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Summary

We propose a ligand screening method, called TINS
(target immobilized NMR screening), which reduces
the amount of target required for the fragment-based
approach to drug discovery. Binding is detected by
comparing 1D NMR spectra of compound mixtures in
the presence of a target immobilized on a solid sup-
port to a control sample. The method has been vali-
dated by the detection of a variety of ligands for pro-
tein and nucleic acid targets (Kp from 60 to 5000 pM).
The ligand binding capacity of a protein was undimin-
ished after 2000 different compounds had been ap-
plied, indicating the potential to apply the assay for
screening typical fragment libraries. TINS can be
used in competition mode, allowing rapid character-
ization of the ligand binding site. TINS may allow
screening of targets that are difficult to produce or
that are insoluble, such as membrane proteins.

Introduction

Ligand screening assays play a significant role in the
early stages of drug discovery. High-throughput screen-
ing (HTS) methods have been developed that allow very
large libraries of compounds to be screened for spe-
cific and tight binding to a target molecule. To maximize
the chance of finding such a compound in a random
search as well as to increase the diversity of the collec-
tion, HTS libraries have become more “druglike” [1, 2],
that is, the complexity and lipophilicity have increased.
Optimization of lead compounds for affinity and speci-
ficity typically involves further increases in molecular
weight, complexity, and lipophilicity [1, 2], with the re-
sulting compounds often violating Lipinski’s “rule of
five” [3]. An alternate approach has been proposed by
the group of Fesik in which multiple, independent,
weak, but specifically binding compounds are linked to
ultimately provide a high-affinity lead compound [4].
The so-called fragment-based approach has several
advantages over HTS-based methods. The compounds
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in the library can be more “leadlike,” that is, more hy-
drophilic and simpler [1, 2], allowing greater flexibility
during the optimization process. Subsequent analysis
of the structure activity relationships (SAR) of “hits” is
greatly simplified in comparison to the analysis of HTS
hits. The number of compounds in the fragment library
can be small compared to typical HTS libraries (10*
fragments versus 108 compounds) while greatly ex-
ceeding the diversity of the HTS collection due to the
combinatorial nature of the process [5]. However, the
typical binding affinity of components of these simpler
libraries to the target is significantly weaker (Kp values
in the pM to mM range) than HTS libraries. The types
of assays normally used in HTS are not well suited for
detecting such weak interactions.

Nuclear magnetic resonance (NMR) is an ideal tool
for detecting weak binding of low-molecular-weight
compounds to biomacromolecules [6]. Recent years
have witnessed increased interest in NMR as a ligand
screening tool along with the development of a wide
array of new methods and enabling hardware. NMR
may be used to observe changes in the spectrum of
either the target or the ligand that occur upon binding.
In the first case, known as SAR by NMR, the target is
labeled with '°N or '3C in order to exclusively observe
the spectrum of the target in the presence of multiple
compounds being assayed for binding [5, 7]. Using
mixtures of compounds, libraries of up to 10,000 com-
ponents can be efficiently screened. SAR by NMR has
the advantage that it also provides information as to
where a compound binds if the sequential assignment
and 3D structure of the target are known or if a refer-
ence compound is available. In this incarnation, SAR
by NMR has been used successfully to develop small
molecule inhibitors to a wide variety of protein targets
[8]. However, SAR by NMR is generally applicable to
targets for which the sequential assignment is available
and therefore are less than roughly 40 kDa. Recent de-
velopments have, however, enabled experimentally
guided docking of ligands into the 3D structure of even
very large protein targets [9, 10]. More stringent is the
requirement for isotopic labeling of the target, which
preferably needs to be available in large (typically >200
mg) quantities.

An alternative approach to SAR by NMR is to observe
changes in the NMR spectrum of the ligand itself.
These changes may be manifested directly as a change
in the diffusion constant [11-13] or indirectly via an ef-
fect on the correlation time 1.. Numerous elegant tech-
niques have been elaborated that detect changes in 1,
including line broadening [11, 14], the presence of intra-
molecular transfer NOEs (trNOE) [15], or intermolecular
trNOEs [16-19], which we collectively refer to as small
molecule NMR methods. These techniques alleviate the
requirement for isotopically labeled protein while, at the
same time, reducing the amount of target needed to
screen a compound library. An additional benefit is that
these techniques have the potential to directly identify
the binder even in complex mixtures and can therefore
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alleviate subsequent deconvolution steps. Small mole-
cule NMR methods do not provide the structural infor-
mation that the SAR by NMR method does. However,
they do provide at least a limited characterization of
the ligand binding site with modifications that allow the
assay to be performed in a competition mode [20], or
when combined with molecular modeling [21]. One limit
of small molecule NMR methods is that they are gen-
erally insensitive to tight binding ligands. This insensi-
tivity is due to the reliance on rapid exchange on and
off the receptor to detect spectral characteristics of the
bound state that are transferred to the free state. Tight
binding ligands, which are in slow exchange by defini-
tion, do not provide the requisite averaging throughout
the ligand population (competition mode experiments
[22, 23] are an exception). Spectroscopic analysis of
ligands alleviates restraints on the size and chemical
nature of the target, however, so that binding to very
large proteins or nucleic acids [24] can be detected. In
an impressive first, the group of Meyer has even de-
tected binding to a membrane protein [25] using satura-
tion transfer difference spectroscopy. However, to
screen a 10,000 compound library 10 compounds at a
time with a 50 kDa membrane protein using the condi-
tions described would require 50 mg of protein and
nearly 3 months. Many small molecule NMR methods
have been put to good use in actual drug discovery
programs, yet they too have limitations with respect to
the range of targets to which they can be applied. In
particular, screening complete compound libraries using
targets that are only available in low mg quantities (as
is typically the case with integral membrane proteins)
is not possible using presently available methods.

One way to further reduce the amount of target re-
quired for small molecule NMR methods would be to
use a single sample of the target to screen an entire
compound library. This could be accomplished through
immobilizing the target and utilizing a flow-injection
NMR instrument. The group of Meyer was indeed able
to detect binding of one oligosaccharide from a mixture
of seven in the presence of a lectin bound to controlled
pore glass (CPG) beads [19]. However, in this study, it
was necessary to use magic angle spinning (MAS) NMR
in order to overcome the line broadening induced by
the magnetic field gradients resulting from the differ-
ence in magnetic susceptibility of the glass beads and
the surrounding aqueous solution. The requirement for
MAS necessitates a batch mode that is not well suited
to screening even moderately large compound libraries.

Here, we demonstrate a technique called TINS, for
target immobilized NMR screening, in which the target
is immobilized on a support that allows one to record
high-resolution spectra in the static mode. This ar-
rangement should allow the assay to be performed in
a flowthrough manner using only one sample of target.
Target-ligand interactions with a wide range of affinities
can be detected using TINS, which, like other small
molecule NMR methods, can provide limited structural
information when used in a competition assay with a
known ligand. However, unlike other NMR screening
techniques, we show that TINS can in principle be used

to screen an entire library with a single sample of 3-5
mg of the target.

Results and Discussion

Effect of Solid Support on NMR Linewidth

In order to enable a flow-injection, ligand binding assay,
it was first necessary to find a solid support that was
compatible with static NMR methods. We chose agar-
ose- and Sepharose-based media because of their high
solvent content and ready availability in formats appro-
priate for immobilization of proteins and nucleic acids.
Comparison of spectra recorded on homogenous and
heterogenous systems consisting of small molecules in
solution in the presence of a Sepharose resin indicated
that the linewidth increased from about 1 Hz to about
25 Hz at 14.1 T (400 MHz 'H frequency, Figure 1). In
comparison, CPG beads result in susceptibility mis-
match-induced linewidths that are on the order of 100s
of Hz. As seen in Figure 1C, these linewidths severely
limit the usefulness of the experiment. Additionally, we
find only a marginal dependence of the linewidth on
field strength (7 Hz difference between 9.4 and 14.1 T).
Based on these results, we were encouraged to see if
we could detect binding to a target immobilized on a
Sepharose support.

Detection of Binding
For a simple test system, we chose the well-charac-
terized binding of spermidine to the phosphate back-
bone of DNA [26]. We synthesized a 5’ biotinylated
oligonucleotide and immobilized it on streptavidin Seph-
arose. The spectrum of imidazole (Im), phosphotyrosine
(pY), arginine, and spermidine at 1 mM each in solution
(Figure 2A) is shown for reference. We prepared two
samples of streptavidin Sepharose in standard NMR
tubes, one of which contained the 5’ biotinylated oligo-
nucleotide. Control and experimental resins were equil-
ibrated with the mix of compounds, and 1D "H spectra
of each were recorded (Figures 2B and 2C, respec-
tively). Subtraction of the spectrum recorded in the
presence of the oligonucleotide from the control
spectrum yields what we refer to as the TINS spectrum
(Figure 2D), which contains only resonances of sper-
midine, known to bind the phosphate backbone of
DNA. The affinity of the purely electrostatic interaction
is highly dependent on salt concentration and pH [26].
Under the conditions we have used, the spermidine
binding should be weak (Kp approximately 5 mM).
However, the presence of multiple binding sites (about
nine per DNA molecule) ensures that the binding equi-
librium is shifted toward the complex. The spermidine-
DNA interaction demonstrates that weak binding of one
compound in a mixture to an immobilized target can
readily be detected using simple, static NMR methods.
We next turned to a protein target for which drugs
have been successfully developed. The immunophilin
FKBP12, originally used to develop the SAR by NMR
method [4], is a well-characterized target for which a
wide variety of ligands are available covering a range
of binding constants. We immobilized FKBP12 to a
commercially available Sepharose resin via Schiff-base
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Figure 1. Effect of the Susceptibility Mismatch on the NMR Linewidth in Different Solid Supports

A 1D 'H spectrum of a mixture of low molecular weight compounds (<200 Da) was recorded in solution (A) in the presence of a Sepharose
support (B) or in the presence of controlled pore glass (CPG) beads (C) at a 'H frequency of 400 MHz (9.1 T). The fitted linewidths are 1 Hz,
28 Hz, and ~120 Hz in the three spectra, respectively. Note that the linewidth in the CPG beads is approximate due to severe signal overlap.

formation to primary amines. This results in efficient im-
mobilization of protein randomly oriented with respect
to the bead. We chose readily available, well-charac-
terized [27] ligands with known dissociation constants
(Kp) ranging from 60 .M-500 M. Figure 3A shows the
overlaid 1D 'H spectra of a mix of 2-(2-Pyridyl)benz-
imidazole (1), Im, pY, and methionine (Met) in the pres-
ence of a control resin and a resin to which FKBP12
was immobilized. Differences in peak intensity for aro-
matic resonances at 7.3, 7.45, 7.75, and 8.6 ppm, which
all belong to 1 (Kp 60 pM), are immediately obvious
even upon casual inspection. Further, resonances from
nonbinding compounds are essentially identical in the
two spectra, allowing one to readily identify the known
binder. In an assay being developed for medium-through-
put use, a method of reliable automated data analysis
would be important. We have used the simple but ro-
bust binning method [28] to analyze the TINS spectrum
(upper trace of Figure 3A). Binning is less sensitive to
minor artifacts due to small changes in the resonance
position such as that seen for imidazole (8-8.1 ppm).
Indeed, significant positive intensity is only detected in
the aromatic region corresponding primarily to genuine
differences observed in the overlaid spectra. While
some contribution to this intensity clearly derives from
the change in the imidazole resonance, this is small
compared to that from the difference in the intensity of
resonances from 1. In Figure 3B, the same experiment
was repeated with N-cyclohexyl-p-toluenesulphona-
mide(2), a ligand that binds to FKBP12 approximately 8
times weaker than 1 (Kp 500 pwM). Nonetheless, clear
differences in intensity of peaks in both aliphatic (1.1,
1.5, and 2.3 ppm) and aromatic regions (7.35 and 7.7
ppm) can be seen. Again, binning of the TINS spectrum
reduces small artifactual differences and emphasizes
real differences in peak intensity between the two
spectra in both the aromatic and aliphatic regions.
Thus, it is likely that automated integration of binned
difference spectra could be used to reliably detect
binding in a mixture of compounds, while the actual

identity of the ligand can be obtained by careful inspec-
tion of the NMR spectra.

Physical Basis for TINS
The common method for detecting intermolecular
interactions via NMR is to observe changes in the reso-
nance position and linewidth of nuclei at the intermo-
lecular interface. The manner in which these chemical-
shift perturbations are manifested in the NMR spectrum
is directly related to the affinity of the interaction, with
weak interactions being characterized by gradual shifts
and tight interactions giving rise to separate peaks from
the free and bound forms. However, in Figures 2 and 3
there is an apparent absence of chemical-shift pertur-
bations due to interaction of the ligands with the target
(the small variations in the imidazole resonance in Fig-
ure 3 are likely due to experimental variations and not
interaction with the target). These observations cannot
be explained by the conventional NMR theory that de-
scribes the effect of exchange between a homoge-
neously dissolved free and bound form of a ligand.
The linewidth of a (honexchanging) NMR resonance
is a direct result of the rate of transverse relaxation (Ry)
of the excited nuclear spins. R, is generally much
smaller (inefficient relaxation) for the nuclei of a mole-
cule in solution, giving rise to sharper peaks than when
the same molecule is bound to a solid support. In a
homogenous, rapidly exchanging system, the broad
resonances of the bound state (assuming the target is
large and slowly tumbling) exchange throughout the
entire population of ligand such that the NMR spectrum
reflects both the bound and free states (cf. Fejzo et al.,
1999 [12]). In a situation such as occurs with TINS, the
ligand is exchanging between a dissolved free form and
a bound state on a solid matrix. The NMR parameters
(linewidth and chemical shift) of such a heterogeneous
system can only be described properly when self-diffu-
sion between spatially remote free and bound states is
explicitly taken into account. We have incorporated the
effect of a ligand binding to an immobilized receptor on
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Figure 2. 1D 'H Spectra of a Mixture of Small Compounds in the Presence of an Immobilized Oligonucleotide

TH spectrum of a mixture of 1 mM each of imidazole (Im), phosphotyrosine (pY), arginine (R), and spermidine (Sp) in 25 mM D,4-Tris (pH 7.5)
and 140 mM NaCl dissolved in D,O (A). The same mixture was equilibrated with streptavidin Sepharose (B) and streptavidin Sepharose to
which a 5’ biotinylated, double-stranded oligonucleotide was bound (C). '"H NMR spectra were recorded of each with identical parameters
(9.4 T, 256 transients, total recording time approximately 4.5 min). The difference spectrum ([B] and [C]) showing only peaks from spermidine,

a known binder of the DNA backbone, is shown in (D).

the evolution of magnetization in an analytical model
(unpublished data). Simulation results for this model are
shown in Figure 4, which depicts the effect that varying
the R, and interbead spacing has on the appearance
of the NMR spectrum.

In the left panel of Figure 4A, R, of the bound ligand
(R2p) is set to an artificially low value (2 s7'). In this case,
peaks are observed in the NMR spectrum deriving from
both the bound and free states as well as exchange
between them. This does not correspond to the situa-
tion encountered in real TINS experiments (Figures 2
and 3). When R, is set to a realistic value (150 s~ in
Figure 4A, middle panel), the peak corresponding to the
bound state is strongly broadened, and the spectrum
closely resembles those observed experimentally in
Figures 2 and 3. Why is there apparently no exchange
broadening of the peak for the free ligand even though
it is in rapid exchange with the bound state? The an-
swer lies in the fact that diffusion is a stochastic pro-
cess, and therefore the chance that a ligand in solution

encounters an immobilized target decreases with the
square of the initial distance to the target. So ligands
that are initially sufficiently far away will not interact
with that target during the course of an NMR experi-
ment (approximately 80 ms). The NMR signal from li-
gands that do interact with the immobilized target will
be broadened beyond detection. This conclusion is
supported by the right panel of Figure 4A, where the
size of the interbead space is reduced to 20 pm so that
diffusion ensures that nearly all of the ligand en-
counters the immobilized target. In this case, which re-
sembles a homogenous solution, the expected line
broadening and chemical-shift perturbation are ob-
served.

The proportion of the total amount of ligand that in-
teracts with the immobilized target is a function of the
ligand concentration, Kp, the diffusion rate, and the
pore size. In Figure 4B, we have calculated the ex-
pected size of the TINS (difference) signal for ligand
binding over a wide range of binding affinities. As ex-
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Figure 3. 1D 'H Spectra of a Mixture of Small Compounds in the Presence of Immobilized FKBP

A mixture of 1 mM each of 1 (A) or 2 (B) and imidazole (Im), phosphotyrosine (pY), and methionine (M) dissolved in deuterated PBS was
equilibrated with a control Sepharose resin (black trace) or a resin to which FKBP was immobilized at a solution equivalent of 0.89 mM (red
trace). Spectra were recorded at 9.4 T with 64 transients each, for a total experiment time of 1.5 min. The difference spectrum was divided
into 64 bins and is presented above the overlaid spectra. The vertical scale of the spectra in (A) and (B) is identical, as is the scale of the two

binned difference spectra.

pected, tight binders will result in almost complete dis-
appearance of the signal in the presence of an immobi-
lized receptor, resulting in a large difference signal.
When other factors are held constant, weaker binding
results in less loss of signal due to broadening, and
therefore signals in the difference spectrum are smaller.
However, even for binding as weak as 1 mM, the ex-
pected difference signal is about 35% of the control
signal. Such a large difference is easily detectable. In-
tegration of peaks in Figure 3 leads to experimentally
determined values of about 54% and 62% for the differ-
ence spectra of 2 and 1, respectively, in comparison
to calculated values of 55% and 75%. Considering the
simplifications (to be published elsewhere) in our cur-
rent model, these numbers are reasonably accurate.
The surprising sensitivity of TINS to weak binding is
due to the fact that a substantial portion of the total
ligand population does interact with the immobilized re-
ceptor via diffusion and exchange. Thus, a balance is
struck whereby a large portion, but not all, of the ligand
in solution interacts with the immobilized target and un-
dergoes severe line broadening. By detecting only that
portion of the population that does not interact with the
bound receptor, the TINS experiment is sensitive, easy
to interpret, and amenable to automated data analysis.
Further, this analysis implies that the sensitivity of the
TINS experiment could, in principle, be modulated by

changing the size of the beads, which would change
the size of the interbead spacing.

Further Characterization of TINS

For in-depth characterization of TINS, we chose a
target that had proven difficult to attack using standard
HTS methods. We used the C-terminal SH2 domain
(CSH2) of the p85a subunit of bovine phosphoinositide
3’ kinase, for which the phosphotyrosine (pY) ligand
specificity and the 3D structure are well characterized
[29, 30]. We used the SAR by NMR experiment to deter-
mine solution binding constants for the amino acid
constituents of the high-affinity phosphotyrosine pep-
tide ligand (pY and Met). pY and Met induced concen-
tration-dependent chemical-shift changes in the spectra
(see Supplemental Figure S1) indicative of rapidly ex-
changing, weak binding ligands. Analysis of the chemi-
cal-shift perturbations yielded dissociation constants
of 0.6 and 10 mM for pY and Met, respectively (data not
shown). The Met dissociation constant is approximate,
since limited solubility of methionine resulted in signifi-
cant dilution of the protein.

Next, we tested whether we could detect ligand bind-
ing to CSH2 when immobilized on a solid support iden-
tically to FKBP12. As with FKBP12, the binding of the
known ligand, pY, could be readily detected from a mix-
ture of nonbinding compounds in the difference spectrum
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Figure 4. Simulation of the Effect on the NMR
Spectrum of Ligand Binding to an Immobi-
lized Receptor

(A) A typical peak from the H spectrum of a
low-molecular-weight compound in solution
(resonance frequency 100 Hz) is depicted.
The resonance frequency in the bound state
is 50 Hz. In the panel on the left, the
transverse relaxation rate of the bound li-
gand, R,,, is set to an artificially slow rate of
2 s7' (approximately what it would be in a
pure solution state), while in the other two
panels, Ry, is set to 150 s~', approximately
what it is when bound to an immobilized re-

ceptor. The space between the beads (IS,
defined as the one-dimensional distance
from the wall of one bead to the next bead)
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is 80 wm in the left and middle panels and
20 pm in the right panel. In each panel, the
spectrum is simulated for a ligand and the
bound receptor at 0.5 mM with a Kp = 106
M (black), 10-5 M (red), 10~* M (green), and
103 M (blue). The units of intensity values
are the same for all three panels, but note
the difference in scaling for presentation.
(B) The difference signal in the simulated
spectra is presented as a function of the
dissociation constant. The difference signal,
the amplitude of a signal in the control
spectrum minus that in the experimental
spectrum normalized by the amplitude of the
control spectrum (as in Figure 7), and the
concentration of both ligand and target are
held constant at 0.5 mM.

(Supplemental Figure S2). Further, the TINS signal is
43% (Supplemental Figure S2) of the control signal,
which is in relatively good agreement with the calcu-
lated value of 50% for a ligand with Kp 0.6 mM. pY is a
poor basis for a lead compound for a number of well-
known reasons, such as susceptibility to phosphatases
[31]. We therefore synthesized L-O-(2-malonyl) tyrosine
(3), which is known to bind SH2 domains [31]. Chemi-
cal-shift perturbation analysis of ['°N,"H] HSQC spectra
of CSH2 indicated that 3 was in rapid exchange with
the protein and bound the pY pocket with a Ky of 2.4
mM (data not shown). Repetition of the TINS experi-
ment at 9.4 T (400 MHz) with 3 yielded only the ex-
pected peaks in the difference spectrum (Supplemental
Figure S2).

Sensitivity

The data presented above utilize a solution of 1 mM of
each component in the ligand mixture and a solution
equivalent of 1 mM target. These concentrations are
relatively high with respect to the conditions more typi-
cally used for ligand screening. We have titrated both
the concentration of immobilized target and the mixture
of ligands to determine the limits of sensitivity (Figure
5). These data indicate that a solution equivalent of
target at 250 M with ligands at 250-500 .M should be
sufficient to rapidly collect TINS spectra (measurement

times of ~10 min) and identify ligands with dissociation
constants less than 1 mM.

Binding Site Identification

In order to rapidly generate high-affinity leads from the
low-affinity hits, the fragments are typically linked in a
manner compatible with simultaneous target binding.
In most cases, this process can be efficiently achieved
using 3D structural analysis of the ternary complex.
However, this information would likely not be available
for targets for which TINS might be applied. Therefore,
it is important to be able to perform a competition bind-
ing assay in order to group the hits from a screen ac-
cording to where on the target they bind. The solution
titration data indicate that pY and 3 bind to the same
site on CSH2. Using a sample of immobilized CSH2 (0.5
mM solution equivalent), we observed a decrease in the
intensity of peaks from pY in the TINS spectrum when
the concentration of 3 reached its Ky (Figure 6). The
simplest explanation is that, as a substantial portion of
the target is bound by 3, pY is displaced. These data
indicate that site-specific binding can be detected using
TINS in competition mode with a reference ligand.

Potential for Medium-Throughput Implementation

as a Ligand Screening Tool

Clearly, in order for TINS to be a useful ligand screening
tool, it must be possible to screen a reasonably sized
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The CSH2 domain was immobilized on a Sepharose resin at a solution equivalent of 0.5 mM (left column) or 0.25 mM (right column). The
portion of the TINS (difference) spectrum containing the aromatic resonances of 3 at different concentrations is shown. All spectra were
recorded using 512 transients at 9.4 T (400 MHz), for a total recording time of about 9 min each.

compound library with a single sample of the target.
We tested this possibility by applying mixtures of ten
compounds at a time from the SAR by NMR screening
library [8] to control and CSH2 immobilized resin sam-
ples in a column. The columns were washed and a set
of ten new compounds was applied. Samples were re-
moved at various points and tested for pY binding
using TINS. Figure 7 demonstrates that the amount of
pY that can bind to the immobilized CSH2 does not
change even after application of 2000 different com-
pounds. Based on these results, we feel that it is rea-
sonable to conclude that, at least for soluble targets
such as those used here, TINS could be used to screen
an entire fragment library (typically containing 10,000
compounds) using only a single sample of the target.
The TINS technology has the potential to be com-
bined with flow-injection NMR spectroscopy. A flow-
injection system based on small molecule NMR has
been described, but it requires substantially more
target [28]. To use TINS in a flow-injection mode, both
the control and target immobilized resins need to be
simultaneously held inside an appropriately modified
probe. A standard liquid-handling station could then be
used to alternately apply compound mixes and wash
them off automatically, resulting in a medium-through-
put assay. Arranged in this manner, screening an entire
compound library would require approximately 400 pl
of a 250 wM solution equivalent of the target, which is
one tenth that required using a typical STD approach
[25]. The screening process using TINS would could be

accomplished in 1 week, where it would require more
than 3 months using the STD approach [25]. We are
currently constructing such a flow-injection probe, and
our preliminary data (to be reported elsewhere) indicate
that the concept is indeed feasible.

Membrane proteins are a particularly attractive target
for the flow-injection TINS methodology, as most are
notoriously difficult to produce in large quantities. In
addition, if the control resin is derivatized with a similar
protein in a similar lipid/detergent environment, then
false positives resulting from nonspecific interaction of
the compounds with the resin or components of the
immobilization system can be eliminated. While we
have yet to demonstrate TINS on a membrane protein,
the system appears to be quite reliable and general.
Thus far, four different resins have been used, all of
which have shown similar results and, importantly, none
of which has demonstrated any nonspecific binding.

Significance

Fragment-based drug discovery is becoming an im-
portant additional tool in the search for fundamentally
new lead compounds. This approach generally pro-
duces lead compounds that are chemically very dif-
ferent than those derived from high-throughput screen-
ing, which should result in higher success rates for
finding new drugs. However, fragment-based meth-
ods have been limited to pharmaceutical targets that
are readily available in large quantities. We describe
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Figure 6. Competition Mode TINS Experiment

The portion of the TINS (difference spectra) containing the aromatic
resonances of pY and 3 is shown. A diminution in the height of a
peak reflects reduced binding of that compound to the immobilized
CSH2 domain. The CSH2 domain was immobilized at a solution
equivalent of 0.25 mM. pY (0.5 mM) binding was competed by an
increasing amount of 3, present at 0 mM (A), 1 mM (B), and 2.5
mM (C). The amplitude is given in arbitrary units that are constant
between each spectrum. Competitive binding by 3 is most clearly
seen in the reduced intensity of the pY peak at 7.1 ppm.

here a variation on the fragment-based approach
which will allow the screening of fragment libraries
typically containing up to 10,000 members using only
a single sample of the target. The method, called
TINS, works by immobilizing the sample on a solid
support that is compatible with high-resolution, static
NMR methods. Mixes of compounds from the library
can then be applied and binding detected by compari-
son of a simple, 1D NMR spectrum with that of an
appropriately prepared control sample.

TINS holds significant advantages over other NMR-
based ligand screening methods that focus on the
compounds. Since the target is reused to screen the
compound library, significantly less is required than
for any other fragment-based approach. By careful
selection of the control sample, a very high level of
specificity is built into the assay. Further, since the
compounds and the target are in roughly stoichiomet-
rically equal amounts, binding to low-affinity second
sites and other types of extremely weak binding in-
teractions are eliminated. TINS is also sensitive to
binding across a much greater range of affinities and
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Figure 7. Reusability of the Immobilized Target

The CSH2 domain was immobilized on a Sepharose solid support
at a solution equivalent of 0.5 mM. Compounds from the SAR by
NMR library were applied, in mixtures of ten at a time, to either a
column of the solid support to which the CSH2 domain was immo-
bilized or a control resin. Samples were taken after every multiple
of 400 compounds had been applied and tested for pY using the
TINS experiment. The aromatic peaks from phosphotyrosine were
integrated in spectra from control and CSH2 immobilized resins.
The fraction of control signal represents the ratio (/. - [)//, where
[ refers to the integral of the aromatic peaks of phosphotyrosine
in the control spectrum, and [; in the spectrum of the CSH2-
bound resin.

therefore less likely to miss interesting “hits.” Finally,
the screening procedure is fast, sensitive, and iden-
tical for every target regardless of the size or even
chemical composition.

Membrane proteins are one class of pharmaceutical
targets that hold great promise but have generally re-
mained beyond the capabilities of fragment-based
methods. By greatly reducing the quantity of the
target and by eliminating the need for solubilization,
it may prove possible to use TINS for compound
screening of some membrane proteins.

Experimental Procedures

Target Immobilization

FKBP12 was expressed and purified essentially as described [32].
The protein (12 mg) dissolved in phosphate buffered saline (PBS)
was immobilized on 1 ml of Actigel ALD as recommended by the
manufacturer (Sterogene, CA). The yield was approximately 90%,
giving a solution equivalent concentration of 0.89 mM. The recom-
binant expression and purification of CSH2 was performed as de-
scribed [33]. The Tris buffer was removed by gel filtration in a buffer
consisting of 26 mM HEPES (pH 7.5), 100 mM NaCl, and 1 mM DTT.
Column fractions were used directly for coupling according to the
manufacturer’s protocol. The CSH2 domain was immobilized at a
ratio of 12 mg protein/ml resin, equivalent to a solution concentra-
tion of 1 mM. Blocking of unbound sites of experimental and con-
trol resins was accomplished using D;4-Tris, Cambridge Isotope
Laboratories (Andover, MA).

A 5’ biotinylated oligonucleotide (sequence ATGGCGAATCC
GTAATCGGATTCGCC) was synthesized by standard solid-state
methods. Four milligrams of the unpurified oligonucleotide was in-
cubated with 1 ml of streptavidin Sepharose (Amersham Biosci-
ences, Freiburg, Germany) and extensively washed. Unmodified
streptavidin Sepharose was used as the control resin.

All compounds used for screening were commercially available
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and used without further purification, except for L-O-(2-malonyl)
tyrosine (3), which was synthesized as described [31].

Sample Preparation

Due to the linewidth of the water signal in the presence of the
Sepharose resin, standard solvent suppression schemes such as
WATERGATE [34] do not achieve sufficient results. Therefore, all
experiments are performed in deuterated solvents. All resins were
washed extensively in D,O until no further changes were observed
in 1D 'H NMR spectra. Experiments using immobilized FKBP12
were performed in PBS dissolved in D,0. Experiments on the CSH2
derivatized resin were performed in 25 mM D,;-Tris (pH 7.5) and
100 mM NaCl dissolved in D,O. Experiments using the biotinylated
oligonucleotide bound to streptavidin Sepharose were performed
in 25 mM D,;-Tris (pH 7.5), 140 mM NaCl dissolved in D,0. Since a
flow-injection probe capable of holding the resin is not currently
available, all experiments were performed in batch mode using
standard 5 mm NMR tubes. In all cases, the resins were equili-
brated in the compound mixes three times by resuspending the
resin in the NMR tube. NMR spectra were then directly recorded
on the solution resin mixture.

NMR Spectroscopy

NMR experiments were performed on Bruker AV 400 and DMX 600
MHz spectrometers at 298 K. A simple 1D 'H experiment was used
in most cases, where residual water suppression was achieved via
the WATERGATE method [34]. Typical acquisition times were about
60-70 ms. The number of transients used for each experiment is
indicated in the figures. The FIDs were apodized with an exponen-
tial function with a decay constant of 5-8 Hz. All data manipulation
and analysis, including transformation, baseline correction, spec-
tral overlay, subtraction, and integration, was performed using
either Bruker TOPSPIN software or self-written routines in MATLAB.

Supplemental Data
Two supplemental figures are available online at http://www.
chembiol.com/cgi/content/full/12/2/207/DC1/.
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