /∈ Uk∪Bk,
and subtracting this from the input data p to obtain the residual sinogram pk.
The subproblem that has to be solved in this phase is:

W
k
xk = pk. (4.11)

In Eq. (4.11) matrix W
k
is defined by W

k
= (wij)j∈Uk∪Bk and vector xk to be

found has length |Uk ∪ Bk|. Thus, the system of equations contains the same
number of equations as Eq. (4.2) but has fewer unknowns. The system is solved
using a fixed number of ARM iterations, taking the values of (xk−1

j )j∈Uk∪Bk as
the starting condition. The complete reconstruction xk at the end of iteration k is
then formed by merging xk with yk.

Some DART implementations also include a smoothing step at this point. The
entire loop is repeated a predefined number of times. After the loop ends, the
image is segmented one more time. An example of the DART algorithm on a
two-material phantom is given in Figure 4.3. Note that the DART algorithm has
many degrees of freedom. This includes the number of ARM iterations in the
initialization phase, the number of DART iterations, the number of ARM iterations
during these DART iterations, the fixing probability β, and possibly parameters in
the smoothing operation. The quality of the reconstructions also depends on the
tomographic setup, such as the number of projections and the number of projection
angles, and on the complexity of the object, including the number of materials
and different attenuation values. Despite the DART algorithm performing well in
practice, it is a heuristic method for which no solution guarantees exist [28]. The
DART algorithm is also highly modular. Approaches for segmentation, boundary
detection, reconstruction (ARM) and possible smoothing can easily be changed
without sacrificing the overall structure of the algorithm. For the multi-channel
algorithm proposed in this section, the segmentation phase is adapted to using all
multi-channel reconstructions as input.

The complexity of the framework depends on the algorithms that are used for
reconstruction and segmentation. In this work, we use SIRT as the reconstruction
algorithm and the thresholding segmentation as described above. Therefore, in
this case, the DART algorithm has a time complexity of O(Kn(m+ l)). The space
complexity of our implementation is O(ln).
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Figure 4.3: An example of DART applied to simulated X-ray data from a two-material phantom.

4.3.2 Multi-channel DART

We now present the Multi-Channel DART (MC-DART) algorithm and outline its
separate building blocks. Most focus will be on the multi-channel segmentation.
Note that labelling single-channel images separately by attenuation values does
not work here, since across multiple channels different materials can have the same
attenuation. Therefore, there are some slight changes in the other blocks as well due
to a new labelling mechanism. The algorithm structure is shown in the flow-chart
in Figure 4.4. The pseudocode of MC-DART is given in Algorithm 2.

Multichannel

segmentation

Masking: 

boundary detection 

free pixel selection

Merging

Stop
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met?

Multichannel

segmentation

Final

segmentation

Yes

No

Multichannel

data

Initial ARM

reconstructions

Merging

Merging

Masked ARM

Reconstructions

Figure 4.4: Flow chart of the MC-DART algorithm. A stacked number of activities indicate that these
are applied at different channels simultaneously.
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Algorithm 2 MC-DART
Input: W , E, P , R, M, µ

1: for c = 1 to C do
2: x0

Ec
← Mask-ARM(W ,pEc ,1n,0n)

3: for k = 1 to K do
4: yk ← MCSeg(Xk,R,M, µ)
5: Mk ← Mask(yk)
6: for c = 1 to C do
7: xkEc ← Mask-ARM(W ,pEc ,M

k,xk−1
Ec

)

8: Output: XK ,MCSeg(XK ,R,M, µ)

Initialization

In the multi-channel setting we start out with a vector of projection data P at
various channels and the matrixW as before. For each channel Ec a reconstruction
x0
Ec

is computed using the selected ARM. This results in C initial reconstructions
for the MC-DART loop.

Multi-Channel segmentation

Given the reconstructions for all channels, similar to the DART segmentation, the
multi-channel segmentation will determine a label image yk ∈ Mn. Let µ(s) =
(µ(s, E1), . . . , µ(s, EC)) ∈ RE1

×RE2
× . . .×REC be the vector of all attenuation

values at each energy for material s ∈M, and let Xk(·, j) = (xkj,E1
, . . . ,xkj,EC ) be

the vector of all attenuation values of voxel j at each channel. We compute the
segmented image by computing for each voxel j ∈ {1, . . . , n} the label using a basic
thresholding scheme:

ykj = arg min
s∈M

||Xk(·, j)− µ(s)||2. (4.12)

Essentially, this operation selects the material label for which the multi-dimensional
difference between the material attenuation and voxel attenuations is smallest.

Masking and boundary detection

The masking works exactly the same as in the single-channel case. Given the
segmentation yk the masking produces a set Uk∪Bk of voxel indices to be included
in the multi-channel reconstructions.

Multi-Channel reconstructions

In the MC-DART algorithm the reconstructions are handled separately for each
energy. Thus, in MC-DART iteration k the ARM is invoked C times to find xkEc
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for each channel c in

W
k
xkEc = pkEc . (4.13)

The resulting (merged) reconstructions are then given by Xk := (xkE1
, . . . ,xkEC ) ∈

Rn×C .

An example of the MC-DART algorithm on a two-material phantom with two
channels is given in Figure 4.5. As with DART, the complexity of this framework
depends on the reconstruction and segmentation methods that are chosen, as well
as the extent of parallelization. If we use SIRT and the multi-channel segmentation
method as described above and use a completely sequential implementation, the
time complexity of MC-DART is O(CKn(l +m)). Because of the dependencies
on the methods, we rather speak of a relative complexity of MC-DART to DART,
which we define as the ratio of the sequential MC-DART complexity to that of
DART, irrespective of the subroutines used. This relative time complexity is O(C).
The space complexity of this algorithm instance of MC-DART is O(Cn), resulting
in a relative space complexity of O(C) as well.

Final

segmentation

Multichannel

projection data

Initial ARM

reconstructions

Figure 4.5: An example of MC-DART applied to simulated two-channel X-ray data from a two-material
phantom.
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4.4 Experiments and results
In this section the performance of the described MC-DART framework in terms of
reconstruction and segmentation is presented. A series of experiments have been
designed in which the number of channels C and different materials m are varied.
For each experiment, multiple random phantoms are created. The size of these
two-dimensional phantoms is 128 × 128 pixels, and each phantom consists of a
circular disk containing a random parcellation among m materials in such a way
that the total surface is approximately equal for each material. An example of
this random phantom is given in Figure 4.1a, where m = 3. Given the number of
materials and channels, random attenuation spectra are generated by assigning a
random number µ(s, Ec) ∼ U(0, 1) for each channel-material combination, where
s ∈ {1, . . . ,m} and Ec ∈ {E1, . . . , EC}. With this way of generating spectra
no dependencies between channels are established. Note that in most practical
applications such dependencies do exist, as materials all have their own attenuation
spectrum. For each phantom, reconstructions are made. The reference values for
the tomographic setup and the parameter values of the MC-DART reconstruction
algorithm for these reconstructions are summarized in Table 4.1. For multi-channel
segmentation the method as described in Section 4.3.2 is used.

Parameter Reference value
Angles 32 (equidistant)
ARM SIRT
Start iterations 10
MC-DART iterations K 10
ARM iterations 10
Fix probability β 0.99

Table 4.1: Reference values for the parameters of the tomographic setup and the reconstructions
algorithm for all experiments.

We vary the number of channels C ∈ {1, . . . , 10} and materials m ∈ {2, . . . , 10}
independently. For each combination, a random phantom yinit is created, after
which data P is generated by applying the forward projection as described in
Section 4.2 on the phantom by applying µ and W on yinit. In all experiments
parallel-beam geometries are used and the detector size is 128 pixels. After this,
the MC-DART algorithm as described in Section 4.3.2 is applied with K = 10
MC-DART iterations. The final segmentation is compared to the original phantom
and the pixel error is computed, which is defined as the number of pixels in the final
segmentation yK that are labelled differently compared to the corresponding pixels
in the original phantom yinit. Only the pixels in the inner disk of the phantoms
are taken into account. All experiments are repeated for and averaged over 100
runs with different phantoms.
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Figure 4.6: Pixel error percentage for different number of material-channel combinations.

The creation of random phantoms is implemented in MATLAB. The remainder
of the experiment setup scripts are implemented in Python. The reconstruction
algorithms, including the MC-DART algorithm, are implemented in Python, where
the ASTRA Toolbox [1, 2] is used to take care of the ARM invocations and forward
projections, including the masking in each MC-DART iteration and the creation of
matrices W and W

k
based on the geometric properties.

Figure 4.6 shows the percentage of misclassified pixels with respect to the
number of pixels in the inner disk. The percentage is lowest when the number
of materials is low and the number of channels is high, while the percentage is
highest when the number of channels is low and the number of materials is high.
Given a number of channels, the percentage seems to scale logarithmically with
the number of materials. On the other hand, given a number of materials, the
percentage seems to scale exponentially with the number of channels for larger
number of materials. Therefore, in this setup, the addition of only a few channels
improves the reconstruction quality considerably. Figure 4.7 shows examples of the
reconstructions at the corners of the curved plane of Figure 4.6.

We have investigated the effect of changing the parameters that are shown
in Table 4.1. The number of starting iterations has no effect on the pixel error
percentage curve. For these parameters, we found that increasing the number of
MC-DART iterations further than 4 had no significant effect on the reconstructions.
This threshold depends on the number of ARM iterations in each MC-DART
iteration. Also, the quality of the reconstructions increases only marginally when β
is increased. However, the pixel error percentage drops considerably as the number
of ARM iterations during an MC-DART iteration increases. Also, when scanning
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(a) 2-material phantom (b) 1-channel rec. (c) 10-channel rec.

(d) 10-material phantom (e) 1-channel rec. (f) 10-channel rec.

Figure 4.7: Reconstructions for various setups. (a, d) Phantoms used with two and ten materials
respectively. (b, e) Reconstructions using one channel. The mislabelled yellow pixels are because the
attenuation of the yellow material is very close to zero. (c, f) Reconstructions using ten channels.

data from many angles are available, the reconstruction quality improvements with
multiple materials become much better. For only 2 angles, the reconstruction
between C = 1 and C = 10 channels improves from pixel error percentage 27% to
23% for two materials and from 55% to 41% for ten materials. In comparison, for
as much as 128 angles the reconstructions between C = 1 and C = 10 channels
improve by from 3% to less than 1% for two materials and from 46% to 4% for
ten materials. We conclude that in all these cases the MC-DART algorithm gives
better results when more channels are available.

Additionally, apart from the pixel error, we investigate how the number of
assigned pixels per material class behaves as the MC-DART reconstruction proceeds.
The results are shown in Figure 4.8. A random phantom with four different
materials and background is used. The number of channels is set to C = 10, and
for each channel c and material m a random attenuation value µ(s, Ec) ∼ U(0, 1)
is generated. Then the MC-DART algorithm is applied to this phantom in two
different experimental setups. In the first experiment, the number of MC-DART
iterations is set to 10 and the number of ARM iterations per MC-DART iteration
is set to 10. After each MC-DART iteration, the number of pixels assigned are
calculated for each class. During the first four MC-DART iterations the number
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(c) Number of pixels per class for non-DART
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Figure 4.8: Convergence behavior for material classes with C = 10 channels. (a) Phantom that has
been used with m = 4 materials (b) Graph showing the behavior for each material class in a DART
routine for this phantom. The number of iterations for the initial reconstruction is set to 2, the number
of DART iterations is 10, the number of ARM iterations is set to 10, the number of angles is 8, fixing
probability is set to β = 0.99. The chosen ARM is SIRT. Shown are the number of pixels assigned
per class during segmentation after each DART step, with the true value of these indicated by dashed
lines. (c) Number of pixel assigned per class over number of ARM iterations. The number of DART
iterations is 0, and instead we apply 100 ARM iterations with 2 initial iterations. The results are based
on intermediate segmentations after each 10 ARM iterations, but these segmentations are not used in
further iterations. Background pixels are excluded from the results (d) Pixel error over number of ARM
iterations for both approaches.
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of assigned pixels is converging towards their real values. After this, the graphs
enter an oscillatory phase in which for each class the number of assigned pixels
alternates between two values whose average is not necessarily the real number of
pixels for that class. For comparison, in the second experiment the same setup is
used, but without using MC-DART iterations and applying the same ARM for 100
iterations instead. In this way the ARM is effectively invoked equally often. After
each 10 iterations a segmentation is made based on the current reconstruction and
the pixels per class are measured, but no new forward projections are calculated
from these segmentations and used in subsequent ARM iterations. In this case
the number of pixels converges much more quickly for each class. Also, there is
no oscillatory phase and the number of pixels are just as close to their true values
as with the DART approach. However, plotting the total pixel error over time
reveals that the pixel error in the non-DART case is higher. The pixel error for
the MC-DART case needs more time to stabilize to its oscillatory phase, but the
values are eventually lower than in the non-MC-DART case.

4.5 Discussion
This chapter presents the first steps to implement a multi-channel reconstruction
technique using multi-channel segmentation. Currently, there are no standard
approaches for the discrete multi-channel problem presented in Section 4.2. We
propose a framework in which reconstruction and segmentation techniques can be
exchanged. The modules in the framework can be adjusted to the problem to be
solved. For instance, segmentation can be performed with neural network based
methods. The proposed method is not aimed at optimizing reconstructions with
state-of-the-art ARMs or segmentation techniques but at presenting a framework
to work with multi-channel data. If more data from different channels are available,
this implementation outperforms DART but it does not mean that the problem is
optimally solved. To further develop this technique and transfer it to real-world
settings, real-data properties should be taken into account. These properties include
the correlation of attenuation values between channels and noise contained in the
projection data. In our study we only make use of the multi-channel data during
segmentation. Another approach could be to use the multi-channel data during
reconstruction, modelling the reconstruction problem as a large inverse problem
where the unknowns are the material concentrations in each pixel (e.g. see [143,
275]). However, solving this problem is much more involved and the MC-DART
framework presented in this chapter provides a simple but effective alternative of
separating materials using multi-channel data.
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4.6 Conclusions
A new class of algorithms for solving discrete multi-channel reconstruction problems
has been proposed. This framework uses the strength of DART regarding dealing
with limited data in a multi-channel setting by using a multi-channel segmentation
method. The experiments have shown that combining information from different
channels by a multi-channel segmentation method increases the reconstruction
quality compared to the single-channel DART algorithm. Therefore, we conclude
that the MC-DART framework is a promising approach for dealing with multi-
channel data.

Code and data availability
The source code to reproduce all results in this chapter are available on https:
//github.com/mzeegers/DRCNN [311]. These Python scripts make use of the
ASTRA toolbox [1, 2]. The data configurations generated for this chapter are
available in the MC-DART source code repository.

https://github.com/mzeegers/DRCNN
https://github.com/mzeegers/DRCNN




5
Dictionary-based spectral

tomography

Spectral X-ray imaging has the potential to significantly improve the accuracy
of material decomposition in tomography. Nevertheless, the problem of volu-
metric material decomposition in spectral tomography is often highly ill-posed.
Therefore, most state-of-the-art methods rely on strict prior information, and
are able to provide material decomposition with a limited number of materials,
with limited accuracy, or a limited set of spectral configurations.

To resolve these issues, we propose ‘A Dictionary-based Joint reconstruction
and Unmixing method for Spectral Tomography’ (ADJUST). Its formulation
relies on forming a dictionary of spectral signatures of materials common
in CT and prior knowledge of the number of materials present in an object.
In particular, we decompose the spectral volume linearly in terms of spatial
material maps, a spectral dictionary, and the indicator of materials for the
dictionary elements. We propose a memory-efficient accelerated alternating
proximal gradient method to find an approximate solution to the resulting
bi-convex problem. From numerical demonstrations on several synthetic
phantoms, we observe that ADJUST performs exceedingly well compared to
other state-of-the-art methods. Additionally, we address the robustness of
ADJUST against limited and noisy measurement patterns. The demonstration
of the proposed approach on a spectral micro-CT dataset shows its potential
for real-world applications.

This chapter is based on:
M. T. Zeegers, A. Kadu, T. van Leeuwen, and K. J. Batenburg. “ADJUST: A Dictionary-
based Joint reconstruction and Unmixing method for Spectral Tomography”. Inverse
Problems 38.12 (2022), p. 125002.
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5.1 Introduction

X-ray Computed Tomography (CT) estimates the spatial attenuation map of the
object of interest from its measured X-ray projections obtained from different
angles. The conventional tomography acquisition setup consists of a polychromatic
X-ray source and an X-ray detector that collects the transmitted X-rays. However,
these conventional detectors do not discriminate between different incident photon
energies and collect the attenuated X-rays solely in one energy bin (Figure 5.1).
Images of conventional detectors are reconstructed as grey scale volumes, repre-
senting the aggregate attenuation coefficients of the materials. Several materials
may correspond to the same grey level, which makes it difficult to determine the
material composition of an object. Nonetheless, the attenuations of materials
are energy-dependent and their spectral attenuation curves are mutually different.
Therefore, by probing multiple energy levels, additional information is obtained
for discriminating the materials. A typical approach is dual-energy CT, which
allows for more accurate material decomposition [40, 274], also known as material
unmixing. It uses two polychromatic sources with different peak voltages, and
correspondingly two sets of conventional detector panels to measure attenuated
X-rays, each from one source. Dual-energy CT is commonly used in clinical set-
tings for separating high-attenuating materials from low-attenuating materials, for
example, determining the location of contrast agents [199] such as iodine in the
body [142]. However, more accurate material decomposition and concentration
determination requires multi-energy CT, enabled by multi-energy X-ray (photon
counting) detectors [40, 274].

Multi-energy X-ray detectors allow for collecting X-ray projection data in multi-
ple energy bins with a very high spectral resolution. We can divide these detectors
into two classes: (i) detectors that measure all X-ray photons simultaneously and
directly categorize these into various spectral channels, and (ii) detectors that
indirectly do this. Detectors from the first category are often used for hyperspectral
imaging, and some examples include the Hexitec detector [78, 134, 282], Amptek
X-123 CdTe detector [236] and the SLcam [213, 247]. On the other hand, the
spectroscopic X-ray detectors from the second category indirectly measure many
spectral channels by applying threshold scans. Detectors from the Medipix and
Pixirad families are examples of this [24, 25]. The number of energy bins that
can be recorded simultaneously is limited (usually up to 10), but different energy
thresholds, with which X-ray photons with higher energies than that threshold
can be detected, can be set between measurements. If the object of interest is
static, hyperspectral images can, in principle, be easily obtained using these devices.

The measurements from these detectors, i.e. the tomographic projections after
their preprocessing and log-correction, are linearly related to the spectral charac-
teristics of the materials present in the object. Although these detectors can now
measure the X-ray projections in multiple energy bins (combined referred to as
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(a) Data acquisition in conventional X-ray CT
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(b) Data acquisition in spectral X-ray CT

Figure 5.1: Comparison of data acquisitions in conventional X-ray CT (a) and spectral X-ray CT (b). In
conventional X-ray CT, the energy window is dictated by the source spectrum (grey). None of the de-
tected X-ray photons are distinguished by energy, leading to one sinogram (containing the projections
ordered by angle). On the other hand, in spectral CT, the X-ray photons are distinguished according to
their energy from multiple windows (colors), yielding multiple sinograms with different characteristics.
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spectral projections), it is not straightforward to optimally use the available spectral
data for material decomposition. The conventional strategies for reconstruction
and material decomposition are not designed to simultaneously process this type of
spectral measurements and find accurate material maps (refer to Figure 5.3). Hence,
advanced computational techniques are required to infer the material composition
from these spectral projections.

5.1.1 Motivation and problem description
Spectral tomographic projections are X-ray measurements at multiple energies that
result from the spatial and spectral properties of the materials present in the object.
As noted in Section 1.5, spectral computed tomography is the process of estimating
spatial maps and spectral signatures of materials present in the object from spectral
tomographic projections. In general, the spectral CT workflow consists of two steps:
(i) reconstruction: computing spatial maps from their tomographic projections,
(ii) unmixing : decomposition of the spectral volume into spatial material maps and
their spectral signatures. Mathematically, reconstruction boils down to solving an
inverse problem, while decomposition involves matrix factorization, an unsupervised
learning approach. These two steps can be performed in a serial fashion to obtain
the material maps from the spectral projections (refer to Figure 5.2). However,
these two steps can also be combined into a one-step approach, which we refer to
as joint.

To illustrate the performance of these two-step and one-step approaches, we
consider a Shepp-Logan phantom, as described in Figure 5.3. The numerical
phantom consists of five materials (vanadium, chromium, manganese, iron and
cobalt). For the tomographic projections, a full-view setting is chosen where
180 projections between 0 to π are acquired. Figure 5.3 shows that the two-
step approaches do not yield clear material decompositions or spectral signature
reconstructions. Although the two-step methods are computationally efficient, these
generally do not yield the same solution due to the ill-posedness of the problem. For
the same reason, the joint approach is not expected to work well in all cases either.
In particular, the current algorithms for joint methods suffer from ill-conditioning
of the spectral profiles (refer to Section 5.4.2). The suboptimal performance of
these methods motivates us to develop novel reconstruction methods to improve
the spatial resolution and precise characterization of materials. To address the
ill-posedness, we incorporate spatial and spectral prior information.

5.1.2 Contributions and outline
In this chapter, we propose a new technique called ‘A Dictionary-based Joint recon-
struction and Unmixing method for Spectral Tomography ’ (ADJUST) to reconstruct
spatial material maps from their spectral tomographic measurements. ADJUST
is a novel bi-convex optimization formulation that incorporates an effective spa-
tiospectral prior. This prior includes (i) spatial : the contribution of materials at
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Figure 5.2: A schematic overview of various approaches to spectral computed tomography: The spec-
tral sinograms (projections from various angles) obtained at different energy levels make up the input
of these algorithms (a). The spectral sinograms can be decomposed first in the projection domain to
obtain material sinograms and the spectral signatures (b). The spatial material maps (d) are then
obtained by reconstructing each material sinogram separately. Alternatively, reconstruction can be
done before the material decomposition by first making a CT reconstruction of every spectral chan-
nel using the associated spectral sinograms to obtain the spectral volumes (c). Then, in the image
domain, these spectral volumes can be decomposed to obtain the spatial material volumes. These
two-step approaches can also be combined into a one-step approach in which the decomposition and
reconstruction are carried out as a joint approach.

each location should sum to 1, and (ii) spectral : the spectral signature of material
should be a linear combination of the elements of a spectral dictionary. To solve
the constrained optimization problem, we design a memory-efficient alternating
proximal iterative scheme. In particular, we develop numerical methods to compute
the required proximal operators quickly. In numerical experiments, we demon-
strate that ADJUST performs better than the existing state-of-the-art methods.
Furthermore, we show that ADJUST is also applicable to limited-angle problems
found in industrial X-ray tomography, optical tomography and electron tomography.

The remainder of the chapter is organized as follows. Section 5.2 discusses the
existing work on spectral CT and material decomposition. Section 5.3 introduces the
forward modelling of spectral X-ray tomography. In particular, we derive the linear
map from the spatial map of materials to the spectral tomographic measurements.
Then, we introduce the inverse problem in Section 5.4 that estimates the spatial
material maps and spectral signatures from the spectral tomographic measurements.
Here, we also discuss the ill-posedness involved in the inversion process. To reduce
this ill-posedness, we introduce ADJUST in Section 5.5. Moreover, we propose
an iterative scheme that finds an approximate solution to the resulting bi-convex
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Figure 5.3: Comparison of various methods for spectral CT on a five-material spectral Shepp-Logan
phantom. The tomographic projections are gathered in 100 equally-sized bins between 5 to 35 keV. The
top row shows the true material maps and the spectral signatures of each material. The second and
third row show the material maps retrieved from two-step methods, reconstruction-then-unmixing
(RU) and unmixing-then-reconstruction (UR), respectively. The fourth row shows the results of the
classical joint method (see Section (5.6)). In contrast, the fifth row shows results of the proposed
method (see Section 5.5).

formulation. In Section 5.6, we numerically compare ADJUST with other methods
on various synthetic phantoms. We also demonstrate the robustness of the method
on limited measurement patterns such as sparse-angle tomography and limited view
tomography, as well as in situations with limited spectral resolution and higher
noise levels. In addition, we apply ADJUST to an experimental X-ray micro-CT
dataset. Finally, we discuss the possibilities and limitations of the approach in
Section 5.7 and conclude the chapter.

5.2 Related work
For the sake of convenience, we categorize the previous work on spectral CT into
(i) (two-step) sequential approaches and (ii) (one-step) joint approaches to recon-
struction and material decomposition. Since we focus on multi-spectral CT, we do
not discuss the advances in dual-energy CT. However, we refer the reader to the
comprehensive review paper [199] that covers dual-energy CT.

For spectral CT, sequential approaches (also known as two-step methods) are
mainly (i) reconstruction followed by decomposition [60, 77, 95, 298, 299, 318],
and (ii) decomposition followed by reconstruction [125, 190, 248]. In the former
category, material decomposition is carried out in the image domain, while in the
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latter category, it is carried out in the projection domain (see Figure 5.2). In both
approaches, independent methods for material decomposition in the projection
domain [75], (multi-channel) spectral reconstruction [312] with various forms of
structural or spectral regularization [143, 244, 246], and material decomposition
in the image domain [95] can be plugged in. Although these sequential two-step
methods are computationally inexpensive, separating the reconstruction and de-
composition steps causes information loss [202, 292].

Joint methods (also known as one-step methods) that simultaneously reconstruct
multi-channel spectral images and perform material decomposition have been
developed to address the issues associated with sequential methods [136, 202]. All
current one-step methods are iterative in nature and allow for the incorporation
of prior knowledge through regularization. For example, (i) structure on material
maps is imposed through various penalties [125, 202], (ii) material maps are
constrained using simplex constraints [95, 298, 299], and (iii) structure on spectral
signatures is enforced using a spectral dictionary [299, 316]. In particular, when the
materials present in the object of interest are precisely known, various techniques
improve the quality of the reconstructions. These tailored methods can image
contrast agents, such as iodine [318], gold, gadolinium in angiography [190], in the
presence of bone and tissue. Sometimes, knowledge about the materials can be used
to choose the spectral bins effectively [95]. Moreover, a deep learning approach
has been proposed to perform joint decomposition and reconstruction task by
generating a training set based on synthetic phantoms [5]. Most existing methods
have been developed for, or demonstrated on, a limited number of materials (for
example, two [136, 166, 189], three [27, 316], and six [95]), sometimes heavily
relying on prior information about the materials, spectral signatures and energy
bins. Some of these methods are extendable to more materials [5], but this can be
difficult for each additional parameter that may need to be estimated with each
new material [27]. However, these methods suffer when (i) the number of materials
present in the object is larger than 3, (ii) the number of projections is smaller
than the conventional criterion, (iii) the measurements are corrupted with high
noise [118].

5.3 Spectral forward model
In this section, we provide the spectral X-ray forward model, by describing how we
represent the objects and how spectral X-ray projections are obtained from this. The
object is characterised by its attenuation coefficients µ(x,E) ∈ R+, where x ∈ Rd is
the location and E > 0 the X-ray photon energy, with d ∈ {2, 3} being the dimension
of our space depending on whether we consider a slice-based or full 3D reconstruction.
Given a polychromatic X-ray source with a source spectrum I0(E) at energy level
E, and C energy windows from the set E = {Ec}c∈C =

{[
Emin
c , Emax

c

]}
c∈C (with C

being its index set with |C|= C) in which a spectral detector captures associated
X-ray photons, we model the total X-ray photons captured by a detector pixel in
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energy bin Ec as follows:

I(Ec) =

∫ Emax
c

Emin
c

I0(E) exp

(
−
∫
`

µ(x,E) dx

)
dE. (5.1)

Here, the inner integral is taken over the line ` from the X-ray source to a detector
pixel. The maximum and minimum energy range depend on detector specifications.
We model the energy-dependent attenuation as a linear combination of energy-
dependent material attenuations and their spatial contributions. We represent it
mathematically as

µ(x,E) =
∑
m∈M

µm(E)αm(x), (5.2)

where the material attenuation coefficient µm is a function of energy. The material
m must be contained in a set of considered materialsM of size M . The proportion
of material m at location x is given by αm. From Equations (5.1) and (5.2), we
arrive at the following continuous relationship of measured photons in terms of the
material spatial distributions and their attenuations:

I(Ec) =

∫ Emax
c

Emin
c

I0(E) exp

(
−
∑
m∈M

µm(E)

∫
`

αm(x) dx

)
dE.

If the spectral bins are sufficiently narrow then the source spectrum and the
material-attenuation values can be approximated by their representative (average)
values. These values are respectively I0(Ec) and µm(Ec), and form the following
relation for the photon count in energy bin Ec corresponding to the cth channel:

I(Ec) ≈ I(Ec)

= I0(Ec) exp

(
−
∑
m∈M

µm(Ec)
∫
`

αm(x) dx

)
.

In general, the photon count is perturbed by an energy dependent noise distribution.
Moreover, the spectral X-ray detector is a photon-counting detector, for which the
noise in energy bin Ec can be modelled using a Poisson distribution with parameter
I(Ec) [221]. If the mean in each energy bin is sufficiently high, a realization Imeas(Ec)
of I(Ec) measured by a spectral detector can be approximated using Gaussian
distribution N (0, σ2), with variance σ being inversely proportional to I(Ec). In our
experiments, we assume that the average photon count in each bin of detectors are
sufficient for this approximation.

5.4 Spectral inverse problem
From the measured spectral X-ray projections, spectral computed tomography aims
to retrieve the energy-dependent attenuation values µm(Ec) for each material m
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and energy channel Ec and the distribution αm throughout the object for each
material m. It boils down to solving the bilinear system, in terms of µm and αm,∑

m∈M
µm(Ec)

∫
`j

αm(x)dx = − ln

(
Imeas
j (Ec)
I0(Ec)

)
, ∀ `j ∈ L, Ec ∈ E , (5.3)

with L and E denoting the set of rays (with size |L|= J) and the set of energy
channels, respectively. In tomography, the material distributions are determined
by discretizing the object space into the grid of either pixels (2D) or voxels (3D).
For now, we consider a three-dimensional scene with N voxels. The proportion
of material m in the ith voxel is then given by aim. For each ray over line `j
corresponding to the jth measurement, the quantity wji determines the contribution
of ith voxel to the jth measurement. Usually, the quantity I0(Ec) can be determined
accurately by performing a flatfield measurement (i.e. measurement without
object). Therefore, the right-hand side of Equation (5.3) is known. By expressing
− ln

(
Imeas
j (Ec)/I0(Ec)

)
by yjc and µm(Ec) by fmc, we arrive at the following

expression:

M∑
m=1

(
N∑
i=1

wjiaimfmc

)
= yjc, j = 1, . . . , J, and c = 1, . . . , C. (5.4)

Here, the total number of measurements for each channel is given by J , and C
denotes the total number of (energy) channels. Subsequently, we can write the
expression in Equation (5.4) in the following matrix notation

WAF = Y , (5.5)

where Y ∈ RJ×C represents tomographic measurements for C number of channels,
and W ∈ RJ×N is a projection matrix containing the weights wji described in
Equation (5.4), A ∈ RN×M consists of M columns of size N , with each column
representing a spatial map corresponding to the material present in the object,
while F ∈ RM×C consists of M rows with each row denoting the channel attenua-
tion information of the material. It is important to note that matrices W and Y
are known and matrices A and F are unknown. We formulate the joint spectral
tomographic imaging and decomposition problem in a constrained least-squares
form as

minimize
A,F

J (A,F ) , 1
2‖Y −WAF ‖

2
F , (least-squares misfit)

subject to A ≥ 0, (non-negativity of
material maps)

F ≥ 0. (non-negativity of att-
enuation coefficients)

(5.6)
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Here, we impose non-negativity constraints on both A and F . The function
J (A,F ) : RN×M × RM×C 7→ R defines the misfit between the true measurements
Y and the simulated measurements WAF using the Frobenius norm. This norm
is valid if the noise in the measurements is approximately Gaussian. We note that
this joint formulation is a bi-convex optimization problem since the misfit function
is bi-convex, and the constraint set is a bi-convex set [103]. We denote the solution
set of the joint formulation by

B =

{
(Ajoint,Fjoint)

}
= arg min

A≥0,F≥0
J (A,F ).

This solution set B may contain more than one solution if the misfit function J is
not strongly bi-convex. The solution set B cannot be determined trivially. To find
the elements in set B, we need to solve the optimization problem (5.6) using an
iterative scheme with an initial estimate of the solution [290].

5.4.1 Practical methods
As outlined in Section 5.2, joint methods aim to simultaneously estimate the spatial
material distribution and the energy-dependent attenuation coefficients. However,
these one-step methods are not practical due to their high computational cost. In
practice, two-step methods are popular, where reconstruction and decomposition
are performed separately, because of their modular nature. For each step, tailored
solvers are readily available for different platforms. The first category of two-step
methods, which we call RU (short for Reconstruction-then-Unmixing), estimates a
spectral volume from the spectral tomographic measurements, and then decomposes
the resulting spectral volume to obtain the material maps and spectral signatures.
That is, RU solves the following problems in a serial fashion:

VRU = arg min
V ≥0

1

2
‖WV − Y ‖2F + λR1(V )

(ARU,FRU) = arg min
A≥0,F≥0

1

2
‖AF − VRU‖2F ,

where VRU ∈ RN×C is a spectral volume, and ARU,FRU are the material maps and
spectral signatures respectively reconstructed by this method. R1 : RN×C 7→ R is
a regularization function that incorporates prior information about the spectral
volumes and λ ≥ 0 is a regularization parameter. Contrarily, UR (short for
Unmixing-then-Reconstruction), the other class of two-step methods, separates
the spectral tomographic measurements into projections and spectral signatures.
These projections then lead to the material maps. UR mathematically reads

(PUR,FUR) = arg min
P≥0,F≥0

1

2
‖PF − Y ‖2F

AUR = arg min
A≥0

1

2
‖WA− PUR‖2F + γR2(A)
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where PUR ∈ RJ×M is a material volume, and FUR,AUR are the material maps
and spectral signatures respectively reconstructed by this method. Here, R2 :
RN×M 7→ R integrates prior information about the material maps with γ ≥ 0
being the regularization parameter. These practical methods only work well when
a complete projection series is available and the object is composed of materials
whose spectra are clearly separable. However, the spectra of materials as measured
by industrial spectral tomography equipment can be very similar. Although these
practical methods do not give accurate solutions, the results can be used as an
initial guess for advanced reconstruction methods.

5.4.2 Ill-posedness
The Hadamard conditions to define a well-posed problem consist of three crite-
ria: (i) existence: There must be an A? and F ? that satisfy WA?F ? = Y .
(ii) uniqueness: The solution A? and F ? must be unique. (iii) stability : small
perturbations in the measurements Y should not lead to significant deviations in
A? and F ?. If any of these conditions is violated, we call the problem ill-posed. In
general, we assume the existence of a solution to the least-squares problem since
we use the Euclidean norm to measure the misfit in the discrete setting. How-
ever, the uniqueness condition needs to be verified. Moreover, the stability of the
solution relies on the conditioning of projection matrixW and the measurements Y .

In general, the spectral inverse problem has multiple solutions if no prior infor-
mation is incorporated. To see this, suppose (A?,F ?) is a solution to Equation (5.5),
then (αA?, (1/α)F ?) is also a solution to (5.5) for any α > 0. Hence, the practical
reconstruction methods and classical joint method solve an ill-posed problem. To
reduce the non-uniqueness, and hence make the problem less ill-posed, we need to
incorporate appropriate spatiospectral prior information.

5.5 Proposed method - ADJUST
Since the conventional spectral inverse problem remains ill-posed due to the non-
uniqueness of solutions, we propose to incorporate spectral information through a
spectral dictionary. The spectral profiles of many materials are readily available [130,
301], and the spectral responses in each spectral channel can easily be computed
from these spectral profiles. We model the spectral response for material m as the
binary combination of the dictionary elements. That is,

fm = r̂m1t1 + r̂m2t2 + · · ·+ r̂mDtD,

where t1, . . . , tD correspond to the spectral responses of D distinct dictionary
materials, and r̂m1, r̂m2, . . . , r̂mD are the coefficients of material m that take the
value of either 0 or 1. Suppose the jth material in the dictionary corresponds to
the material m, then r̂mj = 1, and the other coefficients will be zero. Hence, we
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can represent the spectral matrix F ∈ RM×C as − f1 −
...

− fM −


︸ ︷︷ ︸

F

=

 − r̂1 −
...

− r̂M −


︸ ︷︷ ︸

R̂

 | |
t1 . . . tD
| |


︸ ︷︷ ︸

T

,

where T ∈ RD×C is a dictionary of D materials (with D ≥ M) with spectral
information for C channels, and R̂ ∈ {0, 1}M×D is a spectral coefficient matrix.

Due to the binary constraints, finding such a matrix R̂ jointly with A is a
non-convex problem. To make it convex for fixed A, we relax the binary nature of
the variable R̂. Moreover, we apply additional constraints on the material maps to
ensure that the total contribution of materials at every voxel does not exceed 1.
Thus, the resulting formulation, termed as A Dictionary-based Joint reconstruction
and Unmixing method for Spectral Tomography (ADJUST), is phrased as

minimize
A,R

J (A,R) , 1
2‖Y −WART ‖

2
F , (least-squares misfit)

subject to A ∈ CA, (constraints on
spatial map)

R ∈ CR, (constraints on dic-
tionary coefficients)

(5.7)

where Y ∈ RJ×C represents spectral tomographic measurements, W ∈ RJ×N
is a projection matrix containing the weights wji described in Equation (5.4),
A ∈ RN×M is the matrix that constitutes the spatial contributions of the materials,
T ∈ RD×C represents the fixed dictionary matrix containing attenuation spectra of
many materials, and R ∈ RM×D is the dictionary coefficient matrix that represents
the continuous version of R̂. The constraint sets are

CR ,

{
X ∈ RM×D |xij ≥ 0︸ ︷︷ ︸

(a)

,

D∑
j=1

xij ≤ 1︸ ︷︷ ︸
(b)

,

M∑
i=1

xij ≤ 1︸ ︷︷ ︸
(c)

}
,

CA ,

{
X ∈ RN×M |xij ≥ 0︸ ︷︷ ︸

(d)

,

M∑
j=1

xij ≤ 1︸ ︷︷ ︸
(e)

}
.
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We provide the details of each constraint below:

(a) Non-negativity of R: Since R is a dictionary-coefficient matrix that is a
convex proxy for R̂, the values must be greater than or equal to 0.

(b) Row-sum constraints for R: In principle, we would like to impose that each
material present in the object must be a part of the dictionary. The convex
approximation of this condition is that the total contribution of the dictionary
elements to represent material should not exceed 1.

(c) Column-sum constraints for R: Each column of R represents the contribution
of the dictionary element to generate materials in the object. Since the number
of materials in the object is smaller than the total number of dictionary
elements, the contribution of many dictionary elements will be 0. Moreover,
the materials present in the object must be distinct. Hence, the contribution
of dictionary elements must not exceed 1. Hence, the column-sum constraints
impose these conditions.

(d) Non-negativity of A: Each material should have a non-negative contribution
to every voxel.

(e) Row-sum constraints for A: The total contribution of materials in each voxel
must not exceed 1.

We enumerate the benefits of ADJUST as follows. (i) The ADJUST formulation
is less ill-posed when compared with the two-step methods or the Joint formulation
given in (5.6). This is due to the fact that the incorporation of the spectral
dictionary resolves the scaling issue. (ii) It is a parameter-free approach since
the constraints are simplex and do not involve any parameters that need to be
estimated. The only parameter ADJUST requires is the number of materials
present in the object. However, this prior knowledge is generally available to the
user. (iii) The optimization problem (5.7) is bi-convex (see Appendix C.2 for the
proof). Hence, it can be solved efficiently using the iterative minimization method.

5.5.1 Numerical optimization
To obtain an approximate solution to (5.7), many alternating minimization schemes
exist [20, 43, 156]. However, these schemes rely on complete minimization with
respect to at least one variable in every step. Moreover, their convergence to a
partially optimal solution is slow. Hence, such schemes might not be computation-
ally feasible for large-scale problems. For practical applications, we propose an
accelerated variant of Proximal Alternating Linearized Minimization (PALM) [43],
by combining it with the acceleration strategy in alternating direction method
of multipliers (ADMM) [220]. We term this variant as ‘Alternating Accelerated
Proximal Minimization’ (AAPM):
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for k = 0, . . . ,K − 1 :

Rk+1 = projCR

(
Rk − α∇RJ̃ (Ak,Rk,Uk)

)
(update dictionary

coefficients)

Ak+1 = projCA

(
Ak − β∇AJ̃ (Ak,Rk+1,Uk)

)
(update material

maps)
Uk+1 = Uk + ρ (WAk+1Rk+1T − Y ) (running-sum-

of-errors)

(5.8)

where α and β are estimated using a line-search method (e.g., backtracking), ρ
is an acceleration parameter chosen from the range [10−3, 1), and J̃ (A,R,U) =
J (A,R) + 〈U ,Y −WART 〉. The variable U contains the running sum of errors
(i.e. residuals):

Uk+1 = U0 + ρ

k∑
i=1

Ri where Ri = WAiRiT − Y .

For ρ = 0, AAPM is equivalent to PALM. When ρ > 0, the error signal U is
driven to zero by feeding back the integral of the error to its input. In Figure 5.4,
we plot the residuals versus iterations for various values of ρ. From these results, we
conclude that acceleration can be achieved by including the running-sum-of-errors
into an alternative iteration scheme. As the ρ values are increased, the residual
decreases faster. However, for higher values of ρ, the monotonic decrease of the resid-
ual disappears. We consider ρ as a hyperparameter for which a reasonable value can
be determined heuristically. The derivation of the method is given in Appendix C.3.

It is easy to compute the partial derivatives from basic linear algebra and
calculus rules (refer to Appendix C.4). The partial derivatives are

∇AJ̃ (A,R,U) = W T (WART − Y −U)T TRT ,

∇RJ̃ (A,R,U) = ATW T (WART − Y −U)T T .

The proximal operators are derived in Section 5.5.2. We use the following parameters
to determine the stopping criteria:

εabsk = ‖Y −WAk+1Rk+1T ‖F /‖Y ‖F
εrelk = ‖Ak+1 −Ak‖F+‖Rk+1 −Rk‖F

where k is an iteration of the optimization scheme (5.8). The benefits of AAPM
are the following:

• Simple gradient computations: The gradients have explicit expressions and
can be computed using simple matrix-matrix multiplications.
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• Fast proximal operations: The proximal operations are just orthogonal pro-
jections onto convex sets. These operations have either an explicit expression
or a simple alternating routine to find the proximal point efficiently.

• Backtracking line-search: The improved line-search (i.e. finding α, β) makes
sure that the progress in the descent direction is appropriate for every iterate.

• Acceleration through running-sum-of-errors: The regular update of vari-
able U , which contains the running-sum-of-errors, helps in accelerating the
convergence to the partial optimal solution.

• Memory-efficiency : The method relies only on forward and adjoint operations
with the tomography operator W . Hence, it saves memory to explicitly store
the tomography operator in either single or double precision.
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Figure 5.4: Numerical demonstration of proposed acceleration scheme on the Shepp-Logan phantom
for various ρ values.

5.5.2 Orthogonal projections
In this section, we derive the projections onto the convex sets CR and CA. For
CA =

{
X ∈ RN×M |X ≥ 0, X1 ≤ 1

}
, its orthogonal projection takes the following

form:

projCA(Z) = max (Z −Λ1,0) , (5.9)

where Λ = diag (λ1, . . . , λN ) is the diagonal matrix with weights computed from
solving the inequalities〈

1,max
(
zTi: − λi1,0

)〉
≤ 1, i = 1, . . . , N, (5.10)
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with zi: being the ith row of the matrix Z [34, Theorem 6.27]. To find the optimal
weight λi, we carry out bisection on λi for which max

(〈
1,max

(
zTi: − λi1,0

)〉
− 1, 0

)
= 0 holds, starting with the initial interval [0,max(zi:)]. The function given by〈
1,max

(
zTi: − λi1,0

)〉
= 1 is piecewise linear, with breakpoints at the values

zi1, . . . , ziM . Hence, once we have localized λi to be between two adjacent values,
we can immediately compute the optimal value λ?i . Furthermore, the following
theorem entails the projection onto set CR:

Theorem 1. The convex set C =
{
X ∈ RM×D |X ≥ 0, X1 ≤ 1,XT1 ≤ 1

}
is

composed of convex set C1 =
{
X ∈ RM×D |X ≥ 0, X1 ≤ 1

}
and convex set C2 ={

X ∈ RM×D |X ≥ 0, XT1 ≤ 1
}
. The projection of point Z ∈ RM×D onto set C

is given by the fixed-point iteration scheme

Xt+1 = projC1

(
projC2

(
Xt +Z

2

))
, t = 0, . . . , D (5.11)

with X0 = Z.

Proof. The proof is given in Appendix C.1.

For the set C2 =
{
X ∈ RM×D |X ≥ 0, XT1 ≤ 1

}
, the orthogonal projection,

derived from [34, Theorem 6.27], takes the form

projC2(Z) = max (Z − 1Ω,0) , (5.12)

with Ω = diag (ω1, . . . , ωD) is the diagonal matrix with weights computed from
solving the equation

〈1,max (zi − ωi1,0)〉 = 1, i = 1, . . . , D. (5.13)

5.6 Experiments and results
This section compares ADJUST with the sequential methods (RU, UR), the classical
joint method (cJoint), and five state-of-the-art joint methods on a benchmark
synthetic spectral phantom. After this, we compare ADJUST with the sequential
methods and the classical joint method on more advanced spectral phantoms
(in terms of number of materials and material shapes). Next, we examine the
robustness of ADJUST against various limited measurement patterns. Finally, we
show the application of ADJUST on spectral X-ray micro-CT dataset. Additional
numerical experiments are presented in Appendices C.7, C.8, C.9, and C.10.

5.6.1 Experimental setup
Before presenting the results, we first outline the experimental setup. We describe
the phantoms that are used, the settings for the attenuation spectra and the
source spectrum, the chosen materials for each phantom and a discussion on the
implementation of the algorithms.
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Figure 5.5: Visualizations of the numerical phantoms used in the studies.

Spectral phantoms

A number of phantoms are used in our numerical studies, some of which are
standardized while others are custom-made. All these phantoms are shown in
Figure 5.5.

Mory phantom We use a slightly modified version of the phantom provided in
the work by Mory et al. [202] for comparing new one-step methods against
the five one-step approaches addressed in their work. The phantom contains
three different materials on a 128 × 128 grid. As opposed to the original
phantom, each location contains only one material.

Shepp-Logan phantom This standard phantom is commonly used in tomogra-
phy for benchmarking. We modify this phantom to have five unique grey
values. We discretize it on a 512× 512 uniform grid.

Disks phantom In this custom phantom, several disks with different materials
are placed on a circle. The phantom is created so that we can place up to 15
different disks on this circle. However, for our numerics, we have taken eight
disks and discretized the resulting phantom on a 512× 512 pixel grid.

Thorax phantom We use a modified thorax phantom provided in the CONRAD
software framework [182]. We created a thorax phantom of 5123 voxels, took
slice z = 255, and removed a few ribs. The resulting 512× 512 phantom has
eight different material candidates, on which we assign five different materials.

Inverse crime refers to the process of using the same forward operator for the
generation of synthetic measurements as for the subsequent reconstruction pro-
cess [139]. To avoid inverse crime in all of our numerical experiments, we generate
measurements by increasing the spatial resolution of the spectral phantoms by a
factor of 2. For example, the Shepp-Logan phantom is discretized on a grid of
1024 × 1024 pixels to generate the spectral tomographic measurements. These
measurements are, however, acquired on 512 (equally-spaced) detector pixels for 180
projection angles in [0, π). The spectral tomographic inversion is then performed
on a grid of 512× 512.
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Attenuation spectra, source spectrum and selected materials

To generate the spectral sinograms and construct the dictionary matrix T , we
use attenuation spectra provided by the National Institute for Standards and
Technology (NIST) [130, 301]. We perform linear interpolation to approximate
the real spectra and discretize these such that the energetic centers are located
at 100 equidistant values ranging from 5 to 35 keV. We use the corresponding
interpolated attenuation values as representative attenuation values in the bins.
For experiments with the Thorax phantom, we use a spectral range of [20, 80] keV.
Regarding the experiments with the Mory phantom, we use the attenuation spectra
provided by Mory et al. in their implementation [100], providing 100 equidistant
bins with energetic centers between 20 and 119 keV. In accordance with their data
preprocessing procedure, we have scaled both the material maps and the dictionary
entries for iodine and gadolinium by their densities and a value of 0.01 to obtain a
concentration of 10 mg/ml.

The materials chosen for each phantom (Figure 5.5) are given in Table 5.1.
For the up to 42 chosen materials included in the dictionary matrix, we refer to
Appendix C.5. For the Thorax phantom, the dictionary consists of the materials
that appear in the phantom. This also holds for the Mory phantom.

To generate the source spectrum, we make use of the SpekPy software [47,
230]. With this, we have simulated an X-ray source spectrum from a molybdenum
source with a peak voltage of 35kV. This source material provides us a with low
energy bound of 5 keV for a positive flux, enabling us to include more material
absorption edges (mostly K-edges) in our simulations than with other source
materials such as tungsten. However, for experiments with the Thorax phantom,
we use a tungsten source with a peak voltage of 80kV. Both source spectra are
shown in Figure 5.6. For the Mory phantom, we use the source spectrum provided
in their implementation [100], and have changed the matrix for detector response
to an identity matrix.

Shepp-Logan Disks Thorax Mory
1 Vanadium Arsenic Bone Iodine
2 Chromium Selenium 90% Blood + 10% Iodine Gadolinium
3 Manganese Bromine Soft tissue Water
4 Iron Krypton Blood -
5 Cobalt Rubidium Lung tissue -
6 - Strontium - -
7 - Yttrium - -
8 - Zirconium - -

Table 5.1: Selection of materials for each phantom.
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Figure 5.6: The simulated molybdenum-based and tungsten-based source spectra with respectively
peak voltages of 35kVp and 80kVp used in the experiments.

Implementation of the numerical algorithms

We briefly describe the implementation of various algorithms used in our studies
below. For the existing one-step methods, we keep a similar naming convention
as in the work of Mory et al. [202] by using the last name of the first author of
the associated paper. We use the ASTRA toolbox [1, 2] for the simulation of
the X-ray projections and implementation of forward and the adjoint operator
of tomography [41]. For compatibility with the implementations of the existing
methods in [100], we use the AIR Toolbox [113] for the computation of the
forward operator and the adjoint instead of ASTRA whenever the Mory phantom
is considered. For the last five listed existing one-step methods, we use the
implementation and parameter values provided in [100]. Table 5.2 summarizes the
prior information used in these methods.
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RU For the reconstruction, we solve the Tikhonov-regularized optimization prob-
lem with regularization parameter λ set to 10−3. We perform a maximum
of 20 conjugate-gradient iterations on the resulting normal equations with
the tolerance of 10−6 [123]. We use non-negative matrix factorization (NMF)
with an alternating least-squares algorithm [39] for 100 maximum iterations
in the decomposition step. Since NMF is a non-convex problem, we use ten
different initializations to determine the solution.

UR We use the same settings for the decomposition and the reconstruction steps
as described in RU.

cJoint We solve the problem using an alternating minimization scheme. The
maximum number of iterations is set to 2000 with tolerance, defined as the
relative residual, of 10−4. In each iterate, we solve the minimization with a
spectral projected gradient scheme [250].

ADJUST We use the AAPM scheme described in (5.8) to find the solution. For
all the experiments, we choose ρ value of 10−2 and set εabsk , εrelk to 10−4 and
10−6, respectively. We run AAPM for maximum 1000 iterations.

Cai This Bayesian reconstruction approach solves a minimization problem with a
non-quadratic cost function using a monotone conjugate gradient algorithm
with heuristic descent steps [52]. We perform 5000 iterations to find the
solution.

Long This is a regularized approach that uses Separable Quadratic Surrogates
to minimize Kullback-Leibler cost function with edge-preserving regulariza-
tion [172]. We run this method with 5000 iterations.

Weidinger This approach is similar to Long with modification in the approxi-
mation of regularization function by the Green potential, and leaving out
Ordered Subsets that Long uses to speed up convergence [289]. We run the
algorithm for 5000 iterations.

Mechlem This approach builds upon Weidinger while replacing the regularization
using the Huber function. However, it uses Ordered Subsets and Nesterov
acceleration to find the solution [189]. We run the algorithm for 200 iterations.

Barber This approach solves a constrained optimization problem using a primal-
dual algorithm where constraints are composition of total-variation and
simplex [27]. We run a maximum of 10000 primal-dual iterations.
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Spatial prior information Spectral prior information

RU Non-negativity Non-negativity
UR Non-negativity Non-negativity

cJoint Non-negativity Non-negativity
Cai (Modified) TV Spectral signatures of present

materials
Long Simplex and (modified) TV Spectral signatures of present

materials
Weidinger (Weak) non-negativity and

(modified) TV
Spectral signatures of present

materials
Mechlem (Modified) TV Spectral signatures of present

materials
Barber Constrained TV Spectral signatures of present

materials
ADJUST Simplex Spectral dictionary

Table 5.2: Spatial and spectral information for each method. TV stands for Total-Variation regulariza-
tion [241]. Note that each method has prior information on the number of materials. The spectral
dictionary contains signatures of a large superset of present materials.

5.6.2 Comparison of ADJUST with other methods
Results on the Mory phantom

To compare the ADJUST method with the other approaches listed in Section 5.6.1,
we perform numerical studies on the Mory phantom. We take projections from 363
equidistant angles in [0, π) using 181 detectors. Moreover, we apply Poisson noise
to the resulting projections, with the incident photons being proportional to the
source spectrum. We show the reconstruction results in Figure 5.7, and tabulate
the performance measures in Table 5.3. We use Mean Squared Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) to
assess the reconstruction results with respect to the ground truth phantom (details
of the measures are given in Appendix C.6). We list the results as the measures
averaged over all material maps. We observe that ADJUST obtains the best values
for PSNR, SSIM and MSE.

The two-step methods (RU and UR) find the iodine and the gadolinium loca-
tions, but the results appear to be spatially smeared out, which is also reflected in
the relatively low PSNR and MSE values. However, the UR method still recovers
the shapes reasonably well, as shown in the high value for the SSIM. The cJoint
method finds the water location, but fails to recover the locations of iodine and
gadolinium. The state-of-the-art one-step methods overall perform better than
UR, RU, and cJoint. However, these methods gives rise to edge artefacts (e.g.
water edges partially appearing in iodine or gadolinium maps, and blurring near
the edges), resulting in suboptimal PSNR and SSIM values. These artefacts hardly
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Figure 5.7: Visual comparison of various methods on Mory phantom. GT refers to ground truth.
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appear in ADJUST reconstructions, resulting in significantly higher values of the
PSNR and SSIM.

RU, UR and cJoint method do not incorporate any prior information about the
object other than non-negativity constraints. Hence, these methods struggle to find
the optimal solution. However, one-step methods strongly assume the knowledge
of materials present in the object. Although they perform better than RU, UR
and cJoint, they cannot be applied when the composition of object is not known.
In contrast, ADJUST does not know about the material composition of the object.
It solely relies on the number of materials present in the object (this number can
be estimated through trial and error).
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MSE 0.0267 0.0790 0.0860 0.0115 0.0117 0.0112 0.0406 0.0115 0.0103

PSNR 20.35 16.44 16.03 19.54 19.33 19.62 14.45 19.41 21.94

SSIM 0.4413 0.6720 0.4119 0.6034 0.6131 0.6187 0.2159 0.6460 0.9616

Table 5.3: Reconstruction error in terms of Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) of various methods for the Mory phantom.

Results on the remaining phantoms

We compare the proposed method ADJUST with RU, UR, and Joint method on the
Shepp-Logan, Disks and Thorax phantoms. Comparison with the other methods is
not possible as those are designed for handling only a limited number of materials.
The first two phantoms consist of only hard materials, and hence K-edges are
present in the spectra. All these phantoms are more advanced compared to the
Mory phantom. The Shepp-Logan and Thorax phantoms are structurally more
complicated. On other hand, the Disks phantom contains up to eight hard materials.
For the Thorax phantom, we also include soft materials. Nevertheless, we aim to
reconstruct the bone, the iodine-blood mixture and the remaining soft materials
into three separate classes. For all three phantoms, we measure tomographic
projections for 180 equidistant angles from 0 to π. These measurements consist
of Poisson noise that is proportional to the incoming photons on the detector.
We tabulate the measures on the solutions produced by the RU, UR, cJoint and
ADJUST algorithms for the three phantoms in Table 5.4. Moreover, for the Thorax
phantom, we show the reconstructed material maps and the recovered spectra in
Figure 5.8.
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Figure 5.8: Visual comparison of ADJUST with RU, UR, and cJoint method on the Thorax phantom.
The top row shows the ground truth and reconstructed material maps and spectral signatures for bone,
the second row shows these for iodine and the third row shows (averages of) these for soft materials.
We match the colors of the bounding box for material maps with the (recovered) spectral signatures
shown on the bottom row.

Phantom RU UR cJoint ADJUST

Shepp-Logan
MSE 0.0711 0.0598 0.0548 0.0061
PSNR 16.41 16.66 13.74 23.12
SSIM 0.2433 0.4497 0.1077 0.9599

Disks
MSE 0.0125 0.0082 0.0063 0.0030
PSNR 19.50 21.22 23.72 33.32
SSIM 0.8970 0.8975 0.8882 0.9925

Thorax
MSE 0.0587 0.0622 0.0525 0.0020
PSNR 19.92 20.96 19.11 36.68
SSIM 0.6902 0.6094 0.7628 0.9198

Table 5.4: Reconstruction error in terms of MSE, PSNR and SSIM of various methods for various
phantoms.
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We see that for all measures, ADJUST outperforms the other three methods.
The results for the other methods are similar to each other. In general, the
Disks phantom leads to very good similarity measures for ADJUST, indicating
the capability of dealing with eight materials. For the other two phantoms, where
the proportions of materials are different, the measures are slightly worse, but
we observe that the reconstructions for the Shepp-Logan and Disks phantoms
are visually satisfactory (the visual results for the Disks phantom are given in
Appendix C.7, while visual results for the Shepp-Logan phantom are given in
Figure 5.3). However, for the Thorax phantom we see a striped pattern in the
material map of the soft tissues. A possible reason is that the spectral signature of
the combined tissue materials may not be present in the dictionary, and therefore
produces visually suboptimal results. On the other hand, it can also be observed
that the spectrum of bone is not fully correctly recovered. This may be because
it does not have a discontinuity in the chosen spectral range, and is therefore too
similar in shape to the tissue spectra. Despite this, ADJUST outperforms the other
three methods on all phantoms.

5.6.3 Limited measurement patterns
Through the numerical experiments in this section, we demonstrate that AD-
JUST is robust. We consider three scenarios: (i) Sparse-angle tomography, where
the number of measurements is reduced by sampling fewer projections angles,
(ii) Limited-view tomography, where measurements from a particular range of
angles are missing (representing the case of hardware limitations), and (iii) Sparse
channels, where the number of spectral bins of the detector is limited. We apply
these settings to the Shepp-Logan phantom and the Disks phantom, and report
the results in Table 5.5.

For the sparse-angle tomography setup, we consider tomographic projections
from 10 equidistant angles in the range of 0 to π. For the Shepp-Logan phantom, the
spectral signatures are determined correctly and we observed very minor artefacts.
For the Disks phantom, the material maps and the spectral signatures are precisely
reconstructed, as reflected in the very low MSE and very high PSNR and SSIM val-
ues. Therefore, for these phantoms and the selected angles, ADJUST performs well.

For the limited-view tomography setup, we limit the projection angle range from
0 to 2π/3. Restricting the angle range for the projections results in a well-known
missing-wedge artefact. We take projections for 60 equidistant projection angles
and add Poisson noise. For both phantoms, we observed no missing wedge artefacts
when reconstructed with ADJUST. The PSNR and SSIM measures remain very
high and the MSE measure remains low. We conclude that for these phantoms,
ADJUST can deal well limited-view measurements.

In the sparse channel setting, we reduce the number of spectral bins based on
the spectral dictionary. Since we consider a dictionary of 42 hard materials, we
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Phantom
Full

sampling
Sparse-
angle

Limited-
view

Sparse
channels

Shepp-Logan
MSE 0.0061 0.0113 0.0330 0.0066
PSNR 23.12 20.27 18.41 23.04
SSIM 0.9599 0.9435 0.9112 0.9670

Disks
MSE 0.0030 0.0028 0.0057 0.0002
PSNR 33.32 33.05 26.31 36.76
SSIM 0.9925 0.9924 0.9807 0.9929

Table 5.5: Reconstruction error in terms of MSE, PSNR, SSIM with ADJUST for various phantoms with
limited measurement pattern experiments.

reduce the spectral channels from 100 to 42. These 42 spectral channels are chosen
based on the independent columns of the spectral dictionary. For tomography, we
choose 60 equidistant angles between 0 and π. We observed that the Shepp-Logan
phantom has been reconstructed precisely, but a few artefacts are visible on the
edges of the disks for the Disks phantom. These artefacts are reflected in the
slightly higher MSE and slightly lower PSNR and SSIM. For the Shepp-Logan
phantom there is no obvious decrease of quality in terms of the measurements. So
ADJUST appears to be capable of dealing with a sparse channel setting with the
given phantoms and the spectral setup.

5.6.4 Limited spectral resolution
In this section, we investigate the performance of the algorithm when each spectral
bin spans a wider energy range. This problem is also called limited spectral reso-
lution. To this end, we have simulated data with 10 spectral bins instead of 100
bins for the Thorax and Shepp-Logan phantoms over the same energy range as
before. The selected number of energy bins is in the same order as the number
of bins resulting from the use of multi-spectral X-ray photon-counting detectors,
rather than with the hundreds of energy bins of hyperspectral X-ray detectors.
This results in a coarser energy resolution for both the source spectra and the
attenuation spectra, and the dictionary has been updated accordingly. Apart from
the different energy bins, we apply the same settings and configuration as the
experiments in Section 5.6.1.

To illustrate the spectral differences, Figure 5.9 shows the attenuation spectra
for the materials in the phantoms with the two different energy resolutions. The soft
materials, bone and iodine present in the Thorax phantom are easily identifiable
since their attenuation spectra are very different from each other in the entire
spectrum (i.e. 20 − 80 keV). The materials in the Thorax phantom will still be
separable with decrease in the spectral resolution. In the Shepp-Logan phantom,
however, all included materials have K-edges very close to each other. Hence,
differences resulting from the K-edge of the materials in the Shepp-Logan phantom
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Figure 5.9: Attenuation spectra of different materials in the Thorax phantom (left) and the Shepp-
Logan phantom right (right), partitioned over 100 energy bins (top) and 10 energy bins (bottom) over
the same energy range.

Phantom RU UR cJoint ADJUST

Shepp-Logan
MSE 0.1446 0.1856 0.1980 0.0976
PSNR 9.042 9.392 7.259 10.94
SSIM 0.0213 0.3773 0.0209 0.6228

Thorax
MSE 0.0543 0.0715 0.0533 0.0010
PSNR 21.22 19.64 17.95 33.05
SSIM 0.6820 0.6579 0.7608 0.9707

Table 5.6: Reconstruction error in terms of MSE, PSNR, SSIM for various phantoms with 10 times
smaller spectral resolution (10 spectral bins in total).
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largely disappear. This is also reflected in the performance of various algorithms in
Table 5.6, with considerably lower SSIM and PSNR compared to the full spectral
resolution experiments for the Shepp-Logan phantom in Table 5.4. On the other
hand, for the Thorax phantom the results are similar. Hence, we conclude that
the successful application of the proposed algorithm to spectral measurements
acquired in bins with larger spectral ranges depends heavily on the complexity of
the problem (i.e. separability of the materials in the chosen energy range based on
spectral responses in the bins).

5.6.5 Noisy measurement patterns
We consider three different noise levels to check the robustness of ADJUST against
noise. In particular, we corrupt the spectral tomographic measurements with
additive Gaussian noise of strength {1, 10, 20}% followed by Poisson noise with
intensity corresponding to the source spectrum. In all three cases, 180 angular
projections in the [0, π) range are acquired in 100 spectral bins. The effect of
noise on the spectral tomographic projections is demonstrated in Figure 5.10. In
Table 5.7, we list the performance measures of ADJUST on three different phantoms.
We observe a steady decrease in PSNR and SSIM values for the Shepp-Logan and
Thorax phantoms. However, the PSNR and SSIM do not suffer from high noise
levels (i.e. 20% noise) for the Disks phantom. Since the Disks phantom consists of
low-rank shapes of small sizes, they can be retrieved well from noisy measurements.
However, the performance of ADJUST on noisy datasets may not be extended for
complex shapes, as seen from the numerical studies on the Thorax and Shepp-Logan
phantom. Hence, these numerical experiments demonstrate that ADJUST is stable
against a moderate amount of noise, but may not be reliable against high noise
levels.
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Figure 5.10: Clean and noisy sinograms (i.e. tomographic projections) of Shepp-Logan phantom for
energy of 5.6 keV (top-row) and 7.7 keV (bottom-row).
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Phantom 1% noise 10% noise 20% noise

Shepp-Logan
MSE 0.0032 0.0067 0.0187
PSNR 25.68 22.53 18.68
SSIM 0.9738 0.9012 0.7076

Disks
MSE 0.0001 0.0034 0.0003
PSNR 39.20 32.44 35.53
SSIM 0.9989 0.9779 0.9785

Thorax
MSE 0.0061 0.0129 0.0123
PSNR 29.70 25.93 23.33
SSIM 0.8716 0.8474 0.8464

Table 5.7: Reconstruction error in terms of MSE, PSNR, SSIM for various phantoms with three different
noise levels.

5.6.6 Experiment on micro-CT data
In this subsection, we test the performance of ADJUST on a publicly available
X-ray microtomography dataset [262] generated by a conventional laboratory-based
CT scanner equipped with a photon-counting line detector (TESCAN Polydet)
containing a semiconductor crystal (CdTe) [263]. The particle mixture sample
contains pure gold, tungsten and lead, along with quartz. For a total of 128
energy bins with a spectral range of ca. 20 to 160 keV, tomographic projections
are acquired on 255 equally-spaced detector pixels for 600 angles in [0, 2π). We
perform a reconstruction using the simultaneous iterative reconstruction algorithm
(SIRT) [140] for each channel and determine the location of each material manually
(refer to Figure 5.11). We plot the gold, lead, and tungsten spectrum obtained
through channel-wise reconstructions along with the corresponding NIST spectra
in Figure 5.12.

For a fair comparison, we apply RU, UR, and cJoint along with ADJUST on
this spectral microtomography dataset. We use the same settings as mentioned
in Section 5.6.1. For ADJUST, we use the spectral dictionary with four materials
(i.e. gold, lead, tungsten and quartz) with their spectrum obtained from NIST (the
spectrum of quartz is obtained from the reconstructed channels). Since it is evident
from Figure 5.12 that the NIST spectra with appropriate scaling match closely
to the spectra in the sample in the range of [53.35,127.05] keV, we reduce the
spectral range of the dataset from 53.35 to 127.05 keV (amounting to 64 spectral
bins in total). The reconstruction results are demonstrated in Figure 5.13. From
these results, it is clear that RU, UR, and cJoint cannot precisely reconstruct the
spectral signatures of materials. These results, furthermore, suggest the need of
stronger spectral regularization to separate the materials. Out of all the spatial
maps reconstructed with these classical methods, only the spatial map of tungsten
(red) produced by the RU method approximately matches the expected material
map (shown in Figure 5.11). On the other hand, the spatial maps recovered from
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Figure 5.11: CT reconstruction of the 7th energy bin (a) of the spectral micro-CT dataset, in which
the locations of the tungsten (orange), gold (green) and lead (blue) particles are highlighted (b).
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Figure 5.12: Attenuation spectra of the materials in the sample, showing both the spectra from NIST
(scaled by 0.015) and the spectra extracted from the channel-wise CT reconstructions, including quartz.
The spectral range is from 20.35 keV to 161.15 keV (white region), with the bins having a spectral
resolution of 1.1 keV.
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Figure 5.13: Reconstruction results of methods RU, UR, cJoint, and ADJUST on the microtomography
dataset of particle mixtures. The zoomed sections demonstrate the separation capabilities of ADJUST
compared to RU, UR and cJoint on particles of three different materials (tungsten, gold and lead). We
match the color of zoomed sections with the spectral plots for improved readability.
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Figure 5.14: Detailed reconstruction results of ADJUST on X-ray microtomography dataset of particle
mixtures. Reconstructed material maps for lead, tungsten and gold are shown in high resolution (left
column). In addition, material maps with indications of identified particles are shown (right column).
Green circles indicate correctly identified particles. None of the maps contain false negatives, and the
remaining identified particles are false positives (denoted by red circles).



5.7. Conclusions and discussion 145

ADJUST match almost precisely with the expected material maps. Figure 5.14
shows that all particles are identified and that there are no false negatives. False
positives are mostly small and faint, and many of these occur at the borders of other
particles, mainly between gold and tungsten. As reference, Figure 5.14 also shows
the reconstruction images for each material in high resolution. Finally, we note
that the NIST spectra do not overlap entirely with the spectra recovered through
channel-wise reconstruction. Therefore, the spectral dictionary must be calibrated
for the spectral detector setup for various materials. We expect improvement in
reconstruction results of ADJUST with a calibrated spectral dictionary.

5.7 Conclusions and discussion
Spectral imaging is an emerging topic in X-ray tomography since it adds an ad-
ditional dimension to the measurements, which can be exploited to retrieve the
material composition of the object of interest. Recently, joint approaches (also
known as one-step methods) have emerged as a promising technique for solving the
spectral imaging problem by incorporating all the prior information in a single step.
These joint approaches reduce the ill-posedness of the spectral imaging problem.
However, the spectral signatures of many materials are very similar, making the
joint approaches likely to fail when many materials are involved. To tackle the
problems with the joint approach, we propose the ADJUST framework that inte-
grates the structure of spectral signatures by creating a dictionary of all the known
materials and uses this to jointly reconstruct and carry out material decomposition
in a single step. Since the resulting formulation is a bi-convex optimization problem,
we propose an Alternating Accelerated Proximal Minimization (AAPM) scheme to
find a solution. Through numerical experiments, we show that ADJUST performs
better over practical methods as well as state-of-the-art joint approaches on various
simulated phantoms.

Obtaining projections from all directions requires high experimental time. More-
over, X-ray machines may not allow for sampling in all directions. Hence, practical
methods do not help in determining the material composition of structurally more
complicated objects (either because of intricate structures or a wider variety of
materials) with most X-ray configurations. However, ADJUST is robust against
limited tomography measurement patterns on phantoms that are more complicated.

A natural question is to check if the utilization of a spectral dictionary (i.e.
representing F as RT ) in two-step methods can produce optimal results. For
example, in UR method, we can first decompose spectral measurements Y = ZRT ,
where Z incorporates the projections per material. Later, the spatial maps can be
extracted by solving WA = Z. However, in the decomposition step, we allow for
unrealistic projections due to lack of knowledge of tomography operator W and
spatial properties of A, especially when dealing with limited measurements. More-
over, allowing unrealistic projections leads to unrealistic materials since simplex
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constraints onR give rise to convex combination of (many) dictionary elements, and
not of only a single element. A similar argument holds for RU method combined
with the spectral dictionary. These unrealistic solutions are, however, penalized by
proper spatio-spectral regularization in the ADJUST framework. Hence, ADJUST
will always perform better than spectral dictionary versions of two-step methods
even when complete measurements are available.

There are some limitations to the ADJUST framework. It can only separate
hard materials from each other and separate hard materials from soft materials.
Moreover, if neither the spectral signature of the material is present in the dic-
tionary, nor it can be composed as a linear combination of the elements from the
dictionary, ADJUST will fail in recovering that material. Although we tested
ADJUST against moderate Gaussian and Poisson noise, it is not straightforward
to assume that ADJUST will behave stably against real (extremely) noisy datasets
that are common in energy-dispersive X-ray tomography.

The experiments conducted on the micro-CT dataset suggest the potential of
ADJUST for application to experimental spectral CT data. Apart from the noise
level on experimental data, the successful application of ADJUST depends on
several factors. As shown in the experiments with the limited spectral resolution,
the number and range of the energy bins, combined with the problem’s complexity,
determines the degree of possible material decomposition. If the spectral resolution
is too small such that materials cannot be distinguished anymore, ADJUST will not
yield proper material decompositions (and neither will other methods). Moreover,
for successful reconstruction and decomposition, there is a limit to the number of
(differentiable) materials that can be included in the dictionary for a given spectral
resolution.

For an uncalibrated spectral detector, the spectral dictionary can be measured,
if it is not available through the manufacturer. Additionally, when working with real
data, an interesting consideration for future work would be to estimate the source
spectrum along with the spatial material maps and their signatures. Although our
framework is based on the assumption that the spectral tomographic measurements
consist of additive white noise, we can extend it to tackle Poisson noise by replacing
the least-squares loss by Kullback-Leibler function. However, the bi-convexity can
no longer be guaranteed and the solution obtained through AAPM may not be
partially optimal. We leave this extension for future work.

Code and data availability
The source code of ADJUST, along with the RU, UR, and cJoint algorithms,
are available on https://github.com/mzeegers/ADJUST [138]. These MATLAB
codes make use of open-source toolboxes, in particular the ASTRA toolbox [1, 2],
Spot Operator toolbox [37], MinConf optimization package [250]. The scripts for

https://github.com/mzeegers/ADJUST
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testing the mentioned algorithms on the phantoms and the data are also made
open-source in the ADJUST Github repository. The micro-CT spectral dataset is
available at https://rodare.hzdr.de/record/1627 [262].

https://rodare.hzdr.de/record/1627
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Conclusions and outlook

6.1 Conclusions

6.1.1 Overview
Quality control is a challenging but essential procedure in industrial imaging. With
X-ray imaging, the inner structure of an object can be visualized and hence, un-
wanted and potentially hazardous elements can be identified by detection systems.
Since single X-ray radiography results in superimposed images, extracting and
analyzing features from these images may lead to suboptimal decision-making.
Recent years have seen a significant increase in tomographic imaging quality, espe-
cially resulting from spectral imaging and machine learning technologies. These
techniques have the potential to significantly increase the effectiveness of industrial
imaging without sacrificing too much on processing speeds.

As one of the most important branches of industry, food processing is the
recurring theme in this dissertation. In particular, foreign object detection is an
essential component that should attain both high accuracy and high throughput.
In order to improve this trade-off, X-ray imaging can be used in conjunction with
machine learning. Chapter 2 addresses a common issue with machine learning
regarding the need for large volumes of suitable training data. By incorporating
computed tomography into a workflow, high-quality pairings of X-ray projections
and ground truth locations of foreign objects can be generated with minimal manual
labor. The resulting datasets enable the training of neural networks for high-speed
foreign object detection.

By enhancing the features for analysis of industrial products, spectral X-ray
imaging offers an improvement to standard X-ray inspection. The additional
information spectral X-ray imaging offers also results in much larger data volumes,
of which a significant fraction may be redundant. In Chapter 3, a network ar-
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chitecture named Data Reduction Convolutional Neural Network (DRCNN) is
proposed to mitigate this problem. With this architecture, a neural network learns
to combine the image features that are needed for a specific task (foreign object
detection, for example) and compresses these into a much smaller data volume.
This approach increases the quality of feature extraction and reduces data sizes
and possibly processing times.

Spectral X-ray imaging also offers improvement in the three-dimensional re-
construction of products of interest. In spectral X-ray CT, reconstructions can be
computed with projection data probed at different X-ray photon energies. These
different energy levels are treated in a more generalized manner as channels in
Chapter 4. There, a class of algorithms named Multi-Channel DART (MCDART)
is proposed that generalizes the Discrete Algebraic Reconstruction Technique
(DART) – for objects consisting of a limited number of materials with known
attenuation values – to multi-channel data. From a series of experiments, it can be
concluded that this class of algorithms can improve reconstructions using multi-
channel data.

When an industrial spectral X-ray setup is available, attenuation values of a
material can be obtained by directly measuring these with the spectral detector.
By doing this for many common materials, a spectral dictionary can be constructed,
which can be used as prior information to steer the often ill-posed spectral re-
construction problem to a desirable solution. Chapter 5 proposes a spectral
reconstruction and material decomposition framework, named ADJUST, by posing
the problem in such a way that the spectral matrix is a multiplication of an indi-
cator matrix and a spectral dictionary. Contrary to most other spectral material
decomposition methods, ADJUST is a method that performs the reconstruction
and material decomposition in one step. Moreover, ADJUST can take on objects
with more materials and produce more accurate reconstructions than other methods.

6.2 Contributions
The methods presented in this dissertation utilize spectral imaging and deep learn-
ing to improve aspects such as the workload, practicality, accuracies, ill-posedness
and compression possibilities in problems found in X-ray imaging and CT recon-
struction applications. The earlier two sections are concerned with machine learning
methods, which are shown to yield improved results for industrial foreign object
detection. The latter two sections are concerned with improving the accuracy
of CT reconstructions by utilizing spectral X-ray imaging, both with respect to
single-channel CT reconstruction as well as to other spectral CT reconstruction
methods.
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Deep learning in conjunction with X-ray imaging methods has rarely been ap-
plied in certain industrial areas, such as food processing. The workflow presented in
Chapter 2 for efficiently generating training data for deep learning on radiographs
has application potential in an industrial setting, as evidenced by the accuracy
results on the real-world dataset. By making use of computed tomography, foreign
objects can be represented in a 3D volumetric space rather than a 2D radiograph.
This makes separation of foreign objects from the remaining object substantially
easier. As a result, the annotation of the X-ray projections becomes radically less
time-intensive and less prone to interpretation. On top of this, much more training
data can be generated from each scanned product, implying that the number of
products that need to be scanned is limited. Regarding improving quality control
by object inspection at a production line of a factory, this contributes significantly
to the workload of setting up a deep learning driven analysis and decision-making
machinery in an industrial context. Additionally, Chapter 2 also provides an open
X-ray dataset, which is generally not easy to come by, to test methods for object
detection.

The DRCNN architecture covered in Chapter 3 applies machine learning
to spectral data reduction. As suggested by the results in that chapter, when
hyperspectral imaging is used for industrial X-ray imaging, training with DRCNN
can be used to optimize the compression and throughput speed for a specific task,
such as detection tasks. In addition, training with this architecture achieves better
understanding of essential features in the data and can possibly speed up the
(hyper)spectral X-ray data acquisition. This approach is helpful for all applications
where hyperspectral imaging – not necessarily with X-rays – is concerned. For
instance, in optical hyperspectral imaging applications such as remote sensing or
surface-based hyperspectral inspection, the method contributes to better compres-
sion, transmission, speed and accuracy.

Similar to how the workflow in Chapter 2 exposes the advantages of using 3D
CT with respect to separating foreign objects, the MC-DART method in Chap-
ter 4 exploits the improved separability of voxels in a reconstruction through
multi-channel imaging. By incorporating a high-dimensional segmentation step,
the method presents a framework for reconstruction of multi-channel data in a
more effective manner than independent channel reconstructions. The method can
be scaled to any number of channels, and therefore allows for a higher number
of materials in an object. The usage and properties of the MC-DART method
are demonstrated using simulated spectral X-ray imaging mechanisms. However,
MC-DART can also be used for other multi-channel modalities, given that the
object of reconstruction can be represented in a discrete manner.

When prior information on spectral material signatures is available in the
form of a spectral dictionary, the ADJUST method proposed in Chapter 5 can
produce material maps of an object from its spectral X-ray CT data, given that the
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corresponding materials are sufficiently distinct in terms of their signatures. The
method allows for higher accuracies and for reconstructions of more materials than
in most existing one- or two-step methods without additional hyperparameters.
The results on a laboratory spectral micro-CT dataset imply that applications are
possible in both spectral and hyperspectral X-ray imaging.

6.3 Future work and outlook
Spectral imaging and deep learning hold much potential for solving advanced
imaging problems. To utilize these advances effectively, algorithms that can adapt
to a wide range of problem settings should be developed. A running theme in
the research of this dissertation is the modularity of the proposed methods. The
DRCNN architecture is designed in such a manner that any CNN architecture
can be inserted in the back-end of the network, of which the MSD and U-Net
architectures are well-investigated examples in Chapter 3. Similarly, in the class of
algorithms that the MC-DART method represents, the algebraic reconstruction
method can be chosen at will. Finally, the workflow presented in Chapter 2 has
many possibilities for changes and extensions. A number of these are schematically
shown in Figure 6.1.

As highly suggested in this dissertation, the workflow from Chapter 2 can be
enhanced with spectral X-ray imaging. This can be done in at least two ways:
(i) spectral scanning can increase the quality of the CT reconstruction and the
subsequent segmentations and virtual projections to obtain better ground truth
(Fig. 6.1a), and (ii) spectral input data can be used in the generated training set for
better deep learning training and performance (Fig. 6.1d). With spectral CT data,
a naive approach of reconstructing each separate channel can be carried out in order
to improve the foreign object segmentation. Even better is to incorporate existing
algorithms to use the combined information to make a (discrete) reconstruction
(Fig. 6.1f), for which integration of the MC-DART (Fig. 6.1g) and the ADJUST
(Fig. 6.1h) algorithms are suitable. In the case of hyperspectral or multi-spectral
data with a high number of bins, the DRCNN architecture can extract essential
features and reduce the spectral dimension of the data to speed up the throughput
in the neural network (Fig. 6.1i).

Other interesting additional extensions of the workflow include multi-angle data
acquisition (often used, for example, for glass container inspection [68]), which,
along with multi-energy acquisition, still needs to be fully used in X-ray imaging
for detection [8]. Another improvement is to include a separate high-quality scan
(Fig. 6.1b) or advanced CT reconstructions for improved segmentation accuracy.
For instance, if needed, denoising or inpainting can be applied to the reconstructed
CT volumes (Fig. 6.1e). Deep-learning driven noise reduction algorithms [119] and
inpainting algorithms are readily available for these purposes. Finally, to further
improve the effectivity of the detection by deep learning, more data augmentation
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Figure 6.1: The complete workflow of data acquisition from Chapter 2 with a number of possible
extensions and enhancements: (a) spectral scanning, (b) performing an additional higher-quality scan
for improved CT reconstruction, (c) multi-angle or (d) spectral input for the neural network, (e) ap-
plication of denoising methods to improve the CT reconstruction, (f) direct discrete reconstruction
resulting in segmented volumes, (g) integration of ADJUST for spectral tomography, (h) integration of
MC-DART for multi-channel data, (i) integration of DRCNN in the workflow.

can be carried out in the projection domain [145]. Better still, data augmentation
in the reconstruction space [17, 192], combined with realistic forward projections,
yields even richer X-ray training datasets.

The evaluation of the methods presented in this dissertation focuses primarly
on accuracy. While the deep learning methods are designed to be fast, the pro-
cessing times are only briefly touched upon, either in terms of particular time
speedups for DRCNN and time complexity classes with MC-DART. A deeper
analysis of the processing speedups would be interesting, especially regarding the
additional spectral dimension inherent to the data used in most of this dissertation.
Nevertheless, this highly depends on the problem setting. For instance, if the
X-ray imaging setup is such that the data quality deteriorates, more spectral bins
may be needed for successful feature extraction with DRCNN, or more iterations
are needed for proper convergence to acceptable solutions with MC-DART and
ADJUST. Speed comparisons will become interesting when a practical application
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and setup are considered. When the speed at a production line is high, motion
blurring may become an issue, but we expect that this can be taken care of with
machine learning as well. This also applies when many objects are located on
the conveyor belt, and the resulting radiographs are composites of single-object
radiographs. In this case, either reconstruction methods for overlapping objects
[253] or data augmentation will help (although with too many objects, photon
starvation could prevent any possible detection at all). Also, in our experiments,
perfect (angular) alignment of the foreign object radiograph and the ground truth
was not strictly needed. Some erroneous experiments revealed that a slight offset
did not significantly reduce the detection rate. This is positive for industrial
implementation as it may allow for some accidental misalignment. In general, the
generalization of the trained neural networks with approaches in this dissertation
to other data from other objects or factory line setups is a topic for further research.

With spectral imaging and spectral CT, there are at least a number of additional
challenges. First, spectral detection may not be consistent. Initial laboratory experi-
ments showed that detectors can yield different projection images when experiments
are repeated under the same circumstances. Machine learning based object detec-
tion methods may overcome this problem to a certain extent, although this again
depends on the separability of the materials in the object. Second, the modelling
in this dissertation does not include the (not necessarily known) detector response
function, which describes the distribution of measured energy for an incident beam
of a specific energy. ADJUST still needs to include a detector response matrix
in the modelling. In general, incorporation of a detector response function [170]
makes the problem more realistic but is often left out to keep the problem convex [6].

The methods presented in this dissertation can be further enhanced. First, the
workflow can be extended from segmentation to other sorts of classification, such
as binary classification. Secondly, in the spectral simulations used for the workflow,
DRCNN and ADJUST results, no densities are taken into account. Including this
does not fundamentally change the methods, but they need to be added in the case
of practical applications with ADJUST. Thirdly, an evident and straightforward
extension to MC-DART is the application to three-dimensional reconstruction prob-
lems. Additionally, the requirement for the grey values to be known for MC-DART
poses practical challenges. For that reason, a version with automatic grey level
estimation is desirable, which can be implemented as a joint optimized problem
in which both the reconstruction and the grey levels are optimized (in a similar
fashion as TVR-DART [328]). Lastly, task-driven data reduction can be combined
with network pruning methods (for example, LEAN [252]) to reduce training time,
reduce processing time and improve feature extraction.

While the methods presented in this dissertation aim primarly for industrial
imaging, their usage extends beyond this. First of all, the data reduction method
and the material decomposition approach of ADJUST can be applied in remote
sensing. ADJUST may be used as regularization, like, for instance, directional TV
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in remote sensing [48]. Data reduction can be applied to all sorts of remote sensing
problems, as access to data or equipment is getting less difficult and costly [109, 243].
The biconvex formulation and solution strategy of ADJUST can be used for other
CT-related problems, for instance optimal angle selection or automatic grey value
estimation in discrete tomography. In addition, ADJUST can be used for general
material decomposition, for instance for biological and chemical contamination
checks, or in spectroscopy.

The fields of machine learning, spectral X-ray imaging and tomography are
rapidly evolving. It is expected that spectral detectors will become the standard
for medical imaging in the future, and will be adopted in industrial imaging as well.
Depending on the detector possibilities, spectral X-ray imaging may be used for
chemical and biological contamination in addition to physical contamination. Deep
learning gains momentum in industrial imaging in general and will most surely
become a standard in food inspection. The combination of deep learning with
spectral X-ray inspection is, therefore, a logical pathway to the future to increase
accuracy and throughput. A few key limitations remain that make it how far these
developments will push the possibilities. First, imaging and detection are limited to
certain imaging resolution (for instance, with micro- and nanoplastics). Secondly,
the difficulty of detecting of certain combinations of materials with X-rays will
remain a sticking point. Therefore, additional means of noninvasive methods may
be needed. For instance, phase-contrast imaging may be more interesting than
absorption imaging in certain situations, as this modality yields superior results
for the detection of organic materials [80].
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A.1 Intensity value histograms

(a) 2D radiograph with foreign object on
bottom left

(b) Slice of the reconstructed 3D volume with
foreign object on bottom left

(c) Intensity value distribution for the 2D
radiograph

(d) Attenuation value distribution for the slice
of the reconstructed 3D object

(e) Intensity value distribution for the 2D
radiograph (zoomed)

(f) Attenuation value distribution for the slice
of the reconstructed 3D object (zoomed)

Figure A1: Radiograph of an object containing a foreign object (a) and a slice of the corresponding 3D
reconstruction showing its attenuation values (d), indicating the difference in contrast. Additionally,
histograms of intensity value distribution of the radiograph (b-d) and the attenuation value distribution
of the slice of the reconstructed 3D object (e-f). In both cases, the histograms of the voxels or pixels of
the foreign object are plotted separately from the other voxels or pixels. In the 3D volume, the foreign
object is much easier to distinguish based on intensity values.
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We compare the intensity distributions for radiographs and for a CT reconstruc-
tion of an object in Figure A1, which shows a number of statistics about the pixel
and voxel intensities for object 3 (Fig. 2.6). For both approaches, the intensity
value distributions are plotted and separated into values of pixel or voxels that
have been marked as foreign object by the thresholding method. The 3D case has
a clear separation between foreign object and the base object based on attenuation,
such that a simple global threshold based on Otsu’s method [214] is sufficient to
segment the foreign object. On the other hand, in the 2D radiograph case, the
intensity values corresponding to the foreign object locations are similar to values
of the base object.

A.2 Reconstruction and ground truth similarities
In Section 2.4.8, it is verified that the direct use of generated 3D volumes results
in similar ground truth projections compared to the use of the workflow, by
indicating that the average Jaccard index between the ground truth pairs is 0.961.
In Table A.1, the results are given in greater detail by splitting the results up for
nonidentical and combined projections. In addition, we also give the MSE. We
also present the similarity results for the segmentations from which the projections
are generated. Lastly, results are given for the FDK and SIRT reconstruction
algorithms, the latter with 200 iterations. The results indicate that by using these
reconstruction algorithms the similarities between the projection pairs increase.

Identical
(%)

Jaccard
remaining

Jaccard
overall

MSE
remaining

MSE
overall

FDK 15 0.625 0.681 1.34 · 10-4 1.14 · 10-4

SIRT, 100 it. 1 0.656 0.659 1.18 · 10-4 1.17 · 10-4

Se
gm

en
ta

ti
on

SIRT, 200 it. 10 0.643 0.678 1.28 · 10-4 1.15 · 10-4

FDK 47.05 0.981 0.990 1.57 · 10-4 0.83 · 10-4

SIRT, 100 it. 8.99 0.957 0.961 2.97 · 10-4 3.26 · 10-4

Pr
oj

ec
ti

on

SIRT, 200 it. 39.40 0.980 0.988 1.59 · 10-4 0.94 · 10-4

Table A.1: Similarity between ground truth volumes and the corresponding segmented volumes re-
constructed from their own projections, as well as similarity between subsequent virtual projections of
these volumes. The reconstruction are made over 1800 equidistant angles, and the results are averaged
over these angles and 100 training objects. We measure the number of volumes that are identical to
their ground truth, and the Jaccard index and the Mean Square Error (MSE) of both all examples and
the nonidentical examples only.
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Therefore, by adding in an even better reconstruction algorithm in terms of these
similarities, an even more accurate training training set can be generated which can
subsequently yield more accurate detection results than presented in Chapter 2.

A.3 Additional quality measure
In this Appendix we show the F1 scores for all experiments in Chapter 2. The F1
score is given by (

2TPFO

2TPFO + FNBG + FNFO

)
. (A.1)

(a) Few foreign objects experiments (b) Mixed and many foreign objects experiments

(c) Segmentation threshold experiments (d) Simulated data experiments

Figure A2: F1 scores for the various experiments in Chapter 2: (a) the standard experiment with
laboratory data with few foreign objects, (b) the experiment with many and mixed amounts of foreign
objects, (c) the experiment with threshold variation and (d) the simulated experiment. The results are
shown for trained U-Net and MSD networks. The results are averaged over 5 trained networks, with a
different training object order for each run. The shaded regions indicate the standard deviations.

The results for this quality metric are given in Figure A2. The graphs for all
experiments are consistent with the graphs for the quality measures in Section 2.4.
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B.1 Standard data reduction methods
In this section we briefly summarize the most common data reduction methods, used
for comparison in this work: PCA (unsupervised), NMF (unsupervised) and LDA
(supervised). Let X ∈ RNb×(Ntrain·m·n) be a matrix representation of {xi}

Ntrain
i=1 ,

where the rows represent the spectral features and the columns are the data points.

B.1.1 Principal Component Analysis

Let X̃ be the centered version of data matrix X where the means of all features are
shifted to zero. Principal Component Analysis (PCA) is an unsupervised method
that attempts to reduce the data X̃ to X ∈ RNr×(Ntrain·m·n), with Nr < Nb
the number of components, by finding an orthogonal vector w with ||w||= 1

such that the projected data X̃w has the highest variance. The maximization
Var(X̃w) = wTCw yields the largest eigenvalues of the covariance matrix C =

Cov(X̃). Therefore the data matrix X̃ is multiplied by the matrix W , containing
the Nr largest eigenvalues of C, to giveX = X̃W . Denote the final transformation
of PCA derived from data X̃ to Nr components by TPCANr

X . If PCA is chosen
to reduce the data to Nr number of bins, then the optimization problem (3.2)
becomes

min
F

Ntrain∑
i=0

L(F (T
PCANr
X (xtraini )), ytraini )

B.1.2 Non-Negative Matrix Factorization
Let X∗ = X −min(X) be the nonnegative matrix version of X. In Non-Negative
Matrix Factorization (NMF) an attempt is made to factorize the non-negative
data matrix X∗ into two matrices W ∈ RNb×Nr and H ∈ RNr×(Ntrain·m·n) in an
unsupervised manner such that X∗ = WH. The matrix H will then contain the
data points compressed to Nr bins, while W describes the transformation of this
matrix to recover the original data matrix X∗. Since the problem is not solvable
in general, the matrices W and H are often approximated numerically by solving
the minimization problem:

min
W ,H

||X∗ −WH||2N

where ||·||N is usually the Frobenius norm. Denote the transformation of NMF
derived from data X to Nr components by TNMFNr

X . Similar to PCA, if NMF is
chosen to reduce the data to Nr number of bins, the optimization problem (3.2)
becomes
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min
F

Ntrain∑
i=0

L(F (T
NMFNr
X (xtraini )), ytraini )

B.1.3 Linear Discriminant Analysis

Let Y ∈ CNtrain·m·n be the vector representation of {yi}
Ntrain
i=1 . Linear Discriminant

Analysis (LDA) seeks to find a transformation W of the data such that ratio of the
between-class scatter matrix SB(X,Y ) and within-class scatter matrix Sw(X,Y )
is minimized:

min
W

|W TSB(X,Y )W |
|W TSw(X,Y )W |

Intuitively, the data are projected on a lower-dimensional space that maximally
separates the means of the projected class data points, while minimizing the
variances within each class. Similar to PCA, this leads to an eigenvalue problem.
Note that since the rank of between-class scatter matrix is at most C − 1, where
C = |C| is the number of different classes in the target data Y , the rank of W
is at most C − 1 as well. This means that LDA can reduce the data to at most
Nr = |C|−1 bins. Denote the transformation of NMF derived from data X to Nr
components by TLDANr

X,Y . Similar to the previous methods, if LDA is chosen to
reduce the data to Nr < C number of bins, then the optimization problem (3.2)
becomes

min
F

Ntrain∑
i=0

L(F (T
LDANr
X,Y (xtraini )), ytraini )

B.2 X-ray projection data computation
In this appendix, we provide further details on the computation of the simulated
X-ray projections. The dataset consists of 100 2D images of size 512×512 with Nb =
300 spectral bins. These are simulated X-ray projections of 3D volumes of 1024×
1024× 1024 voxels containing 120 cylinders with randomized lengths (uniformly
distributed between 0.143 and 1.43 cm), thicknesses (uniformly distributed between
0.044 and 0.11 cm), angles and positions. For a schematic overview of the simulated
X-ray setup, we refer to Figure 3.6. A virtual source and a virtual detector of
size 1536 × 1536 are placed in front and behind the object respectively, and we
use the ASTRA toolbox to compute the projections from this geometric setup.
After this, we downscale the projections to 512× 512 for computational efficiency,
effectively rescaling the volume size as well. The detector pixel size is chosen to
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be spixel = 0.11 mm, making the detector about 5.6 cm, while the voxel size is
chosen to be svoxel = 0.11 mm, making the object size about 3.75 cm. A cone
beam geometry is used, where the source is placed 44 cm in front of the the center
of the object, while the detector is placed 11 cm behind it. We use the National
Institute for Standards and Technology (NIST) [130, 301] attenuation spectra for
each associated material to compute for each ray an approximation of the number
of photons in energy bin I(Ei) hitting the detector. The computed quantity for
each bin i with energy window Ei and 1 ≤ i ≤ Nb is given by the following:

I(Ei) =

∫ Emax
i

Emin
i

I0(E)e−
∫
`
µ(x,E)dxdE (B.1)

Here, Emin
i and Emax

i signify the energy range in bin i, I0(E) photon influx at
energy E, ` is the ray trajectory and µ(x,E) is the attenuation at position x at
energy E. This is approximated by inserting the assumption that µ(x,E) can be
written as a linear combination of individual material attenuations:

µ(x,E) =
∑
m∈M

µm(E) αm(x)

=
∑
m∈M

(0.01µm(E) + 0.99µpolyethylene(E))αm(x)

where µm(E) is the attenuation coefficient of material m ∈ M, with M being
the set of involved materials, and αm(x) the fraction of material m at position x.
Inserting this into (B.1) gives:

I(Ei) =

∫ Emax
i

Emin
i

I0(E)e−
∫
`

∑
m∈M µm(E) αm(x)dxdE

=

∫ Emax
i

Emin
i

I0(E)e−
∑
m∈M µm(E)

∫
`
αm(x)dxdE

The integral is numerically approximated using the midpoint rule and equally
sized integration bins, which gives the following:

I(Ei) ≈
N∑
j=1

I0(Ẽj)e
−

∑
m∈M µm(Ẽj)

∫
`
αm(x)dx(Eimax − Eimin)

where N is the number of integration bins, and Ẽj = Eimin + 2(j−1)+1
2n (Eimin +Eimax)

the average energy in the j-th integration bin. The number of integration bins is
set to N = 30 for this computation. The integral

∫
`
αm(x)dx is computed using

ASTRA.

The photon influx I0(E) is a product of the source spectrum I0(E) at energy
E, the exposure time t and the detector pixel size spixel:

I0(E) = tI0(E)s2
pixel
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The exposure time is chosen to be t = 0.5 s, and the source spectrum I0 is
simulated as a radiology source spectrum for a tungsten source without filter at 70
kV, taken from Siemens Healhtineers [258]. The energy range used for this dataset
is from E1min = 14 kV to ENbmax

= 69 kV, and the source spectrum including this
range is given in Figure 3.8b. The final projection images in bin i are computed by
dividing I(Ei) by the flatfield image Iflat(Ei) containing reference photon counts
without objects

I(Ei)

Iflat(Ei)
=

I(Ei)∑N
j=1 I0(Ẽj)(Eimax

− Eimin
)

B.3 Time comparison
In this appendix we show the measured processing time for different training setups
with MSD on the generated X-ray dataset. Along with the GPU times we also
include CPU times, where training is carried out on one Xeon CPU core. The
processing times of the trained networks are given in Figure A1. The times for
DRMSD are broken down into the data reduction part and the segmentation part.
Of course, the times on the CPU cores are higher than those on the GPU core. In
both cases the processing time of DRMSD reducing to 1 bin is about 7 to 8 times
faster than that of MSD without any data reduction. On the CPUs the DRMSD
processing time is comparable to that of MSD, with the difference increasing as
the number of bins Nr increases. Note that the number of connections in both
networks increase linearly with the number of reduction images Nr. When reducing
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(a) Processing times on 4 CPUs
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(b) Processing times on 1 GPU

Figure A1: Execution time to apply a forward pass in the trained networks on both CPUs (a) and GPUs
(b). The MSD times (in blue) are added as a reference, where each data point indicates the number
of input channels. These values are equivalent to the processing time on data reduced by standard
methods as PCA, NMF and LDA.



186 Appendix B. Appendices to Chapter 3

the data to up to 60 bins on the GPU, the DRMSD network is less than 2 times as
slow as the network on PCA, NMF and LDA reduced data. For the segmentation
part the speedup of the GPU versus CPU is 87%, whereas the speedup for the data
reduction part is 24%. Therefore, on the CPU the differences are smaller, but for
both CPU and GPU the additional data reduction processing time is acceptable.
All in all, the data show that the DRMSD can offer a processing speedup compared
to MSD when accomplishing hyperspectral imaging tasks, and this conclusion could
hold for some other CNN architectures as well.

B.4 Robustness
Since all experiments in this work are not averaged over multiple runs due time com-
putation time restrictions, we assess in this appendix the stability and robustness
of a number of selected experiments. Included in this selection are the experiments
where we witnessed the largest variation in the test results. We compute the
average, standard deviation, minimum, maximum and median values of the average
class accuracy over 8 different runs. The outcomes are given in Table B.1. For

Dataset Data type
Red.
type

Red.
chan.

Avg. Std. Min. Max. Median

X-ray
Noisy

+ Many
materials

DRMSD 2 99.30 0.0883 99.13 99.42 99.31

X-ray
Noisy

+ Many
materials

DRUNet 2 98.87 0.2937 98.36 99.29 98.97

X-ray
Noisy

+ Many
materials

LDA
+

MSD
2 94.09 0.7639 92.76 95.48 93.91

X-ray
Noisy

+ Many
materials

LDA
+

U-Net
2 87.24 0.6757 86.10 88.21 87.36

Remote
sensing

Noisy
+

Overlapping
DRMSD 1 95.85 0.3642 95.28 96.34 95.86

Remote
sensing

Noisy
+

Overlapping
DRUNet 1 94.46 0.7250 93.27 95.58 94.65

Remote
sensing

Noisy
+

Overlapping

LDA
+

MSD
1 59.34 1.2328 56.27 60.60 59.78

Remote
sensing

Noisy
+

Overlapping

LDA
+

U-Net
1 61.11 0.7674 60.03 62.48 61.05

Table B.1: Average, standard deviation, minimum, maximum and median of the average class accuracy
for various network setups, computed over 8 runs.
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each experiment, the standard deviation is at most 1.24, and for DRCNN methods
this is 0.73. The difference between the minimum and maximum values is at most
3.51, and for DRMSD methods this is 1.38. From these results, we conclude that
all the methods presented here are sufficiently stable, and these stability properties
may be expected from the other experiments in this research as well.
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C.1 Proof of Theorem 1
Since the convex set C =

{
X ∈ RM×D |X ≥ 0, X1 ≤ 1,XT1 ≤ 1

}
is composed

of convex set C1 =
{
X ∈ RM×D |X ≥ 0, X1 ≤ 1

}
and convex set C2 ={

X ∈ RM×D |X ≥ 0, XT1 ≤ 1
}
, the indicator function δC (with δC(X) = 0 when

X ∈ C and δC(X) =∞ otherwise) can be expressed as

δC(X) = δC1(X) + δC2(X).

Hence, the projection onto set C amounts to solving the following minimization
problem

projC(Z) = arg min
X

{
1

2
‖X −Z‖2F+δC1(X) + δC2(X)

}
.

Since the cost function is the composition of two indicator functions, we can redefine
a minimization problem by introducing a new slack variable Y :

minimize
X,Y

{
1

2
‖X −Z‖2F+δC1(X) + δC2(Y ) +

1

2
‖X − Y ‖2F

}
,

where we have penalized the slack variable Y to stay close to the original variable
X using quadratic term. The optimal point of this minimization problem must
satisfy the following fixed point equation:

X −Z + ∂δC1(X) +X − Y ∈ 0,

∂δC2(Y ) + Y −X ∈ 0,

where ∂f denotes the sub-gradient of the function f . Hence, the fixed point
iteration scheme to find the optimal point leads to

(I + (1/2)∂δC1)Xt+1 =
Z + Yt

2
,

(I + ∂δC2)Yt+1 = Xt+1,

for t = 1, . . . , T with setting Y0 to an arbitrary vector. Since the operation
(I + α∂δC)

−1 with α > 0 is equivalent to the definition of proximal operator, we
can compactly rewrite the iteration scheme as

Yt+1 = (I + ∂δC2)
−1

(
(I + (1/2)∂δC1)

−1

(
Z + Yt

2

))
,

= projC2

(
projC1

(
Z + Yt

2

))
.
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C.2 Bi-convexity of ADJUST and partial optimality
In this section, we show that the optimization problem (5.7) is bi-convex. We start
with the definitions related to bi-convexity.

Definition 1 (Bi-convex set). A set B ⊂ X × Y is bi-convex on X × Y if Bx =
{y ∈ Y : (x, y) ∈ B} is convex for every x ∈ X and By = {x ∈ X : (x, y) ∈ B} is
convex for every y ∈ Y.

Definition 2 (Bi-convex function). A function F : B → R on a bi-convex set
B ⊆ X×Y is bi-convex if and only if for every fixed y, the function F(x, ·) : Bx → R
is convex on Bx, and for every fixed x, the function F(·, y) : By → R is convex on
By.

Definition 3 (Bi-convex optimization problem). A minimization problem of the
form

minimize
x,y

F(x, y) subject to x, y ∈ B

is bi-convex if the set B is bi-convex on X × Y and the objective function F is
bi-convex on B.

Therefore, to show bi-convexity of problem (5.7), we need to show that the
constraint set CA × CR is bi-convex on RN×M × RM×D, and the function J :
RN×M × RM×D → R is a bi-convex function.

Lemma 1. The set B , CA × CR is bi-convex on RN×M × RM×D.

Proof. Since the set B is partitioned into two independent sets CA and CR, we only
need to show that these sets are convex. The set

CA =

{
X ∈ RN×M |xij ≥ 0,

M∑
j=1

xij ≤ 1

}

is a convex set on RN×M since it is an intersection of the non-negative orthant
(xij ≥ 0) with N number of hyperplanes (

∑M
j=1 xij ≤ 1) (see 2.2.4 of [45]). Similarly,

the set

CR =

{
X ∈ RM×D |xij ≥ 0,

D∑
j=1

xij = 1,

M∑
i=1

xij ≤ 1

}
,

is a convex set on RM×D because it is an intersection of non-negative orthant
(xij ≥ 0) with M number of hyperplanes (

∑D
j=1 xij = 1) and D number of

halfspaces (
∑M
i=1 xij ≤ 1). Hence, from definition 1, the set B = CA × CR is a

bi-convex set on RN×M × RM×D.

Lemma 2. The function J (A,R) = 1
2‖Y −WART ‖2F is bi-convex.
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Proof. First, we rewrite the function in the form

J (A,R) = 1
2‖Y −WART ‖2F ,

= 1
2 Tr

(
(Y −WART )(Y −WART )T

)
‖X‖2F= Tr

(
XXT

)
,

= 1
2 Tr

(
T TRTATW TWART

)︸ ︷︷ ︸
P(A,R)

−Tr
(
Y TWART

)︸ ︷︷ ︸
Q(A,R)

+ 1
2‖Y ‖

2
F .

Hence, to show that J (A,R) is bi-convex, we need to show that P(A,R) and
Q(A,R) are bi-convex.

We first show the bi-convexity of Q(A,R). To do so, fix A ∈ CA. Now, let
R1,R2 ∈ CR and λ ∈ (0, 1). Then we have

λQ(A,R1) + (1− λ)Q(A,R2) = λTr
(
Y TWAR1T

)
+ (1− λ) Tr

(
Y TWAR2T

)
= Tr

(
λY TWAR1T

)
+ Tr

(
(1− λ)Y TWAR2T

)
= Tr

(
λY TWAR1T + (1− λ)Y TWAR2T

)
= Tr

(
Y TWA(λR1 + (1− λ)R2)T

)
= Q(A, λR1 + (1− λ)R2)

Hence, Q(A,R) is a convex function over RM×D for every A ∈ CA. Similarly,
fixing R ∈ CR and using an analogous deduction as above shows that

λQ(A1,R) + (1− λ)Q(A2,R) = Q(λA1 + (1− λ)A2,R)

for every A1,A2 ∈ CA and λ ∈ (0, 1). Hence, Q(A,R) is a convex function over
RN×M for every R ∈ CR. This shows that Q(A,R) is bi-convex.

Next, we show the bi-convexity of P(A,R). Thus, fix A ∈ CA. Now, to
show that P(A,R) is convex, we use the first-order condition (see 3.1.4 of [45]).
Let Q = A

T
W TWA and P = TT T . The first-order condition states that

∀R1,R2 ∈ RM×D, we need

P(A,R2) ≥ P(A,R1) + Tr
(
(R2 −R1)T∇R1

P(A,R1)
)

Tr
(
RT

2QR2P
)
≥ Tr

(
RT

1QR1P
)

+ 2 Tr
(

(R2 −R1)TA
T
W TWAR1TT

T
)

Tr
(
RT

2QR2P
)
≥ Tr

(
RT

1QR1P
)

+ 2 Tr
(
(R2 −R1)TQR1P

)
To arrive at this condition, let us consider

Tr
(
(R1 −R2)TQ(R1 −R2)P

)
= Tr

(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
− Tr

(
RT

1QR2P
)
− Tr

(
RT

2QR1P
)

= Tr
(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
− Tr

(
RT

1QR2P
)
− Tr

(
RT

2Q
TR1P

T
)

= Tr
(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
− 2 Tr

(
RT

1QR2P
)
.



C.2. Bi-convexity of ADJUST and partial optimality 193

Since Q and P are positive semi-definite matrices, we have

Tr
(
(R1 −R2)TQ(R1 −R2)P

)
≥ 0.

Hence, we obtain the following relation

Tr
(
RT

1QR1P
)

+ Tr
(
RT

2QR2P
)
≥ 2 Tr

(
RT

1QR2P
)
,

which proves the first-order condition. Similarly, we can show that P(A,R) is
a convex function over RN×M for fixed R ∈ CR. Hence, P(A,R) is a bi-convex
function.

Since P(A,R) and Q(A,R) are bi-convex functions, their linear combination
is also a bi-convex function [103]. Hence, we prove that J (A,R) is bi-convex.

Corollary 1. The optimization problem (5.7) is bi-convex.

Proof. Since the cost function J (A,R) = 1
2‖Y −WART ‖2F is bi-convex (Lemma 2)

and CA × CR is a bi-convex set (Lemma 1), the optimization problem

minimize J (A,R) subject to A ∈ CA, R ∈ CR

is bi-convex (from Definition 3).

Bi-convex optimization problems may have a large number of local minima as
they are global optimization problems in general [103]. Since we are interested in
finding a stationary point of (5.7), we define the notion of partial optimality.

Definition 4 (Partial optimality). Let F : X ×Y 7→ R be a given function and let
(x?, y?) ∈ X × Y. Then, (x?, y?) is called a partial optimum of F on X × Y, if

F(x?, y?) ≤ F(x, y?) ∀x ∈ X and F(x?, y?) ≤ F(x?, y) ∀ y ∈ Y.

It is easy to show that a partial optimum z? = (x?, y?) is also a stationary
point of F in X × Y if F is differentiable at z?. Also, the converse is true [103].
Finally, the following theorem (adapted from [290]) connects the local optimality
(i.e. stationary points) to the partial optimality:

Theorem 2. Let (A?,R?) ∈ CA × CR be a partial optimum of J (A,R) = 1
2‖Y −

WART ‖2F . Furthermore, let U(R?) denote the set of all optimal solutions to (5.7)
with R = R? and let V(A?) be the set of optimal solutions to (5.7) with A = A?.
If (A?,R?) is a local optimal solution to (5.7), then it necessarily holds that

J (A?,R?) ≤ J (A,R) ∀A ∈ U(R?), R ∈ V(A?).

This theorem implies that the natural solution of any alternating minimization
algorithm will lead to a partial optimal solution. The proof of the theorem can be
found in [290].
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C.3 Derivation of AAPM
First, we rephrase the original ADJUST problem in the following form

minimize
A,R

J (A,R) + δCA(A) + δCR(R),

subject to WART = Y ,

where δC is an extended value function for the constraint set C that is 0 when
constraint is satisfied and ∞ otherwise. Here, we have introduced the constraints
on the misfit between simulated and true measurements in the linear form. The
Lagrangian for this optimization problem reads

L(A,R,U) = J (A,R) + δCA(A) + δCR(R) + 〈U ,Y −WART 〉

= J (A,R) + 〈U ,Y −WART 〉︸ ︷︷ ︸
,J̃ (A,R,U)

+δCA(A) + δCR(R) (C.1)

where U ∈ RJ×C is a Lagrange multiplier for constraint WART = Y . The
Lagrange multiplier U can also be thought of as a running-sum-of-error as it
captures the misfit between the true measurements and simulated measurements.
The goal is to find a saddle point of this Lagrangian, since the saddle point will
give the optimal solution to (5.7). The saddle point of the Lagrangian is given by

(A?,R?,U?) = arg max
U

arg min
A,R

L(A,R,U).

It is important to note that the Lagrangian is non-differentiable due to the presence
of δCA and δCR . Since the min-max problem cannot be solved using a simple
gradient-based iterative scheme due to non-differentiability of the Lagrangian, we
need to make use of proximal alternating iterative algorithm. To derive such
scheme, we approximate the Lagrangian (C.1) near point (Ak,Rk,Uk) using the
Taylor series for the differentiable function J̃ (A,R,U). This approximation reads

L(A,R,U) ≈ L̃(A,R,U |Ak,Rk,Uk)

= J̃ (Ak,Rk,Uk)+

〈∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1/(2α)‖R−Rk‖2F +

〈∇AJ̃ (Ak,Rk,Uk),A−Ak〉+ 1/(2β)‖A−Ak‖2F +

δCA(A) + δCR(R), (C.2)

where α and β are the Lipschitz constants of the partial gradients of J̃ (A,R,U)
with respect to A and R respectively. This approximation leads to the following
alternating scheme where we minimize with respect to the primal variables A and
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R, and maximize with respect to the dual variable U :

Rk+1 = arg min
R

L̃(A,R,U |Ak,Rk,Uk)

Ak+1 = arg min
A

L̃(A,R,U |Ak,Rk+1,Uk)

Uk+1 = Uk + ρ (WAk+1Rk+1T − Y )

with k = 0, . . . ,K, and ρ > 0 is the acceleration parameter. This alternating
scheme requires initial values of R and A, while the initial value of U can be
set to 0. We update the dual variable U using the linearized ascent, a standard
technique used by many alternating methods, e.g., alternating direction method of
multipliers [46]. Since the approximate Lagrangian (C.2) is composed of quadratic
term and non-smooth terms forA andR, we can express the iterates using proximal
operations. To derive R, we use the identity ‖X +Y ‖2F= ‖X‖2F+‖Y ‖2F+2〈X,Y 〉,
or equivalently, 〈X,Y 〉+ 1

2‖Y ‖
2
F= 1

2‖X + Y ‖2F− 1
2‖X‖

2
F . The derivation is now

as follows:

Rk+1 = arg min
R

L̃(A,R,U |Ak,Rk,Uk),

= arg min
R

{
〈∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1

2α‖R−Rk‖2F+δCR(R)
}
,

= arg min
R

{
1
α 〈α∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1

2α‖R−Rk‖2F+δCR(R)

}
,

= arg min
R

{
1
α

(
〈α∇RJ̃ (Ak,Rk,Uk),R−Rk〉+ 1

2‖R−Rk‖2F
)

︸ ︷︷ ︸
applying the identity with X,α∇RJ̃ (Ak,Rk,Uk),Y ,R−Rk

+δCR(R)

}
,

= arg min
R

{
1

2α‖α∇RJ̃ (Ak,Rk,Uk) +R−Rk‖2F

− 1
2‖α∇RJ̃ (Ak,Rk,Uk)‖2F︸ ︷︷ ︸

independent of R

+δCR(R)

}
,

= arg min
R

{
1

2α‖R−Rk + α∇RJ̃ (Ak,Rk,Uk)‖2F+δCR(R)
}
,

= proxδCR

(
Rk − α∇RJ̃ (Ak,Rk,Uk)

)
, (C.3)

where the proximal for a function f : Rn 7→ R reads

proxγf (z) = arg min
x∈Rn

{
1

2γ
‖x− z‖22+f(x)

}
with γ > 0. The proximal operator allows us to work with non-differentiable func-
tions. Moreover, proximal operators for many functions have explicit expressions,
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making it a very computationally-friendly tool. The proximal operator for δC with
C ⊂ Rn takes the following form:

proxδC (z) = arg min
x∈Rn

{
1

2
‖x− z‖22+δC(x)

}
Indeed, the proximal operator of a δC is just an orthogonal projection of a vector
onto the set C. If the set C is convex, the proximal point is unique. Similar to (C.3),
we can explicitly write down the update of A in terms of the proximal operator.

C.4 Gradient computations
Here we show how the gradients are computed at the final comments in Sec-
tion 5.5.1. We only show the derivation of ∇AJ̃ (A,R,U) since the derivation of
∇RJ̃ (A,R,U) is very similar.

∇AJ̃ (A,R,U)

= ∇A

(
1
2‖Y −WART ‖

2
F+〈U ,Y −WART 〉

)
= ∇A

(
1
2‖Y −WART ‖

2
F

)
+∇A〈U ,Y −WART 〉

∗
= 1

2∇A

(
‖Y ‖2F+‖WART ‖2F−2 Tr

(
Y TWART

))
+∇A Tr

(
UT (Y −WART )

)
〈X,Y 〉 = Tr

(
ATB

)
= 1

2∇A

(
‖WART ‖2F

)
−∇A

(
Tr
(
Y TWART

))
+∇A Tr

(
UTY

)
−∇A Tr

(
UTWART

)
= 1

2∇A

(
Tr
(
T TRTATW TWART

))
−W TY T TRT

− (UTW )T (RT )T
∂

∂X
Tr (AXB) = ATBT

= W T (WART )T TRT −W T (Y )T TRT

−W TUT TR

= W T (WART − Y )T TRT −W TUT TR.

In the third step (*), we use the following identity:

‖X − Y ‖2F = Tr
(
(X − Y )T (X − Y )

)
= Tr

(
(XT − Y T )(X − Y )

)
= Tr

(
XTX − Y TX −XTY + Y TY

)
= Tr

(
XTX

)
− Tr

(
Y TX

)
− Tr

(
XTY

)
+ Tr

(
Y TY

)
= ‖X‖2F+‖Y ‖2F−2 Tr

(
Y TX

) (
Y TX

)T
= XTY
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C.5 Dictionary matrix
In this section, we list the 42 materials that are used in the dictionary matrix T for
the Disks and Shepp-Logan phantoms. The spectra are retrieved from the National
Institute for Standards and Technology (NIST) [130, 301].

Mat.
no.

Material
name

At.
no.

23 Vanadium 23
24 Chromium 24
25 Manganese 25
26 Iron 26
27 Cobalt 27
28 Nickel 28
29 Copper 29
30 Zinc 30
31 Gallium 31
32 Germanium 32
33 Arsenic 33
34 Selenium 34
35 Bromine 35
36 Krypton 36
37 Rubidium 37
38 Strontium 38
39 Yttrium 39
40 Zirconium 40
41 Niobium 41
42 Molybdenum 42
43 Technetium 43

Mat.
no.

Material
name

At.
no.

44 Ruthenium 44
45 Rhodium 45
46 Palladium 46
47 Silver 47
48 Cadmium 48
49 Indium 49
50 Tin 50
51 Antimony 51
52 Tellurium 52
53 Iodine 53
54 Xenon 54
55 Cesium 55
56 Barium 56
57 Lanthanum 57
58 Cerium 58
59 Praseodymium 59
60 Neodymium 60
61 Promethium 61
62 Samarium 62
63 Terbium 63
64 Gadolinium 64

We plot the attenuation spectra for all dictionary elements for each bin within the
selected range in Figure A1. Additionally, Figure A2 shows the spectra for a few
selected materials. All of these materials have a K-edge in the considered spectral
range.
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Figure A1: Dictionary matrix T : Attenuation values over 100 spectral channels for 42 materials, with
energies ranging from 20 keV to 119 keV.
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Figure A2: Attenuation values over 100 spectral channels for four materials from the dictionary matrix
T , with energies ranging from 5 keV to 35 keV.

C.6 Performance measures

To assess the quality of the reconstructions that ADJUST (and the comparison
methods) generates, we compare the reconstructions with the ground truth. Since
for the UR, RU, cJoint and ADJUST methods the best matching reconstruction of
a certain channel in the ground truth may be located in a different channel in the
material map matrix, a matching that minimizes the total error over the channels
needs to be carried out. Let AGT ∈ RN×M be the matrix containing the ground
truth material maps and Arec ∈ RN×M be the reconstructed material map. We
compute a matrix Aerror containing the mutual errors between channels of AGT

and Arec, defined by

Aerror
ij =

∥∥(Arec
ki )i≤k≤N − (AGT

kj )1≤k≤N
∥∥

2
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Given this error matrix, we use an iterative greedy approach to match the channels
of the AGT and Arec matrices based on their mutual channel errors. We repeatedly
compute the minimum of the error matrix and remove the possibility to match the
corresponding channels. To do so, letMGT

0 =M, Mrec
0 =M andMmatch

0 = ∅.
In each iteration 1 ≤ l ≤M , we compute

(il, jl) = arg min
i∈Mrec

l

j∈MGT
l

Aij

and define Mrec
l+1 = Mrec

l \{il}, MGT
l+1 = MGT

l \{jl} and Mmatch
l+1 = Mmatch

l ∪
{(il, jl}. Given the final channel-matching represented by Mmatch

M , we compute
the following three error metrics for each (i, j) ∈Mmatch

M :

• Mean square error (MSE) for each matched material pair:

MSE(i, j) =
∥∥(Arec

ki )i≤k≤N − (AGT
kj )1≤k≤N

∥∥2

2

• Peak signal-to-noise ratio (PSNR) for each matched material pair:

PSNR(i, j) = 10 log10

((
max
k

(AGT
kj )1≤k≤N

)2

/
∥∥(Arec

ki )i≤k≤N − (AGT
kj )1≤k≤N

∥∥2

2

)

• Structural similarity index (SSIM) for each matched material pair:

SSIM(i, j) =
(
(2µiµj + C1)(2σij + C2) /

(
µ2
i + µ2

j + C1)(σ2
i + σ2

j + C2)
))

with µi, µj and σi, σj being the means and the standard deviations of the
matrices (Arec

ki )i≤k≤N and (AGT
kj )1≤k≤N respectively, with σij being the

cross-correlation between these two matrices, and with C1 = (0.01L)2, C2 =
(0.03L)2 and L = 1.

The averages of the MSE, PSNR and SSIM over all materials are then given by:

MSEavg =
∑

(i,j)∈Mmatch
M

MSE(i, j)/M,

PSNRavg =
∑

(i,j)∈Mmatch
M

PSNR(i, j)/M,

SSIMavg =
∑

(i,j)∈Mmatch
M

SSIM(i, j)/M.
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C.7 Numerical studies: Comparison of methods
As stated in the main chapter, we have compared ADJUST with RU, UR, and
cJoint on three numerical phantoms, mainly the Shepp-Logan phantom, the Disks
phantom, and the Thorax phantom. Figure A3 shows the reconstruction results
(i.e. reconstructed spatial maps and the spectra of materials) of these methods on
Disks phantom. Moreover, we also plot the performance measures of these methods
per material in Figure A4.
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Figure A3: Visual comparison of ADJUST with RU, UR, and cJoint method on the Disks phantom. We
only show the reconstructions of all disks here for the comparison. Moreover, we match the colors of
the bounding box for material maps with the (recovered) spectral signatures of the materials (shown
in the bottom row).
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Figure A4: Performance plots showing PSNR (left column), SSIM (middle column), MSE (right col-
umn) of the reconstructed materials against the ground truth for various numerical algorithms on the
phantoms.

C.8 Numerical studies: Limitedmeasurement patterns
We consider three different types of limited measurement patterns: (i) Sparse-angle:
tomographic projections from 10 equidistant angles in the range of 0 to π for 100
spectral channels, (ii) Limited-view : 60 equidistant projection angles in the limited
range of [0, 2π/3] for 100 spectral channels, (iii) Sparse channels: 60 equidistant
angles between 0 and π, but with only 30 spectral channels. We test ADJUST on
the two numerical spectral phantoms, i.e. the Shepp-Logan phantom and the Disks
phantom. Figures A5 and A6 demonstrate the reconstructions of ADJUST for all
three limited measurement patterns on these two phantoms.
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Figure A5: Results of ADJUST with sparse-angle data, limited view data and sparse spectral channels
on Shepp-Logan phantom. The colors of the bounding box of material maps are matched with the
spectral signatures of the materials (shown in the bottom row).
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Figure A6: Results of ADJUST with sparse-angle data, limited view data and sparse spectral channels
on Disks phantom. We only show material maps of first five materials. The colors of the bounding box
of material maps are matched with the spectral signatures of the materials (shown in the bottom row).
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C.9 Numerical studies: Mixed material phantom

We consider the Mixed Disks phantom, which consists of solid disks in an inner
circle and mixed disks on an outer circle. All material mixtures are present on the
outer circle. With M = 5 disks on the inner circle, this amounts to 10 mixed disks
on the outer circle. The materials are the same as the first 5 selected materials in
the Disks phantom. The ADJUST method with 2000 iterations is compared with
RU, UR, and cJoint. The results of this experiment are shown in Figure A7, with
the results for each material on a separate row.
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Figure A7: Comparison of various methods for spectral CT for a mixed-material Disks phantom. The
materials contained in this phantom are arsenic (top row), selenium, bromine, krypton and rubidium
(second-to-last row).
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We see that the RU, UR, and cJoint methods are not capable of fully separating
the mixtures and retrieving the disks on the inner circle. On the other hand,
ADJUST nearly perfectly reconstructs the disks on the inner circle and the mixture
disks on the outer circle.

C.10 Numerical studies: 3D phantom
We also apply the ADJUST algorithm to the 3D Shepp-Logan phantom to show the
ability to reconstruct a 3D phantom. This 3D phantom is four times as large as the
2D Shepp-Logan phantom. The phantom is discretized on a grid of 128× 128× 128
voxels. The phantom is shown in Figure A8. We consider 60 equidistant projection
angles in the range of [0, π] with a parallel-beam acquisition geometry. We show
the visual results of the 3D material decomposition in Figure A9. The average MSE
is 0.0029, the average PSNR is 26.67 and the average SSIM is 0.9763, indicating
that the 3D reconstructions are almost accurate.
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Figure A8: The true material compositions of the 3D Shepp-Logan phantom. The materials contained
in this phantom are vanadium (left column), chromium (middle column), and manganese (right col-
umn).
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Figure A9: The reconstructed material composition of the 3D Shepp-Logan phantom from ADJUST
algorithm. The materials contained in this phantom are vanadium (left column), chromium (middle
column), and manganese (right column).
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Summary in English
With globalization, growing world population, and other increases in scale taking
place, humanity is becoming increasingly dependent on efficient industrial produc-
tion. An essential component of industrial production is the execution of quality
controls. These controls ensure that the product does what it is intended for and
that no harm can occur when a product is used or consumed.

An important part of the industrial sector is food production. Various processes
during food processing in and around factories can lead to contamination of the
food product. This can include the presence of organisms (such as unwanted
bacteria like E. coli in cheese) or the presence of chemicals (such as pesticides and
cleaning agents on fruit) in or on the product. An important category is physical
contamination, where small objects remain in the product. This can manifest
as small pieces of glass, metal, or plastic that are left behind in food products.
These small objects are referred to as foreign objects in this context and can be
harmful when accidentally consumed. This is one of the reasons why supermarkets
often have to organize large-scale recalls. It goes without saying that physical
contamination leads to potential health risks, loss of time, financial damage, and
loss of trust in the manufacturer. Because of the possibility of food contamination
at various stages, quality control methods are constantly in development.

There are many methods for food contamination detection. Many methods are
based on the interaction with X-rays, which can (partially) penetrate objects. For
example, a foreign object can absorb more X-rays than the product it is hidden in.
If the product is exposed to X-rays, an image can be formed by using an X-ray
detector, on which the foreign object becomes visible. Although the developed
methods are often applicable in a broader sense, their use for detection of foreign
objects with X-rays is the common thread in this dissertation.

Although X-ray images reveal many properties, it can happen that projections
of certain materials look similar to each other and are difficult to impossible to
distinguish. X-ray computed tomography (CT) can offer a solution to this. In
this method, multiple X-ray images of an object are taken at different angles.
Afterwards, the object can be visualized in a three-dimensional volume using a
reconstruction algorithm. Because CT generates a 3D volume instead of a 2D
projection, the object can be analyzed more accurately and, for example, more
thoroughly checked for the presence of a foreign object.

Even if X-ray imaging and computed tomography can provide a lot of insight
into the composition of objects, there are many challenges to applying these me-
thods for industrial purposes. In industry, it is important to make a decision
based on the obtained information that is both fast an accurate. These goals are
in conflict: X-ray images can be analyzed relatively quickly but do not always
provide a definitive answer, while analysis of CT volumes is more time-consuming.
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Additionally, in CT volumes, different materials may still appear as too similar
and difficult to distinguish.

Two relatively new techniques offer possibilities to make object inspection both
faster and more accurate. The field of artificial intelligence has recently experienced
significant growth, in part due to the development of deep learning methods. In
these approaches, a deep neural network (which is based on the networks of neurons
in the human brain) can be trained with examples and their corresponding solutions
to continuously improve its performance on a specific class of problems. A special
category of neural networks is that of convolutional neural networks, which are
capable of quickly detecting objects in X-ray images without requiring human
intervention once they are trained.

Nevertheless, even the best X-ray images may not reveal a foreign object. To
solve this, the technique of spectral X-ray imaging can be used. Spectral X-ray
detectors can not only detect the photons that make up the X-rays, but can
also determine the energy carried by each photon. The absorption of photons
depending on energy is called an absorption spectrum. Because the absorption
of photons depends not only on the material but also on the energy, this yields
a unique absorption spectrum for each material. With spectral X-ray imaging,
improved discrimination of materials present in an object is possible, where this is of-
ten difficult to measure with standard X-ray imaging (see Figure S1 for an example).

Similarly, for spectral X-ray imaging, the composition of an object can be better
analyzed by using spectral CT. This can be done, for example, by reconstructing
the measured CT images separately for each energy. By comparing multiple CT
volumes - each corresponding to a certain energy - materials that are present
in the object can be determined even better. However, as with standard CT,
the reconstruction process takes extra time. Therefore, spectral CT reconstruc-
tion algorithms are constantly being developed to improve both accuracy and speed.

Machine learning and spectral X-ray imaging are two important ingredients
for the methods developed in this thesis. Chapter 1 explains how these techni-
ques work and gives an overview of the most important existing methods. The
chapters that follow cover various aspects of possible application of these techniques.

In Chapter 2 we focus on a fundamental problem of deep learning: a large
number of training examples is required to make a trained network function pro-
perly. However, for inspection with X-ray imaging, these examples are usually not
easily available and require a lot of manual work to create. Therefore, we develop
a workflow in which only a limited number of objects need to be CT scanned and
reconstructed, from which a large number of training examples can be efficiently
extracted. Through the use of a dataset collected in the FleX-ray laboratory at
CWI, we demonstrate that this method can be used for foreign object detection
and other deep learning based industrial applications.



Summary in English 213

Figuur S1: Schematic representation of the advantage of spectral X-ray imaging over standard X-ray
imaging. With standard X-ray imaging, two different materials can result in the same intensity on
the X-ray image. With spectral X-ray imaging, the energies in the X-ray beam can be separated from
each other (by adjusting the source, or by measuring both energies in a spectral detector, or both).
This gives multiple X-ray images per material. Based on the differences in these spectral X-ray images
between materials, we can distinguish them.

The workflow is designed such that it can be expanded in many ways to obtain
even better training data. An important extension is to use spectral X-ray imaging.
In Chapter 3, we look at hyperspectral images, where many energies can be
captured simultaneously. Because these hyperspectral images can contain a lot
of data and can therefore be very large, it processing these with a deep learning
trained network is relatively time-consuming. Therefore, it is necessary to compress
these images. To preserve the important properties in these images for the tasks
that need to be performed (such as detection of foreign objects), compression can
be carried out in a task-driven manner. We achieve this by linking two neural
networks and training these simultaneously : the first component is responsible for
compression and the second part is responsible for performing the imaging task.
We demonstrate with several examples that training of this composite network
leads to stronger and more robust compression than conventional compression
methods. This compression method not only has advantages in industrial tasks,
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but also in other applications where efficient data transmission is required (such as
sending data from a satellite to Earth).

In the following chapters are dedicated to improving CT reconstructions with
spectral X-ray imaging. In Chapter 4, we condsider objects that contain few
different materials. An existing algorithm specialized for these cases uses this
property to achieve significantly better reconstructions than other methods that do
not (fully) use this property. We develop an extension of this algorithm to multiple
energy levels and demonstrate that with the use of spectral data objects consisting
of more materials can be reconstructed accurately.

In Chapter 5 we explore an alternative approach to spectral CT. We assume
access to a spectral detector that can measure how much X-ray radiation is absorbed
per energy by each material. If these spectra are known for a range of materials
that may occur in the object (resulting in a dictionary), it can be used to steer a
spectral CT algorithm to certain solutions. We develop such an algorithm and in a
series of experiments, we not only demonstrate its robustness but also show that it
can yield better results than current leading spectral CT algorithms.

Taken together, this dissertation proposes methods for improving industrial
processes, with a specific motivation from food inspection. The methods use deep
learning and spectral X-ray imaging. The proposed workflow for detecting foreign
objects can be applied in factories, and can be expanded with the other methods
proposed and analyzed in this thesis. Nevertheless, we expect that the individual
methods are also applicable in a broader sense for medical purposes (such as CT
scans in hospitals), security purposes (such as scanning luggage at airports), and a
wide spectrum of other areas.
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Met de globalisering, groeiende wereldbevolking en andere schaalvergrotingen die
nu plaatsvinden, wordt de mensheid steeds afhankelijker van efficiëntere industriële
productie. Een essentieel component van industriële productie is het uitvoeren van
kwaliteitscontroles. Deze controles zorgen ervoor dat het product doet waar het
voor gemaakt is en er geen schade kan ontstaan wanneer een product gebruikt of
geconsumeerd wordt.

Een belangrijk onderdeel van de industriële branche is de voedselproductie.
Verschillende processen tijdens voedselverwerking in en rond fabrieken kunnen
leiden tot contaminatie van het voedselproduct. Denk hierbij bijvoorbeeld aan de
aanwezigheid van organismen (bijvoorbeeld ongewenste bacteriën zoals E. coli in
kaas) of de aanwezigheid van chemicaliën (zoals pesticiden en schoonmaakmiddelen
op fruit) in of op het product. Een belangrijke categorie is fysieke contaminatie,
waarbij kleine objecten in het product achterblijven. Dit kan zich uiten in kleine
stukjes glas, metaal of plastic die achter zijn gebleven in voedselproducten. Deze
kleine objecten worden in deze context (lichaams)vreemde objecten (foreign objects)
genoemd, en kunnen schadelijk zijn wanneer deze per abuis worden geconsumeerd.
Mede hierdoor moeten supermarkten regelmatig grootschalige terugroepacties op
touw zetten. Het is vanzelfsprekend dat fysieke contaminatie leidt tot mogelijke
gezondheidsrisico’s, tijdverlies, financiële schade en verlies van vertrouwen in de
fabrikant. Vanwege de mogelijkheid van voedselcontaminatie op allerlei niveaus
zijn de methodes voor kwaliteitscontroles voortdurend in ontwikkeling.

Er bestaan vele methodes voor het detecteren van voedselcontaminatie. Veel
methodes zijn gebaseerd op de interactie met röntgenstraling (X-rays), die voor-
werpen (gedeeltelijk) kan doordringen. Een foreign object kan bijvoorbeeld meer
röntgenstraling absorberen dan het product waar het in verscholen is. Als het
product dus met behulp van een bron wordt blootgesteld aan röntgenstraling kan
er een beeld gevormd worden door middel van een röntgenstralingsdetector, waarop
het foreign object zichtbaar wordt. Hoewel de ontwikkelde methodes vaak in bredere
zin inzetbaar zijn, vormt het detecteren van foreign objects met röntgenstraling de
rode draad in dit proefschrift.

Hoewel röntgenbeelden veel kunnen laten zien, kan het voorkomen dat projecties
van bepaalde materialen op elkaar lijken en moeilijk tot onmogelijk te onderscheiden
zijn. Als oplossing hiervoor kan X-ray computertomografie (CT) gebruikt worden.
Hierbij worden meerdere röntgenbeelden van een object opgenomen onder verschil-
lende hoeken. Hierna kan het object in kwestie met een reconstructiealgoritme
gevisualiseerd worden in een driedimensionaal volume. Omdat CT een 3D volume
genereert in plaats van een 2D projectie, kan het voorwerp beter geanalyseerd
worden en bijvoorbeeld beter gecontroleerd worden op de aanwezigheid van een
foreign object.
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X-ray beeldvorming en computertomografie kunnen veel inzicht geven in de
samenstelling van een object, maar er zijn veel uitdagingen om dit toe te passen
voor industriële doeleinden. Het is belangrijk om op basis van de verkregen infor-
matie een zowel snelle als een accurate beslissing te maken. Dit zijn conflicterende
doelen: röntgenbeelden kunnen relatief snel geanalyseerd worden maar bieden niet
altijd uitsluitsel, terwijl CT volumes beter te analyseren zijn maar het berekenen
en analyseren ervan meer tijdrovend is. Bovendien kan het in CT volumes toch
zijn dat verschillende materialen te veel op elkaar lijken en moeilijk uit elkaar te
halen zijn.

Twee relatief nieuwe technieken bieden mogelijkheden om inspectie van objecten
zowel sneller als accurater te maken. Het onderzoeksgebied van kunstmatige intel-
ligentie heeft recentelijk een grote groei doorgemaakt, mede door de ontwikkeling
van deep learning methodes. Hierbij kan een diep neuraal netwerk (die gebaseerd
is op de netwerken van neuronen in de hersenen van de mens) door middel van
voorbeelden met bijbehorende oplossingen getraind worden om zijn werking op een
bepaalde klasse van problemen steeds te verbeteren. Een speciale categorie van
neural netwerken zijn de convolutionele neurale netwerken. Deze zijn in staat om,
eenmaal getraind, zeer snel objecten te detecteren op röntgenbeelden zonder dat
daar menselijke handelingen aan te pas komen.

Desondanks kan op de beste röntgenbeelden een foreign object onzichtbaar
blijven. Om dit te verbeteren is de techniek van spectrale röntgenbeeldvorming
(spectrale X-ray imaging) bruikbaar. Spectrale röntgenstralingsdetectoren kunnen
de fotonen, waaruit röntgenstralen zijn opgebouwd, niet alleen detecteren maar
voor elke foton ook de energie bepalen die ze bij zich dragen. De absorptie van de
fotonen afhankelijk van energie wordt een absorptiespectrum genoemd. Omdat de
absorptie van fotonen niet alleen afhankelijk is van het materiaal maar ook van de
energie, geeft dit voor ieder materiaal een uniek absorptiespectrum. Met spectrale
röntgenbeeldvorming kan beter bepaald worden welke materialen er in een object
zitten, waar dit bij standaard röntgenbeeldvorming vaak niet goed te meten is (zie
Figuur S1 voor een voorbeeld).

Ook voor spectrale röntgenbeeldvorming geldt dat de samenstelling van een
object beter geanalyseerd kan worden wanneer wordt overgegaan op spectrale CT.
Dit kan bijvoorbeeld door de gemeten CT beelden voor elke energie apart te re-
construeren. Door meerdere CT volumes - elk behorende bij een zekere energie -
met elkaar te vergelijken, kan nog beter bepaald worden welke materialen er in het
object zitten. Desondanks geldt ook hier weer dat het maken van de reconstructies
extra tijd kost. Daarom zijn spectrale CT reconstructiealgoritmes voortdurend in
ontwikkeling om zowel de nauwkeurigheid als de snelheid te verbeteren.

Machine learning en spectrale röntgenbeeldvorming zijn twee belangrijke ingre-
diënten voor de methodes die in dit proefschrift ontwikkeld zijn. In hoofdstuk 1
wordt uitgelegd hoe deze technieken werken en wordt een overzicht van de be-
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Figuur S1: Schematische weergave van het voordeel van spectrale röntgenbeeldvorming ten opzichte
van standaard röntgenbeeldvorming. Bij standaard röntgenbeeldvorming kunnen twee verschillende
materialen resulteren in dezelfde intensiteit op het röntgenbeeld. Bij spectrale röntgenbeeldvorming
kunnen de energieën in de röntgenstraal van elkaar gescheiden worden (door de bron anders in te
stellen, of door beide energieën te meten in een spectrale detector, of beide). Hierdoor krijgen we
per materiaal meerdere beelden. Op basis van de verschillen in deze spectrale röntgenbeelden tussen
materialen kunnen we ze onderscheiden.

langrijkste bestaande methodes gegeven. De hoofdstukken daarna behandelen
verschillende aspecten van de mogelijke toepassing van deze technieken.

In hoofdstuk 2 richten we ons op een fundamenteel probleem van deep learning:
er zijn veel trainingsvoorbeelden nodig om een getraind netwerk goed te laten func-
tioneren. Ook voor inspectie met röntgenbeeldvorming zijn deze voorbeelden lang
niet altijd gemakkelijk verkrijgbaar en vereisen veel manueel werk om te vervaardi-
gen. Daarom ontwikkelen we een werkstroom waarbij enkel een gelimiteerd aantal
objecten met CT gescand en gereconstrueerd hoeft te worden, waaruit op een
efficiënte manier veel trainingsvoorbeelden verkregen kunnen worden. We laten
aan de hand van een dataset opgenomen in het FleX-ray laboratorium van het
CWI zien dat deze methode gebruikt kan worden voor foreign object detectie en
andere op deep learning gebaseerde industriële toepassingen.

De werkstroom is zodanig vormgegeven dat het op vele manieren uitbreidbaar
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is om nog betere trainingsdata te verkrijgen. Een belangrijke uitbreiding is om
spectrale röntgenbeeldvorming te gebruiken. In hoofdstuk 3 kijken we naar
hyperspectrale beelden, waarbij zeer veel energieën tegelijkertijd kunnen worden
opgenomen. Omdat deze hyperspectrale beelden zeer veel data kunnen bevatten en
daardoor dus zeer groot kunnen zijn, kost het relatief veel tijd om deze te verwerken
door een met deep learning getraind netwerk. Daarom is het nodig om deze beelden
te comprimeren. Om de belangrijke eigenschappen in deze beelden te behouden
voor de taken die uitgevoerd moeten worden (zoals herkenning van foreign objecten)
kan de compressie op een taakgedreven manier. Dit doen we door twee neurale
netwerken aan elkaar te koppelen en deze tegelijk te laten leren: het eerste deel is
verantwoordelijk voor de compressie en het tweede deel is verantwoordelijk voor
het uitvoeren van de taak. We laten met meerdere voorbeelden zien dat het ge-
combineerd trainen van dit samengestelde netwerk leidt tot sterkere en robuustere
compressie dan met conventionele compressiemethodes. Deze compressiemethode
heeft niet alleen voordelen bij industriële taken, maar ook in andere applicaties
waarbij efficiënt data moet worden uitgewisseld (bijvoorbeeld bij het sturen van
data van een satelliet naar de aarde).

In de opvolgende hoofdstukken leggen we ons toe op het verbeteren van de CT
reconstructies met spectrale röntgenbeeldvorming. In hoofdstuk 4 kijken we naar
objecten die weinig verschillende materialen bevatten. Een bestaand algoritme
dat op deze gevallen is gespecialiseerd gebruikt deze eigenschap om significant
betere reconstructies te bewerkstellingen dan andere methodes die deze eigenschap
niet (volledig) gebruiken. We ontwikkelen een uitbreiding van dit algoritme naar
meerdere energieniveaus en tonen aan dat met het gebruik van spectrale data
objecten die bestaan uit meer materialen accuraat kunnen worden gereconstrueerd.

In hoofdstuk 5 bekijken we een alternatieve benadering van spectrale CT.
We nemen aan dat er toegang is tot een spectrale detector die kan meten hoeveel
röntgenstraling per energie door elk materiaal wordt opgenomen. Als deze spectra
bekend zijn voor een scala aan materialen die mogelijk in het object voorkomen
(resulterend in een ‘referentietabel’), kan dit als hulpmiddel worden gebruikt in een
spectraal CT algoritme. We ontwikkelen een dergelijk algoritme en in een reeks
experimenten tonen we niet alleen aan dat het robuust is, maar ook dat het betere
resultaten kan opleveren dan huidige toonaangevende spectrale CT algoritmes.

Welbeschouwd worden er in dit proefschrift methodes voorgesteld voor het
verbeteren van industriële processen, met specifieke aandacht voor de toepassing
van voedselinspectie. De methodes maken gebruik van deep learning en spectrale
röntgenbeeldvorming. De voorgestelde werkmethode om foreign objects te detecte-
ren is toepasbaar in fabrieken, en is uitbreidbaar met de andere methodes die in
dit proefschrift worden voorgesteld en geanalyseerd. Desalniettemin verwachten
we dat de individuele methodes ook in bredere zin toepasbaar zijn voor medische
doeleinden (zoals bij CT-scans in ziekenhuizen), veiligheidsdoeleinden (zoals het
scannen van bagage op vliegvelden) en een wijd spectrum aan andere gebieden.
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