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Chapter 1

Introduction

In this thesis, we consider combinatorial games and all sorts of variants of
these games. We start off with a preliminary exploration of these topics.

1.1 Combinatorial games

A combinatorial game is a game with perfect information and no random
elements in which two players take turns to compete for the win. Every turn,
the current player has a set of moves to choose from, arriving in the next game
state. Usually, once a player no longer has any possible moves to do, that player
loses.

Example 1.1.1. The game Hackenbush, or Red-Blue-Hackenbush, is played on
a graph, one node being designated as the “ground”, and each of the edges
colored either blue or red. On their turn, the one player may cut any one of the
blue edges, while the other player may cut a single red edge. If, after a move, a
part of the graph is disconnected from the ground node, it disappears.

Traditionally, the ground is not drawn as a single node, but as a line, making
no technical difference. An example position is shown in Figure From here,
the blue player could, for example, cut the right arm, removing the whole
balloon in the process, as well. N

Formally, a game is defined by the states to which both players can move in a
single turn, also called the options of the players.

7
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Figure 1.1: A position of Red-Blue Hackenbush.

Definition 1.1.2. We define a game G by its set of Left options, G%, and its set
of Right options, G¥, both consisting of games. Notation: G = {G* | GF}.

Hence, from a game G, Left may play to any G € G%, and Right may play
to any GF € GF. The “first” game in some sense, from which the recursive
definition is started, is {( | ('}, which is also denoted by { | }. We assume both
GL and G to be finite, and we denote by G the set of all such games.

Standard works on combinatorial game theory include Winning Ways for Your
Mathematical Plays [[1]] and Lessons in Play [2]], in which the theory is intro-
duced in a lighthearted fashion, as well as the comprehensive Combinatorial
Game Theory [_3]]. On Numbers and Games [4]] takes a somewhat more formal
approach, focusing more on the algebraic structure of the games.

The distinction in colors between the players, such as used in Hackenbush, is
commonplace. The one player, using the blue or black pieces, is often called Left,
being addressed as female, while the other, playing the red or white pieces, is
called Right and uses male pronouns. By the deterministic nature of the games,
under perfect play of both players, a game can have any of four outcomes: the
Left player wins, the Right player wins, the starting player wins, or the second
player to move wins. By this distinction, one may divide combinatorial games
in four outcome classes, summarized in Table



1.1. Combinatorial games 9

Right moves first
Left wins Right wins
Left wins L N
Right wins P R

Left moves first

Table 1.1: The possible outcome classes of a game in G.

A key insight in combinatorial game theory is that games may often be de-
constructed into smaller, mostly independent parts, which are more easy to
analyze. For positional games such as Go, Chess or Tic Tac Toe, which do
not traditionally end upon a player no longer having a legal move, this can
prove very useful, modelling the games as a combinatorial game and using the
available theory. In doing so, steps have been made in the endgame analysis of
these games [j5]/6]].

More formally, we look at the deconstruction of games from a bottom-up point
of view, facilitating the construction of larger games from smaller components.
For two games G, H € G, we can define a new game by putting the games
next to each other, a legal move in the new game now being a move in either
component.

Definition 1.1.3. Let G, H € G. Then the (disjunctive) sum of G and H is
G+H={G"+HG+H"|G"+H G+H"Y,
where we write G + H = {GF + H : GF € G*}.

Using this concept of sums of games and the outcome classes in Table[1.1} we
may define a notion of equality of games. Two games are called equal if they
“behave” the same in any context, that is, adding the games to any other context
of games cannot produce a different outcome class. Note that this combinatorial
definition of equality defines an equivalence relation on G.

Definition 1.1.4. Let G, H € G. We define G = H if o(G+ X ) = o(H + X)) for
all X € G.

Even if games are unequal, we may often compare them, showing that one or
the other is more beneficial to either of the players. These comparisons hinge
on the order of the outcome classes depicted in Figure associating greater
games with being more favorable for Left.

Definition 1.1.5. Let G, H € G. We define G > H if o(G+ X) > o(H + X) for
all X € G.
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/\
\/

Figure 1.2: The partial order on the outcome classes.

The theory built from the definitions of the outcome classes, sums of games,
and their equality and order provides a beautiful framework and myriad of
tools for analyzing combinatorial games. We further explore this theory in
Chapter 2} as well as introducing other concepts from, e.g., algorithmic game
theory. Then, after looking at some actual combinatorial and positional games
in Chapters [3|and [} we ask the question of what remains of the theoretical
framework if we drop one of the core assumptions for combinatorial games.

1.2 Variants

By definition, combinatorial games are games for two players taking turns,
with perfect information and no chance. Naturally, each of these assumptions
can be dropped, fundamentally altering the type of game encountered. Work
has, for example, been done on deterministic perfect information games for
more than two players [[7,/§]], or on perfect information games for two players
involving randomness [9]].

In this thesis, we will focus on the removal of the perfect information com-
ponent. On the one hand, this can be done by not revealing all details of a
move to the opponent, such as in the game of Kriegspiel [10,(11]]. By doing so,
a player at any time may be unsure in which state the game is precisely, and
more information may be obtained through attempting to move. The game
becomes a non-cooperative game in extensive form, detailed in [[12]]. We look
more closely at this type of game in Chapter

Another possibility of introducing imperfect information is to allow the players
to move simultaneously, instead of on a turn-by-turn basis [[13]]. Under this
regime, the outcome classes V- and P no longer exist, as the concept of order
between the players is lost. Instead, games may now end in a draw.
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Example 1.2.1. Consider the Red-Blue Hackenbush game

Playing simultaneously, both players remove their only edge at once, resulting
in the empty game. Subsequently, neither player having any options left, we
declare the game a draw. N

One option of analyzing these games is to extend the definitions of equality
and order for combinatorial games to this new class of synchronized games.
This is explored for the synchronized game of Cherries in Chapter|6]

A second option is to view the synchronized games as nested zero-sum games,
ultimately resulting in some payoff for either player. For Hackenbush, for
example, one might argue that a game consisting of only n blue edges should
be assigned value n, representing n “free” moves for Left. A game consisting of
both blue and red edges is then valued equal to the value of its Nash equilibria.

Example 1.2.2. Consider the Red-Blue Hackenbush game

]

The optimal (Nash) strategy for both players is to remove either of their edges
with equal probability. Half of the times, this leads to a single blue edge re-
maining, having value 1; the other half, it leads to the game in Example
having value 0. Hence, the value of the Nash equilibrium of the game, and
therewith of the game itself, is 3. N

We see that, under this regime, the optimal strategy for both players need no
longer be deterministic. We further discuss the analysis of synchronized games
using their Nash values in Chapters[7]and
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1.3 Structure of the thesis

Though this thesis is designed as a single piece of work, each chapter can be
read independently. To this end, some chapters contain some overlap, especially
in the introductory paragraphs. We outline the contents of the chapters.

Chapter 2: Background. We start off by discussing the fundamental concepts
that are developed further in the rest of the thesis. First, we cover existing ma-
terial on combinatorial and economic game theory. Next, we introduce the
concept of synchronized games. We state and prove some fundamental proper-
ties, and show how to construct synchronized versions of existing combinato-
rial games. Finally, we discuss two methods of evaluating these synchronized
games.

Chapter 3: Hackenbush variants. In this chapter, we consider two combi-
natorial variants of Red-Blue Hackenbush. The first is Childish Hackenbush,
introduced in [[I]]. In this variant of the game, players are not allowed to remove
edges that would disconnect a part of the graph from the ground. The pre-
sented analysis is based on joint work with Nienke Burgers [[14]]. In the second
variant, Uncolored Hackenbush, the game is started with a graph consisting of
uncolored edges. In the first phase of the game, the players take turns coloring
the edges blue and red. In the second phase, Hackenbush is played out as
usual.

Chapter 4: Order and Chaos. Based on joint work with Sipke Castelein and
Daan van Gent [[15]], in this chapter, we consider the positional game Order
versus Chaos, introduced in [[16]]. In this variant of Tic Tac Toe, both players
may place crosses or circles on a board. One player, called Order, attempts to
construct a horizontal, vertical or diagonal line of identical symbols, while the
other player, named Chaos, tries to prevent this while filling the board. We
provide a theoretical analysis of the game on varying board sizes, showing
that either player must win under perfect play, utilizing a SAT solver for part
of the proofs. Moreover, we use Monte Carlo Tree Search to produce results
for the games not covered by the theoretical analysis.

Chapter 5: Nim variants. In this chapter, based on [[17]], we analyse three
turn-based imperfect information variants of the combinatorial game of Nim.
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The game is played on heaps of coins. Every turn, the active player may take
any number of coins from a single heap. The three variants differ in the amount
of information that is provided to the opponent after making a move. One
of the variants is inspired by Kriegspiel, a non-perfect information variant of
chess. We model the variants as games in extensive form and compute Nash
equilibria for some examples.

Chapter 6: Synchronized Cherries. In this chapter, based on joint work with
Thomas de Mol [[18], we consider the synchronized version of the game of
Cherries. The game is played on strips of white and black tokens. Every turn,
Left takes a black token from the end of a strip, and Right takes a white token
from the end of a strip. We extend the definition of combinatorial equality to
this synchronized game, and show that under this definition, every Cherries
position is equal to a sum of positions of the game in which both players may
only take cherries from one side of every strip. Moreover, we give an algorithm
which computes this decomposition.

Chapter 7: Synchronized Hackenbush. We consider the synchronized ver-
sion of the game of Red-Blue Hackenbush. We model these games as nested
matrix games and compute their Nash equilibria. We show that, for some
simple games, the Nash value of an increasing amount of copies of the game
tends to the combinatorial value. Finally, we shortly consider the variant of the
game with green edges, that may be cut by either player.

Chapter 8: Synchronized Push. Finally, we consider the synchronized ver-
sion of Push, based on joint work with Ronald Takken [19]]. Again, we model
the games as nested matrix games and compute their Nash equlibria, conclud-
ing that the Nash value of copies of a position tends to their number value as
a combinatorial game. We conclude with a short analysis of some games of
synchronized Shove.






Chapter 2

Background

In this chapter, we will cover the background needed for the remainder of
the thesis. We start out with a brief overview of selected topics in the area of
combinatorial game theory, based on material from [1-4]]. We repeat some
material from the first chapter, and expand upon it — all results in this section
are taken from the literature. Next, we touch upon some topics in algorithmic
(non-cooperative) game theory, based on [12}20]. Finally, we introduce the
concept of synchronized games, inspired by [13,21-23]], and provide some
new results.

2.1 Combinatorial game theory

Intuitively, a combinatorial game is a two-player game with perfect informa-
tion and no chance, in which the players alternate taking turns. Well-known
examples include Domineering, Nim and Hackenbush. An extensive theory
has been developed to analyse these games. We will introduce some of the
concepts from this theory.

2.1.1 Fundamental definitions

Two players, named Left (or bLue or bLack; female) and Right (or Red or
white; male) compete, taking turns to make a move. Formally, such a game is

15



16 Chapter 2. Background

defined recursively, as follows.

Definition 2.1.1. We define a game G by its set of Left options, G L and its set
of Right options, G%, both consisting of games. Notation: G = {G* | G*}.

Hence, from a game G, Left may play to any G* € G, and Right may play to
any G € GE. The smallest game is {{) | #}, which is also denoted by { | }, or
0, zero. Unless stated otherwise, we assume both GX and G* to be finite. We
denote by G the set of all games.

One can also view a game as a tree rooted in G, each node H having as left
children all elements in %’ and as right children all elements in H”. Any node
in the tree, including G, is called a position of G. If, for two games G, H € G,
their game trees are isomorphic, we call G and H isomorphic and write G = H.
Two isomorphic games are the same for all intents and purposes.

The recursive definition of a game gives rise to the following definition.

Definition 2.1.2. Let G be a game. The birthday of G is defined recursively as

b(G) = Herggggn{b(H)} +1,

with b(0) = 0.

Under the normal play convention, we say a player loses if they have no more
moves available during that turn, that is, if P needs to move next while G P — .
Under misére play, a player wins if they cannot move. In this thesis, we will
consider normal play, unless mentioned otherwise. Under this convention, the
fundamental theorem of combinatorial game theory reads as follows.

Theorem 2.1.3. [2| Theorem 2.1] In a game played between Left and Right, with
Left moving first, either Left can force a win moving first, or Right can force a win
moving second, but not both.

According to this theorem, the games in G can be divided into four outcome
classes, summarized in Table

For a game G € G, we write o(G) € {£,R, N, P} for its outcome class. The
classes are partially ordered as shown in Figure

For two games G, H € G, we can define a new game by putting the games next
to each other, a legal move being a move in either game. Formally, this is put
as follows.
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Right moves first
Left wins Right wins
Left wins L N
Right wins P R

Left moves first

Table 2.1: The possible outcome classes of a game in G.

/\
\/

Figure 2.1: The partial order on the outcome classes.

Definition 2.1.4. Let G, H € G. Then the (disjunctive) sum of G and H is
G+H={G*+HG+H"|G%+H,G+H},
where we write G + H = {GF + H : GF € G*}.

In general, like in the definition above, for a set X and property P, we will
often abuse notation and write P(X) to denote {P(z) : z € X }.

Definition 2.1.5. Let G € G. The negative of G, denoted by —G, is defined
recursively as

G = {-G" | -g"}.

Hence, taking the negative of a game amounts to reversing the roles of the
players.

We are now in position to define equality of games.

Definition 2.1.6. Let G, H € G. We define G = H if o(G+ X) = o(H + X)) for
all X € G.

Two games are called equal if they “behave” the same in any context, that is,
adding the games to any other context of games cannot produce a different
outcome class. Note that, in fact, this combinatorial definition of equality
actually defines an equivalence relation on G. True “equality”, that is, the same
behavior in any circumstance, is only achieved if two games are isomorphic.
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However, for most practical purposes, the concept of game equality is very
useful. It makes it easy to see, for example, when a game is an element of P.

Proposition 2.1.7. [2| Theorem 4.12] Let G € G. Then G = 0 if and only if G € P.

With the definitions given so far, we are able to prove the following.

Theorem 2.1.8. [2, Theorem 4.26] (G, +) is an Abelian group.

The partial order on the equivalence classes implies the following partial order
on G, similar to the definition of equality.

Definition 2.1.9. Let G, H € G. We define G > H if o(G + X) > o(H + X) for
all X € G.

Theorem 2.1.10. [2, Theorem 4.25] The relation > is a partial order on G.

Every game has a unique “simplest form” in some sense, which we call the
canonical form of a game.

Theorem 2.1.11. [2) Theorem 4.33] Let
G={GE gL GE .. |GR.GE ..}
and suppose G¥ > G%. Then G = G’ with
G ={GL GL, .. |GER,GE,.. ).

We say the option G% is dominated by the option G¥. Similarly, if GIt < GI, the
game G is equal to the game with the option G removed.

Theorem 2.1.12. [2| Theorem 4.34] Let
G={GE gL GL, ... |GR,GE ..}
and suppose that (GE)E < G for some Right option (GL)T of GE. Then G = G' with
G ={(GhHrE Gl .GE .. | GR.GE ..}

We say the option GL is reversible through (G¥)®, and call (GF)RL the replacement
set. A similar result holds for Right.

Definition 2.1.13. Let G € G. If G has no dominated nor reversible options,
we say G is in canonical form.
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Theorem 2.1.14. [2| Theorem 4.36] Let G, H € G be in canonical form. If G = H,
then G = H.

We can thus speak of the canonical form of a game G, which we will denote by
Can(G).

Finally, note that, so far, we have only discussed formal games. In practice,
we often like to discuss a set of games that are all played according to some
specific rules, e.g., Hackenbush, Nim or Domineering. We call all games which
belong to such a class of rules a ruleset.

2.1.2 Numbers

The numbers are a special class of games.

Definition 2.1.15. Let n € N. We define the integers recursively by 0 = { | },
n={n—-1|} and —n={|—-(n—-1)}

Moreover, more generally, we define the number

i _ 1
on - on—1 :

Naturally, we write 2° = 1. The number games {27 | n € N} generate a
subgroup of games D isomorphic to the dyadic rationals. Moreover, their
canonical form is straightforward.

Theorem 2.1.16. (3, Theorem 11.3.6] For any m,n € N,

m m—1\m+1
on on on

in canonical form.

Moreover, determining the value of games of which all the options are numbers
is simple, as long as the left options are smaller than the right options.

Definition 2.1.17. Let x < y be numbers. The simplest number between x and y
is the unique number in the interval (z,y) with the smallest birthday.
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Theorem 2.1.18 (Simplest number theorem). Let G = {G* | G*} be such that
all options are numbers, and G* < G® for every G € G* and G € G. Then G
equals the simplest number between max{G*} and min{G%}.

Example 2.1.19. Recall the game of Red-Blue-Hackenbush described in Exam-
ple By the simplest number theorem, we find, for example,

- i RIS

<

Example 2.1.20. The game Push is played on a strip of squares. On her turn,
Left may move a blue piece one square to the left, pushing any pieces that are
in the way one space to the left as well, falling off the strip if they are moved off
it. Right, on his turn, moves a red piece, also to the left. An example position is

[PIr] Tr)= {I1T17] | (TP T17]. [eTPTP ]}

<

Example 2.1.21. The game Shove is similar to Push, again being played on a
strip of squares. The difference is that, in Shove, empty spaces are also pushed.
Hence, the example position as shown previously would play out as follows:

:{ ST T5] \}.

Example 2.1.22. The game of Cherries is also played on a strip of squares.
On Left’s turn, she may remove a black cherry that is adjacent to an empty
square, or to the end of the strip. Right removes a white cherry under the same
restrictions. An example game is

[s]s] [s

ST T Ts]| CIsTTs

<

[o[e]o[e[e]={[oe[c[e] || [ [e[o[e]e]}.

<

For Red-Blue Hackenbush, Push, Shove, and Cherries, all positions are num-
bers [[1}/2}[18)[19]]. We will consider variants of Hackenbush in Chapters[3land
of Push and Shove in Chapter|[§} and of Cherries in Chapter 6}
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2.1.3 Infinitesimals

Not all games are numbers. An important class of games is that of infinitesimal
games.

Definition 2.1.23. A game G is infinitesimal if —z < G < « for all numbers
x> 0.

Example 2.1.24. Trivially, the game 0 itself is infinitesimal, being the only
infinitesimal number. Somewhat less trivial is the game « = {0 | 0}, which is
the smallest example of a next-player win. The game 1t = {0 | *}, pronounced
up, is an example of an infinitesimal win for Left. N

Example 2.1.25. The game of Domineering is played on a board of squares. On
her turn, Left places a domino covering two vertically adjacent squares; Right
places a domino covering two horizontally adjacent squares. A player unable
to place a domino on as-of-yet uncovered squares, loses. Example positions of

Domineering are
= =R

and, by symmetry and reversibility,

] | N | _ P
1 - ; | ={x0[+}={0]«}=1.
L L] L [

Even smaller than the games mentioned above are the tiny games.

Definition 2.1.26. Let (G be any game. The game tiny-G is defined by +¢ =
{0 || 0 | —G}. The game miny-G is its negative —g = {G | 0 || 0}.

Example 2.1.27. Taking G = 0 yields

Fo={0]0[0}={0]+}=1.
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Definition 2.1.28. Let G, H > 0 be games. We say G is infinitesimal with respect
to H, notation G <« H,if G < n - H for any n € N..

Theorem 2.1.29. [2| Exercise 5.60] Let G > H > 0 be numbers. Then +¢ < +p.

Hence, the tiny games provide us with an infinite sequence of ever-smaller
games, each infinitely smaller than the previous one. Another such sequence
is given by the uptimals.

Definition 2.1.30. We define 1! = 1, and, recursively, for n € N5,
M ={0] % -1t —... ="
Theorem 2.1.31. [2} Theorem 9.12] For all n € N it holds that 1™ < "1,

An infinitesimal game being denoted by
mingng ... =ny- T 4ng 1 +ng- 17 4L

is said to be in uptimal notation. Not every infinitesimal game can be written in
uptimal notation.

2.1.4 Impartial games

In some games, there is no distinction between Left and Right.

Definition 2.1.32. A game G is impartial if, for every position H of G, we have
HE =HE.

Example 2.1.33. The games 0 and * are impartial. <

Example 2.1.34. The game of Nim is played on heaps of coins. On a player’s
turn, they may remove any amount of coins from any one single heap. A player
unable to move loses.

Writing (¢, j, k) for a position consisting of three heaps containing 4, j and k
coins, respectively, a game of Nim might unfold like this:

(3,7,2) — (3,4,2) — (1,4,2) — (1,4,1) — (1,0,1) — (1,0,0) — (0,0,0).

<

Naturally, Nim is impartial by definition. We will consider variants of Nim in
Chapter 5]
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Theorem 2.1.35. [2, Theorem 2.13] The outcome class of any impartial game is
either P or N.

Theorem 2.1.36. [2, Corollary 7.8] Every impartial game is infinitesimal.

2.1.5 Ordinal sums

A different binary operation from the regular sum is the ordinal sum, which
more or less amounts to ‘putting two games on top of each other”.

Definition 2.1.37. For two games G and H, their ordinal sum is defined by
G:H={G"G:H"|G" G :H"}.

Example 2.1.38. The concept or ordinal sum naturally appears in Hackenbush.
We find, for example, that

-

In symbols, this reads 1: —1 = 3. q

Example 2.1.39. In Red-Blue-Green Hackenbush, edges can also be colored
green, which denotes an edge that may be cut by either player. If a position
contains only green edges, the position is an impartial game. N

The following rules of arithmetic come in handy, taken from Chapter 10 in [2]].

Theorem 2.1.40.

(i) —(G: H)=(=G):(-H)
(i) G:0=0:G=G
(iii) If G, H > 0are integers, then G : H = G + H.

Theorem 2.1.41 (Colon principle). If H = K, then G : H =G : K.

We will encounter the ordinal sum in detail in Section[3.2]
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2.1.6 Switches

Not all next-player wins are infinitesimals.

Definition 2.1.42. Let > 0 be a number. The game +z = {z | —x} is called a
switch.

For switches, the following theorem often comes in handy.

Theorem 2.1.43 (Number translation). Let G be not a number, and let x be a
number. Then

G+z={G"+z|G"+z}.

Again, we will encounter switches in Section

2.2 Algorithmic game theory

In combinatorial games, the players make moves sequentially, and both players
always have perfect information. When the players move simultaneously, or
imperfect information is introduced in the game, we move into the territory of
(economic) algorithmic game theory. In games of this category, optimal strategies
for the players may no longer be deterministic. In fact, we need to be more
careful in specifying what “optimal” means.

We start by introducing the necessary concepts concerning zero-sum games
and the corresponding optimal strategies, called Nash equilibria. We proceed
by giving an algorithmic approach to finding these optimal strategies for any
given game using linear programming, based on [[12]]. We conclude by looking
at some imperfect information variants of existing combinatorial games.

2.2.1 Games in extensive form

To introduce the more general framework of zero-sum games in extensive form,
we need some notation concerning trees.

Notation 2.2.1. Let T = (V, A) be a directed tree rooted at r € V. For a vertex
v € V, we denote its children by N*(v) C V. The edges between v and N (v)
are denoted by E*(v) C A. We let V; C V be the set of leaves of T, that is,
Vo = {U eV ‘ N+(U) :@}
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Now, again, two players Left and Right compete. We proceed with the definition
of a game in extensive form and its corresponding Kuhn tree, as proposed
in [220]].

Definition 2.2.2. A finite two-person zero-sum game in extensive form is defined
by the following:

(i) A finite directed tree T' = (V, A), called the Kuhn tree, rooted in the initial
state of the game r € V;

(ii) A payoff function f: Vj — R assigning some real value to every leaf of
T;

(iii) A setV, C V' \ 1} of chance vertices, with for each v € V, a probability
distribution p, over E*(v);

(iv) A partition of V' \ (Vp U V},) into information sets S* = {SF,..., Sk, }
and S® = {Sf!,... SE },suchthatinallv € S, itis Left’s turn to move,
and in all v € SF, it is Right’s turn;

(v) For each ST € 87, a set of action( label)s A” = A(SF), and for each
v € SF, abijection a,: NT(v) — AF.

We call the vertices in V' \ (V;, U V,,) the states of the game. These states are
grouped into information sets, or info sets for short. To a player, the states in an
info set SZ-P are indistinguishable, that is, if P knows that the game is now in
some state in S7, it is unknown in which state the game is exactly. Therefore,
the moves or actions in every state v in an info set S/, represented by the edges
E*(v) leading to the children of the vertex v, must be identical across all
the vertices in the info set. This is guaranteed by the fifth point in the above
definition.

When the game arrives in a chance node v € V,, the next vertex to which the
game moves is determined by the probability distribution p,. Unless stated
otherwise, we will assume that V,, = (). Finally, when the game arrives in a leaf
v € Vp of the tree, Left obtains a payoff of f(v), if f(v) > 0. If f(v) < 0, Right
receives a payoff of | f(v)|.

We continue by defining strategies.

Definition 2.2.3. Let G be a game in extensive form with Kuhn tree T'. A pure

strategy mp € Hfipl AP specifies for every information set of player P a move
to make. A mixed strategy pp is a probability distribution over the set of pure
strategies of P.

Definition 2.2.4. Let G be a game in extensive form with Kuhn tree T". A behavior
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strategy Bp for player P specifies for every Al a probability distribution over
its elements.

Note the subtle difference between mixed and behavior strategies. When play-
ing using a mixed strategy, a player makes a single “dice roll” at the start of
the game, which then specifies what to do in every possible information set
for the whole of the game at once. When employing a behavior strategy, the
player may make a “dice roll” every time a new vertex is encountered. As
the following examples show, there may be mixed strategies which cannot be
described as behavior strategies and vice versa. Here, “described as” means
the following.

Definition 2.2.5. Two strategies of a player P are called realization equivalent if
they reach any node v € V with the same probability, given some fixed strategy
of the other player.

Example 2.2.6. Consider the game in Figure[2.2} called the absent-minded driver
problem [24]]. In this game, only Left has decisions to make. There is only one
info set, S say, from which there is a choice between two moves labelled A and
B.

Figure 2.2: The absent-minded driver problem.

The two pure strategies available to Left are to choose either action A or action
B in this one info set. A mixed strategy for Left thus consists of a probability
distribution over the actions A and B. At the start of the game, it is decided
whether Left will always play A or B according to this distribution. In practice,
this means that Left will always end up with a payoff of 1 or 0.

A behavior strategy also consists of a probability distribution over the actions
A and B, but now the player may draw from this distribution every time he
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enters a state in . Hence, if we give picking A and B equal probabilities, for
example, we end up with an average payoffof £ -0+ 1 -1+ 1-4=2 > 1.
Note that this strategy is not realization equivalent to any mixed strategy, as
this would not allow us to pick a different action the two times that Left finds
herselfin S. <

Example 2.2.7. Now, consider the game with Kuhn tree depicted in Figure
In this game, there are two info sets for Left, say 51 with corresponding labels
L, = {A,B} and S, with labels Ly = {C,D}. In this game, the pure strategies
are the pairs (A,C), (A,D), (B,C) and (B,D). Mixed strategies are any prob-
ability distributions over these pairs, e.g., picking (A,D) or (B,C) both with
probability 3.

Note, however, that this mixed strategy in particular is not realization equiv-
alent to a behavior strategy. Indeed, a behavior strategy can only specify a
probability distribution over the elements of L, and a distribution over Lo; it
cannot incorporate the dependence of the second action on the first.

Figure 2.3: Dependency of moves.

<

If the same information set cannot be entered twice during one iteration of
the game, every behavior strategy is realization equivalent to a mixed strategy.
Indeed, suppose p(A7’),...,p(A%,) are probability distributions over the ele-
ments of the action sets AP, describing a behavior strategy 3p for player P. For
an action a’ € Af’, we write 8p(a’) to be the probability of playing action a’ in
info set ¥ under fp. Let mp = (1h, ..., 757 € [[5; AT be a pure strategy.
Then

Kp .
Bp(mp) = HﬂP(WZP)
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is the probability of P playing by the pure strategy mp under Sp. We call this
the realization probability of mp under 5p. Now, note that we can define a mixed
strategy 1 p of P by setting up(mwp) := Bp(mp). In this way, up is equivalent to
Bp. In the sequel, we want this to hold, so we make the following assumption.

Assumption 2.2.8. Let G be a game in extensive form with Kuhn tree 7. On
any path from the root r of T" to a leaf in V;, every vertex of the path is contained
in a distinct information set in S© U S*.

For any mixed strategy to be equivalent to some behavior strategy, we need
another, stronger, property, which we develop in the next section.

2.2.2 Sequence form

In this section, we will develop the sequence form of a game, which is a somewhat
efficient representation of a game in extensive form having size linear in the
size of the game tree. We follow the treatment in [[12]].

Consider a game with Kuhn tree T' = (V, E)) rooted at r and let v € V be anode
of the tree. We will write o (v) for the sequence of all actions A encountered on
the unique path from r to v, that is, o(v) is the sequence of moves made by the
players in order to end up in the node v. If we write o, (v), we consider only
the sequence of actions AX made by Left; the definition of oz (v) is similar. We
write ¥, for all sequences of consecutive moves made by Left; analogous for
Y r. Equipped with the notion of sequences, we can talk about perfect recall.

Definition 2.2.9. Player P is said to have perfect recall if for every information
set ST € S and any two v,w € S, we have op(v) = op(w). In this case, we
denote the unique sequence leading to a node in S by of = o(SF).

In words, a player with perfect recall will always remember the moves they
made leading to the current game state. In practice, this can be enforced by
storing the sequence of moves made so far in the description of the information
set.

Note that, if a player has perfect recall, they cannot enter the same info set
twice during the same playthrough. Therefore, both players having perfect
recall implies Assumption[2.2.8| Furthermore, this assumption is enough to
enable us to describe any mixed strategy by a behavior strategy. We make this
precise, thus employing the following assumption.

Assumption 2.2.10. Both players have perfect recall.
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Let mp € HZK:Pl AP be a pure strategy of player P, and let up be a strategy
that picks mp with probability i p(7p). Let 0 € X p be some sequence for the
player P. We write 7p[o] for the realization probability of ¢ under 7p, being 1
precisely if mp prescribes all moves in ¢ and 0 otherwise. Similarly, we define

pplo] = pp(rp)re(o]

to be the realisation probability of o under ;:p. We can in fact consider pp to
be a map assigning to every sequence in X p its realization probability.

Definition 2.2.11. Let ;1p be a mixed strategy for player P. The map x: ¥p —
[0,1] defined by o — pp[o] is called the realization plan of pp.

Note that any non-empty sequence o € X p can be seen as the unique sequence
leading to the information set in which the last move was made, followed by
this last move. Hence, for any o € ¥ p, we can write either o = ) or o = ofa,
where a € AF is the last move in the sequence.

Lemma 2.2.12. Let x be a realization plan of player P. Then x(0) = 1 and
Y w(ofa) =a(of)

acAP

forall S € ST. Conversely, any x: ¥ p — R having these properties is a realization
plan of a behavior strategy of player P.

Lemma 2.2.13. Let pup and p'p be mixed strategies of player P. Then up and u'p
are realization equivalent if and only if they have the same realization plan, that is,
puplo] = pplo] forall o € Xp.

From Lemma|2.2.12)and Lemma [2.2.13|we can conclude the following.

Theorem 2.2.14 (Kuhn, [25]]). Under the assumption of both players having perfect
recall, any mixed strategy is realization equivalent to a behavior strategy and vice
versa.

This allows us to drop the adjectives mixed and behavior and simply speak
about strategies.

Definition 2.2.15. Let p1;, and ;1 be strategies for the players L and R, respec-
tively. The value of the pair (ur, ur), denoted by v(ur, pr), is the expected
payoff to player L if the players use these strategies.
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Definition 2.2.16. Let (11, ;tr) be a pair of strategies with value v. If it holds
that v(u, ur) < v for all strategies i of player L, and v(up, ) > v for all
strategies u of player R, we call the pair (i1, ur) a Nash equilibrium of the game.

Note that, by enumerating every combination of every pure strategy of both
players, we may transform any game in extensive form to a non-cooperative
game in strategic (matrix) form. As our definition of a Nash equilibrium for a
game in extensive form then matches with the definition of such an equilibrium
in a game in matrix form, the following theorem applies.

Theorem 2.2.17 (Nash [26]]). Every game in extensive form has at least one Nash
equilibrium.

Definition 2.2.18. Let G be a game in extensive form, and let (ur, ur) be a
Nash equilibrium of G. We define the value of the game G by v(G) = v(ur, tr)-

By the discussion above, we could simply convert any game in extensive form
to a game in strategic form and use standard methods to generate a Nash
equilibrium in this converted game, such as the Lemke-Howson algorithm
[27]]. However, as one might expect, enumerating all possible combinations of
strategies in all the different information sets leads to a game in strategic form
of which the size is exponential in the size of the Kuhn tree. Hence, we need to
do better.

2.2.3 Linear programming

The fact that we can characterize strategies by their realization plan is the key.
By Lemma a realization plan contains all the necessary information to
completely determine a strategy. Therefore, all we need to find is an optimal
realization plan for both players.

A realization plan for player P can be represented as a vector z € [0, 1]/*#l.
Recall that any non-empty sequence can be represented by the unique sequence
leading up to the last info set encountered, followed by the move chosen in
this set. Hence, we may write

Yp={0U{cra| Sl €SP ac A},
from which it follows that

Kp
Sel =1+ D JAST) =1+ |A]].
i=1

SkPesk
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We can thus consider the problem of finding an optimal strategy for player P
as an optimization problem on a number of variables linear in the size of the
game tree. In fact, we may even formulate it as a linear optimization problem.

Let z be the strategy for Left we are searching for and y the strategy for Right.
Lemma gives us the appropriate constraints for our vectors z and v,
being

Er=e, 22>0 and Fy=f y=>0,

where F has 1 + |S*| rows and |~ | columns and e = (1,0,...,0)T € RI*zl,
so that the first row of Ex = e represents the equation z()) = 1 and the other
rows represent the equations 3., » 2(0'l) — z(0f) = 0. Similarly, F has
1+ |S%| rows and || columns and f = (1,0,...,0) € R*zl, so that Fy = f
represents the equations for y.

For the optimization, define the |X | x |¥r|-matrix Aby a,, = f(v) foro € ¥,
T € ¥r, where v € Vj is the leaf node reached if Left follows the sequence o
and Right the sequence 7. If the combination of o and 7 does not lead to a leaf
node, we define a,, = 0. Hence, if Left plays according to the realization plan
z and Right plays according to y, the expected payoff for Left is z7 Ay. Thus,
for a given realization plan y, Left tries to solve

T Ex=e
max{x Ay’ 2> 0 }
The dual LP corresponding to this problem is given by

min {eTu

ETu > Ay
us0 [’

where u is the dual variable. By strong duality, the optimal values of these two
problems are equal. Therefore, if Right assumes that Left plays rationally, he
wants to minimize the value of these problems by his choice of y. Now, note
that in the second problem, making y a variable does not give problems for
the linearity. Therefore, the LP that must be solved by Right to find an optimal
strategy becomes

. fu=t

. r | Efu—Ay >0
min g e’ u w<0 [ (2.1)

y=0

The dual to this problem which is solved by Left to find an optimal strategy is
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given by
Ex=e
FTy— ATz <0
vs0
x>0

(2.2)

max { flv

By solving these problems, we obtain optimal realization plans z and y for
both players. This is summarized in the following theorem, for which we give
a more formal proof.

Theorem 2.2.19. For any solutions (y*,u*) and (z*,v*) to (2.1)) and (2.2)), respec-
tively, y* and x* form a Nash equilibrium.

Proof. Let (y*,u*) and (z*, v*) be solutions to (2.1)) and (2.2)), respectively. First,
note that

(U*)Tf — (U*)TFZ/* S Z'*Ay* S x*ETu* — eTu>i<7
so equality holds everywhere. Now, suppose « is some realization plan for Left.
Then

2T Ay* < 2TETw* = (Bx)Tu* = eTu* = 2" Ay*.

Moreover, for y any realization plan for Right,
()7 Ay = (ATa")Ty = (FT0")Ty = (") Fy = (0)7f = fTo* = o Ay
Hence y* and 2* indeed form a Nash equilibrium. O

In practice, especially in Chapters[7]and [§} many of the linear programs con-
cerned show ample symmetry. This can be exploited in efficiently solving the
programs using the following result, adapted from [28]].

Theorem 2.2.20. If, in a linear programming problem, variables x1, . .. , x,, may be
permuted in any way without changing the objective function nor the solution set, we
may define a new variable x and replace every occurrence of x; by - without changing
the solution.

2.3 Synchronized games

In combinatorial games, the players take turns making a move. A natural way
of introducing imperfect information in these games is by requiring that both
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players move simultaneously. This concept was introduced in [21]], and is
further studied in [[13]].

We study the basics of synchronized games in Section[2.3.1} Though the concept
is natural, in practice, it might be problematic. In some combinatorial games,
for example, it might not be possible to always legally execute two sequential
moves in a synchronized fashion. We discuss several ways of dealing with this

in Section 2.3.41

Moreover, even if synchronization is possible, it might not be straightforward
to develop a well-defined and well-behaved notion of value for the resulting
synchronized game. We develop two fundamentally different methods for
doing so in Section[2.3.2]and Section[2.3.3] It turns out that, for different classes
of combinatorial games, a different one of the two methods is better suited.

2.3.1 Definition and properties

Mirroring the definition of a combinatorial game, we give a recursive definition
of a synchronized game.

Definition 2.3.1. A synchronized game G is a triple denoted by {G* | G° | GI*}.
Here, GL' = (G¥, ..., GL) is a sequence of m synchronized games, called the
Left options of G, GI* = (G, ... GE) is a sequence of the n Right options of G,
and G% = (G7}); is an m x n-matrix containing the synchronized options of G.

A synchronized game can also be denoted in matrix form, reading
R
G = g .
g\ g
In practice, we will often denote, e.g., a Left option, by GL, instead of G£,
mirroring the notation for combinatorial games. In doing so, we still presume
that this option G* is uniquely identifiable, even though G} = G} might hold
for i # j. Moreover, for a Left move G* = G and a Right move G* = G}, we
use the notation G for the game G7). Finally, if one or both of the tuples
and/or the matrix consists of only one element, we oftentimes omit the brackets.

For two synchronized games G and H, if H can be constructed from G by
reordering rows and/or columns, we say the games are isomorphic, writing
G = H.Isomorphic games are the same in all contexts, for all intents and
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purposes. Note that choosing m = 0 or n = 0 (or both) is allowed, resulting in
the empty matrix and one or two empty tuples.

The smallest synchronized game is G = { | | }, which we will call 0 (zero).

If either player has no more moves to make, the game ends. If this is the case,
we say that the game has been decided.

Definition 2.3.2. A synchronized game G = {G© | G¥ | G} is called decided if
G is the empty matrix.

In decided games, it is easy to appoint a winner. If GL # () and G# = (), only
Left has moves remaining, so it is natural to say that Left wins. Similarly, if
G® = () while G # 0, Right wins the game. Now, if G = G# = (), that is,
neither player has any remaining moves, as there is no first or second player,
we declare the game to be a draw. Note that 0 is the only decided game that is
a draw.

Hence, decided games can be divided into three outcome classes: £, in which
Left wins; R, in which Right wins; and D, in which the game ends in a draw.
However, for undecided games, these classes are not exhaustive. As the syn-
chronization of the players’ moves leads to imperfect information, it turns out
that the optimal strategies for both players need not be deterministic. Hence,
the outcome of an undecided game may, as the name suggests, as of yet be
undecided.

Example 2.3.3. Define1 = {0 | | } and —1 = { | | 0}, mirroring the combina-
torial definition. Note that both games are decided, and 1 € £Land -1 € R
as expected. Now, consider G = {GL | G% | G} defined by G* = (1,1),

Gt =(-1,-1)and
s (1 -1
g° = (1 1 ) '

Playing on this synchronized game is like playing on a zero-sum matrix game
with outcome matrix G°. Hence, the optimal strategy for both players is the
Nash equilibrium in which both players pick either of their options with prob-
ability 1, leading to a win for either player with probability 1. The game G is
therefore not an element of £ nor R nor D. Q

As the previous example shows, it might be the case that the outcome of the
game depends on chance, even if both players play optimally. Hence, more
outcome classes than £, R and D are needed to characterize all games [21]].
We define LD to be the class of games that either end in a draw or a Left-player
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win under optimal play. Similarly, we define RD to be the class of games that
result in a draw or Right win. We let LR be the class of games ending in a win
for either player [[14]]. Finally, we define LRD as the class of games that might
have any outcome under optimal play. For a game G, we denote its outcome
class by o(G). For G in Example[2.3.3) we conclude o(G) = LR.

We may also categorize the outcome classes discussed above as follows. Either
player can have a winning strategy (ws), that is, a strategy with which the game
is won regardless of the moves of the other player, a drawing strategy (ds),
which is a strategy that enforces at least a draw whatever the opponent does.
If neither exists, we say the player only has losing strategies (1s). It cannot be
the case that both players have a winning strategy, nor that one has a winning
strategy and the other a drawing strategy. The resulting outcome class for the
other combinations are shown in Table

Left \ Right Is ds | ws
Is LRULRD | RD | R
ds LD D
ws L

Table 2.2: Outcome classes in synchronized games.

Just like for combinatorial games, we can define the sum of two synchronized
games, as well as the negative of one.

Definition 2.3.4. Let G and H be synchronized games, and set |G”| = m and
|GF| = n. We define the (disjunctive) sum K = G + H as follows: KT is the
concatenation of GX and HZ; KF is the concatenation of G¥ and H; and

Go+H ifi <m,j<n,

’CS = G + His_m:j—n ifi > m/j >n,
K G+ M, ifi <m,j>n,
GR+HE ifi >m,j<n.

In matrix notation:

| GB+H G+HE
G+H=| GE+H| G5+H Gr+#HE .

G+HV | GR+HE G+HS

Definition 2.3.5. Let G be a synchronized game. We define its negative by
—G={-g"|-(G%)" | -¢"},
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where (G%)T denotes the transpose of G°.

Just like for combinatorial games, making a move on the sum of two synchro-
nized games amounts to making a move in either one of the games. If the
players make a move on different components of the sum, these moves are
executed in parallel. If the players move on the same component, the corre-
sponding synchronized move is executed.

The goal of the introduction of synchronized games is to study natural syn-
chronized versions of combinatorial games. However, not all combinatorial
games lend themselves as well to being synchronized.

Example 2.3.6. Consider the Domineering position given by

G:

|

which as a combinatorial game would read * = {0 | 0}. For a synchronized
version of this game, it would make sense to define G- = G% = (0). However,
it is unclear what choice would be suitable for G, as the players cannot legally
execute their moves simultaneously in this position, as the resulting dominoes
would overlap. 4

Definition 2.3.7. Let G be a combinatorial game. If, for every position H of G,
forevery HL and HE, itholds that HL € HEL or HE € HLE or HIEAHEL £ ),
we say that G is separable. If, for all H- and HT, it holds that HE2 N HEL £,
we say that G is strongly separable.

Intuitively, a separable game is a combinatorial game in which, from every
position, every combination of a Left and a Right move can be executed legally
in some order. A game is strongly separable if the moves can always be executed
in either order. It is clear that any strongly separable game is also separable.
Note that (strong) separability of a game depends on its form and is not
preserved through combinatorial game equality. The definitions naturally
extend to rulesets: we call a ruleset (strongly) separable if every game in the
ruleset is.

Example 2.3.8. Note that Red-Blue Hackenbush, Push and Shove are all sepa-
rable. Indeed, any combination of a Left and Right move can always be legally
executed in some order. In Hackenbush, if both players play, for example, in
the same part of a tree, the move furthest from the root is executed first. In
Push and Shove, the piece closest to the edge of the playing field is moved first.
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However, not all Red-Blue Hackenbush positions are strongly separable. Con-
sider the game

G =

which may be written as G = {0 | 1}. We find 07 = {), so that 0% N 1% = () and
G is not strongly separable.

Finally, Cherries is strongly separable. Indeed, the removal of a black and a
white cherry can always happen simultaneously, so that for any Cherries game
G and any G* and G we have GEF N GRL £ ). <

While separability of a game does depend on its form, separability is preserved
if dominated or reversible options are removed. Moreover, this implies that
any separable game must be a number.

Lemma 2.3.9. [19]] Let G be a separable game in canonical form. Then G is a number.

Proof. Suppose that G is separable and in canonical form. If G L—fPorgh=y,
then G is an integer (cf. [2, Problem 5.17]), and we are done. Hence, suppose
Gt £ 0 and G® # 0. By the definitions of separability and canonical form,
all options in G U GF are separable and in canonical form, and hence, by
induction, numbers. As G is in canonical form, we conclude that G- = {G}
and G = {G®} for a single Left option G* and a single Right option G* by
domination.

If GE € GLE or G € GEL, then GE < GE, by both options being numbers. If
GLE N GRL £ (), then also GF < GEF = GRE < GE for some options GEF and
GTL Hence, by the simplest number theorem, G itself is a number. O

Lemma 2.3.10. [19] If G is separable, then so is its canonical form.

Proof. First, note that removing a dominated option does not impair the sepa-
rability, as there are now fewer pairs of options to check the definition for. By
induction, we may assume all options of G are in canonical form, and therefore
numbers by Lemma Removing the dominated options, we end up with
only one Left option G* and one Right option G*. Remains to show that, if
either of the options is reversible, reversing out the option does not affect the
separability of G.
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Suppose that G* is reversible, i.e., GIT* < G and G = {GFEL | G1Y}, if GLRE
exists. If not, G is an integer and we are done. If it does, we show that the
separability of G implies the separability of {GLFE | GR}.
If G € GEE, then G = GL and GI*E = GRL, as all games concerned are
numbers in canonical form. Hence, GLEL ¢ GLRL — GRL,

If GE € GRL, then GY = GEE, so G < G, which implies that GF < G < G
by the simplest number theorem. Hence, GFER = GER < G < GE,s0 GFF isa
reversible option of G, which is in contradiction with G being in canonical
form.

Finally, suppose GLENGRL £ (), ie., GER = GRL. We first show that GLTt = G.
Consider GE® — G. Left starting play to GLFL — G < GER — G < 0 loses. If
Left starts playing to GX® — G, Right responds to GL* — GEL and wins. Right
starting to G — G loses in a similar fashion. Finally, Right can start playing
to GERI — G = GRLE — @G, to which Left responds to GRLT — GE, which is a
win for Left as G has no reversible options. Hence, indeed GI* = GEL = G,
so that also G is a reversible option for G, leading to G = {GLFL | GRLE} =~
{GT| G}, as all positions of G except possibly G are in canonical form. Now,
GLE N GRE £ (), and the claim follows. O

Corollary 2.3.11. [[19] If G is separable, then it is a number.

Proof. Follows immediately from Lemma and Lemma2.3.10 O

Corollary 2.3.12. Any game or ruleset containing the game * (as a position), and
therewith any impartial game, is not separable.

The converse of Corollary unfortunately, is not true.

Example 2.3.13. Consider G = {—2 | 2}, which equals 0 in canonical form.
Clearly, G is a number. However, Lt = {—1} and G#*' = {1}, so that G =
—2¢ GRL,GR =2 ¢ GER and GLTE N GRL = (). Hence, G is not separable. <

The separable games turn out to be a subgroup of the numbers. Strongly
separable games are in turn a subgroup of the separable games.

Proposition 2.3.14. [18]]

(i) The set of separable games is a subgroup of D.
(ii) The set of strongly separable games is a subgroup of the group of separable games.
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Proof.
(i) Itis clear that 0 is separable.

Let G1, G2 € G be separable, and consider a position H; + Hz of G1 + G,
where H; is a position of G; and H» of G». For any Left option of the
form Hf + H, and any Right option of the form H; + HZ, we find
HE + HE € (HE + Ha) B0 (H1 + HE)L. A similar statement holds for
Left options of Hs and Right options of H;. For any Left option H{ + Ho
and Right option H{* + Hs,, we find that, as H; is separable, it holds
that HY + Hy € HEE + Hy C (HE + Ho)E or HE + Hy € HER + Hy C
(Hi+H P or (HE+H) BN (H1+HE)E O (HEE+ Ho)N(HEE + Hy) # 0.
A similar argument holds for any two options H¥ and H'. Hence H; + H>
is separable.

Finally, let G € G be separable, and consider a position —H of —G. Noting
that (—H)L = —HP and (H)? = —HL, that all positions in HZ and H
are separable, and that the definition of separability is fully symmetric,
we conclude that also —H must be separable.

(ii) By the reasoning above.

O

For a separable combinatorial game, any combination of two legal combinato-
rial moves can always be executed simultaneously in some order. Hence, the
following definition is natural.

Definition 2.3.15. Let G be a separable combinatorial game. We inductively
construct a synchronized version of G, say G = {GL | G5 | G}, as follows:

o G =Gl
o GR=GH;
e Forevery GF € GF, G € G1,if G N GRL #£ (), pick G7; € GHE N GRE
and set ij = G'fj Otherwise, if GF € G, set ij = GF. Otherwise
GI € G and set G = GI.
Example 2.3.16. Consider G = {0 | 1}. There is only one synchronized version

of this game, being G' = {0 | 0 | 1}. N

Note that, though Definition[2.3.15|gives a way to synchronize a formal com-
binatorial game, it is not always directly applicable to games defined via a
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ruleset. Consider the game defined by the Hackenbush position in Exam-
ple Written as a formal combinatorial game, the moves on both stalks
being indistinguishable in the sets of options, the game amounts to {0 | 1},
with both players effectively having only one option. However, in constructing
the synchronized version of this game, we do consider the two possible moves
for both players as being distinct options, effectively using the game tree rather
than the set-theoretic definition of a game.

Synchronized versions of separable rulesets as defined in this way are always
unique. However, for synchronized versions of formal combinatorial games,
this does not always need to be the case.

Example 2.3.17. Let G = {{ | 0,1} | {0,1 | }}. This game is strongly separable,
as GLE N GRL = {0,1} # (), and every position besides the first is decided.
Hence, G can be synchronized. However, there are two truly different synchro-
nized versions of G: G1 = {G¥ | (0) | G®} and Gy = {GT | (1) | GT}. We find
that G; € D, whereas G5 € L. <

Example shows that, even for strongly separable games, if the original
game lies in P, not much can be said about the outcome class of the synchro-
nized version. However, for the other possible combinatorial outcome classes,
we do have the following result.

Theorem 2.3.18. [[18] Let G be a strongly separable game and let G be a synchronized
version of G.

() fGe L, then G e L.
(ii) IfG € R, then G € R.

Proof. We prove (i); the argument for (ii) is the same. Let G € £ and consider
G. In particular, G is a win for Left moving first. Hence, there is some G € G*
such that for any GIF* € GLE, it must then hold that GEF is also a win for Left
moving first. By induction, Gf; € £ for all G € G#. O

,

The following example demonstrates that the above theorem fails for games
which are not strongly separable.

Example 2.3.19. Let G = {0 | 1} be the separable RB-Hackenbush position as
depicted in Example with synchronized version G = {0 | (0) | 1}. We
find that, while G € £, it holds that G € D.
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Next, consider G + G, and its unique synchronized version

o [ 1+G G+1
G+G=| G| G 1
G 1 G

Like in Example it is clear that the optimal strategy for both players is to
play on either copy of G with probability 1, leading to a win for Left or a draw,

both with probability 3. Hence, G + G € £D. This example also highlights the
fact that, for synchronized games, problems with regard to determining the
outcome class of sums of games may arise, even if the outcome classes of the
components of the sum are known. N

For combinatorial games, there is a well-defined notion of (in)equality which
aids greatly in speaking of “optimal” strategies for both players, and “val-
ues” of a game, even in the context of taking disjunctive sums. However, as
illustrated by the above example, as even determining the outcome class of
a synchronization of a sum of games may be confusing, it may be expected
that finding useful definitions of (in)equality of synchronized games is chal-
lenging. We present two ways of approaching this problem, which we will call
combinatorial synchronization and Nash synchronization.

2.3.2 Combinatorial synchronization

The first way of defining a notion of value depends on a synchronized version
of equality, and is based on [18,21]]. The definition essentially mirrors the
combinatorial one, and as such we will call it combinatorial synchronization of a
game.

Definition 2.3.20. Let G and H be synchronized games. We say G = H if
o(G+ X) = o(H + X) for all synchronized games X.

Note that this definition indeed bestows an equivalence relation on the set of
synchronized games. In practice, we identify a game by the ‘simplest’ game it
is equivalent to, and call this its value. However, though intuitive and allowing
for a rich analysis in some cases, this definition of synchronized equality does
not enjoy all the properties of combinatorial equality.

Example 2.3.21. We show that G — G need not necessarily equal 0 = { | | }. Let
G =1 as synchronized game, and take X = {—2 | 2 | —2}. Consider G — G.
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We find that
[1+X 1-1-2
G-G+X=1-1+X= -1+ X X -1-2
1-1-2|1-2 1—-1+4+2

Looking at the outcome classes for the synchronized moves, we find that Left
wins in the top-left and bottom-right entry, and that Right wins in the other two
entries. Hence, Left nor Right has a winning strategy; we find o(G — G+ X) =
LR.However, o(0 + X) = o(X) = L. We thus find o(G — G + X) # o(0 + X),
so G — G # 0 by definition. N

While the above example shows that equality might fail to hold in instances
where we would expect it to, the following example shows that sometimes
equality holds while we may not want it to.

Example 2.3.22. Consider the synchronized games

and

0 0 0

o1 -1 -1

0oj-1 1 -1

0j-1 -1 1
To conclude that G = H, note that, for any arbitrary synchronized game X,
any strategy for G + X can be converted to a strategy for H 4+ X and vice
versa. If a player plays on G in G + X, it is always best to play any available
move with equal probability, in this case 1. If this is the case in some position
of G + X, the corresponding strategy for H + X is to make any of the three
available moves in H with probability 2p. The possible outcomes of the game
then remain unchanged, showing that o(G + X) = o(H + X) and thus G = H
in synchronized sense.

H =

However, considering the games as zero-sum games, we find that G would
have Nash value 0, as both players win with equal probability, whereas H has
Nash value —1 with Right winning with probability . Hence, even though
G = H by definition, the games do not truly have the same behavior. <

Like for combinatorial games, we can define a partial order on the outcome
classes of synchronized games, as shown in Figure This order on the
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outcome classes implies a natural definition of a partial order on the set of
synchronized games.

L

|
/N

LR D LRD

o
\

R

Figure 2.4: The partial order on the synchronized outcome classes.

Definition 2.3.23. Let G and H be synchronized games. We say G < H if
o(G+ X) < o(H + X) for all synchronized games X.

We will further explore combinatorial synchronization in Chapter [} We will
see that, for some games, a more useful analysis can be obtained if we gather
the outcome classes D, LD, RD, LR and LRD into one outcome class U/. By
this change, the equivalence classes of synchronized equality become (much)
larger, i.e., a game is equal to more other games than before.

2.3.3 Nash synchronization

The second proposed method of defining a notion of value for synchronized
games, which we will call Nash synchronization, is an attempt to solve the
problems encountered in combinatorial synchronization. Moreover, it better
explicitly captures the inherent non-determinism in the optimal strategies for
synchronized games. The definition relies on the choice of a function which
assigns a value to every decided game.

Definition 2.3.24. Consider a synchronized version of a combinatorial ruleset,
with decided positions D. We call f: D — R a value function if it has the
following four properties:
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(i) For H € D with H € £, we have f(H) > 0. Moreover, if every position
of H is a decided win for Left, we have f(H) = Can(H), identifying the
game with its fractional value embedded on the real line.

(ii) For H € D with H € R, we have f(H) < 0. Moreover, if every position
of H is a decided win for Right, we have f(H) = Can(H).

(ili) For H € D with HE = HE = 1% = (), we have f(H) = 0.

(iv) For H € D, we have f(—H) = —f(H).

Definition 2.3.25. Consider a synchronized version of a combinatorial ruleset
and let f be a value function for the ruleset. For every game G in the ruleset,
we define its Nash value v(G) to be v(G) = f(G) if G is decided, or the Nash
value of G as a zero-sum game otherwise.

Example 2.3.26. Consider the synchronized game H := G + G as in Exam-
ple[2.3.19] The decided positions in this gameare {1 ||}, {0 || } and { | | }, which
should be given values 2, 1 and 0, respectively, by the first three requirements
in Definition [2.3.24] Hence, as a zero-sum game, we may write

01
e (01,
The unique Nash equilibrium for this game has value 1, so we conclude that

v(H) = 3. <

Extending the above example, note that for any RB-Hackenbush game, there
is no choice in the definition of the value function: any position consisting
of n edges of only one color must be assigned value n or —n, depending on
the edges being blue or red, respectively. Hence, the Nash value for any RB-
Hackenbush game is uniquely determined by our definition of a value function.
However, this is not the case for every ruleset.

Example 2.3.27. Consider the following game of Cherries:

Combinatorially, the game reads

G={=2[{-1I1}[}eL

its unique synchronized version is

G={{-2|-1[{-1]0]1}} ||} €L
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Being a decided game, we need to assign a value f(G) via Definition [2.3.24
However, the only restriction provided by this definition is that f(G) > 0
should hold. Comparing to the game H defined by

we find that, even though G = H in combinatorial sense,and G —1 < H —1in
combinatorially synchronized sense, the values f(G) and f(H) can potentially
be ordered in any way. <

The example above shows that decided games that contain undecided positions
pose a problem in the definition of a useful value function. Hence, we propose
the following restriction on the class of games for which defining a value
function makes sense.

Definition 2.3.28. Let G be a decided synchronized game. If every position H
of G is decided, and o( H) = o(G) for all positions H of G, we say G is terminal.

Definition 2.3.29. Let G be a synchronized game. If every decided position of
G is terminal, we call G rebound-free.

The definition of rebound-free games extends to rulesets: a ruleset is called
rebound-free if every game in it is. An example of a rebound-free ruleset is that
of synchronized RB-Hackenbush. It is clear that choosing f(G) = n resp. —n
for a synchronized RB-Hackenbush position consisting of n blue or red edges
is the only valid definition of a value function. The ruleset for synchronized
cherries is not rebound-free.

Even a value function for a rebound-free ruleset does not enjoy all properties
that one would wish, such as respecting taking sums of games.

Example 2.3.30. Consider RB-Hackenbush with its unique value function,
and let G be the synchronized game defined in Example It is clear that

v(G) = 0; both players pick their own edge with probability 1 on the first

and only turn, resulting in the empty game and thus a draw. However, for the
game G + G = G + G, we have seen in Example[2.3.26|that v(G + G) = 14
<q

v(G) +v(G).

We do have the following useful properties.

Proposition 2.3.31. Let R be a synchronized version of a separable combinatorial
ruleset, let f be a value function and let G € R. Then v(G — G) = 0.
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Proof. Viewing the game G — G as a zero-sum game, we find v(G — G) =
v(—(G-G)) =—-v(G-G),sov(G—-G)=0. O

Theorem 2.3.32. Let R be a synchronized version of a separable combinatorial ruleset,
let f be a value function and let G € R. Then for every G* € G* and for every
G ¢ GR, we have v(GY) < v(G) < v(GR).

Proof. We prove the first inequality. Let G© € G be arbitrary. Pick G* € G~
such that v(GF*1) is minimized, denoting G**# for the synchronized move
associated to Left picking G* and Right G¥. Then v(GL*+E) < v(G). First, note
that if G € GRL, we have GETE = G and we are done.

Hence, suppose that this is not the case, so that G € GLF or gL N GRE £ ()
by G being separable. In either case, GETE = GLT is legal. Now, let GEL be
arbitrary, and consider GL(E+H) | Again, GLEHR) = GELE o GEL+R) — GLEL
must hold (or both).

If GLUE+R) = GERL then, by induction,
W(GHE) = o(GHIE) = o(GHRY) < o(GH) < u(G).

Otherwise, GFULHH) = GLLE = GLE must hold, so again v(GL(E+E)
G < v(@). Hence, for any Left move from G, we find that v(G*(L+1))
v(@G), so v(GF) < v(G).

CIIA

In Chapter[7, we will examine some separable games in more detail. The results
from this chapter give rise to the following conjectures.

Conjecture 2.3.33. Let R be a rebound-free synchronized version of a separable
combinatorial ruleset, let f be a value function, let G € R be arbitrary and let H € R
be terminal. Then v(G + H) = v(G) + v(H).

Conjecture 2.3.34. Let R be a rebound-free synchronized version of a separable
combinatorial ruleset, let f be a value function and let G € R. Then

lim vn-G) = Can(G).

n—o0o n

Hence, it seems that, when looking at many copies, some synchronized games
behave very much like their combinatorial counterparts. The intuition behind
this could be that the probability of the two players playing on the same
component will be small, for a large number of components. Hence, the game
behaves as being combinatorial.
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2.3.4 Synchronization of non-separable games

So far, we have only considered the synchronization of separable combinatorial
games, as attempting to synchronize non-separable games may prove prob-
lematic, demonstrated by Example However, it is not impossible. One
needs to find a way to deal with the players trying to execute two combinatorial
moves simultaneously which cannot be executed legally in any order.

Starting from a ruleset, it is often possible to give a natural interpretation
to allowing both moves to be executed anyway, even if this does not lead
to a legal position in the underlying combinatorial game. For example, in
Domineering, we can allow the placement of two overlapping dominoes if
placed simultaneously during the same turn. Under this regime, the position
in Example 2.3.6lwould be synchronized to {0 | 0 | 0} € D. Though natural,
there are drawbacks, such as the fact that Conjecture might fail to hold
for Nash synchronization of the game.

Example 2.3.35. Let G be the synchronized version of the Domineering position

|

|

We look at the variant in which simultaneously placing overlapping dominoes
is allowed, and the value function f is uniquely defined by Definition [2.3.24
Thenv(n-G) = —3.

Indeed, we can proceed by induction on n. The base cases n = 1,2 are easy
to check. For the induction step, note that, from n - G, the game is moved to
(n—1)-G —1or (n—1)-G if both players play on the same copy of G, or
(n—2)-G+ H —1,with

H =

if the players play on a different copy. We will show, again by induction, that for
(n—2)-G+ H, there is a Nash equilibrium in which both players play on H with
probability 1. Note that the induction hypothesis implies that v(k-G+H) = —&
for k < n. The base case n = 3 is easily checked.

If both players play on the same copy of G, the result is either (n —3)-G+ H —1,
with value —% + 1, or (n — 3) - G + H, with value —% + 3. If both players play
on a different copy of G, the result is always (n — 4) - G — 1 + 2 - H. Note that
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Right can force a value of at most —% + 1 by playing on one of the copies of H;
the result is (n — 5) - G — 2 + H with value —2 + 1 if Left plays on a copy of
G, (n —4) - G — 1 with value — + 1 if Left plays on the other copy of H, or
(n —4) - G — 1+ H with the same value if Left plays on the same copy of G.

n

If both players play on H, the result is (n—2) -G, with value — % + 1. If Left plays
on a copy of G and Right on H, the resultis (n — 3) - G — 1 with value — 2 + 1.
Finally, if Left plays on H and Right on a copy of G, the resultis (n —3) -G + H
with value —% + 3.

Comparing these results, we see that, for Left, it is profitable to always play on
H. Knowing this, the same holds for Right. Hence, we indeed have that, for
(n—2) -G+ H, it is optimal for both players to play to (n — 2) - G and continue
from there. Now, writing v,, = v(n - G), we may thus conclude that

vy =23 143 04+v,00) + 22 (0,0 — 1)
= %(Unfl — %) + nT_l(’Un72 - 1)

By induction, it follows that

Un = 5 (V-1 — 3) + 5t (a2 — 1)
il el G ¥
=z

<

Moreover, if not working with games from a ruleset, but formal games, there
is no intuition as to how to define the synchronized moves. Therefore, we
propose the following, extending Definition[2.3.15

Definition 2.3.36. Let G be a combinatorial game. We inductively construct a
synchronized version of G, named G = {GL | G5 | G}, as follows:

e Forevery G} € G", Gl € G, if GFF n GRE £ (), pick ij € GLRngRL
and set ij = Gf] Otherwise, if GI' € GI*E, set G;gj = GL. Otherwise, if

Gl e GLR, set Gy = G‘f. Otherwise, set G5, = G.
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If both players pick moves that cannot be executed legally in any sequential
order, we disallow the move, letting the players try again. By this definition, a
synchronized version of a short combinatorial game may become loopy. In the
spirit of loopy games, if, on a Nash synchronized game G, both players play to
G with probability 1 in every Nash equilibrium, we declare the game a draw.
The game is decided, we set G € D, and we assign v(G) = 0.

Example 2.3.37. Consider H as in Example Under Definition [2.3.36} the
synchronized game will be H = {0 | H | 0}. With the only possibilities of the
players being to move to H together, we declare H decided, and set H € D and
v(H) = 0.

The synchronized version of two copies of H reads

| H H
H+H=| H|H+H 0 }

H 0 H+H

Any pair of strategies is now a Nash equilibrium: in particular the strategy pair
in which both players play on either copy of H with probability 3. For this
strategy pair, the players play to 0 2 H + H with positive probability. Hence,
the value of the game is determined by the value of 0, being zero; the game
is still a draw, but now not because endless repetition of the position H + H
would ensue. g

Though the above examples stem from non-separable combinatorial games,
we may use the idea of repeating a game to extend the definition of general
zero-sum games. We denote such a repeatable game by writing at least one
* as an entry in the payoff matrix; if the players pick the row and column
corresponding to this *, the players play the game again. If both players pick a
* with probability 1 according to their strategies, we define the value of the
game to be 0. With this introduction, unfortunately, games no longer always
have a Nash equilibrium.

Example 2.3.38. Consider the zero-sum game given by the payoff matrix

* =1
¢= (1 10) ’

signifying that if Left picks the first row and Right the first column, the players
try again. We claim that G' does not have a Nash equilibrium, i.e., for any pair
of strategies (p, ¢), p denoting the probability for Left picking the first row and
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g denoting the probability for Right picking the first column, either player can
improve their outcome by deviating. This is summarized in Table where
the P’ column indicates which player deviates and the p/ column shows the
new strategy followed by this player.

Hence, there is no pair of strategies for which neither player can gain from
deviating. The example can be extended to a payoff matrix of arbitrary size by
defining g11 = *, g1, = gin = —1 and ¢;; = 10 for all 4, j. <

We return to these repeatable games in Section[7.5]



Strategy Value P’ W New value
pP=q= v=20 R | ¢€]0,1) v=—1
p=q=0 v=10 R| ¢=1 o = 1
p=1,¢q=0 v=—1 L p= v =10
p=0,g=1 v=—-1 L| p= v'=0
pe(0,1),g=1 v=—1 L p=1 v =0
p€(0,1),g=0 v=—-p+10(1 —p) € (—1,10) R g=1 v =-1
p=1,¢€(0,1) v=-1 L| p= v =—¢+10(1 —q) € (-1,10)
p=0,q¢(0,1) v=—q+10(1 — q) € (~1,10) R - o' =1
pqg€(0,1) |ov==2l=0=0opetlU=pi=g) ¢ (—110) | R | q= v =—1

Table 2.3: The values obtained for every possible strategy pair, the player P’ who can deviate, their new strategy

1/, and the new value obtained.

Sawp8 paziuosypuhs *¢'g
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Chapter 3

Hackenbush variants

In this chapter, we explore two combinatorial variants of Red-Blue Hackenbush.
In Section we consider Childish Hackenbush, briefly introduced in [[1]].
The contents are largely based on joint work with Nienke Burgers [[14]. In
Section 3.2} we consider the new variant Uncolored Hackenbush.

3.1 Childish Hackenbush

In this variant of the game, described in [[1]], moves that disconnect a part of
the configuration from the ground are not allowed. The results in the following
sections are largely adapted from [[14]].

3.1.1 Rules

A position of Childish Hackenbush is the same as one in regular Hackenbush.
However, both players are only allowed to cut an edge if this does not result
into a part of the graph becoming disconnected from the floor. We focus only
on the Red-Blue version of the game.

53
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Example 3.1.1. Consider the following position:

G:

In the regular version of Hackenbush, we know that G = % However, for the
Childish rules, we find that G = { | 1} = 0, as Left is not allowed to cut her blue
edge on the first turn, as this would result in the red edge being disconnected
from the ground. N

3.1.2 Stalks

In this section, we give an exhaustive characterization of Childish Hackenbush
stalks, that is, positions essentially consisting of a line graph. We make extensive
use of what we will call the sign expansion of a Hackenbush stalk, which also
lies at the base of Thea van Roode’s method to compute the number value of a
Red-Blue Hackenbush stalk under regular rules [29]].

Definition 3.1.2. Let G be a Hackenbush stalk. Its unique sign expansion, de-
noted by G, is a string of +’s and —’s: a + for every blue edge, and a — for
every red edge, reading from the ground.

Example 3.1.3. For the game G in Example we have G4 = +—. N

We call every sequence of > 1 consecutive copies of the same symbol (4 or —)
a block, and the number of identical symbols in a block its length. A block of
length at least 2 is called a series. A series not being the last block in the sign
expansion is called a non-terminal series.

Theorem 3.1.4. Let G be a Childish Hackenbush stalk and let G+ = x1x> ...z, be
its sign expansion. Let a be the length of the last block of G+, and let x be the symbol
occurring in the last non-terminal series, if any. If no non-terminal series exist, vt = x.
Then, concatenating signs and numbers into a string expression, we find

q=] zna if v = xy,
Tparl if x # xy,.

Example 3.1.5. Let G4 = + — + — — + — + — + +—. In the terminology of
Theorem we have a = 1, x = + (occurring in the second to last block,
being a non-terminal series of length 2) and z,, = —. Hence, G = —1+1=0. <«
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Proof of Theorem Assume first that z,, = +. We proceed by induction on
the size of the last block in G, the base case being size 1.

First, suppose x = —. If Right starts, he immediately loses. If Left starts, the
players alternate turns until the last edge defining « is taken, leaving Left
to move on either a string ending in a red edge, or the empty game, losing
regardless. Hence, the starting player loses, so G = 0, in accordance with the
theorem.

Next, suppose x = + and consider G — 1. If Right starts, he must move on —1
in the first turn, after which the game proceeds on G as above, resulting in a
loss for Right. If Left starts, after having played on G, Right can respond by
playing on —1 and win. Hence, G — 1 =0,s0 G = 1.

Now let the size of the last block be k > 1. Again, first suppose that = —. Note
that G& = {G'}, where G/y = x1...7,_1, and G = (). By induction, noting
that the configuration of blocks in G4 does not change by removing the last
edge, G'=k—-2,5s0G={k—2]|}=k—1.If x = +, by a similar argument,
G={k-1|}=kF

The argument for z,, = — is symmetric. O

3.1.3 Trees

We continue by giving a complete characterization of Childish Hackenbush
trees, determining their value in an algorithmic way. For a Childish Hackenbush
tree, we call a sequence of edges connecting two nodes of degree larger than 2,
or connecting such a node to the ground or a leaf node, a string. Note that a
stalk consists of a single string. A string originating in a leaf node is called a
branch.

Algorithm 3.1.6. Let G be a Childish Hackenbush tree. We compute G as follows:

(i) Assign a value to every branch of G using Theorem acting as if the node of
degree larger than 2 in which the branch originates is the ground, if applicable.
(ii) If, in a vertex in G of degree k,

o k — 1 of the outgoing edges are part of a string which has already been
assigned a value;
o these strings do not contain a non-terminal series in their sign expansions;

o the first symbol in the sign expansion of these strings is not equal to the
last symbol of the sign expansion of the k-th string,
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then we assign a value the k-th string. If it contains a series, the value is 1 if
both the last symbol and the sign of the last series in the sign expansion of the
string is +, —1 if both are —, and 0 otherwise. If not, go to step (iii).

(iii) Assign a value to the k-th string according to Theorem[3.1.4} again regarding the
vertex at the other end as the ground. If this vertex now meets the requirements
of step (ii), o to step (ii).

(iv) The sum of the computed values is the value of G.

Theorem 3.1.7. Algorithm is correct.

Proof. To prove the theorem, we start by proving two claims.

Claim 1. Any path from a leaf to some vertex with degree at least 3 in the tree
consisting of valued strings has total value 0, 1 or —1. The total value of the
path is 0 or 1 if the first non-zero string has value 1, and 0 or —1 if it has value
—1.

Proof of Claim 1. Consider such a path, consisting of k strings, say. For all strings
to be valued by the above procedure, at least the first £ — 1 strings must not
have a series. Moreover, any string of which the sign expansion ends in + must
be followed by a string with sign expansion starting with — and vice versa.
Hence, by Theorem [3.1.4} after a string of value 1 (starting and ending in +),
we must encounter at least one string being valued —1 (starting and ending in
—) before encountering a string of value 1 again. A similar arument holds for
the value of the k-th valued string.

Claim 2. Let w(QG) be the value assigned to G by the above procedure. Then
w(GF) < w(G) for all G* € G, and w(GE) > w(G) for all GE € GE.

Proof of Claim 2. Without loss of generality, consider GI'. Making a move on G,
Left has three truly different options.

First, Left may move to G* by removing an edge from a branch having a non-
terminal series, resulting in the branch still having a non-terminal series. Now,
in computing the value of G, the only difference is the value of the branch in
which Left moved. If the sign expansion still ends in +, the value is 1 lower.
Otherwise, its value becomes 0 (if the last non-terminal series has sign +, the
branch having value 1 in G) or negative (if the last non-terminal series has
sign —, the branch having value 0 in G). In any case, the claim holds.

Second, Left may move to G* by removing an edge from a branch B having
a non-terminal series, resulting in B no longer having a non-terminal series.
This can only be the case if By ended in a series of —, followed by a single
+, with no other non-terminal series present. The branch B now goes from
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having value 0 to having a value at most equal to —1. If in G no previously
unvalued string is now valued, this proves the claim.

Hence, suppose at least one more string is valued in G* compared to G, ending
in the vertex where B begins. If B begins with —, having value at most —2,
the newly valued series ends with +, so that the path of all potentially newly
valued strings has value at most 1 by Claim 1. Hence, the claim is true. Similarly,
if B4 begins with +, B having value at most —1, the newly valued path adds
at most 0 to the value of the tree.

Third, Left may move to G* by removing an edge from a branch which does
not have a non-terminal series. Again, in computing the value of G¥, the only
difference is the value of this branch in which Left moved, which always
decreases by exactly 1.

Proof of the theorem. Induction on the number of edges in the tree, the base case
being the empty game having value 0. Consider a tree G and suppose first
that w(G) > 0. If there is a branch with a positive terminal series in its sign
expansion, Left may play on this branch to w(G) — 1. If there is a branch with
a blue end of which the last non-terminal series is positive, or which does not
have a non-terminal series and starts with a blue edge, Left may also play on
this branch to w(G) — 1.

If there are no such branches, note that all branches have value 0 or lower.
Hence, for w(G) > 0 to hold, there must be some path from a leaf to an internal
vertex of degree at least 3 having value 1. The first non-zero string encountered
starting at the leaf must have value 1. Hence, the edge connected to the leaf
must be blue. By playing on this edge, Left can play to w(G) — 1.

Hence, we see that w(G) — 1 € G regardless. Moreover, note that w(G) and
therewith w(G) — 1 is an integer by construction, and, w(G*) < w(G) holding
by the second claim, moving to w(G) — 1 is dominating for Left. Now, if G = (),
we find that G = {w(G) — 1 | } = w(G) by induction. Otherwise, by the second
claim, we have that w(G?) > w(G) for all G € G. Now, G again being an
integer by construction, we have that G = w(G) by induction.

The case w(G) < 0 is symmetrical. Finally, if w(G) = 0, by induction and the
second claim, it immediately follows that G = 0 = w(G). O

Example 3.1.8. Consider the Childish Hackenbush position G as depicted in
Figure 3.1}

We first value the branches using Theorem finding values of 1, —2, 3,0
and 0, going from left to right. Now, both the bottommost edge of the second
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Om—

Figure 3.1: A large Childish Hackenbush position.
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string and the topmost edge of the string below that are blue, so by the third
bullet of step 2, the lower string is not assigned a value. The rightmost vertex
rooting the last two strings does meet the requirements of step 2. It does not
contain a series, so we proceed to step 3 and value it using Theorem
finding a value of 1. Summing the computed values yields a result of 3, hence
G =3. <

3.1.4 Cycles

By the results in the previous sections, in Childish Hackenbush, stalks and
trees are all integer-valued. This turns out not to be the case if we allow cycles
in the graph.

Example 3.1.9. Consider the following position G

It is readily verified that

Example 3.1.10. Consider the following position G:

We compute
G={0,-1,-2]1,0,0} = {0 |0} = =.
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Unlike in regular Red-Blue Hackenbush, we thus see that Childish Hackenbush
allows for non-numeric values.

In [[1]], it is shown that Red-Blue Hackenbush is NP-hard by a reduction from
the Steiner tree problem to that of determining the value of a Redwood bed. Such
a Redwood bed is a Hackenbush position of the form as shown in Figure
where G is any graph consisting of solely red edges.

G
Figure 3.2: The form of a redwood bed. G is a graph consisting only of red
edges.

However, determining the value of these beds turns out to be simple in the
childish version of the game.

Proposition 3.1.11. Let G be a Childish Redwood bed with m blue edges and n red
edges. Then G = m — n.

Proof. Note that m < n. We proceed by induction onm and n. Form =n =1,
we have G = { | 1} = 0, as shown in Example[3.1.1] For n > 1 fixed, we find
G = {| G}, where G% is a bed with 1 blue and n — 1 red edges. Hence
G={|lm—-(mn-1}=m-—n.

Now, let G be some bed with m > 1 blue edges. If m = n, we find G = 0, as it
is the disjunctive sum of m copies of the bed with m =n = 1.

Next, let the bed have n > m red edges. Left can only cut an edge which does
not disconnect a part of the red mattress from the floor, resulting in a bed
having m — 1 blue and n red edges. Hence, G* = () or GX = {m —n — 1}.

A move of red can either remove a single red edge, leading to a bed with value
m—(n—1), or it can split the bed into two. In the latter case, say the move results
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in one bed with = blue and y red edges, and the other in a bed with m — x blue
and n—y—1red edges, so that the total game has m blue and n red edges. These
two beds together then have valuex —y+ (m—z) — (n—y—1) =m— (n—1).
HenceG={m—-n—-1|m—-n+1} =m —n. O

3.2 Uncolored Hackenbush

In this variant of the game, a given graph first needs to be colored before
commencing normal play. We start out with an explanation of the rules of the
game, followed by results on increasingly complex classes of graphs.

3.2.1 Rules

An initial game position for Uncolored Hackenbush is a Hackenbush position
in which none of the edges is colored — or, in other words, each edge is colored
black. As long as there is still at least one black edge left, a legal move of Left
is to color a black edge blue, and a legal move of Right is to color a black edge
red. Once all the edges in the graph have been assigned a color (blue or red),
game continues as in the regular combinatorial version of Hackenbush.

Example 3.2.1. Consider the following starting configuration G of a game of
Uncolored Hackenbush:

G =

Writing out the options, we find

Numbering these options G through G, by inspection, we find that Gy = {2 |
1}, Gy ={2| -3}, Gs ={—3 | =2} and G4 = {3} | —2}. Removing dominated
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options, we conclude that
G={G1|Gs} = {251l -3 -2} =+{2]3},
using the nested notation {2 | 1 || —3 | =2} = {{2] 3} | {—5 | -2} }. g

We see that coloring the edge closest to the ground is an optimal move for both
players. In the following sections, we will find that this is always the case in

some sense.
G B y

Writing out the options, using symmetry to exclude two, we find

SAVAVAAVA VA

We further analyze the options.

\VAAVAVAAVAVA]

Numbering these options G; through G4, we find that G; = G2 = {3 | 1} and
Gs = G4 = {1 | —1}. Hence, the position aboveis {3 |1 || 1| —1} = 1. The
same holds for the position in which the bottom two edges of the cycle are
black and the top edge is blue.

Example 3.2.2. Consider

The same holds for the other side, with the colors reversed, so that G = +1. <«

In contrast with games of regular Red-Blue Hackenbush, which are all numbers,
we see that the games depicted above are both switches. We note that this is
the case for every fully Uncolored Hackenbush position.

Theorem 3.2.3. Let G be an Uncolored Hackenbush position containing only black
edges. Then G = +H for some game H.

The statement follows from the following lemma, which is also useful in its
own right.
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Lemma 3.2.4. Let G be an Uncolored Hackenbush position. Then —G is G with all
red edges colored blue and all blue edges colored red.

Proof. Trivial. O

3.2.2 Stalks

In this section, we compute the value of an arbitrary Uncolored Hackenbush
stalk. We start by proving that the optimal strategy for both players is to color
the black edge closest to the ground.

Proposition 3.2.5. Let G be an Uncolored Hackenbush stalk with n black edges,
n > 0. For k = 0,...,2", denote by G}, the position in which the i-th black edge
counting from the ground is colored blue if the binary expansion of k has a 0 as i-th
digit and red if it has a 1 as i-th digit. Then

G={Go |G ||G2|...| Gan_1}, (3.1)
where the | . .. | symbols are nested so that the games are successively paired.

Example 3.2.6. Let G be the Uncolored Hackenbush stalk consisting of three
black edges. Proposition gives that

G={Go|G1||G2|G3 || G4 | G5 || Gs | G7}
={{{Go | G1} [{G2 | G3}} | {{G4 | G5} [ {Ge | G7}}},

where, for example, G's represents the stalk in which the bottom two edges are
red and the top edge is blue, as 6 = 110 in binary notation. Filling in the values
we know from regular Red-Blue Hackenbush, we obtain

G=01331zll =21 =31 =351 =3y==B1317]3}

Proof of Proposition[3.2.5] We show by induction on n that coloring the edge
closest to the ground is the dominating option for both players, the base case
n = 1 being trivial. Note first that G indeed represents the game in which
moving on the lowest edge is the only possible option for both players, which
is most easily seen by picturing the possible moves as a binary tree. We label
every left child of a node 0, corresponding to a move by Left coloring the lowest
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black edge blue, and every right child of a node 1, corresponding to a move by
Right coloring the lowest black edge red.

Remains to show that coloring a different edge is not beneficial for both players.
We only give the argument for Left. Suppose Left chooses to color another edge
than the lowest edge blue on the first move, say edge 4, playing to G’. We need
to show that

G'<{Go|G1]...| Gan-14},

ie that G — {Go | G1 | ... | Gan-1_1} is won by Right playing second.
Whenever Left colors some edge other than 1 or i blue in G’, Right responds on
—{Go | G1| ... | Gagn-1_1} by coloring the corresponding edge blue, and vice
versa. When Left colors edge 1 in G’ blue, Right responds by coloring edge 4
in —{Go | G1|...| Gan-1_1} blue. The result will then eventually be G — H,
where G” and H are identical; hence, Left loses playing first. When Left colors
edgeiin —{Go | G1 | ... | Gan-1_1} red, Right responds by coloring edge 1 in
G’ red. The result will then be G” — H in which the only difference between
G" and H is thatin G”, edge 1 is colored red and i blue, and vice versa in —H.
Now, Left starting, Right can always respond by mirroring, except when Left
cuts edge i in either game, in which case Left responds by cutting edge 1 in the
same game. The result is a win for Right. O

We can, in fact, be more specific. Recall the definition of the ordinal sum from

Definition 2.1.371

Theorem 3.2.7. Let S,, be an Uncolored Hackenbush stalk consisting of n black edges.
Then S, is determined by the following recurrence relation:

So =0,
Sp==x(1:8,-1), n>1
The solution is (3.1]), which is in canonical form. It may be rewritten explicitly as

n—1)— n—2)— 4(n—2)— n—3)—
Sn:j:{n‘Q( 21)1|4( 42)1| ( 42)3|8( 83)1|”.

n—3)— k(n—k)—i
N D i ) e S

Proof. 1t is clear that Sy = 0. By Proposition [3.2.5| the dominating move for
both players in S, n > 0, is to color the edge closest to the floor. Hence,
S, = {SL | SE}, where in SL the lowest edge is colored blue, and likewise in
SE the lowest edge is colored red. By the theory on ordinal sums in [4], we
find that

Sn = {1 : Sn,1 | —1: Snfl}.
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Using Lemma and the properties of ordinal sums described in [2]], we
find that

Sn = {1 : Sn,1 | —1: Snfl}
= {1 1S | _(1 : (_Snfl))}
= {1 . Sn—l | 7(1 . Sn—l)}
= :|:(1 : Sn—l)-

The fact that (3.1]) is a solution, is Proposition To show that G is in
canonical form, it suffices to show that neither the move of Left nor the move
of Right is reversible. For the former, we need to prove that

{G2n72 | G2n—2+1 ‘ cee I G2n71_1} > G7

ie, that G — {Gan-2 | Gan-2,1 | ... | Gan-1_1} is a win for Right, regardless
of who makes the first move. Suppose first that Left starts. If Left plays on G,
Right responds on G*, playing to

{GQn—Q | G2n—2+1 ‘ “ee ‘ GQn—l,l} - {ng—2 | G2n—‘2+1 | . e | ng—lfl} == 0

with Left moving and losing. If Left plays on —{Gan-2 | Gan-241 | ... |
Gan-1_1}, note that all options in this game are negative, as all indices start
with a 0, and all represented games are thus blue-based. By responding on G
to {Gan-1 | Gan-141 | ... | Gan_1}, Right guarantees that also this component
becomes negative, winning the game. To show that Right’s move on G is not
reversible follows a similar argument.

Finally, to show that the explicit solution is correct, we note that G; is the sign
expansion obtained by replacing every 0 in the binary expansion of i by +
and every 1 by —. Indeed, note that the G; are precisely the number values
encountered in the game tree of G. To compute 1 : G, we replace every node
in which G} is encountered by 1 : G;, which is equivalent to adding a + at the
left side of the sign expansion represented by G;. Similarly, to compute —1 : G,
we replace every G; by —1 : G;, which amounts to adding a — at the left side
of the sign expansion. O

3.2.3 Trees

We continue by assessing trees. We start out by giving two helpful lemmas, in
which we abuse the notation of G : H to mean H connected to some leaf node
of G.
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Lemma 3.2.8. Let G = H : S be an Uncolored Hackenbush position, where S is a
stalk. Coloring the edge in S closest to H dominates all other moves in S.

Proof. Analogous to the proof of Proposition [3.2.5] O

Lemma 3.2.9. Let G = S : H be an Uncolored Hackenbush position, where S is a
stalk. Coloring the edge in S closest to the ground dominates all other moves.

Proof. Analogous to the proof of Proposition O

We first consider, in a sense, the simplest trees around.

Proposition 3.2.10. Let

Then
= +1, n even,
T {213} nodd

Proof. First, let n be even and consider G + £1, which we will show to be losing
for the starting player. We only consider the case in which Left starts. If Left
plays on G, the optimal move is to color the base of the tree blue. Right reacts by
playing +1 to —1. Consequently, the players alternate turns until both players
have colored half of the n branches of the tree, resultingin (1: 0)—1=1-1=0
with Left moving losing. If Left plays on &1 on her first move, Right reacts by
claiming the base of the tree, and the result is similar.

Next, suppose n > 1 is odd and consider G + {2 | +}. Again, suppose Left
starts. If Left colors the base of the tree G, Right reacts by playing on £{2 | }
to {—3 | —2}. Now, continuing play, the result is either that 241 of the branches
of G are colored blue, and 25 red, and {—4 | —2} is played to —2; or that the
amount of blue and red branches in G is reversed and {—3 | —2} is played to
—1. In both cases, it is Left’s turn to move. The colored G in the first option
has value 1 : 1 = 2, so that the game as a whole has value 2 — 2 = 0 and is
thus losing for Left. Similarly, the colored G in the second scenario has value
1: —1 = 4, so the total game is losing for the starting Left. O
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Alternative proof. Instead of arguing in terms of playing games, we can also
prove the proposition by using Lemma and the arithmetic of ordinal sums.
For n even, we find

G:{lziil—l:zﬂ:il}
k=1 k=1

={1:0|-1:0}
={{0[}[{l 0}}
= =+1.

For n odd, we have

G:{l:ZiH—l:Zil}

k=1 k=1
={1:41|-1:41}
={{0,1:1]1:-1}|{-1:1]0,-1:1}}
={{0.2] 3} [{-5 10,2}
={2l31-312}
=={2| 3}

O

For more complicated trees, we may use the following recursion to determine
the value.

Theorem 3.2.11. Let G be an uncolored tree. We have G = £(1 : G'), where G’ is
G with the edge starting in the root node contracted.

Proof. 1f the degree of the root of G is n > 1, it is straightforward to see that
G can be seen as the sum of n trees. Hence, suppose that the root has degree
1. By Lemma the dominating move for both players is to color the edge
originating in the root, from which the statement immediately follows. O

Theorem [3.2.11|provides a linear-time algorithm to determine the value of an
arbitrary uncolored tree, albeit not always in canonical form.
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3.24 Cycles

As for regular Hackenbush, cycles provide more of a challenge. We characterize
the value of a single cycle.

Proposition 3.2.12. Let

0N

be a cycle with n edges. Then

0, n even,
Cn = { 41, nodd.

Proof. If n is even, a mirroring strategy yields C,, = 0.

Hence, suppose n is odd. We will show that C;, + £1 = 0 by constructing an
explicit winning strategy for the second player. Throughout, we will represent
positions of the game by a string of B’s, R’s and X's, denoting blue, red and
black edges, respectively.

First, we will show that any position of the form
Gy =BBrizy...2p_3sR+ R or Gy =RRxiz9...2,_ 3B+ B

is a second-player win for Right, where the z; are coupled such that either
z; = Band z,_2_; = R or vice versa for all i = 1,...,n — 3. Suppose Left
moves first on ;. If Left removes any of the z;, Right can respond by mirroring
and removing x,,—2—;. If Left removes the second B edge, Right responds by
removing the last R edge, playing to B + R = 0. If Right removes the first B
edge, Right plays the same response, leading to R = —1, a Right win.

Next, suppose Left plays first on G». Again, any move on some z; can be
mirrored in x,,_o_;. If Left removes the last B edge in the cycle, Right can
respond by removing the second R edge, playing to R+ B = 0. If Left removes
the loose B edge, Right responds by playing on z; with |i — “72| minimal. If
Left mirrors this move in z,_»_;, Right continues making the same response
until either Left removes the last B in the cycle, at which point Right wins as
before, until Left plays on some other z;, which Right mirrors in «,,_»_;, or
until the position RR + B is encountered, which is a win for Right playing first.
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Next, we will consider the positions

G3 = RRri1xo...7,_3R+ B, G4= RRx1x>5...2,_3B+ R,
G5 = RB!El.TQ...CEnng-‘rR, GG = BRxlxz..."IJn,gR-f—R
and G7; = RRz1zy...x_3R+ R,

where the z; are again coupled as before, except that now z; = z,,_5_; = B
holds for exactly one i. We show that G3, G4, G5, G and G7 are won by Right
playing second.

In G5 and G, regardless of Left’s moves, Right may remove the second and
last R edge in the cycles on his first two turns, playing to R + B = 0. Similarly,
in G5, Right can remove the red ends of the cycle, resulting in R. In Gg, Right
removes the first and last R in the cycle, resulting in B+ R = 0.

Remains to consider G4. If Left plays on a coupled z;, then Right mirrors on
Zn—2—;. If Left removes the last B in the cycle, Right responds by taking the
second R, playing to R + R, which is certainly a Right win. Next, supppose
Left plays on the z; for which z,,_2_; = B. If i < n — 2 — ¢, Right responds
by playing on z; with j > n — 2 — ¢ minimal; otherwise, Right responds by
playing on «; with j < 4 maximal. Now, Right can mirror any move of Left
except a move on x,_s_;. If Left makes this move, Right continues replying in
the same fashion until RR + B + R is reached with Right moving and winning.

The final step is to prove that the second player can force a game of the form
G (if Left goes first) or G (if Right goes first), and this is the best possible.
As G; = —Gy = 0, we may assume without loss of generality that Left starts.
Opening to BX ... X + X, Right responds to BX ... X R + X.If Left plays to
BBX...XR+XorBX...XR+ B, Rightrespondsto BBX ... XR+ Ror
BX ... XRR + B, respectively. If Left plays on any other X, Right responds
by mirroring, resulting in G; or G, respectively.

If Left opens to XBX ... X + X, Right responds to XBX ... XR + X. Now,
if Left plays to BBX ... XR + X or XBX ... XR + B, Right responds to
BBX...XR+Ror XBX ... XRR+ B, respectively. In the former case, Right
can mirror to achieve (1. In the latter case, Right also mirrors, coupling the
first and last X . The result will either be G5 or G; for i = 3, ..., 7, won by Right
going second in both cases.

If Left opens to X ... X + B, Right responds to RX ... X + B. Next, if Left plays
to RBX ... X + B, Right responds to RBX ... R+ B and mirrors afterwards.
Right then wins the result playing second, identifying the first R with the loose
B, and the second B with the last R. If Left plays to RX ... XB + B, Right
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responds to RRX ... X B + B and continues mirroring, leading to G>. If Left
plays on any other X, Right can respond leading to some G;,i =3,...,7.

Finally, if Left opens by coloring any other edge, Right can always respond to
create any G, i = 1,...,7, winning the game playing second. O

Naturally, further research could focus on determining whether there is some
polynomial time algorithm to determine the value of an arbitrary uncolored
position, or whether this problem is NP-complete.



Chapter 4

Order versus Chaos

This chapter is based on joint work with Sipke Castelein and Daan van Gent,
published at the IEEE Conference on Games 2020 [[15]], which was in turn
an extension of Sipke’s bachelor thesis on the game Order and Chaos [30]].
Concerning a positional game, it is a slight deviation from the focus on (syn-
chronized versions of) truly combinatorial games in the rest of the thesis, and
can therefore be considered as a standalone piece of work.

We study the positional game of Order versus Chaos, which can be considered a
maker-breaker variant. The players Order and Chaos take turns placing circles
or crosses on a board, in which the goal of Order is to create a consecutive
line of identical symbols of a certain length, while Chaos aims to prevent this.
In this paper, we provide some theoretical results on winning strategies for
both players on finite boards of varying sizes, as well as on infinite boards.
The composition of these strategies was aided by the use of Monte-Carlo Tree
Search (MCTS) players, as well as a SAT solver. In addition to these theoretical
results, we provide some more experimental results obtained using MCTS.

4.1 Introduction

The game of Order versus Chaos is a maker-breaker-like positional game [31]].
In the original game ‘Order and Chaos’, as proposed by Stephen Sniderman in
the Games Magazine [[16]], two players, named Order and Chaos, take turns
placing either a circle or a cross on a 6 x 6 board. Both players are allowed to

71
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place either symbol on an empty square. The goal of Order (maker) is to create
a horizontal, vertical or diagonal line of (at least) five identical symbols, while
the goal of Chaos (breaker) is to prevent this whilst filling the board.

The original version of the game was solved by Benjamin Turner using a brute-
force approach [32]], showing that Order wins playing first. In this chapter, we
will discuss a more sophisticated strategy solving the original game. In order
to find this strategy, we constructed two artificial players using Monte-Carlo
Tree Search (MCTS) simulations, a popular method for solving combinatorial
or positional games [33]]. Analyzing the moves prescribed for Order by the
MCTS algorithm, we distilled an explicit rule-based strategy.

Moreover, we consider larger games, in which the objective for Order is to
make a line of more than five in a row. For winning lines of length at least
9, we model our problem as an instance of the Satisfiability (SAT) problem,
for which fast solvers are available [34]. We prove constructively that Chaos
always wins if Order needs to align at least 10 symbols, and that Chaos wins if
Order needs to align 9 symbols and the amount of squares on the board is of
suitable parity.

For games in which Order needs a line of length 6, 7 or 8 to win, we prove that
Chaos wins if the board is not much larger than the line to be made. Moreover,
we use more MCTS simulations to explore these games, conjecturing that these
games are winning for Order if and only if the board is large enough.

We start by introducing some notation. Throughout, for any natural number
n, we denote [n] = {1,...,n}. A board is a finite set B C Z? and a game state of
Bisamap B — S, where S = {O,X,} is the set of symbols with (] denoting
an empty square. For s = O, we define 5 = X, and vice versa. A line is a set
of the form {(z,y) + k - (a,b) |0 < k < m} for some (z,y) € Z*, m € Zg
and non-zero (a,b) € {—1,0,1}?, and we call m the length of this line. We
call a line L homogeneous if either f[L] = {X} or f[L] = {O}, where we write
fIL] = {f(x) | = € L}. The players are Order and Chaos.

For a board B, a positive integer m and a player p we define the positional
game ovc(B, m, p) as follows. The players take turns starting with player p and
as initial game state f the empty board, i.e., f(b) =forall b € B.If the board
is full, i.e,, O ¢ f[B], the game ends. Otherwise, a turn consists of choosing
some b € B with f(b) = [Jand updating f at b such that f(b) = O or f(b) =X.
In accordance with the terminology for maker-breaker games, We call a line
L C B of length m a win line. We say f is in order if there exists a homogeneous
win line. If f is in order at the end of the game, then Order wins, and otherwise
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Chaos wins. The traditional version of Order versus Chaos is thus defined by
ove([6]2, 5, Order).

We similarly define the game ovc’(B, m, p) where the starting player p each
turn in addition to his or her usual moves is allowed to pass, i.e., skip their turn.
We study this game because it has nice properties with respect to inclusion of
boards.

Lemma 4.1.1. Write X <Y for ‘Order wins X implies Order wins Y. Let A C
B C C be boards, p a player and m > 0. Then

ovc’ (A, m,Chaos) < ovc’ (B, m,Chaos) < ove(B, m,p)
=< ovc'(B, m,Order) < ovc’ (C, m, Order).

The winning result for Order is summarized as follows.

Theorem 4.1.2. Let B be a board containing [n)? for some n. Then Order wins
ovc’ (B, m,Chaos) for (m,n) € {(1,1),(2,2),(3,3), (4,4), (5,6)}.

The result for Chaos for long win lines is as follows.

Definition 4.1.3. For parameters (B, m, p) we say the game ovc(B, m, p) has
good parity if | B| is even when p is Order and | B| is odd when p is Chaos.

Theorem 4.1.4. Let B be a board and let p be a starting player. Then

(i) Chaos wins ove(B, m, p) for all m > 9 when the game has good parity.
(ii) Chaos wins ovc' (B, m,Order) for all m > 10.

Clearly, good parity can be obtained by passing the first turn, so assuming
Theorem we have that Chaos wins ovc’ (B, m, Chaos) for all boards B and
m > 9.

For small boards, we have the following result for Chaos.

Proposition 4.1.5. Chaos wins ovc’([5 + 2m]?, 5 + m, Order) forall m > 0.

We prove Lemma and discuss some more subtleties considering passing
in Section 4.2} In Section 4.4} we constructively prove Theorem[4.1.2} using a
strategy inspired by MCTS play. This explicit rule-based strategy leads to a
win for Order starting from the empty board, therewith weakly solving the
game. Note that this contrasts the solution in [32]], where a winning move is
listed for every winning position of Order, strongly solving the game.
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The proof of Theorem can be found in Section resting on a SAT
formulation of the game. In this section, we also prove Proposition For
some of the games not covered by the above theorems, we provide MCTS
simulations in Section [4.5] Finally, we discuss some generalizations of these
results to infinite boards in Section 4.6l

Throughout, in all strategies discussed, the listed steps are executed in order.
When a move is made, after the other player’s turn, we start again with the
execution of the first step.

4.2 Maker-breaker games and passing

A classic maker-breaker game is defined by a set U and a family of winning sets
F C 2V, Maker and breaker alternate turns, each turn claiming an unclaimed
element from U. Maker wins by claiming all elements in some F' € F, while
breaker wins by claiming at least one element from each F' € F.

The Order versus Chaos game ovc(B, m, p) differs from classic maker-breaker
games in that both players do not claim an element from B as their own
on their turn, but instead assign an as of yet unassigned element to either
X ={beB| f(b)=X}orO={be B| f(b) = O}. The winning sets are the
win lines, and Order (maker) wins if either LN X = L or LN O = L for some
win line I, while Chaos (breaker) wins if LN X # () and L N O #  for all win
lines L.

While it is clear that in a classic maker-breaker game, it is disadvantageous to
pass for either player, this is not always true in Order versus Chaos.

Example 4.2.1. Consider ovc([2] x [1], 2, Chaos). It is clear that Order wins this
game. However, the variant ovc’([2] X [1], 2, Chaos) is won by Chaos by passing
on the first turn. Similarly, the game ovc([2] x [1],2, Order) is won by Chaos,
while ovc’([2] x [1], 2, Order) is won by Order. N

Some relations between the passing variant and the regular game are summa-

rized in the following lemma.

Lemma Write X XY for ‘Order wins X implies Order wins Y. Let A C B C
C be boards, p a player and m > 0. Then

ovc' (A, m,Chaos) < ovc’ (B, m, Chaos) < ove(B,m,p)
=< ovc/(B,m,Order) < ovc’(C, m,Order).
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Proof. To prove the third inequality, if Order wins ovc(B, m, Order), it is clear
that Order also wins ovc’ (B, m, Order). If Order wins ove(B, m, Chaos), then
Order wins ovc’ (B, m, Order) by using the same strategy, but passing on the
first turn.

For the second inequality, we use a similar argument, but by contrapositive.
Hence, suppose that Chaos wins ovc(B, m, p) for some p. Then Chaos must
also win ovc’ (B, m, Chaos) using the same strategy if p = Chaos, and passing
on the first turn if p = Order.

For the first inequality, Order can apply her winning strategy for A to B by
treating every move by Chaos outside of A as a pass from Chaos on A.

For the last inequality, suppose Order has a winning strategy for the game
ovc/ (B, m, Order). Then she can win ovc’ (C, m, Order) by applying this strategy
when Chaos moves in B while passing when Chaos moves in C'\ B. O

Example shows that the implications defined by the second and third
inequalities are not equivalences. The next example shows that holds for both
other implications, as well.

Example 4.2.2. Consider ovc’([1]?,2, Chaos) and ovc'([2]2, 2, Chaos). It is clear
that Order cannot win ovc/([1]?, 2, Chaos), as there is not enough space for a
line of length 2, while it is straightforward to check that Order wins the game
ovc’([2]?, 2, Chaos). Similarly, Order wins ovc’([2]2, 2, Order), but not the game
ovc([1]?%,2, Order). N

Remark 4.2.3. In ovc/, a player never needs to pass on consecutive turns. Sup-
pose a player p passes at turn n, the opposing player makes a move s at b, and
then passing is a winning move for p. Instead player p can play s at b turn n,
resulting in the same winning game state. Hence the pass was unnecessary.

4.3 Winning strategies for Chaos

We prove Theorem £.1.4]by explicitly constructing a strategy for Chaos. In the
construction, we use a so-called “pairing strategy”, the likes of which can be
used to solve, e.g., variants of tic-tac-toe, as well as a variant of the original
version of Order versus Chaos [[31}35].
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Throughout, B C Z? will be a board. For a line L C Z? of length m > 2 there
exist two lines L oflength m+1suchthat L C L. Wechoose Ly = LU{(x,y)}
such that 2y — « is maximal among the two possibilities, or equivalently such
that (x, y) occurs before the points of L in ‘reading order” (left-to-right, top-to-
bottom).

Proposition 4.3.1. There exists a partitioning P of Z? into lines of length 2 such that
the following holds:

(i) For every line L of length 9 there exists a P € P such that P C L.
(ii) For every line L of length 10 there exists a P € P such that P, C L.

We call P a ‘pairing’ and its elements “pairs’.

Proof. We give a constructive proof.

| |
1 ar - |1
- 11 I 1 —
— I -
T /
—r Ve p:
| = Ve
I |

Figure 4.1: Pairing for good parity

Consider Figure ! 4.1} where each square in the grid represents an element of the
flat torus (Z/8Z)*, and each thick line denotes a pair of two adjacent squares.
Observe that every row, column and diagonal of (Z/8Z)? contains a pair P.

[ [ —r—— | | -

Figure 4.2: From (Z/8Z)? to Z*

Equivalently, Figure[4.1|gives a partitioning P of Z? into lines of length 2 by
daisy chaining the pattern. For any line L C Z? of length at least 8 we consider
its image L in (Z/8Z)* and note that this image must contain a pair P. If L
has length exactly 8, it is possible that L intersects two pairs with image P
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non-trivially without containing any, as in Figure .2 where L is drawn grey.
However, in this case, extending L by one in either direction solves this problem,
which proves (i). Proving (ii) goes similarly. O

The pairing given by Figure is rather irregular and hard to find. One can
easily find pairings for (Z/nZ)* for n > 8. The reason for this is straightforward
combinatorics: there are 4n lines that have to contain a pair, which requires 8n
points, while we have n? points available. This also suggests that a pairing for
n = 8 could just be possible.

To find the pairing in Figure we formulated the problem as an instance
of the Satisfiability (SAT) problem. An instance of SAT consists of a Boolean
expression in conjunctive normal form, and a solution is a true/false assign-
ment of the variables that makes the expression true, or a proof that such an
assignment does not exist. While the SAT problem has long been known to be
NP-complete, modern-day solvers can still efficiently solve sizeable instances
with ease. To find the required pairing, we have used the PicoSAT solver [36].

We introduce a variable xy,, ;3 for each pair of adjacent points p, g € (Z/8Z)?.
Setting xy,, 4} to true corresponds to pairing the squares p and g. For every two
intersecting pairs A # B, we add a clause (-z4) V (-z ) to guarantee that a
square is paired to at most one other square. Now, any line L C (Z/8Z)? of
length 8 contains 8 pairs of adjacent points Ay, ..., Ag, of which at least one
pair must be coupled. To do so, we add a clause x4, V ...V z4,. Any solution
to the conjunction of the aforementioned clauses thus corresponds to a pairing
as desired, and the pairing in Figure|4.1|is such a solution.

Using this pairing, we now describe a strategy for Chaos.

Strategy 4.3.2. Let P be a pairing of Z? given by Proposition[t.3.1] For b € 72,
write b for the unique element such that {b,b} € P. Let f be the current state,
E = f~1[{0}] the set of empty squares and U = {b € B|b ¢ B} the set of
unmatched squares.

(i) If, in the previous turn, Order played s € S atb € B such thatb € E,
then play 3 at b.
(ii) If there exists some b € E N U, then play anything at b.
(iii) Choose any b = (z,y) € E such that 2y — x is maximal and let ¢ € Z?
be such that {b,b}, = {b,b,c}.If c € B, play f(c) at b. Otherwise, play
anything at b.

Theorem Let B be a board and let p be a starting player. Then
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(i) Chaos wins ove(B, m,p) for all m > 9 when the game has good parity.
(ii) Chaos wins ovc' (B, m, Order) for all m > 10.

Proof. We show that Strategy [4.3.2]is well-defined and winning for Chaos. Note
that in Strategy@ a move at b is only made when f(b) =[], i.e., all moves
are legal. In step (iii), note that f(¢) # Owhen ¢ € B, otherwise we would have
chosen cinstead of b as the square to make our move in. Hence Strategy [4.3.2]
is well-defined.

(i) First, we consider ovc(B, 9, p) with good parity. Note that in this case Chaos
will always be last to play in U: if Chaos is the starting player, then |U]| is odd
and he plays in U his first turn; if Order is the starting player, then |U]| is even.
Chaos plays in U when Order did, so the last turn |U N E| will always be
even at the start of Order’s turn. Consequently, we never enter step (iii) of
Strategy when the game has good parity. In this case, when the game
ends, we have for each b € B that either b € U or f(b) = f(b) by step (i) and
(ii) of the strategy. Then, by Proposition [4.3.1} every win line contains a pair
{b, b}, which we just noted is not homogeneous. Hence the board is not in order
and Chaos wins, proving (i).

(ii) Now consider the game ovc’(B, 10, Order). For P € P such that P, C B,
we consider the first time a player plays at P. If Order is first to play in P,
then Chaos follows in step (i), after which P and in particular P, becomes
non-homogeneous. When Chaos is first to play in P, then this must happen in
step (iii), after which P, becomes non-homogeneous. Then, at the end of the
game, by Proposition every win line contains a P, for some P € P, none
of which are homogeneous. Hence again Chaos wins.

The rest of the statement now follows from Lemma O

Strategy shows that the game is winning for Chaos if Order needs to make
a long homogeneous line to win. For shorter win line length, Proposition [4.1.5,
which we prove next, gives some specific results.

Proposition [4.1.5, Chaos wins ovc'([5 4+ 2m)?, 5 + m, Order) for all m > 0.

Proof. We begin by showing that Chaos wins ove([5]?, 5, Order) similarly to
Theorem [£.1.4}ii, namely by partitioning the board so that some of the squares
are matched. Consider the (partial) pairing P as displayed in the center 5 x 5
subboard B of Figure4.3] where squares with the same number are paired and
non-numbered squares remain unpaired. Again, for b € Z?, we write b for the
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unique element such that {b,b} € P. Note that every line L C B of length 5
contains a pair. We now give a slight modification of Strategy for Chaos.

40|41 4142

30|31 31|32

20|21 21|22
45(35/25|13 |16 (10233343
47|37|2711012 |5 |5 | 4 |24|34|44

912 819
47137|27110|11|11| 8 | 4 |24|34 |44
42132122107 |67 |3]20/30/40

23|26 26|25

33|36 36|35

43|46| 46|45

Figure 4.3: (Partial) pairing for [5]? and [11]2

(i) If in the previous turn Order played s at b such that {b,b} € P and bis
empty, play 5 at b. B
(ii) If thereisanempty b € B such that thereisno empty b € B, play anything
at b.
(iii) If there is a pair {b,b} € P with b empty such that the corresponding win
line contains s € {X,0}, play 5 at b.

Analogous to the proof of Theorem[4.1.4} this is a winning strategy for Chaos
if step (iii) is well-defined, i.e., if we can always find such a pair. We enter
step (iii) only when the center is filled, in which case we can play in the pair
marked 0, assuming it is not already filled. Note that every pair numbered n > 1
has in its associated win line a square of the pair numbered n — 1. Therefore,
inductively, we can always play in the pair marked n with n minimal among
the empty pairs. Hence Chaos wins ovc’([5]?, 5, Order).

Note that only m =1, 2, 3,4, 5 remain, as the rest follows from Theorem
We give a proof for m = 3 as the rest goes analogously and is left as an exercise
for the reader. For the board [11]> we apply the previous strategy to the center
5 x 5 squares. Then note that almost all lines of length 8 have 5 squares in the
center subboard and are already taken care of. The only extra lines are a few
off-diagonals, and the orthogonal lines contained completely in the border,
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and, if we label the border as in Figure all of them contain pairs. When
the unmatched squares and the center subboard are completely filled, each of
the remaining pairs on the border has a filled square in between them, so we
may block the corresponding lines as in step (iii) of the strategy for [5]?. Hence
Chaos wins ovc/([11]2, 6, Order).

To generalize this to other m one needs to extend or restrict the given border
for the 11 x 11 board in the obvious way. O

A different approach to designing strategies for maker-breaker games is using
a potential function, which assigns a value in [0, 1] to every win line [37]. A
line containing both symbols is assigned the value 0, a homogeneous line is
mapped to 1 and any other win line is assigned a value non-decreasing in
the amount of empty squares. If the total potential of all win lines is strictly
less than 1 at the start of the game, to show that Chaos wins playing first, it
suffices to show that after every pair of moves of Chaos and Order, the total
potential has not increased. While this is a straightforward argument for true
maker-breaker games, it is hard for Order versus Chaos, as a move by Chaos
can increase the potential gained by a subsequent move of Order.

4.4 Winning strategies for Order

We continue by proving Theorem first taking care of the small cases.

Lemma 4.4.1. Order wins ovc'([n]?,n, Chaos) forn = 1,2, 3.

Proof. For n = 1,2 this is trivial, so consider n = 3. If Chaos chooses to move
we may assume by rotating the board that he moves anywhere in the lower
triangular subboard B colored white in Figure If Chaos passes we may
move at the square marked with a dot. Then, regardless of whether Chaos
passes the next turn we may apply rotations to the board such that precisely
one square of B is filled and it is Order’s turn.

Figure 4.4: 3 x 3 board
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Now Order can force Chaos to keep playing in B by repeatedly forming a
line of length 2. It can easily be verified that this always results in a win for
Order. O

We continue by assessing ovc’([4]2, 4, Chaos). For this game, we constructed a
player for both Order and Chaos using Monte-Carlo Tree Search (MCTS) with
Upper Confidence Bounds applied to Trees (UCT) as selection method [38,39]],
further explained in Section[4.5 Pitting these MCTS players against each other,
we analyzed the strategy employed by Order in a myriad of games. From this
analysis, an explicit rule-based strategy for Order was distilled [30]].

(@) * O *
X X|O|X X | X|X|O O XX
O X (@)
O * O
Play O at * Play O at * Play X at =
O|0O * X O
X | X O X O X

O O

O * XX * 10O
Play O at * Play X at * Play O at *

Figure 4.5: Exceptions

Strategy 4.4.2. Let B = [4)%, f the current state and E = f~![{(J}] the set of
empty squares. Let £ be the set of win lines, and forb € B,let £, = {L | b €
L e L}. Wecall L € L broken when {O, X} C f[L] and unbroken otherwise. For
an unbroken line L we define its weight w(L) = |{b € L | f(b) # }|.

Whenever there is a choice between playing in different b € B, we pick the
lexicographically minimal, where the northwest square is numbered (1,1).
In addition to this, there are six exceptional boards. These boards and the
corresponding winning moves for Order are in Figure
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(i) If the board is in Figure play the defined move.
(ii) If f[B] = {0}, play X at (2, 2).

(iii) If there exists an unbroken L € £ with w(L) = 3, we win by playing in L.

(iv) If there exista b € E and distinct unbroken L, Lo € L, of weight 2 such
that f[L1] = f[Ls] = {0, s} for some s € {O, X}, play s at b.

(v) LetE& ={be E | (VL € L) 5 € f[L] = s € f[L]} be the set of squares
in which playing s does not break a line. If £ = £x U &g is non-empty, let
L be a win line intersecting £ of maximal weight. For any b € L N &, for
some s € {O, X}, play s at b.

(vi) Let L, be the set of win lines containing s € {O, X} and let L% be the
set of lines in £, of maximal weight w* among all unbroken lines. For
any square b, let w;(b) = max{w(L) | b € L € L,} be the weight of the
longest unbroken line through b. We play s in b as to maximize w;(b)
under the constraint that there is no L € £% for which b € L, so that we
do not break any line of weight w*.

For illustration, we draw what will happen when we encounter exception 4.
The number above the symbol is the turn in which the symbol was played, and
the letter below identifies the player that makes this move. Note that, to verify
that the strategy is winning for Order, we need to check all possible moves of
Chaos. Here, we show only two, as means of example.

oo |xJo, |o|o %o,
X | x|xJol | x|x|ogx]

O X/00 Of |X¢
X | Og XX |og

Figure 4.6: Working out two possible outcomes of Exception 4

Lemma 4.4.3. Order wins ovc’([4]?, 4, Chaos).

Proof. We verify that Strategy is winning for Order by straightforward
computer proof: we check that the strategy is weakly winning against a brute-
force player for Chaos. See the Appendix for a reference to the source code. [J

To complete the proof of Theorem we provide the following lemma, based
on the result in [32], solving the final case ovc’([6]%, 5, Chaos).
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Lemma 4.4.4. Let n > 1. If Order wins ovc'([n)?, n, Chaos), then Order also wins
ovc/([n + 2]%,n + 1,Chaos).

0[1]2] 13]4]5

6] 6]

7 7
By

18] 8|

9 9

5[1]2]---[3]4]o0

Figure 4.7: Mirroring strategy on B

Proof. We partition B = [n + 2]? into its n x n center B and its border By =
B\ Bi. As in Figure [t.7|we consider the pairing P of B, that pairs opposing
squares, i.e., {u,v} € P if and only if u,v € By are distinct and {u,v} C L for
some line L C B of length n + 2 intersecting B;. We consider the following
strategy for Order:

(i) If we can win by completing a win line, do so.
(ii) If Chaos plays in By, play the opposing symbol in the paired square.
(iii) Apply the winning strategy for ovc’(B1, n, Chaos) to B;.

We show that the strategy is well-defined and winning. Note that we only play
in By in response to Chaos in step (ii) or when we win in step (i). Hence if
Chaos plays in Bs, then B, will always contain an odd number of filled squares
and since |Bz| = 4(n + 1) is even there must be an empty square left. Thus
step (ii) is well-defined. If B is filled at the start of our turn, then due to the
strategy applied it contains a homogeneous line L of length n. Then there exists
a pair P € P such that L U P is a line of length n 4 2. We either have that P is
empty, in which case we can in fact win in step (i), or both squares are filled
with opposing symbols due to step (ii), in which case a homogeneous line of
length n + 1 already exists. Hence step (iii) is well-defined, and since B; will
be filled at some point in the game, the strategy is also winning. O

Theorem Let B be a board containing [n)? for some n. Then Order wins
ovc/ (B, m, Chaos) for (m,n) € {(1,1),(2,2),(3,3),(4,4), (5,6)}.
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Proof. Combine the statements of Lemma that of Lemma applied to
Lemma and Lemma O

4.5 Monte Carlo results

Monte-Carlo Tree Search (MCTS) is an algorithm that, for every move, iter-
atively builds a game tree in search of good states, starting with the current
state as root [39]]. The search is done in four steps per iteration.

(i) Selection. In the current state s, we select a state ¢ reachable by one move
which has not been visited yet. If such a state does not exist, we pick a
reachable state ¢ for which

is maximized, where n, is the amount of times state s has been visited
(analogous for n;), v, is the percentage of visits that eventually led to
a win for the current player, and C is a chosen constant. We continue
selecting until we reach an as-of-yet unvisited state or a terminal state in
which either player has won.

(ii) Play-out. The game is finished by making random moves until a player
has won.

(ili) Expansion. The new state which was encountered for the first time is
added to the tree.

(iv) Backpropagation. All the states that have been visited in the current itera-
tion are updated to incorporate the results of the played-out game.

After a set amount of iterations, cq. play-outs, the current player performs the
move leading to the state ¢ with the highest v,, and the search is continued.

To find Strategy the algorithm was run with C' = /2 and 5,000 play-
outs per move. After running the algorithm numerous times, we discovered a
pattern in Order’s moves, which was used to synthesize the steps of the strategy.
While the first two rules of Strategy[#.4.2)are straightforward, the latter ones are
more involved. By testing the algorithm without the exceptional step (i), the
game was weakly solved except for in the six cases shown in Figure[t.5, Adding
these boards as exceptions, the strategy weakly wins the game for Order.

For the game of ove([n]?, m, p), we have exhaustive theoretical results for m < 5
in Theorem and for m > 10 in Theorem However, for the values of



4.5. Monte Carlo results 85

m in between, our only provable result is for small boards in Proposition[4.1.5,
and for boards of good parity in Theorem For these values of m, we
conducted additional MCTS experiments.

# itr. 100,000 60,000

m\n| 3 4 5 6 7 8 9 10 11| 12 13
3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - - 0 91 99 100 100 - - - -
6 - - - 0 0 22 50 91 99100 -
7 - - - -0 0 0 0 1|23 o4
8 - - - - - - - - 010 1

Table 4.1: Win percentage of Order in MCTS simulation of one hundred
ove([n]?, m, Order) games.

# itr. 100,000 60,000

m\n| 3 4 5 6 7 8 9 10 11 | 12 13
3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - B 0 95 100 100 100 - - - -
6 - - - 0 0 18 55 90 100|100 -
7 - - - - 0 0 0 0 2|27 6l
8 - - - - - - - -0 0 0

Table 4.2: Win percentage of Order in MCTS simulation of one hundred
ove([n]?, m, Chaos) games.

# itr. 100,000 60,000
mwn|l 3 4 5 6 7 8 9 10 11|12 13
3 /100 100 100 - - - - - - | - -
4 - 100 100 100 - - - - -| - -
5 - - 0 86 100 100 100 - - | - -
6 - - - 0 0 15 61 92 99100 -
7 - - - - 0 0 0 0 1|14 50
8 - - - - - - - - 050 7

Table 4.3: Win percentage of Order in MCTS simulation of one hundred

ovc’([n]?, m, Order) games.
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# itr. 100,000 60,000
m\n| 3 4 5 6 7 8 9 10 11| 12 13

3 100 100 100 - - - - - - - -
4 - 100 100 100 - - - - - - -
5 - - 0 95 100 100 100 - - - -
6 - - - 0 0 22 52 92 98| 100 -
7 - - - - 0 0 0 0 1| 33 67
8 - - - - - - - -0 0 0

Table 4.4: Win percentage of Order in MCTS simulation of one hundred
ovc’([n]?, m, Chaos) games.

The results of the experiments can be found in Table 4.1|and Table The
algorithm was run with C = V2 for all values of m and n. The amount of
play-outs allowed per move is dependent on n and shown in the first row of
the tables. Each game was simulated 100 times; the tables show the amount of
games won by Order.

Although we must note that it is unknown whether MCTS inherently favors
one of the asymmetric players, we formulate some conjectures looking at the
results. For m = 6, we know that the game on the board [n]? is winning for
Chaos for n < 7, which is also the result found by MCTS. For n = 8§, the game
also seems to be winning for Chaos. For n = 9, the simulation results are
unclear. For n > 10, the game appears to be winning for Order.

For m = 7,8, MCTS again shows an increase in win rate for Order when the
board becomes larger, leading to the conjecture that ove([n]?, m, p) is winning
for Order if and only if n > N, for some fixed N,,. However, the results do
not show a sharp threshold with the current amount of iterations, and thus do
not give an indication for the values of N,,.

In Section we remarked that, theoretically, passing may be a beneficial
move for either player. To investigate the impact of allowing a player to pass,
we ran MCTS simulations for the game ovc’, the results of which can be found

in Table[4.3land Table 4.4

Note that the results are very similar to those in Table[d.1} Hence, it appears that
allowing the starting player to pass does not have a large impact; investigating
the moves made by the MCTS players, we find that passing is rarely done. It
thus seems that, in the games we consider here, passing is not advantageous
to either player. Finally, note that for these games, also the starting player does
not seem to have a noticeable effect.
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4.6 Infinite boards

We can generalize ove(B, m, p) and ovc’ (B, m, p) to non-finite boards B. Here,
Order wins as usual when there is a homogeneous line of length m. As there
is no way to fill the board, Chaos cannot win in the traditional sense. Hence,
we define ove(B, m, p) for infinite B to be won by Chaos if no winning strategy
for Order exists.

First note that Lemma generalizes to infinite boards almost perfectly.
The only exception is ovc/ (B, m, Order) < ovc/(C, m, Order), which only holds
when C'\ B is finite, as Order wants to ensure they do not keep playing in
C \ B forever when Order plans to win on B. Now Theorem [4.1.2)is applicable
and Order wins ovc’ (B, m, Chaos) for small m when B contains a sufficiently
large square subboard. For m = 2 we can do slightly better.

Wesay a,b € B are neighbours if {a, b} is a line of length 2. The connected relation
is then the transitive closure of the neighbour relation.

Lemma 4.6.1. Let B be a possibly infinite board. Then Order wins ovc’ (B, 2,Chaos)
if and only if B contains a connected component of size at least 3.

Proof. Note that a connected component of size at least 3 contains a pair of
distinct intersecting win lines L; and Ls. Since Chaos can never play in an
empty win line, Order can play in L; \ Ls and win in her next turn. If all
connected components of B3 are of size at most 2, then all win lines are disjoint.
Chaos can simply pass until Order moves in a win line and counter. O

For Chaos, we extend Theorem

Definition 4.6.2. We say ovc(B,m, p) has good parity

(i) in case B is finite, when p = Chaos if and only if | B| is odd.
(ii) in case B is co-finite, i.e., Z* \ B is finite, when p = Chaos if and only if
|Z% \ B is odd.
(iii) in case B and Z? \ B are infinite, always.

Lemma 4.6.3. If B C 72 is neither finite nor co-finite, then there are infinitely many
lines L C 72 of length 2 for which |L N B| = 1.

Proof. Suppose there are only finitely many lines L C Z? of length 2 for which
|L N B| = 1and let E be their union. Then, up to a translation of B, there exists
some n > 0 such that E C [n]2. Since B is not finite, B \ [n]? is non-empty.
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For each b € B\ [n]? all its neighbours a are in B \ [n]?, otherwise {a, b} € E.
Since Z? \ [n)? is connected we have Z? \ [n]?> C B, so B is co-finite. The lemma
follows from contradiction. O

Theorem 4.6.4. Let B be a possibly infinite board and let p be a starting player. Then

(i) Chaos wins ove(B, m,p) for all m > 9 when the game has good parity.
(ii) Chaos wins ovc' (B, m,Order) for all m > 10.

Proof. (i) When B is finite this is Theorem [.1.4li. When B is co-finite, Strat-
egy is still applicable: there are only finitely many unmatched squares,
and because of the parity, Chaos is never first to play in a pair. We never enter
step (iii), so as in the proof of Theorem no homogeneous line of line of
length 9 can ever exist.

Now consider the case where B is neither finite nor co-finite. Partition the lines
of length 2 in Z? by their image in (Z/8Z)?. At least one of these partitions £
must contain infinitely many L € £ such that |L N B| = 1 by Lemma[4.6.3|
After translating B we may assume L is contained in the pairing P given
by Proposition Then, applying Strategy we have infinitely many
unmatched squares, so we never enter step (iii) of the strategy, and again no
homogeneous line of length 9 can occur. Thus Chaos wins ove(B, m, p).

(ii) Again, the finite case was already shown. The non-finite, non-co-finite
case, proceeds the same as the proof of (i), since there is an infinite number of
unmatched squares. For the co-finite case, we can find a pairing of (Z/9Z)? as
in Proposition [f.3.T| with ample unmatched squares to show that Chaos wins
ovc’(Z?%,10,Order) and thus ovc’(B, 10, Order). O

4.7 Conclusions and future research

In this chapter, we proved that the game of Order versus Chaos is winning
for Order if her objective is to make a line of length at most 5, and the board
is suitably large. For the proof, we constructed explicit strategies, fuelled by
MCTS simulations. For Chaos, we proved that he wins the game if Order needs
to make a line of length at least 10, using a SAT solver to find a winning strategy.
For winning lines of length between 6 and 9, we showed that Chaos wins if the
board is of suitable size or parity. Furthermore, we generalized some of the
theoretical results to infinite boards.
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For boards which do not meet these requirements, we ran MCTS simulations
to develop conjectures. The results of these simulations suggest that Order
wins the game ove([n]?, m, Order) if and only if n is sufficiently larger than
m. Note that for general boards B and C with B C C, it is not necessarily
the case that ovc(B, m, p) being won by Order implies that ovc(C, m, p) is won
by Order. However, from the MCTS simulations, one might conjecture that
this statement does hold for the games ovc([n]?, m, Order) with m = 6,7, 8. It
would be interesting to see whether this could be proven.

Besides drawing conclusions from the generated MCTS results, it might be
fruitful to explore other Al techniques, such as deep learning, in order to derive
more information. For the games ovc([n]?, m,Order) with m = 7 or m = 8, for
example, based on the current results, nothing can be said on the threshold
for n (if this exists) at which the game becomes winning for Order. Moreover,
different techniques may show different strategic behaviour, of which the
analysis may lead to new theoretical insights.

Finally, the question of whether passing is advantageous for either player is an
interesting one to further investigate, it being a crucial difference between Order
versus Chaos and classic maker-breaker games. In Section[4.2} we discussed
that passing once can theoretically be an advantage for both players to solve
parity problems, while passing twice in a row is never necessary to win. It is
unknown whether passing more often offers an advantage to either player.
However, the simulations in Section showing that Tables through
are roughly the same, strongly suggest that passing is not beneficial except for

in edge cases like Example
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Appendix

Some of our proofs rely on intensive computation. We made our source code
available through GitHub at
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www.github.com/MadPidgeon/0Order-versus-Chaos|

We briefly describe the files:

dump . cc generates files order. txt and chaos. txt consisting of zeros and ones
indicating for each of the 3'¢ game states of ovc’([4]%, 4, Chaos) whether it is
winning for the respective player. Both of these files are of size 43 MB and can
be used as input for programs to quickly verify whether a strategy is winning
for a player.

verify.py implements an Order player using Strategy which is verified
against all possible moves of Chaos to prove Lemma

sat/ contains the code generating the pairing for Proposition written by
Ludo Pulles and Pim Spelier.

table/ contains the code generating the computational MCTS results for Sec-
tion


www.github.com/MadPidgeon/Order-versus-Chaos

Chapter 5

Nim variants

This chapter is based on work published in [[17]]. We introduce and analyze
three imperfect information variants of the game of Nim. In these variants,
the opponent only receives partial information on the move executed by the
opponent. We model the variants as games in extensive form as introduced in
Section[2.2land compute Nash equilibria for different starting configurations.
For one variant, this provides a full characterization of the game. For the other
variants, we prove some partial and structural results, but a full characterization
remains elusive.

5.1 Introduction

In this chapter, we introduce three variants of a non-perfect information ver-
sion of the impartial game Nim. As a first example, consider a simple Nim
configuration, depicted in Fig. In regular Nim, the winning strategy for
the first player is to remove one chip from any heap.

W N

Figure 5.1: A simple Nim position with three heaps of sizes 3, 3 and 1, respec-
tively.

91
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The first variant we consider is Schrédinger Nim. The difference with regular Nim
is that the opponent is only told from which heap chips have been removed,
but not how many. Hence, a move now consists of first selecting a heap to
inspect, and then removing any amount of chips from it. If a heap is emptied
by a move, this is communicated to the opponent.

Because of the introduction of imperfect information, a strategy for a player
now consists of a probability distribution over their possible moves. We assign
value 1 to a position which is won by the first player with probability 1, and —1
if the game is won by the second player. The position in Fig.[5.1|has value 1/3;
a pair of optimal strategies is illustrated in Fig. Here, “optimal” refers to a
Nash equilibrium: we will show that the players cannot improve by one-sided
deviation from their strategy.

AN AV

Figure 5.2: Optimal strategies for Schrédinger Nim played on heaps of sizes 3,
3 and 1. The states in the dotted ovals cannot be distinguished by the current
player. In the leaves, final values are depicted, omitting further play.

The first player either removes 1 or 2 chips from the first heap, with probability
2/3 and 1/3, respectively. The second player, not knowing how many chips
are still in the first heap, removes any number of chips from the second heap
with equal probability. If the second player emptied the second heap, the game
values are easily computed. Otherwise, if the first player removed one chip
from the first heap on the first move, she later proceeds by emptying this heap,
winning if and only if the second heap contains 1 chip. Finally, if the first player
removed two chips on the first turn, she later proceeds to empty the second
heap, winning the game.
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We show that, if all heaps consist of at most two chips, Schrodinger Nim
positions are equivalent to regular Nim positions. Conversely, if all heaps
consist of at least three chips, Schrodinger Nim positions have value 0, i.e., they
do not favor either player (see Theorem5.3.1]). The truly interesting positions
are those in which there are some heaps of size at most two, and some of size
at least three, as in the above example. We consider such positions with three
heaps, and provide several results.

The second variant we consider is Fuzzy Schrédinger Nim, following the same
rules as Schrédinger Nim, except that emptying a heap is no longer signalled
to the opponent. In Theorem and Theorem we give a complete
characterization of this game, as well as its misere variant. Finally, we consider
a third version, called Kriegspiel Nim, for which we use a set of rules inspired
by the chess variant Kriegspiel. Theorem characterizes games with two
heaps.

For both combinatorial games and games without perfect information, research
has been done in the field of artificial intelligence to create powerful agents.
Examples include the application of Monte-Carlo Tree Search (MCTS) and
deep neural networks to Go in [[33]], using MCTS and meta position based
agents to play Kriegspiel in [[10}[11]], and exploring Counterfactual Regret
Minimization and deep neural networks in the context of Heads-up No-limit
Poker in [40]] and [41]]. Whereas these methods produce powerful artificial
players also in the context of non-perfect information, we are interested in
developing a theory akin to that for combinatorial games, for this class of
games.

Research in this direction has been done in the context of synchronizing com-
binatorial games in [21]] and [[13]]. In these synchronized versions, both players
communicate an intended move to an umpire, after which these moves are
executed simultaneously. Though results are promising for several partisan
games, this approach might prove problematic for impartial games, as both
players may have selected the same move to execute.

The (Fuzzy) Schrodinger imperfect information variant of the rules of Nim
can be generalized to any (impartial) game in which the amount of disjunctive
components is non-increasing. Variants of Nim such as arbitrary finite subtrac-
tion games come to mind, but also a game like Push (see [2]]) can be altered
in a natural way such that the opponent only hears the component on which
a move was made, but not the move itself. The Kriegspiel rule variant can be
applied to any combinatorial game.
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In Section 5.2} we more formally outline the rules of the Nim variants, as well
as their modelling as games in extensive form for computational purposes, as
outlined in [[12}[20,2542]]. In Section 5.3} Section[5.4|and Section 5.5, we analyse
the three variants, finding a full characterization for Fuzzy Schrédinger Nim,
and partial results for the other two. We conclude in Section

5.2 Game rules and notation

In this section, we introduce the rules and notation for three variants of Nim.
Furthermore, we discuss notation for games in extensive form, which will be
used for the analysis of the variants.

5.2.1 Nim and its variants

The classic combinatorial game of Nim starts with a configuration of d heaps,
the i-th heap consisting of n; chips. Two players L and R alternate turns, each
player being allowed to take any number of chips from any one heap every
turn. The player taking the last chip wins. Nim being an impartial game, for
the remainder of the chapter, we assume without loss of generality that L starts.
Denoting the height of the heaps by n = (n1,...,nq4), we write Nmm(n) for the
game of Nim with these heaps as starting configuration.

In the first variant of the game, dubbed Schridinger Nim, both players know
the starting configuration. During the game, however, when the opponent
moves, a player is only told which heap the move was on, not the amount
of chips removed. An exception is when a heap is emptied, which is always
communicated to the opponent. The height of (some of) the heaps may thus be
unknown to a player during the game. A move now consists of first selecting
a heap, at which point the height of the heap becomes known, followed by
making a decision on how many chips to remove from the heap. We denote
a game of Schrodinger Nim with starting configuration n = (ny,...,nq) by
SN(n). Note that the game is impartial and short.

The second variant, which we will call Fuzzy Schrédinger Nim, is very much like
the first, again with both players knowing the starting configuration. However,
in the fuzzy version, emptying a heap is not signalled to the other player. Now,
a player may happen to select an empty heap to move on. In this case, the player
is told the heap is empty, and they must pick another heap to try and remove
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chips from. A game of this variant with starting configuration n = (n1,...,nq)
is denoted by FSN(n). We will return to this variant in Section

The third variant which we will consider is inspired by Kriegspiel and is
therefore named Kriegspiel Nim. Yet again, both players know the starting
configuration. During a player’s turn, a move consists of trying to remove 4
chips from the j-th heap. If this is possible, it is done, and the turn is passed,
the other player not being informed of anything except the fact that a successful
move has been executed. In particular, if a pile is emptied by a move, this is
not explicitly communicated to either of the players. If the requested move is
not possible, the player must try another move, continuing until a legal move
is tried and thus performed. For n = (n4,...,nq), we denote this variant of the
game with starting position n by KN(n).

To illustrate the three game variants, again consider the Nim position from
Fig. Suppose that the first player removes one chip from the first heap. In
both Schrédinger and Fuzzy Schrédinger Nim, the second player only knows
that the first heap has been altered, whereas in Schrédinger Nim he also knows
that the heap is non-empty. The possible moves for the second player are now
either to remove any number of coins from the second or third heap, or to
choose to inspect the first heap. If he chooses to inspect the first heap, he
discovers there are two chips left, and may then proceed to choose to remove
one or both of them.

In Kriegspiel Nim, after the first player has removed a chip from the first heap,
the second player receives no information at all. His move now consists of
trying to remove any amount of chips from any heap. If he would try to remove
three chips from the first heap, the umpire would respond negatively, revealing
that the first player has removed at least one chip from the first heap. Any other
attempted move that was legal from the (known) starting position can and
will be executed. See Fig.[5.3|for an illustration of this example.

5.2.2 Extensive form games

As the players no longer have perfect information in the variants of Nim de-
scribed above, the variants are no longer combinatorial games. Instead, we
model them as games in extensive form as in [[12}[20,25]], already expanded
upon in Section[2.2] In such a game, we have a set of states V. The set V; C V/
is the set of terminal states, each having value f(v) € R, v € V;, and the
non-terminal states are partitioned into (disjoint) information sets. For every
information set S, we define an action set A = A(S). We write N (v) for all
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SN/® [
sxe (o2 /]

KN

N @ @ G

Figure 5.3: The starting position of a game with three heaps of sizes 3, 3 and
1, respectively, as seen by R after L's first move, in the three different variants
of Nim. The clouds contain the possible heights of the heaps. Notice that
in Kriegspiel Nim, R knows a little more: exactly one of the heaps has been
touched.

s/

AN

states reachable by one action from v. To every state w € Nt (v), we assign the
unique action o, (w) used to reach it, and we denote by w™ the state preceding
it. An action sequence is a list of consecutive actions, starting from the initial
state: 0 = [a1, ..., ay). The part of o consisting of only Ls actions is denoted by
o1, the definition of o is analogous.

An assumption that is commonly made is that of perfect recall: no two different
action sequences by one player can lead to the same information set. Under
this assumption, we can denote a player’s unique action sequence leading to a
node v in some information set by o p(v). Note that by recording the sequence
leading to an information set in the description of the set, i.e., by assuming that
both players do not forget earlier moves they did, we can always guarantee
perfect recall.

A (behavior) strategy 1 defines on every action set a probability distribution.
The probability of choosing any a € A(S) for S € S is denoted by p(a). The
value of a strategy pair = (jur,, ur) for the two players L and R is denoted by
v(pr, ur). The value of a strategy pair when starting the game in a statew € V
is denoted by vy, ().

For the Nim variants, we take as states the current height of the heaps, and the
current player to move. The terminal states are those with only empty heaps,
having value 1 if it is R’s turn (so L, the starting player, wins) and —1 otherwise,
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giving rise to a zero-sum game. For the division of the rest of the states into
information sets, we keep track of the current player, the action sequence for
that player so far, and the knowledge of the player of the height of the heaps.
For every heap k, this can either be an exact height, say h, or an upper bound,
denoted by b, if the other player has moved on the heap last.

For the games of (Fuzzy) Schrédinger Nim, the current player can choose to
either remove any amount of chips from a known heap, or to take a look at
an unknown heap. In the latter case, the player sees the amount of chips left,
entering another information state, from which they can only choose to remove
any amount of chips from the chosen heap. We denote the move of removing 4
chips from the (known) k-th heap by k;.

5.3 Schrodinger Nim

In this section, we analyze the game of Schrédinger Nim. We first argue that
configurations in which either all heaps are sufficiently small or all heaps
are sufficiently large, the outcome is straightforward. Then, we continue by
partially analyzing the game on three heaps of varying size, which proves to
be more complicated.

5.3.1 Basic cases

First, note that if the other player has moved on a heap i times since the first
player has observed its height to be h, their knowledge of the heap will be
h — i. Furthermore, we have that 1 is equivalent to 1, as the emptying of a heap
is signalled. Therefore, if a heap contains two chips, and both players know,
the height of that heap will be known to both players for the rest of the game.
Hence, SN(n) is equivalent to Nim(n) if n; < 2foralli =1,...,d. Naturally, in
the trivial case that the game starts with only one heap, Schrodinger Nim is
also equivalent to regular Nim. Finally, if all remaining heaps have height 1 at
some point in the game, regardless of the information both players have, the
result will be the same as for regular Nim, and is determined by the parity of
the number of non-empty heaps.

In these cases, both players can use a deterministic strategy when playing
optimally, and the starting player L will either always win or always lose if
both players play optimally. In other cases, the game may not be always won or
lost by the starting player. Instead, the players will employ a Nash equilibrium
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of strategies, having a real value v € [—1, 1], where “L is the probability of L

winning. We denote by v(SN(n)) the value of the game, which is the unique
value of some Nash equilibrium for the two players.

Theorem 5.3.1. Let n € Ny, d > 2. Then v(SN(n)) = 0.

Proof. We proceed by induction on d. For the base case d = 2, we provide an
explicit strategy pair and prove that it is Nash. On the first turn, L reduces
one of the heaps to one or two chips, both with probability 5. Without loss of
generality, let this be the first heap. Next, R does the same for the other heap.
Now, if L reduced her heap to two chips, she takes one of the remaining chips
there. Otherwise, she takes one chip from the other heap. R again mirrors. Note
that the value of the strategy pair is indeed 0.

The equilibrium is depicted in Fig. The nodes are states, the dotted boxes
show information sets. Note that in fact every node is contained in an informa-
tion set, but only the most relevant sets are displayed. By the discussion above,
we may interpret states in which both heaps consist of one chip as terminal
states, yielding a value of either 1 or —1.

The description of the strategies above is not exhaustive. Therefore, in the
sequel, if we encounter an information set in which no probability distribution
over the actions has been defined yet, we must and will do so, making sure
that this does not contradict an earlier definition. For example, it has not been
decided how Left should play in the information set [1, ns], which may be
reached by Right playing on the first heap during his first turn. However, it is
clear that, in this case, 2,,,_1 is an optimal move, which we would have filled
in only when encountering this information set for the first time.

We prove that the provided strategy pair is indeed Nash. First, suppose R
deviates. If R checks and plays on the first heap during the first move, L is
given the state (1, n2) or (0, ny) with perfect knowledge, winning the game by
removing all but one or all chips from the second heap, respectively. Similarly,
emptying the second heap leads to a win for L. Therefore, we may suppose

that R plays 2; with probability p;, with Z:Zl_l pi=1,pn, =0.

If R was in (2, ng), L will respond by moving to (1, 7y — ¢), which is a win for
Rif and only if ny — i # 1. If R was in (1,n2), L will inspect and play on the
second heap, which is a win for R if and only if ny — 4 = 1. Both cases occurring
with probability 1, we find that R obtains a value of 0 regardless of the p;.
Noting that it is clear that R cannot gain by deviating during his second turn,
we conclude that R cannot improve his score by deviating at all.
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(n17n2)

(1,1)
-1

Figure 5.4: The Nash equilibrium in action. In black nodes, it is Ls turn; in
white nodes, it is R’s turn. The action probabilities are shown on the edges. The
labels of the information sets display the information as known to the active

player.
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Next, suppose L deviates. Emptying a heap leads to a win for R, so assume
that L plays 1; with probability p;, where E:l:ll_l pi = 1, pn, = 0. Next, R
moves to either (ny — i,2) or (n; — 4,1) with probability 3. If n; —i = 1, L
must play on the second heap to not immediately lose, winning if and only
if R left 2 chips. Otherwise, playing on the second heap allows R to certainly
win, so suppose L plays 1, with probability ¢;, where Z?;I%I G =1, qn—i-
If R initially left 2 chips, he moves to (ny — ¢ — j, 1), which is winning for L if
and only if ny — i — j # 1. Otherwise, he inspects and plays on the first heap,
which is winning for L if and only if n; — i — j = 1. Hence, L obtains value 0
regardless of the p; and ¢; and cannot gain by deviating. We conclude that the
given strategy pair is Nash.

Finally, suppose v(SN(n)) = 0 for any n € N, and consider the game SN(n)

with n € N&EL If L empties any heap in the first move, this guarantees a value
of 0. Otherwise, R is faced with d heaps of known height and one of unknown
height. Now, by checking and emptying the heap of unknown height, R can
again guarantee a value of 0. By playing on any other heap, he might force a
value of less than 0. Therefore, the best L can do is to prevent this by emptying
any heap on the first move, obtaining value 0. O

The above theorem shows that either player wins with probability 3 if all heaps
contain at least 3 chips at the start of the game. For the game with two heaps,
if either heap is initially of height 1 or 2, L can win by reducing the other heap
to the same size. Games with three or more heaps, in which some heaps have
at most 2 chips and some at least 3, however, turn out to be more difficult to
analyze, as we will see in the next subsection.

5.3.2 Three heaps

In this section, we give a partial characterization of v(SN(n)) for n € N3. We
start by computing the values for all starting configurations except for (11, n2, 1)
with ny, ny > 4, which are summarized in Table Note that the heaps may
be permuted in any way without changing the value of the game. The game
(1,n4,1), for example, also has value 1 for all ny > 3.

Theorem 5.3.2. Let n € N. Then v(SN(n,1,1)) = v(SN(n,2,2)) = 1.

Proof. On her first turn, L moves to (0,1, 1) or (0, 2, 2) respectively, from which
point the game is equivalent to two-pile regular Nim. As the piles are of the
same size, the current player R loses. O
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Table 5.1: Values of three-heap games.

(n1,1,1) (3,2,1) (n1,2,1) (n1,3,1)

ny > 1 ny >4 ny >3
1 0 1/2 1/3
Thm.[5.32] | Thm.[5.3.3] | Thm.[5.3.4] | Thm.[5.3.5]
(n1,2,2) (nl,n2,2) (711,712,713)
n123 nl,n223 nl,ng,n323
1 1/3 0
Thm.[5.32] | Thm.5.3.6 | Thm.p.31]

Theorem 5.3.3. v(SN(3,2,1)) = 0.

Proof. First, note that if L makes a move on the second or third pile, she loses
the game. Indeed, (3,1, 1) is winning for the active player by Theorem[5.3.2]
and the other two cases are trivial. Furthermore, L must not take all chips from
the first pile in her first move by Theorem[5.3.1}

(3,2,1)

(2,0,1) (2,2,0) (1,0,1) (1,2,0)
1 -1 -1 1

Figure 5.5: A Nash equilibrium for SN(3, 2, 1).

Now, consider the strategy pair depicted in Figure Note that the pair has
value 0. It is easy to see that L cannot improve by deviating. Indeed, following
the reasoning above, only the two actions depicted should be assigned a non-
zero probability. Suppose L picks one chip with probability p; and two chips
with probability py, then her payoff becomes

(3 —3) +p2(—5+3) =0.
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Next, suppose R deviates. Inspecting and playing on the first pile results in
the state (1,2,1) or (0,2,1) with complete information for L, both yielding a
certain loss for R. Removing one chip from the second pile gives one of the
states (2,1,1) or (1,1,1), again with complete information for L, resulting in a
loss for R. Hence, the two actions depicted for R are the only ones potentially
worthwhile. Picking from the second pile with probability ¢; and the third
with probability ¢2, we find a value of

L — @)+ 3(—q1 +q2) = 0.

Hence, neither player can improve by deviating from the shown strategy, so
the strategy pair is indeed Nash with value 0. O

Theorem 5.3.4. Let n € N, n > 4. Then v(SN(n,2,1)) = 1.

Proof. Again, note that if L makes a move on the second or third pile, she loses
the game. Indeed, (n,1,1) is winning for the active player by Theorem 5.3.2]
and the other two cases are trivial. Hence, we conclude that to reach a value
strictly larger than —1, L must move on the first pile.

Consider the pair of strategies described in the Kuhn tree of Figure To
improve readability, we have not indicated all the information sets. Note that
this strategy pair has value 3. We will prove that the pair is a Nash equilibrium.

(n,2,1)

(3,2,1) (3,0,1) (3,2,0) (2,2,1)(2,0,1)(2,2,0) (1,2,1)(1,0,1) (1,2,0)
0 1 1 1 1 ~1 1 ~1 1

Figure 5.6: A Nash equilibrium for SN(n, 2,1).
First, suppose R deviates. Note that taking one chip from the second pile in his

move leads to a state in {(3,1,1), (2,1,1), (1, 1, 1)} with perfect information for
L, which is a certain loss for R by Theorem Therefore, we only need to
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consider a strategy (q1, g2, g3) over the three moves described. Following this
strategy, the payoff for L is

a0+l 1+l ) red il Drg@doieto101
Z%((h +Q2+Q3)=%-

Hence, no matter the strategy of R, the value remains 3.

Now, suppose L deviates and chooses to pick ¢ chips from the first pile with
probability p;, 0 < i < n; taking all chips results in a certain loss. Let v; denote
the value obtained if R chooses to inspect and play on the first pile, then the
value of the strategy pair (p1, ..., p,—1) and the fixed strategy of R is

n—3
Zpi(%vi + %) + %pn—Qvn—Q + %pn—lvn—l- (51)
i=1

We explain this as follows. By removing 4 chips from the first pile, 1 <i <n -3,
L moves to (n — 1,2, 1) with 3 < n — i < n. In these states, touching the second
or third pile causes a certain loss for R, while inspecting the first pile yields v;.
Hence, the value obtained from this state is %vi + i + i = %vi + % If L removes
n — 2 or n — 1 chips from the first pile, we end up in (2,2,1) or (1,2,1). From
Figure[5.6} it followi that by the fixed strategy of R, the value obtained in these

states is 5v; + i —-7= %vi. Hence the formula indeed holds.

Next, we determine v;. Again, by Figure we immediately see that v,_3 =0
and v,_2 = vn,—1 = 1, where the former follows from Theorem To
determine v; for 1 < i < n — 3, note that, by the reasoning at the start of the
proof, playing on the first pile is optimal for the first player if starting in (k, 2, 1)
with k& > 4. To determine the value for these games, we proceed by induction
onk.

For the game starting in (4,2,1), again consider the tree in Figure We already
saw that R cannot improve his payoff by deviating. Hence, suppose now that L
picks i chips from the first pile with probability p;, i = 1, 2, 3. The value of the
game then becomes

GG+ +rG+i—1) +psG—1+3) =301 +p2+p3) =3

Hence, L can also not improve, so the given strategy pair is Nash and the value
of the game is 1. Now, by induction, it follows that v; = —% fori =1,...,n — 4.
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Substituting the values of the v; into (5.1)) yields

1n—4 1 n—1
Z;prf-i Z Di-

i=n—3
Maximizing over all probability distributions (p1, ..., pn—1) yields a value of
1. Hence, L can indeed not improve her payoff by deviating. O

Theorem 5.3.5. Let n € N, n > 3. Then v(SN(n,3,1)) = 1.

Proof. We consider the strategy pair in Figure where again we denote only
the state. The value of the pair is . Note that this strategy pair does not fix the
strategies followed in the states not encountered in the tree. If we do encounter
such a state when one of the players deviates, we fill in the blanks at that time.
For the values of the leaves, note that in the leftmost information set for L, she

(n,3,1)

Figure 5.7: A Nash equilibrium for SN(n, 3,1).

must empty the first pile, leading to a win half of the times. In the rightmost
set, emptying the second pile is always a winning strategy.

Now, suppose R deviates. Note that inspecting and playing on the first pile
leads to (1,3,1) or (0,3,1) with perfect information for L, yielding a loss for R.
Emptying the third pile leads to (2,3,0) or (1,3,0) with perfect information for
L, also giving a loss for R. Hence, the three actions depicted in Figure|5.7|are
indeed the only interesting ones. Picking 4 chips from the second pile with
probability ¢;, the value becomes

2p+imte-—a)=3(a+et+aea) =3
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Hence, deviation by R does not lead to a smaller value.

Next, suppose L deviates. First, note that emptying the last pile leads to a payoft
of 0. Therefore, any strategy which does not empty the last pile on the first
move which yields a non-negative payoff cannot be improved by choosing to
empty the last pile with a non-zero probability.

Similarly, consider a strategy for L in which she moves on the second pile in
the first turn. Note that emptying the pile leads to (n, 0, 1), which is a loss for L.
Not emptying the pile, L moves to (n,2,1) or (n, 1,1). We depict these choices
and a fixed counterstrategy for R in Figure

(n,3,1)

Figure 5.8: Player L moving on the second pile and the response of R.

Note that in the information set [2, 2, 1] for L, her best response is to empty the
second or third pile, both with probability 1, leading to a value of 0 as shown
in the figure. Picking both branches with probabilities p; and p; respectively
in the first move, L obtains a payoff of

sh1+ (5 + 35— 5) =500 +p2) = 5.
Hence, L cannot obtain a value higher than 3 by playing on the second pile.
Therefore, we may assume that L plays on the first pile, taking  chips with
probability p;, 1 < i < n; note that taking all chips results in a certain loss.
Suppose that R consequently takes any number of chips from the second pile
with probability 1.

Now, L finds herself in some information set [n —1, 2, 1] or [n—1, 0, 1]. The latter
means a loss for L if and only if ¢ = n — 1. Suppose therefore that L is in the set
[n —,2,1]. She now chooses to pick j chips from the first pile with probability
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n—i

q;“i, Jj=1,...,n —1,chooses to inspect the second pile with probability 7",
and to empty the third pile with probability 75"

First, consider the information set [1, 2, 1]. In this case, inspecting and emptying
the second pile is always a winning move, so we set ¢ = r3 = 0and r} = 1.
For [k,2,1] with k > 3, emptying the third pile is always losing, so % = 0 for
k =2,...,n — 1. The same goes for inspecting and moving on the second pile
fork >2,s0alsor¥ =0fork=2,...,n— 1.

From the information set [k, 2, 1] for k£ > 2, by removing 1 < j < k chips from
the first pile, we arrive in the information set [n — 2,2, 1] or [n — 2, 1, 1] for R. In
the latter case, inspecting and emptying the first pile always results in a win for
R. In the former case, things are more complicated. Taking one chip from the
second pile always results in a loss for R. Taking two (and thus emptying it)
results in a win for R if and only if he is in the state (1, 2, 1). Emptying the third
pile leads to the information set [k, 2, 0] for L. However, as R would always
empty the first pile if the second pile has size 1, L may conclude to be in the
state (k, 2,0). Therefore, emptying the third pile is winning for R if and only if
k=2

The final option for R is to inspect the first pile and act accordingly to what
he finds. Going from [n — 2, 2, 1], emptying it is always a loss for R, and hence
choosing the inspection action in (1, 2, 1) results in a certain loss. Not emptying
the first pile reveals to L that the height of the second pile is 2, like before.
Therefore, choosing the inspection action in the state (2,2,1) leads to the state
(1,2,1) or (0,2,1) with perfect information for L, both being a win. If R finds
himself to be in a state (k, 2, 1) for k > 3, we fix his strategy to taking all but one
or two chips from the first pile, both with probability 3. L then finds herself
either in (2,2,1) or (1,2,1) with equal probability, which, like assessed earlier,
leads to a payoff of 0.

Now, suppose R, in the information set [n — 2, 2, 1], chooses to inspect the first
pile with probability s;, empty the second pile with probability s; and empty
the third pile with probability s3. The value of the strategy pair of L and R can
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then be computed as follows:

on1(1+1—1) 4 Spn_a(gi(si —s2o+s3) —g3 +ri —ai + ¢ — 17 + 1)
+ 1pas(@(s1+s2—s3) + a3 (s1—s2a+s3) — @5 —df — a5+ a5 +1)

n—1 k-3
Y Apnk [ D df(s2+ s3) + af (s + 52— s3) + qf_y (51— 52+ s3)
k=4 i=1
k—1
—gi =Y df+ai+1
j=1

= 2pn—1+ 3pn_a(qi(s1 — sa+s3— 1) +1)
+ 3pn-3(qi(s1+s2—s3— 1)+ q3(s1 — 52+ 53— 1) + 1)

n—1 k-3

+ Z Pn—k qu(sz +83— 1)+ qF_o(s1+ 52— 83— 1)
k=4 j=1

+q;’:_1(81 — Sy +s3—1)+ 1)

Now, note that s + s2 + s3 = 1 so that s; £ 59 & s3 — 1 < 0 no matter the signs
of the s;. Therefore, maximizing over the possible choices, L will assign value
qF = 0 to those ¢} multiplied by a factor s; & s, + s3 — 1. The value of the best
response strategy therefore becomes

n—1 n—1
%pnfl + %Pn—z + %pnfd + Z %pnfk = % Zpk - %
k=4 k=1

This proves that L also cannot gain more by deviating. Hence, the depicted
strategy pair is indeed Nash with value 3. O
Theorem 5.3.6. Let ny,ny € N, ny,ny > 3. Then v(SN(ny,n2,2)) = 3.
Proof. Consider the strategy pair in Figure 5.9} Note that in the fourth row, the
two nodes circled by a dashed line together form an information set, as well as

the two nodes circled by a dotted line. Again, we denote only the states, and
again, the strategies are not yet exhaustive.

Suppose R deviates. In his first turn, he finds herself in one of the three states
(3,n2,2), (2,n2,2) or (1, ng,2) with probability . Emptying the third pile leads



(’I’Ll, na, 2)

(1,1,0) (1,1,0)

-1

Figure 5.9: A Nash equilibrium for SN(n,n2, 2).

(0,1,0)
1

80T

SJuvLAbR WIN °Q Jaldl’ﬂ/[:)
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to a value of 0 in the case of (3,n2,2) and a win for L in the other two cases.
Taking one chip for the third pile leads to a value of at least %, 3 and 1, respec-
tively, by Theorems[5.3.5}[5.3.4/and [5.3.2] Note that L has perfect information
after R’s move, while R has not, hence the values might be larger. Therefore, R
will not play on the third pile.

Next, consider R inspecting the first pile. Emptying the pile leads to a win for L,
so this move leads to a win for L if done in (1, nz, 2). From (2, n2, 2), we move
to (1,ns, 2) with perfect information for both players, yielding a value of 1.
From (3, n2,2), say R moves to (2, ng, 2) or (1, ng, 2) with probability ¢; and ¢z,
respectively. This confronts L with the information set [2, ns, 1]. We define her
strategy in this set to play the winning strategy for starting from (2, ns, 2) or
(1,7n9,2) both w. p. 1, following the proofs of Theoremspi 3.2land [5.3.4] Hence,
with probability 1, L will empty the second pile, w.p. § she will reduce the
second pile to 3 chips and w.p. g she will reduce it to 2 or 1 chip. This gives a
total value of

a(z —1+G+s+8) ) +telG 1+G+s+5) - =—1a

Minimizing this value, R will thus pick ¢; =1 and ¢, =0 to enforce —= Thus,
by choosing to mspect the first pile, the value becomes (-1 + 1 + 1) =2.
As this is larger than %, R cannot gain from choosing thls option.

Therefore, suppose R chooses to remove i chips from the second pile with
probability p;, i = 1,...,n,. Removing ny chips and thus emptying the pile
leads to a win for R if and only if the other piles are of size 2. Removing any
other amount of chips brings L into the info set [3,n2 — 1,2], [2,n2 — 1, 2] or
[1,n2 — 1,2]. Her strategy for these sets is determined by Figure |5.9 From
[3,n2 — 1,2] and [1,n — 1,2], L empties the third pile. From [2,ny — 1,2], L
inspects and empties the second pile, moving to the state (2,0, 2) and winning
the game. Hence, after L's move, if R is not losing the game, he finds herself in
some state (3, k,0) or (1, k,0), having full knowledge on the second pile, but
not on the first. Hence, abusing notation, we can describe his information set
as I, = [{1,3},%,0].

From the set I, let R inspect the first pile with probability r*. If there was only
one chip, he must empty the pile and loses the game. If there are three chips left,
he picks one with probability s¥ and two with probability s&; picking all three
leads to a loss. This move by R brings L into the information set [2, ny — 1,0]. We
define her strategy in this info set by inspecting the second pile and reducing
it to either one or two chips, both with probability 3, if possible. Now, L wins
if and only if the two remaining piles are of the same size after this move.
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Therefore, the best R can do is to pick sf = s§ = 1 fork =1,...,ny — 3, forcing

a value of 0. For k = ny — 2, R picks s¥ = 1 and s§ = 0 to move to (2,2,0) and
win the game. Similarly, for k = ny — 1, R picks s¥ = 0 and s§ = 1 to move to
(1,1,0) and win.

Finally, R chooses to pick i chips from the second pile with probability ¢,
i =1,...,k — 1; note again that emptying the pile leads to a loss. This moves
to the information set [3,no — 2,0] or [1,no — 2, 0] for L. In the first case, L will
always reduce the first pile to one chip, winning if and only if the second pile
is also of size one and losing otherwise. In the second case, L will inspect the
second pile and reduce it to size 1 if possible, losing if and only if it already
contained exactly one chip, and winning otherwise.

In summary, the value of the game obtained when R plays his deviating strategy
becomes

1 n2—3 n2—2—k: n2—2—k:
5[ Yookl Y it w1 D -, )
k=1 1=1 1=1

+pn2—2(—rn272 +q;L2—2 + 1 _’_,rn272 o qilz—Q) +Pn2—1(—7"n271 +rn271)
+ s (1=1+1)]

’I’L2—3

1
= g[ Z pk(l + rk) +pn;_>—2 +png—l +pn2:| .
k=1

Minimizing this value, R will choose r* =0fork=1,...,ns — 3 so that we
obtain
no 1

1
3P 3
k=1

as value. Hence, R can indeed not improve by choosing a different strategy.

Now, suppose L deviates. Without loss of generality, we may assume that L
does not play on the second pile. If L removes one chip from the second pile, R
can remove the second chip on his turn, moving to (n1,n2,0). Hence, R can
force an outcome of at most 0. Similarly, by emptying the third pile, L obtains
a payoff of 0. Therefore, if a value of more than 0 can be obtained by playing
on the first pile, L will always choose to do so.

Hence, assume L picks i chips from the first pile with probability p;, i =
1,...,n1 — 1, emptying leads to (0, ng,2) and thus a loss for L. Next, R will
reduce the second pile to size 0, 1 or 2, each with probability £. If R emptied
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the second pile, L will find herself in the state (k, 0, 2) with k = n; — i, losing
if and only if ¥ = 2 and winning otherwise. Otherwise, L is faced with the info
set [k, {1,2},2].

First, note that if £ = 2, L can always win by emptying the second pile. We
therefore further assume that £ # 2. Now, L can pick ¢ chips from the first
pile with probability ¢¥, i = 1,..., k. If the second pile is of size 2, L wins if
and only if she empties the first pile, and loses otherwise. If the second pile
is of size 1, L loses if she empties the first pile. Otherwise, she moves to the
information set [n; — 2,1, 2 for R. For this set, we define the strategy of R to
be the equilibrium strategy for the game (n4, 1, 2) as described in the proof of
Theorem which plays on the first pile in the first move. Therefore, if L
reduced the first pile to size 1 or 2, she wins; size 3 yields a value of at most 0
and otherwise, a value of at most —% is obtained.

Next, L can choose to inspect the second pile with probability r*. If the pile
was of size 1, it is now emptied, moving to the information set [n; — 1,0, 2; 0]
for R, with o being the choice to reduce the second pile to size 1 on R’s first
turn. We define R’s strategy in this set to inspect the first pile and reduce it to
size 2 if possible. This strategy is losing for R if and only if the first pile was of
size 1, and winning otherwise. If the second pile was of size 2, L can choose to
pick 1 or 2 chips from it, with probability s} and s} respectively. Picking one
chip leads to the info set [n1 — 1, 1, 2] for R. We let R empty the third pile in
this case, winning if and only if £ = 1 and losing otherwise. Picking two chips
leads to [n1 — 1,0, 2; 03], where o2 denotes R’s choice to reduce the second pile
to size 2 on his first turn. In this set, we let R pick one chip from the third pile,
again winning if and only if £ = 1 and losing otherwise.

Finally, L can pick one or two chips from the third pile with probability ¢¥
and t5 respectively. First, consider the case where the second pile is of size
2. Picking one chip from the third pile then leads to [n; — 1,2,] for R, from
where we let R play like in Theoremagain. Hence, we obtain a value of 1 if
k =1, at most 0 if k¥ = 3 and at most — 5 otherwise. Picking two chips leads to
[n1 — 1,2, 0], from where R must pick one chip from the second pile as defined
by Figure5.9] Hence, he wins if £ = 1 and loses otherwise. Next, consider the
second pile being of size 1. Removing one chip from the third pile then leads
to [n1 — 1, 1, 1]. Inspecting and emptying the first pile always leads to a win for
R. Finally, removing both chips leads to [n; — 1,1, 0], from where R can win if

and only if & # 1.
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Combined, L can obtain at most the following value:
niy—>5 ni—1—k
[zw( ettt
—4-
k —k —k k k
ty' =3 Z T A g ek Tk — Dk

—pmk gk gk 1)

+ Ppy—a(—aqi — a3 — g5 + g5+t — L1+ 45

tatas—gi—rt -t —t3+1)
tpm-s(—G B+ G+ B+ — g -t 5+ 1)
T poy (1 +1-1)

+pm_1<q%—r1+t%—t%—q%+r1—t%+té+1)]
n1—5 —4—
DI

k=1 i=1

+pnl 4( q t4+1)+pn1 3( t?+1)+pn1—2 +p711—1]-

wl| =

Maximizing this value, L will pick all probabilities remaining in this expression
equal to zero, leading to a value of

Z Z = =
This finishes the proof. O

The games SN(n1, ng, 1) with nq,n9 > 4 do not have a constant value. Some
computed values for small n; and ny are shown in Table

For this configuration of the game, we present some structural results. The
proofs of these results (partly) rely on the following observation, stating the
principle of indifference for games in extensive form. Note that this is true for
these games in general, not only for Schrodinger Nim.
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Table 5.2: Values for the game SN(nq, ng, 1).

Tl2\’l’L1 4 5 6 7
4 15  1/4  1/4 1/4
5 3/13  5/21  5/21
6 4/17  13/55

Theorem 5.3.7. Let = (ur, ur) be a Nash equilibrium for a two-player zero-sum
game in extensive form with perfect recall, in which L moves first and R moves second.
Write v = v(p), and let r be the root of the Kuhn tree of the game. Then

(1) vy(p) =wvforallw e N (r) with pr,(a,(w)) > 0.
(2) X pes brlan(w)v -1 (1) = X esprlon(w))v forall a € A(S) with
wur(a) > 0, where S is an information set for which or(S) = 0.

Proof. (1) Letw € N7 (r) be such that up(a,(w)) > 0. Suppose now that
Uy (1) # v and assume first that v,, (1) > v. Define the new strategy 1
for L by 1} (o () = Lyz=yy for x € NT(r) and o/ (a) = ar(a) for all
other actions a, and let i/ = (i, pr). By definition,

vr (W) = Z pp(ar(@))vs (1) = v (1) = v (1) > v,
zENT(r)

which contradicts the fact that x is Nash. Now, suppose v,, (1) < v. As
v =3 en+(r) bL(ar(2))vs(p), there must be some w' € NT(r) with
vy (1) > v; otherwise we find

o= mla@)u) < Y aulan@) =w.

zeN+(r) zeNT(r)

Now, repeating the above argument for w’ instead of w completes the
proof of (1).

(2) Let S be an information set for which or(S) = () and let a € A(S) be
such that jur(a) > 0. Suppose first that

D in(w vy (1) < Y pr(w v

weS wesSs
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Define i, by pi'z (k) = L{z=q) on A(S) and p, = pur elsewhere. Then

Ur (M/)

= Y lar(w)en ()

weN+(r)

= > e (W) + Y nelan(w))vw (i)

weNT*(r)\S weS

= Y (e @)

weNT(r)\S

+ 3 prlon) D pr(R)v, g0 (1)

wes kEA(S)

= X plen(@)u Y o)y ()

weNT*(r)\S weSs

— Z pr(a(w))v + Z pr (o (w))vg-1 (4 (1)

weNT(r)\S wes

< Y mle@)+ Y prlaw)o =,

weNT*(r)\S weSs

contradiction. Suppose next that

S a0 () (1) > 3 e ar(w))o.

weS weSs

Then there must be some o’ € A(S) for which

Z NL(ar(w))va;f(a/)(N) < Z pr (o (w))o;

weS weS

indeed, otherwise we find

-y

weNT(r)

>

pr(ar(w))ow ()

p (e (w))ow () + D pr(an(w))vw(p)

weENT(r)\S wES

>

pr (o (w)) vy (p) + Z pr (o (w)) Z 1R(K)V -1 (1)

weNT(r)\S weS keA(S)
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= prlar()o+ Y pr(k) D (o (w))vg-1 g (1)

weN+(r)\S kEA(S) wes

> > plar)o+ Y pr(k) D prlan(w))e
weNT(r)\S keA(S) weS

= Y @)t Y @) Y (e
weN+(r)\S wes kEA(S)

= Z /.LL(OéT(’UJ))’U + Z ML(OKT(U}))U =,
weNT(r)\S weS

contradiction. This completes the proof of (2).
O

Lemma 5.3.8. Let ny € N, ng > 3. Then v(SN(n1,ne, 1)) is non-decreasing in ny,
fOT’ ny > No.

Proof. Consider the game SN(ng, n2, 1). Suppose first that there exists a Nash
equilibrium (pr,, pr) for which pi7,(31) = 0 with payoff v := v(SN(ng, ne, 1)).
Then, for the game SN(n, nq, 1) with n; > ny, L may use the same strategy
as for the game SN(ng, ng, 1), playing 1; with ¢ > n; — ng on the first turn to
obtain a value of v in this game, as well.

If such an equilibrium does not exist, let 4 = (ur, r) be Nash such that
wr(31) > 0. Note that 0 = v(SN(ng,n2,0)) = vs, () = v(SN(ng,n2,1)) by
Theorem [5.3.7] Therefore, we may define ' = (u, ur) with p7(31) = 1 as
another Nash equilibrium strategy pair. Now, for SN(n4, ng, 1) with ny > ng,
L may also force a value of 0 by picking 3, with probability 1 as first move.
Hence, indeed v(SN(n1,n2,1)) > v(SN(ng, ng, 1)) for ny > ns. O

Lemma 5.3.9. Let ny,ns € N, ny,ny > 4. Then v(SN(n1,n2,1)) € [0, 1].

Proof. By playing 3, as first move, L guarantees a value of 0 by Theorem[5.3.1}
Therefore, v(SN(n1,n2,1)) > 0.

To prove the upper bound of 1, we give an explicit strategy for R against which
L cannot obtain a value of more than 1. Suppose without loss of generality
that L plays on the first heap during her first move. Emptying this heap leads
to a win for R, so we may assume that L plays 1; for some i € {1,...,ny — 1}.
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Now, let R play 2,,,_3 with probablhty 57 2n,—2 Or 2, 1 both with probablhty
g and 2,,, with probability 2. If L played 1, _1, this yields a value of % + 2+ 2

2 = 2. IfLplayed 1, forany i € {1,...,n; —2}, R'smove 2, leads toa w1n for
L, whereas any of his other moves leads to the information set [ny —i,n2 — 1,1]
for L. We continue by showing that L cannot obtain more than a value of —§
in any of these information sets, so the total value obtained will be at most
B

First, note that in these information sets, inspecting the second heap will lead
to a loss for L if it was of height 2 or 1, which 1s the case w1th probablhty 3

Hence, this move will yield a value of at most § — § = —3 < —1. Similarly,
playing 1, _; yields a win for L if and only if the helght of the second heap
was 1, so this move results in a value of —% — 2 + 2 = —1. We may thus

assume that L plays 1; with probability g; for Jje {1 ,n1 —i— 1}, facing R
with the information set [n1 —2,4,1] with ¢ € {1,2 3} or that L plays 3; with
probability r, leading to [nq — 1,¢,0] with ¢ € {1, 2, 3}.

In [n; — 2,3, 1], let R play 2;. In [n1 — 2,2, 1], R plays 2; or 2, both with proba-
bility 1. Th1s leaves L either in [n; — i — j,na — 2,1] or [n1 — ¢ — 4,0, 1]. In the
latter case, L wins if and only if ny — ¢ — j # 1. In the former case, choosing to
empty the first heap, say with probability s, leads to a win for L if the second
heap consists of one chip, and a loss if it consists of two. Doing anything else
leads to a loss for L if the second heap contains one chip. Finally, in [, — 2,1, 1],
R inspects and empties the first heap, which leads to a loss for L.

In [n1 1,3,0], let R play 2;. Consequently, R will play as if he leaves L with
two heaps of height 2, winning if and only if this is the case. In [n; — 1,2,0], R
inspects the first heap, and reduces it to height 2 if possible, winning 1f this is
the case, and losing otherwise. In [n; — 1, 1, 0], R also inspects the first heap,
and consequently reduces it to one chip, winning the game.

Altogether, starting from the information set [ny — i, ng — 1, 1] withn; —i > 3,
L will thus obtain a value of at most

ny—i—2
3 g (1 =s) = 8) +gn—i—1 +7
j=1
ni—i—2
+3 X aG0-959 1) rana-H-r) -3

j=1
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1 1 2
=3 Z G —gr—g=—

If ny — i = 2, the signs in front of the r’s are flipped, also leading to a total of

at most —%. Hence, we indeed see that L indeed cannot obtain a value of more

2
than 5 O

oob—‘

Corollary 5.3.10. Let ny € N, ny > 5. Then v(SN(nq,4,1)) = 1

Proof. We compute that v(SN(5,4,1)) = 1 using a sequence form linear pro-
gramming formulation of the game. The result then immediately follows from
Lemma[.3.8and Lemma5.3.9] O

Corollary 5.3.11. Let ny,ne € N, ny,ne > 3, ny > ng. Then there exists a Nash
equilibrium p = (pr, pr) for which

1- 2NL(1711*1) =1- 2/~LR(2712)
for the first turns of L and R. Moreover, if pur, (1, -1) > 0, it holds that

v(SN(n1,m2,1)) =1 —2ur(1p,—1).

Proof. If it holds that 1 (1,,-1) = pr(2,,) = 0, the statement is trivial. If
v(SN(n1,ng,1)) = 0, there exists an equilibrium for which this holds, with
11, (31) = 1. Therefore, we may assume for the remainder of the proof that
v(SN(nl,ng, 1)) > 0and ,uL(31) =0.

Next, by Theorem[5.3.7) if 111, (1;) > 0 for some i € {1,...,ny — 1}, as all these
moves lead to the 1nf0rmat10n set [n; — 1, ng, 1] for nght, there exists a Nash
equilibrium for which 37" " up (1) = 1.

If pr,(1,,-1) > 0, by Theoremm U = V(1,n,,1)(1t) With R moving. Noting
that R wins if and only if he removes all chips from the second heap, we find

v= Uﬂ(l7n27 1) = —,uR(an) + (1 - MR(znz)) =1- QMR(an)'

Conversely, if 11z(2n,) > 0, again by Theorem [5.3.7} we find

ni—1 ni—1 ny—2

> (L= Z pr (Li)vga,0,0) (1 Z (1 (T, —1)-
i=1
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If also pr,(1,,-1) > 0, then we may assume that Z?;fl pr(1;) = 1 so that
v =1-2ur(1,,-1). Hence, if both ur,(1,,-1) > 0 and pgr(2,,) > 0, we are
done.

Therefore, suppose that y1,(1,,, 1) > 0, but r(2,,) = 0. Then v = 1. However,
this is a contradiction with Lemma and the values for SN(nq,ns, 1) with
ny = 3 or Ng = 3.

Finally, suppose that p1r(2,,) > 0, but 11, (1,,—1) = 0. Then 2?21;2 pr(1)v =
Z?;f pr(1;), so again v = 1, which is a contradiction. This completes the
argument. O

5.4 Fuzzy Schréodinger Nim

In this section, we consider the variant of the game in which the emptying of
a heap is not signalled to the other player. Now, it may happen that a player
inspects the height of a heap only to find out that it is empty. In this case, the
player must choose another heap to perform a move on, continuing until the
player has successfully removed at least one chip. Recall that a game of this
variant with starting configuration n € N is denoted by FSN(n).

We have the following complete characterization.
Theorem 5.4.1. Let n € N¢. Then

-1 if maxg=1, . qni = 1and d is even,
1 if maxy—1,. qnr = 1and dis odd,
or if n, > 1 for precisely one k,
0 otherwise.

v(FSN(n)) =

Proof. 1f we have maxy—1, ., ni = 1, the game is equivalent to regular Nim, so
L wins if and only if there is an odd number of chips available. If n;, > 1 for
precisely one k, L can reduce this heap to either 1 or 0 chips, depending on the
parity of d, winning the game. This settles the first two cases.

For the last case, we distinguish between two situations. First, suppose that
ni > 2forallk =1,...,d. The proof for this situation is analogous to that of
Theorem [5.3.1} employing induction on d. For the base case d = 2, we use a
similar Nash strategy pair. Now, L reduces the first heap to size 0 or 1 both with
probability 1, and R does the same to the second heap. L wins precisely if one
of the heaps has size 1 after the initial moves, which happens with probability
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1, hence the value is indeed 0. Proving that the pair is indeed Nash is analogous
to the proof in Theorem [5.3.1}

For the induction step, suppose v(FSN(n)) = 0 for all n € N as above and
consider the game FSN(n) for some n € N*+! with n; > 2 for all k. Without
loss of generality, let L play on the first heap on her first turn. Now, by also
playing on the first heap during his first turn, R can guarantee a value of at
most 0. Indeed, if the heap was already emptied by L, R will find out and be
in the case n € N%. Otherwise, R can empty the heap himself. Therefore, the
best L can do is to empty any heap, giving value 0. This concludes the first
situation.

For the second situation, in which at least one of the n;, equals 1, we split the
proof into three parts. First, consider the game FSN(n;, ng, 1) with ny, ng > 2.
We will show that the value of this game is 0. First, note that emptying the
third heap on the first move of L leads to a value of 0. Remains to show that L
cannot achieve a payoff of more than 0 by choosing another strategy. Hence,
without loss of generality, let L pick ¢ chips from the first heap with probability
pi. We give an explicit strategy for R which prohibits L from obtaining a payoff
larger than 0.

On his first move, R is faced with the information set [n; — 1, n9,1]. With
probability 1, R reduces the second heap to height 1, and with equal probability,

R empties the heap. L is thus given the info set [nq —4,no — 1, 1].

For the case ny — ¢ = 1, this yields either the state (1,1,1) or (1,0, 1), which
gives value 1 or —1, respectively. For n; — ¢ = 0, it results in the state (0,1,1)
or (0,0,1), giving value —1 or 1, respectively.

Now, suppose n1 —i > 1, and let L take j chips from the first heap with probabil-
ity ¢} ~',j€{1,...,n1 —i}. Linspects the second heap with probability /"' ~*
and L empties the third heap with probability 5" ~*. For j = 1,...,n; —i — 2,
R ends up in the state (n; —i —j,1,1) or (nq1 —i — 4,0,1) withny; —¢ —j > 2.
Hence, by inspecting the first heap and reducing it to height 0 or 1, respectively,
Rcanwin. For j =i¢—1,Rendsupin (1,1,1) or (1,0, 1), having value —1 or 1,
respectively. Taking j = ¢ leads to (0, 1, 1) or (0,0, 1), having values 1 and —1.

If L chooses to inspect the second heap, she must empty it if it was of height 1,
leading to (ny — 1,0, 1) for R, who will win as n; — ¢ > 1 by assumption. If it
was already empty, L may choose another move on (n; — ¢,0,1) and thus win.
Emptying the third heap leads to either (n; —4,1,0) or (ny — 4,0, 0), which are
both winning for R.
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Hence, in summary, the value obtained by L playing any strategy against the
fixed strategy of R is

pnl(_% + %) +pn171(% - %)

n172 n17i72

. 1 _ ni—i _ ni—1 ni—1i _ ni—1 _ ni—1
+ § bi| 3 E g Apn,—i-1 + A, —; —T1 T2

=1 j=1

n17i72
1 _ ni—1 ny—1 _ ni—1 ni—1i _ ni—1
+3 E 4 T i1~ n— T T To
=1

TL172 n17i72
— ni—1 ny—1
==Y pi| D i+

1=1 Jj=1

Maximizing her payoff, L will thus choose the variables such that the value
becomes 0. This proves that v(FSN(n1,n2, 1)) = 0 and concludes the first part.

Next, let n € N¢, d > 3 be such that ni,ne > 2andns = ... = ng = 1. We
will again show that the value of this game is 0. We apply induction on d. The
base case is FSN(n1, ns, 1), which was shown to have value 0 above. Hence, let
d > 4. If L picks any of the heaps except the first two, R finds himself in the
situation d — 1 immediately and we are done. Remains to show that L cannot
obtain a payoff larger than 0 by choosing any other strategy.

Denote by 1* the vector (1,1,...,1) € N*. Abusing notation, we may thus
represent the starting configuration by (n1,n2, 14-2). Without loss of generality,
suppose L picks ¢ chips from the first heap in the first turn with probability
pi, i € {1,...,n1}. Again, we give an explicit strategy for R which prevents L
from scoring higher than 0.

On his first move, R is given the information set [n; — 1, n2, 1472]. With proba-
bility 1, R reduces the second heap to height 1, and with equal probability, R
empties the heap. L is thus faced with the information set [ny — i,y — 1,1972],

For the case n; — i = 1, this gives either the state (1,1,1972) or (1,0,1472),
which yields value (—1)4~! or (—1)¢, respectively. For n; — i = 0, it results in
the state (0, 1,1972) or (0,0, 1972), giving value (—1)¢ or (—1)?~!, respectively.

Now, supposeni —i > 1, and let L remove ¢ chips from the first heap with prob-
ability ¢/ ™", j € {1,...,n1 — i}. L inspects the second heap with probability
ny—1

r1* ", and, without loss of generality, L empties the third heap with probability
ryt " Forj € {1,...,n1 —i— 2}, Ris given the state (n; —i — j,1,1972) or
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(ny —i—j,0,1972), with ny —i — j > 2. Hence, by inspecting the first heap and
reducing it to height 1 {4 even) OF 14044}, respectively, R can win. For j = i—1,R
is led to (1,1,1972) or (1,0, 1972), having value (—1)% or (—1)?~!, respectively.
Taking j = i gives rise to (0, 1,1972) or (0,0, 19~2), having values (—1)¢~! and
(~1)e.

If L chooses to inspect the second heap, she must empty it if it contained a chip,
leading to (ny — i,0,1972) for R, who will win as n; — i > 1 by assumption. If
it was empty, L must choose another move on (n; — i,0,1972) and thus win.
Emptying the third heap leads to either (nq —i,1,0,1973) or (ny —4,0,0,1973),
which are both winning for R.

Hence, in summary, the value obtained by L playing any strategy against the
fixed strategy of R is

Py (3(=1) 4 5 (=D ) + pay 1 (5 (1) + 5(=1)9)

77,172 n17i72

+Y w3 DD - T T (D g T (=) e
i=1 =1

n17i72
_"_l _ nlfi_'_ ni—i (_1)d—1+ nlfi(_l)d_’_rnlfi_rnlfi
2 4a; nqy—i—1 Any—i 1 2
=1
’IL172 n17i72

i=1 j=1

Again maximizing her payoff, L will make sure to obtain a value of 0. This
concludes the second part of the proof.

For the final part, let n € N¢, d > 3 be such that n; > 1 for more than one
k € {1,...,d}. Again, we show that the value is 0. Suppose without loss of
generality that ny,...,n, >landn.y1 =... =ng = lforsomec e {2,...,d}.
We use induction on c. The base case ¢ = 2 is proven above. Hence, consider
c> 2.

Suppose first that L plays on one of the first ¢ heaps. As a fixed strategy for R
in this case, we let him inspect this heap, and empty it if it was not yet so. This
leads to a configuration with ¢ — 1 either for L or R to move on, resulting in
value 0 in any case.

Next, suppose that L plays on one of the last d — ¢ heaps. R can then force a
value of 0 by emptying the first heap and moving to a situation with ¢ — 1 in
this case. O
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Note that a very similar result holds for the misére version of the game. Denot-
ing FSN™ (n) to be the miseére version of Fuzzy Schrédinger Nim, we obtain
the following.

Theorem 5.4.2. Let n € N%. Then

-1 if maxg=1, . qnt = 1and dis odd,

B B 1 if maxy—1,  qni = 1and d is even,
v(FSN™(n)) = or if ny, > 1 for precisely one k,
0 otherwise.

Indeed, in the proof above, the signs of the base cases are flipped. For the
explicit strategies described for R in the proof, we can mirror the behaviour for
d being odd or even, resulting in the same value of the game as before, being
zero. For this misere variant of the game, we find that the values somewhat
resemble those for the misere version of the regular game of Nim.

5.5 Kriegspiel Nim

Finally, we consider the Nim variant inspired by Kriegspiel, described in [|10]].
Recall that, for n € N¢, we denote this variant of the game with starting position
n by KN(n). We only consider the game with at most two heaps.

For d = 1, the game is trivially won by Left, removing all chips on her first turn.
For KN(n, 1), Left removes all but one chip from the first heap on her first turn,
winning the game. For the other cases with d = 2, we have the following result.

Theorem 5.5.1. Let ny,ny € N, ny,ny > 2. Then v(KN(n1,n2)) = 0.

Proof. We give an explicit Nash equilibrium pair, depicted in Fig. On the
first turn, L reduces the first heap to size 1 or 0, both with probability 5. Next,
R tries to empty either heap with probability £. The attempt to empty the first
heap will fail, after which R reduces the second heap to size 1.

Suppose R deviates. Because we assume the strategy of L to be fixed, we may
assume R to know that he is either in the state (1,n3) or (0,n2), both with
probability 1. Hence, picking any move which tries to remove more than 1 chip
from the first heap needs not be considered. Now, suppose R tries to pick a
single chip from the first heap with probability p, and picks k chips from the
second heap with probability g5, k = 1,. .., ns.
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(n1,n2)

(1,1) (0,1)
Figure 5.10: A Nash equilibrium for KN(n1, ns).

Moving from (0, n2), trying to move on the first heap will fail, telling R that
the heap is empty. Hence, R may proceed to empty the second heap and win.
Also, if R removes all ny chips from the second heap immediately, he wins.
Otherwise, he leaves only chips on the second heap for L, who knows that the
first heap is empty. Therefore, L can and will empty the second heap on her
next turn and therewith win.

Now, consider the case where R moves from (1, n2). We define the strategy of
L for her next turn(s) as follows: first, L will try to remove n, chips from the
second heap. If this fails, she will try to remove 1 chip from the second heap.
Finally, if this fails, she removes the single chip from the first heap. If and only
if R has removed the single chip from the first heap, L will be able to remove
ngy chips from and therewith empty the second heap, winning the game. If R
emptied the second heap, L will empty the first, again winning. If R removed
all but one chip from the second heap, L is faced with (1, 1) losing in any case.
Otherwise, L moves from (1,ne — k) to (1,ny — k — 1). For k = ny — 2, this
leads R to the state (1, 1), where he loses. For any other k € {1,...,n2 — 3}, R
can proceed by reducing the second heap to size 1, giving the state (1,1) to L,
and winning.

Hence, the payoff of the game now becomes

TL273 ’nzfl
% <p - Z Qi + Qno—2 — Qno—1 + Q7z,2> + % <_p+ Z qk — q”2> = Qno—2,

k=1 k=1
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so, minimizing, R will choose ¢,,_2 = 0, yielding a value of 0. Hence, deviating
does not lead to a better payoff for R.

Next, suppose L deviates. Let L remove k chips from the first heap with
probability py, k = 1,...,n4, or k chips from the second heap with proba-
bility g, k = 1,...,n9. From (n1 — k,n2), R will play to either (n; — k, 1) or
(n1 — k,0), both with probability 3. From (n1, n2 — k), R will move to (0, ns — k)
or (1, no —k), again both with probability ;. We will analyse the strategies going
from (nq — k, no); the strategies moving from (nq,ny — k) are symmetrical.

Similar to the discussion above, L knows that she is in either (n; — k,1) or
(n1 — k,0), both with probability ;. Therefore, we may discard all moves trying
to take more than 1 chip from the second heap. Now, let L remove ¢ chips from
the first heap with probability "' %, i =1,...,n; — k, and let L try to remove
the single chip in the second heap with probability s. If this fails, she proceeds
to empty the first heap and win.

For R, we define the follow-up strategies as follows. If he emptied the second
heap on his first move, he will empty the first heap and win the game on his
next turn. If he left a chip in the second heap, he will try to remove it. If this fails,
he empties the first heap and wins. If it succeeds, L can proceed by emptying
the first heap and winning.

Allin all, this leads to the following total payoff, considering only the strategies
in which L moves on the first heap in the first turn:

n17k71

n172

1 ni—k n1—k
E Pr | 3 E Tt = =S
k=1 =1

ny—k—1
1 2 : ni—k ni—k _
+ 5| — T +rn1—k+s =0.
i=1

Note that we have excluded the cases k = ny — 1 and k = ny, which both clearly
lead to value 0, as well. Moreover, moving on the second heap in any way leads
to the same payoff. Hence, deviating gives no larger payoff for L and we are
done. O

To conclude, we consider one more variant of Kriegspiel Nim. In this variant,
during a player’s turn, a move still consists of trying to remove i chips from the
j-th heap. If this is possible, it is done; otherwise, as many chips as possible
are removed and the heap is left empty. In any case, the turn is passed, the
other player not being informed of anything. It can be proven, analogous to the



5.6. Conclusions and future work 125

arguments above, that for this variant, the values for up to two heaps coincide
with the values of Kriegspiel Nim.

5.6 Conclusions and future work

In this paper, we have considered three non-perfect information variants of
the game Nim. For the first variant, Schrodinger Nim, we provided a partial
characterization, and a set of structural results. For the second variant, Fuzzy
Schrédinger Nim, we provided a complete characterization. For the third
variant, Kriegspiel Nim, we gave some preliminary results.

A full solution to the first variant remains elusive, and is a natural direction for
further research. One might try to replicate Lemma5.3.9| with tighter bounds
for higher heaps, for example. Moreover, it would be interesting to look at the
misere version of this first variant.

The aim of introducing these variants is to generalize the theory of combinato-
rial games to the class of non-perfect information games. With this aim in mind,
the third variant of Kriegspiel Nim is the most widely applicable. Therefore,
not only is it interesting to further research this game, but using a similar setup,
one might create non-perfect information variants of all combinatorial games.
Consider, e.g., the game of Hackenbush. A move will now consist of asking the
umpire whether it is possible to remove an edge. If so, it is done; otherwise,
the player has to try and remove a different edge. Similarly, in Domineering,
a move might be to try to place a stone until the placement is successful. By
analysing these non-perfect information variants of different combinatorial
games and comparing the results, we hope to distinguish some structure akin
to that in the class of combinatorial games.






Chapter 6

Synchronized Cherries

In this chapter, we consider the synchronized version of a variant of the combi-
natorial game of Cherries, called Synchronized Stack Cherries. In this variant, the
players may only remove tokens from the front of a segment, instead of from
both sides as in regular Cherries. The material in this chapter is based on joint
work with Thomas de Mol, started in [[18]].

We provide a linear-time algorithm to decompose any given Synchronized
Stack Cherries position into irreducible stacks and show that these irreducible
stacks are fully ordered, allowing for a quick assessment of the winner of a
given position and the magnitude of the win. We conjecture that a similar
decomposition method can be used to analyze positions in the synchronized
version of the regular game of Cherries.

6.1 Introduction

Combinatorial game theory considers the class of two-person, deterministic
games with perfect information. Most of the underlying theory can be found
in [[1]], [2]] and [3]]. Games belonging to this class are, e.g., Nim, Hackenbush,
Hex and Domineering. We will focus on variants of Cherries.

In combinatorial games, players move in a sequential fashion, alternating
turns until the game’s end. In recent years, research has been done on what
remains of the theoretical framework if we instead allow the players to move

127
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[e[ofo]e] [e]e] [e]e]o]

>~[e[o[e[o[o]o] >[o[o]o]e]

Figure 6.1: Examples of a Cherries position (top) and a Stack Cherries position
(bottom).

simultaneously, leading to synchronized versions of combinatorial games [[13,21]].
Every turn, both players communicate their intended move to an impartial
referee, who then executes both moves at once.

In this chapter, we study a variant of the combinatorial game of Cherries
introduced in Example which we name Stack Cherries. Recall that a
Cherries position consists of ordered connected sequences of tokens, named
cherries, each colored either black or white. See Figure6.1] (top) for an example
position. In the normal combinatorial game, the two players Left and Right
alternate turns, Left removing one black cherry from exactly one sequence
on her turn, and Right removing a white cherry on his; only cherries at the
beginning or end of a sequence can be removed. A player unable to move on
their turn immediately loses, the other player wins. In Stack Cherries, only
cherries at the beginning of sequences can be removed, as indicated by a triangle

in Figure[6.1] (bottom).

In the synchronized version of the two games, Left and Right pick their cherries
simultaneously, after which both are removed at once. Again, if either player is
unable to move, the other player immediately wins the game. If all sequences
are cleared and therefore neither player can move, the game ends in a draw —
which cannot happen for regular Cherries. We call the synchronized version
Synchronized Cherries and Synchronized Stack Cherries (or briefly SSC),
respectively. Sequences of cherries are usually referred to as segments or (in
the context of SSC) sometimes as stacks; for example, the position in Figure
(bottom) consists of two stacks.

Though Synchronized Stack Cherries seems simple, it has surprising com-
plexity and expressive power. Our main result, Theorem is that any
SSC segment can be decomposed into a sum of irreducible segments using a
linear-time algorithm. Theorem [6.3.9shows that these irreducible segments
are ordered in a very strong sense, allowing us to readily draw conclusions
about the winner of the given position, as well as the magnitude of the win.

First, in Section[6.2} we give a full characterization of the combinatorial game
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of Stack Cherries and provide the necessities concerning synchronized games.
We continue by defining the irreducible elements for SSC in Section [6.3|and
provide our main decomposition result in Section [6.4] Finally, in Section
we conclude with a few words on the relation between Synchronized Cherries
and SSC, conjecturing that every position of the former is — in a very precise
way — equivalent to a position of the latter.

6.2 Basics

We start by providing the full solution to the combinatorial game of Stack
Cherries. In a stack of cherries, we say a block is a consecutive series of maximal
length with cherries of the same color. A block is non-trivial if it consists of
more than one cherry.

Theorem 6.2.1. Let G be a Stack Cherries stack starting with m > 1 black cherries.
If G contains a non-trivial block past the first black block, let ¢ = 1 if this block is black,
and ¢ = 0 if it is white. Otherwise, let ¢ = 1 if the last cherry of the stack is black, and
¢ = 0if it is white. Then G =m — 1+ c.

The result is readily proven by induction. As an example, the two stacks in
Figure[6.1] (bottom) have values 0 and —2, respectively. Notice that all Stack
Cherries games are integers, just like regular Cherries games.

We continue by delving slightly into synchronized games. In Section we
defined eight outcome classes for synchronized games. For the remainder of
this chapter, we gather all games in the classes D, LD, RD, LR and LRD into a
single class of games U/ for which the outcome of the game is a priori uncertain.
We order the classes R < U < L. In this framework, the following general
lemma holds.

Lemma 6.2.2. Let G be a synchronized game for which GV # 0 and G = (). Then
G > 0.

Proof. Let X be an arbitrary synchronized game. We will show that o(G + X') >
o(X) by induction on the birthday of X.

First, if X has no options at all, then o(G + X) = o(G) = L > U = 0(0) = o(X).
If X has left options, but no right options, then o(X) = £. Moreover, o(G+X) =
L, as G also has no right options, so indeed o(G + X)) > o(X). Conversely, if X
only has right options, o(X) = R, so certainly o(G + X) > o(X).
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Next, suppose X has both left and right options, and assume first that o(G +
X) = R. Then, G having no right options, there is some right option X* of
X such that G + X 5 is a Right-player win for all i. By induction, then also
o(G+ X;7) > o(X;}), so X, is a win for Right for all 4, and thus o(X) = R.

Second, suppose o(X) = L. Left winning X, there must be some i such that
o(X;}) = L for all j. Then Left can also win G + X by playing to G + X and
continuing locally on X until Right’s options have run out. Hence, o(G+ X ) =
L > o(X).

We conclude that o(G + X) > o(X). Now, note that o(G + 0) = o(G) = L >
U = 0(0),s0 G # 0. Hence G > 0. O

The technique demonstrated in this proof will be used more often throughout
this chapter: to show that G > H for any two synchronized games, it suffices to
show thato(G+X) =R = o(H+X)=Rando(H+X)=L = o(G+X) =L
for all synchronized games X. This type of proof is necessary as, unfortunately,
even having introduced the class i/, for general synchronized games, G > H
need not imply G — H > 0.

Example 6.2.3. Define G = E , and consider the somewhat unnatural game

X{’O|O‘ | ’0|0‘ | ’O|O‘}.Itisclearthato(X)E.Now,consider

G — G + X. If Left moves on G, Right can move on X to @ + ,
which is won by Right. If Left moves on X, Right can respond on —G, playing

to E + , which is also won by Right. Hence, Left has no move

guaranteeing a win, so o(G — G + X) # L. Hence o(G — G + X) # o(X), so
G — G # 0, while obviously G > G. 4

6.3 Irreducible segments

We now narrow our focus to the game of Synchronized Stack Cherries, set-
ting out to prove Theorem that orders the basic building blocks: the
irreducible segments. We start by introducing some notation. For any Stack
Cherries segment G of length n > 1, we denote by G;.; the part of the seg-
ment only consisting of the cherries 4,4+ 1,...,j —1,j; here 1 <i < j <mn.
Moreover, we denote by G;. the suffix of the segment consisting of the cherries
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i,i+1,...,n herel <i <n.Ifi>n,G; denotes the empty segment. Note
that G = G1., = G1..

Previously, we saw that for two synchronized games G and H in general, it is
not always easy to determine whether G > H. For SSC segments, this turns out
to be more straightforward. We introduce a lexicographical order on the set of
SSC segments, denoted by <. We define a white cherry to be lexicographically
smaller than an empty square, which is in turn smaller than a black cherry. To
compare two segments consisting of more than one cherry, we align to the left,
adding an empty square at the end of the shorter segment if necessary, and
then compare.

Example 6.3.1. Consider

6:=>[e[o[ofe]. Ga=fe[s] amd Gi=De[e[0]

We have G; =< G2 and G < G3, as the second cherry of G is white, while the
second cherries of G and ('3 are black. Also G5 < G3, as G2 has no cherry in
the third position, whereas the third cherry of G3 is white. N

It turns out the lexicographic order is in fact the synchronized order as we
know it.

Theorem 6.3.2. For any two SSC segments G and H, it holds that G < H if and
onlyif G < H.

Proof. First, if either segment is empty, the result immediately follows from
Lemma If, say, G starts with a white cherry and H with a black cherry,
then also G < 0 < H by Lemma|6.2.2] Hence, it remains to prove the statement
for two segments starting with a cherry of the same color. Assume without
loss of generality that both G and H start with a black cherry.

Let X be an arbitrary synchronized game and consider G + X and H + X. We
proceed by induction on the birthday of X. Note that, if X has no right options,
then neither does G + X nor H + X, so that o(G + X) = o(H + X) = L. Hence,
suppose that X does have at least one right option. Assume that G < H.

First, suppose o(H + X) = R. Right, having no moves on H, but winning
H + X, must have some move to H + X [ so that both Hy. + X*and H + X%
are Right-player wins for all i. By induction, also o(G + X;}) = R for all i.
Moreover, as Go. X Ha., also o(G. + X[*) < o(Ha. + X ') = R. Hence, G + X
is won by Right playing to G + X .
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Next, suppose o(G + X ) = L. If Left wins by playing to Ga. + X, then o(G2. +
XJ) = Lforall j,soalso L = o(Ga. + X[*) < o(Hy. + X[?) for all j, and thus
Left wins H + X moving on H. If Left wins G + X by playing to G + X/ for
some ¢, then G + X ;j is a win for Left for all j. Therefore, by induction, H + X 5
is a Left win for all j, as well, so Left wins H + X playing to H + X}.So G < H.

Conversely, if G < H, we know in particular that o(G + X) < o(H + X ) where
X is the longest common prefix of G and H with black and white cherries
toggled, say of length ¢ > 1. Playing in these two games leads to comparison
of the (£ + 1)-st cherries of G and H (perhaps even an empty square), showing
that G < H. O

Using the (lexicographic) order on SSC segments, determining the best move
for either player is relatively straightforward.

Theorem 6.3.3. Let G and H be SSC segments that start with a cherry of the same
color. If G < H, then Gy, + H < G + Hs..

We omit the laborious proof, which can be found in [[18]]. This theorem gives
us a deterministic optimal strategy for both players: Left repeatedly plays on
the greatest segment (starting with a black cherry), whereas Right takes a
cherry from the smallest segment (starting with a white cherry). Hence, the
outcome of a game of Synchronized Stack Cherries is always deterministic
under optimal play, and any position in ¢/ always ends in a draw.

However, though this observation does provide us with a way to determine
the winner and therewith outcome class of a position, it does not give us an
efficient way to compare positions, nor a way to measure the magnitude of a
position. We continue by developing these concepts in more detail.

As illustrated previously, many beautiful results for combinatorial games do
not readily carry over to synchronized games. However, by somewhat relaxing
our definition of equality, we do pave the way for fundamental results more in
line with combinatorial game theory.

Definition 6.3.4. For two SSC positions G and H, we say G =gc H if o(G +
X) = o(H + X) for all SSC positions X. Similarly, we use <sc, <sc, >sc and
>gC-

Lemma 6.3.5. Let G be a SSC segment. Then G — G =g¢ 0.

Proof. Assume without loss of generality that G starts with a black cherry. Let
X be an arbitrary SSC position, and proceed by induction on the birthdays of
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G and X. First, suppose o(G — G + X ) = L. If Left can win by moving on G,
then in particular o(Ga. — G2. + X) = £, so by induction also o(X) = L. If Left
wins by moving on X, then there is some i such that o(G' — G + X)) = L for
all j. Hence, by induction, also o(X 3) = L for all j, so X is also won by Left.

Next, suppose o(X) = £, and let X/ be a winning move for Left. Consider
G — G + X.If the (lexicographically) smallest segment starting with a white
cherry in this game is located in X, then moving on this segment to X[ is
the dominating move for Right by Theorem The result for Left also
movingon X isG — G + X f}-, which is a win for Left by induction — hence,
o(G — G + X) = L. If the (lexicographically) smallest segment starting with a
white cherry in G — G + X is —G, then this is the dominating move for Right.
Left can win by playing on G to G2. — G2. + X by induction, so also in this
case G — G + X is a win for Left. Note that the latter case includes the case of
G being part of X.

Hence, o(G — G + X) = L if and only if o(X) = £. An analogous argument
works for the case in which X is a Right-player win, from which the conclusion
follows. O

Through the (lexicographical) order, all SSC segments are comparable. How-
ever, some segments turn out to be much smaller than others, similar to the
infinitesimals in combinatorial game theory and the value ¢ described in [21]].
To show this, we need the notion of irreducible elements.

First, note that, by Lemma for all non-empty SSC segments G, we find
either G > 0 or G < 0, depending on whether G starts with a black or white
cherry. Hence, it makes sense to define

G iG>0,
G|:{ —G G <o,

If |G| > |H| for two SSC segments G and H, we say G is (lexicographically)
stronger than H, and H is weaker than G.

Definition 6.3.6. Let G be a SSC segment of length n > 1. We call G an irre-
ducible element if |G| < |G;.|forall 1 < i < n.

In words, an irreducible G is weaker than all its suffixes, apart from itself.

Example 6.3.7. The five positive irreducible elements of length at most 4

are, in decreasing order, DE , D’ ) | O

,>e|o[0]e

,>/e@]0]0] and
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>{e]ofo]o]. :

It turns out that all different irreducible elements are infinitesimal with respect
to each other. We need the following lemma, the proof of which is based on a
direct comparison of the segments in question and can be found in [[18]].

Lemma 6.3.8. Let G be an irreducible element of length n. Then |G;.| > |G1.4—1| for
alll < i <n.

Theorem 6.3.9. Let G and H be irreducible elements such that G > H > 0. Then
G >sc k- H forall k € N.

Proof. By Lemma [6.3.5] it suffices to prove G — k - H >g¢ 0. We proceed by
induction on £, the base case being true by assumption. Let X be an arbitrary
SSC position and consider G — k- H + X.

First, suppose that —H is the lexicographically strongest segment starting
with a white cherry, which Right will remove. Left plays on G, resulting in
Go. — Hy. — (k— 1) - H + X. Note that, as G — H > 0, at least one of G5, and
— H,, starts with a black cherry. If the other starts with a white cherry, by the
assumption of G’ and H being irreducible elements, this is the lexicographically
strongest segment starting with a white cherry. Hence, optimal play for Right
dictates the removal of this white cherry, and Left may respond on the other of
the two segments. Play continues in this fashion until we arrive at G;. — H;. —
(k—1)- H + X for some i, where both G;. and — H;. start with a black cherry,
or one of them is empty.

If G;. starts with a black cherry, then G;. — H;; > G;. > G, since G is an
irreducible element. If not, then G is the empty segment, and, by the mirrored
play so far, we find G = Hy.;—1. By Lemma |H;.| > |Hy.i-1],80 Gi. — H;. =
0+ |H;.| > |Hii-1| = |G| = G. Hence, G;; — H;. > G in any case, so

Gi—Hi;—(k—-1)-H+X>G—(k—1)-H+X>X

by induction. Right having played optimally, we find o(G — k- H + X)) > o(X).

Second, suppose that the lexicographically strongest segment starting with
a white cherry is contained in X, and that removing this cherry leads to X .
First, assume that o(X) = L, Left winning by moving to X}. By induction
on the birthday of X, we conclude o(G — k - H + Xf;) > o(Xg) = L. Hence,
Right moving optimally, G — k - H + X is a Left-player win. Next, suppose
o(G — k- H + X) = R, the winning move for Right being to G — k- H + X . It
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follows that R = o(G—k-H+ X)) > o(X ) for all i by induction, so o(X ) = R.
Hence o(G — k- H + X) > o(X).

We conclude that G—k-H >g¢ 0. Now, noting thato(G—k-H) > o(G—(k—1)-H)
by the reasoning above, and that o(G) = £, we conclude by induction that

o(G — k- H) = L, whereas 0(0) = U. Hence, strict equality does not hold, and
the result follows. O

Example 6.3.10. Consider the irreducible elements G and G, defined by G; =

DE and Gy = D .Then G; > G2, and by Theorem|6.3.9} G; >gc k-G2
for any k£ € N. 4

Before continuing with the decomposition of SSC segments into irreducible
elements, we make a small detour, providing a method to count the number of
unique irreducible elements of a given length. To do so, we consider words
over the alphabet {0, 1}. We use the lexicographical order < as defined before
for Stack Cherries, writing 0 < ¢ < 1, denoting the empty word by . We
denote the canonical lexicographical order by <, writing ¢ <10 <t 1. We define
0 =1and 1 = 0, and naturally extend this definition to all words in {0, 1}*.
For a word w = wyws ... w,, we write pg(w) = Wi11Wgto - .. Waw1 ... wy for
the counterclockwise rotation over k positions. We say that the fundamental
period of w equals p if p,(w) = w, and py(w) # w for all 1 < g < p. Finally, we
write |w| = w if w; = 1, and |w| = W otherwise.

Theorem 6.3.11. Let G bea SSC segment starting with a black cherry and represent G
by aword w € {0, 1}*, writing a 1 for a black cherry and 0 for a white cherry. Then G is
irreducible if and only if w has fundamental period n and p, (w) is the lexicographically
smallest element of S(w) = Ui, {pr(w), pr(w)} under the canonical lexicographical
order <.

Proof. Suppose G is irreducible. First, suppose w has fundamental period k& < n.
Note that k | n; hence, G = HH ... H (n/k times) for some suffix H of length
k which starts with a black cherry. But then |H| = H < G = |G|, which
contradicts the fact that G is irreducible. Hence, w indeed has fundamental
period n.

Next, suppose p1(w) is not the lexicographically smallest element of S(w).
First, suppose that w’ = pg(w) is the lexicographically smallest element of
S(w) for some k # 1. Naturally, w| = 0, as the word consisting of only 1’s is
not irreducible. Moreover, w/, = 1, as otherwise p~!(w’) is lexicographically
smaller than w’. Now, consider the suffix z = wgwg.y1 - . . wy, of w, of which all
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but wy, is a prefix of w’. Note that wy, = w], = 1. By the assumption of w’ <p; (w),
at the first element at which the words differ, the element of w’ must be smaller
than the element of p; (w). If this element is one of the first n — k of w’, then
z < w, which is a contradiction. Otherwise, if the first n — k£ elements match,
we find the n — k 4 1-st element of w’ to be w; = 1. For w’ < p; (w) to hold, then
also wy, k42 = 1. But then z < w. Hence, w’ < p1 (w) cannot hold.

Next, suppose that w’ = p; (W) is the lexicographically smallest element of S(w)
for some k. By the reasoning above, w; = 0 and w;, = 1. Now, first suppose
that the first n — k elements of w’ are not all 0’s. Let ¢ be the position of the first
1in w’ and consider the prefix w} ... w,_, of w’. Then the same argument as
above leads to a contradiction, taking as suffix z = wp—¢4+1 . .. wy, of w. If the
first n — k elements of w’ are 0’s, then the last n — k elements of p; (w) are 1’s.
Note that n — k& > % must hold; otherwise, a rotation of w would be smaller
than this rotation of w. But then for the suffix z = w41 ... w, of w be find
|z] < |w| = w. Hence, p1(w) must indeed be the lexicographically smallest
element of S(w).

Now, suppose w has fundamental period n and p; (w) is the lexicographically
smallest element of S(w). For the sake of contradiction, suppose that w > |z|
for some suffix z of w of length & (note that equality cannot occur for words of
different length). First, suppose |z| = z. If the first £ elements of w and z are
equal, and wey1 > 241, then we may rotate w such that it starts with zo . . . zp41,
finding a smaller rotation than p; (w). Hence, all elements of z and w must be
equal, forcing w1 = 1. But then we can rotate w such that it starts with wy1,
which provides a smaller rotation, as the first £ — 1 elements remain the same,
and the k-th is now a 0 instead of a 1.

Next, suppose |z| = Z. We repeat the above argument, now swapping the
colors of w before rotating, again leading to smaller elements of S(w). Hence,
w is indeed irreducible. O

The words over {0, 1} as described before are usually called necklaces in the
context of equivalence under rotation [43]].

Corollary 6.3.12. For a fixed n, the number of irreducible elements of length n
starting with a black cherry equals the number of binary necklaces of length n having
fundamental period n, in which the colors may be swapped.

The number of such necklaces, and therewith the number of positive irreducible
elements for any fixed length, may be found as A000048 in the OEIS [44]].
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6.4 Decomposition

If a SSC position consists of only irreducible elements, it is straightforward
to find the winner and its value. Hence, we develop a method to decompose
any given SSC position into irreducible elements. Again, the omitted proof of
Lemma can be found in [[1§]].

Lemma 6.4.1. Let G be a SSC segment of length n that is not an irreducible element.
Let G, 11. be the weakest suffix of G, and let 0 < j < i be such that |G 14| < |Gr1:i]
forall 0 < k < i. Then |Git1:| < |Gjy1:). If the (i + 1)-st and (j + 1)-st cherries of
G have a different color, the inequality is strict.

Theorem 6.4.2. Let G be a SSC segment of length n and let 0 < i < n be such that
|G1;+1;| < |Gj+1:|f07’ all0 < j <n. Then G = G1.; + G1;+1:.

Proof. Assume without loss of generality that the first cherry of G is black. For
i = 0, there is nothing to show, so let i > 0, and consider G, 1..

First, suppose G,41. also starts with a black cherry. By assumption, G;11. =
|Git1:] < |Got1:| = G, 50 G — G,+1. is a Left-player win, as the segments differ
in length. If G and G;4;. do not match for the first i cherries, then play on
G — G,41. will halt with less than i cherries having been taken from G, so
Gy — Gi-l—l: > 0 must hold.

If G and G;41. do match for the first i cherries, play continues to G;4+1. —Ga2i+1 >
0. Now, if the i + 1-st cherry of G and G;y;. would match, being the first
cherry of G;1., these cherries should be black. However, it would follow that
|Git1:| = Git1. > Gait1. = |Gait1.|, which is a contradiction. Hence, if G and
G41. match for the first ¢ cherries, they must mismatch at the ¢ 4 1-st. This
cherry in G;41. being white or non-existent, we conclude that G.; > G;4;. in
both cases.

Hence, in any context, we find that, in G1.; + Gi4+1. + X, Left’s move on G, 1.
is dominated. Therefore, by induction,

G+ Gix1: = {Ga2i + Gix1. || } ={G2. || } = G.

Second, suppose G4 1. starts with a white cherry. By induction, using the
statement of Lemma|6.4.1} we can obtain a collection of irreducible elements
By,...,Bipsuchthat By >0,B; > ... > Byand Gy.; = B1+...+ By. Let X be
an arbitrary SSC position, and consider B;+. . .+ By +G,y1.+X . If the best move
for Right is on some Bj, then W > B; for all other segments W starting with a
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white cherry, as well as G;1. > B; Furthermore, for all segments B starting
with a black cherry, we have B > 0 > B;. Hence, B1 + ...+ By + Gij1. + X >
By + (- B; for some ¢. By Lemma |B1| > |Bj|, as the stacks start with
different colors. We conclude that, both being irreducible elements,

Bi+...4+By+Gij1.+ X >B+(-B;>—(-Bj+(-B; =0.

Hence, if Right’s best move on By + ...+ By, + G;11. + X is to play on some B;,
then the game is won by Left. Hence, leaving out the possible moves for Right
on these stacks cannot worsen the outcome for Right, being £. Furthermore,
deleting possible moves for Right never worsens the outcome for Left. Hence,
we may delete all moves on the B; for Right without changing the outcome
class in any context. We conclude that

Gii+Gig1: = Bi+ ...+ By + Gy
={(B1)a: + ...+ B +Giy1. | | }
={Ga ||}
=G.
O

By repeatedly applying Theorem[6.4.2} one may decompose any given SSC seg-
ment into a sum of irreducible elements, every pair of different elements being
infinitesimal with respect to each other by Theorem Compare this to the
uptimal notation for dicotic games as described in [2, Chapter 9].

Example 6.4.3. Consider the SSC segment

G="C|e|e|0|e]0]|0]O]

Comparing all non-empty suffixes, we find that G5. = D is the

weakest. Hence, in particular, |G5.| < |Ge.| and |G5.| < |G7.|, so

G=D[e[e[o]e] +>[e[o]0]

by Theorem|6.4.2, Now, comparing all suffixes of nnan , we find that
l> is the weakest, leading to

G="0D|e|e| +>[0|e| +>e]0]O]
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Again looking at the suffixes of DEIE , we conclude that this segment can

be split once more, producing

G=D[e] +>[e] +>[c[e] +>[e]0]0]

Note that indeed every segment of the decomposition is an irreducible element.
N

Using Theorem|6.4.2]to decompose a given SSC segment requires continuously
comparing the lexicographic strength of suffixes, leading to an O(n?) algorithm
to determine the decomposition of a segment of length n. This can be sped up.
We once again omit the proof of Lemma and refer to [[18]].

Lemma 6.4.4. Let G be a SSC segment of length n and let G4 1. be its weakest suffix.
Then, for all 1 < ¢,k <4, it holds that |Gy.| > |G| if and only if |Ge.i| > |Gl

Theorem 6.4.5. Let G be a non-irreducible SSC segment of lengthnandlet1 <i <n
be the smallest index for which |Gi+1.| < |G|. Then G = G1.; + Git1..

Proof. Let Gj41. be the weakest suffix of G. Suppose first that G, is an irre-
ducible element, i.e., |Gj.x| > |G1.x| forall 1 < j < k. By Lemmal6.4.4} then also
|Gj.] > |G1.| = |G| forall1 < j < k,s0% > k+1. As Gi41. is the weakest suffix
of G, also i < k + 1, so we conclude that ¢ = k + 1. Hence, by Theorem
G=Gri+Giqr..

Next, suppose G'1.j is not an irreducible element. It still holds thati < k + 1,
as Gj+1. is the weakest suffix of G. If i = k + 1, we are done by Theorem
so suppose that i < k + 1. By Lemma i is the smallest index for which
|Git1:k| < |G1:k]- By induction on the birthday, it follows that G1., = G1.; +
Git1.5- As Gy1. is the weakest suffix of G, it is also the weakest suffix of G 1..
Hence, by Theorem Git1. = Giy1.x + Gr11.. We conclude that

G =G4+ Gry1. = Gri + Gig1:6 + Giy1. = Gy + Gig1.

O

Theorem [6.4.5provides us with a faster way of decomposing a given SSC seg-
ment into a sum of irreducible elements. By using suffix arrays to store informa-
tion about the suffixes of a given SSC segment, we can develop a linear-time
algorithm to decompose the given segment into irreducible elements [[45-47]].
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6.5 Summary and future work

In this chapter, we have considered a variant of the combinatorial game of
Cherries, called Synchronized Stack Cherries. In this variant, players are only
allowed to take a cherry from the front of a given segment or stack. In the
combinatorial version of the game, all encountered positions are integers,
readily characterized by an inductive argument.

Subsequently, we analysed the synchronized version of the game, in which
the two players make moves simultaneously. For this game of Synchronized
Stack Cherries, we showed that any segment can be decomposed into a sum
of irreducible elements in linear time using Theorem These irreducible
elements are all infinitesimal with respect to each other by Theorem [6.3.9}
Analogous to the uptimal notation for dicotic combinatorial games, just looking
at the sign of the largest irreducible element in the decomposition immediately
tells us the outcome class of a game.

We conjecture that it is possible to decompose a given segment of Synchronized
Cherries into a sum of Synchronized Stack Cherries irreducible elements in a
similar way. We repeatedly start at the lexicographically strongest end of the
segment, taking cherries until the other side becomes stronger. Every group of
cherries taken in this way forms a new Stack Cherries segment. More details can
be found in [[18]]. Using this decomposition, it would be possible to determine
the outcome class and value of a Synchronized Cherries position in quadratic
or perhaps even linear time.



Chapter 7

Synchronized Hackenbush

In this chapter, we study the Nash synchronized version of Hackenbush. Most
of the chapter will be devoted to Red-Blue Hackenbush, which is a separable
ruleset and therefore allows for an intuitive synchronized version. In Section[7.1}
we start out by defining some of the positions of interest, as well as the value
function which we will use. In Sections|7.2land 7.3, we continue by computing
the Nash values for a series of positions, proving Conjecture for these
positions. In Section we continue by looking at one of these positions in
more detail. Finally, in Section[7.5, we consider the non-separable game of Red-
Blue-Green Hackenbush, and showcase some of the problems encountered in
finding and analyzing a synchronized version of this game.

7.1 Introduction

Throughout this chapter, much of the discussion will be on positions defined
as Hackenbush flowers in [[1}2]]. It is convenient to introduce a shorthand for
these games.

Definition 7.1.1. For n € N, we define H,, to be the Hackenbush position

141
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consisting of one blue edge with n red edges on top, that is,

n

H, =

The game H,, is also called a flower with n leaves. We write H = H; for short.

As mentioned in Section there is only one value function that satisfies
Definition assigning a value of 0 to the empty game, and n or —n to
a position consisting only of n blue or red edges, respectively. In the sequel,
we write v(G) for the Nash value of a Hackenbush game stemming from this
value function. Moreover, for decided games, we tend to write the value of the
game also when speaking of the game itself. For example, we write 1 = {0 | | }.

Example 7.1.2. For a single copy of H as defined above, we find v(H) = 0,
as both players take their only edge in the first turn, resulting in the empty
game, being a draw. For two copies of H, denoted H + H or 2H, the resulting
zero-sum game is described by the matrix

01
(o)
Here, the first row and column correspond to the players playing on the one
copy of H, while the second row and column correspond to the other copy. If
the players play on the same copy, the result is H, having value 0 as argued
before. If the players play on a different copy, the result is a single blue stalk,

having value 1. Hence, the value of 2H is that of the Nash equilibrium of this
game, being 1. <

The following corollary of Theorem 2.3.32|is useful in analyzing synchronized
Hackenbush positions.

Lemma 7.1.3. In synchronized Hackenbush, a move that removes at least two edges
of the own color is dominated.

Proof. 1f all edges in G have the same color, the result is trivial. Hence, let G
be a synchronized Hackenbush game, let G be a move which removes at
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least two blue edges, and let G be an arbitrary move for Right. Let G*’ be
a move which removes a strict subset of the blue edges removed by G*; this
must be possible, as at least one of the edges removed in G* must lie on a path
from the ground to this edge containing at least one more blue edge. Then
either GLHE = GL'+F if all blue edges removed in G* are also removed by
G; or G+ F is attainable from G through one move of Left. Hence, either
v(GEHR) = o(GE 1Y, or v(GEHR) < o(GE 1) by Theorem O

We prove Conjecture for a special case, which we will encounter repeat-
edly in the rest of this chapter.

Theorem 7.1.4. Let G be a synchronized Red-Blue Hackenbush tree, and let T be a
terminal Red-Blue Hackenbush position. Then v(G + T') = v(G) + v(T).

Proof. If G is also terminal, the result is trivial. Without loss of generality,
suppose that v(T') > 0, in which case we may represent 7" by a collection
of blue edges. Consider a move G that, by Lemma we may assume
to remove no more than one blue edge. Let G¥ be arbitrary, and consider
Gi=G'P 4 TandGy =GR+ HF =GR+ T - 1.

We couple G; and G. On Gy, let Left play her Nash equilibrium strategy, which
she copies on (. If she would remove the one blue edge which is missing
in Gy, she plays on T instead. Conversely, Right plays his Nash equilibrium
strategy on G1, and copies his moves on G, which is always possible. We
denote the values thus obtained by vZ(G1) and v}(G3), respectively.

Playing like this, the games unfold, reaching G| and G, for which G’ = G5.
Hence, we find v(G1) = v}(G2). As v(G1) > vE(G1) and v1(G2) > v(Ga),

the statement follows. O

7.2 Flowers

We start by considering n copies of the simplest flower H, which we will denote
by nH.

Theorem 7.2.1. Let v, = v(nH). Then v, satisfies the following recurrence relation:

{ n=%((n—1)(1+vn_z)+vn_1), n>3,
= 0,00 = 1.
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Proof. As computed in Example[7.1.2) we find vy = v(H) = Oand vy = v(2H) =
1. Now, consider the game nH. Each player chooses one of the n stalks to play
on. If both players choose the same stalk, we end up with the game (n — 1)H,
having value v,,_;. If the players choose a different stalk, we continue play
in 1+ (n — 2)H, having value 1 + v,,_s. Hence, gathering these values in an
outcome matrix, we find v,,—; on the diagonal, and 1 4 v,,_, elsewhere. The
resulting linear program to be solved is thus symmetric in all variables, so by
Theorem picking any stalk with equal probability for both players is a
Nash equilibrium. The resulting value is ~v,_1 + 2=1(1 4 v,,_3), as required.

O

This recurrence relation is not easy to solve. However, the difference v,, — v,—1
turns out to be well-behaved.

Theorem 7.2.2. Define d,, = vy, — v,—1. Then d,, satisfies the following recurrence
relation:

dn = o=l (1 - dn—l)a n = 3;
dy=1.
The solution of this equation is given by

4 (—1)" — 1
dy =222
4n
Proof. By Theorem we have d; = v; — v; = 3. For the recurrence, we
rewrite using the recurrence for v,,:

dn =VUp — Un-1

—1 1
= nT(l + Un—2) + nUn—1— Un—1

_ n—1 n—1 1—-n
— + n Un—2 + n Un—1

_n—=1_ n—-1
I n dnfl

—n=l(1—d, ).

The solution may be verified by substituting it into the proven recurrence. [

Note that for n = 2k even, we have that

CAk+ (-D* -1 dk+1-1 1

dn 8k 8k 2
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For n = 2k + 1 odd, we find

J 2@k D)+ (=) 1 202k 4+1) -2 21-2 -1 1 1
" 4(2k + 1) - 4(2k+1)  4n 20 2 2n

We thus have the following result.
Corollary 7.2.3. We have
1

lim d,, = -.
2

Hence, for large values of n, the Nash equilibrium value v(nH) of the synchro-
nized Hackenbush position nH converges to the combinatorial value of the
regular Hackenbush position nH, as conjectured in Conjecture [2.3.34

Using the above solutions for d,, also provides us with a solution for v, itself.

Theorem 7.2.4. We have

(a2
H %* Z 2k+1

Writing ¢(z) = 1;((;”)) for the digamma function, we conclude that

(2n—2—w (n+1+21{"”‘”}) +9 (g)) .

Un =

¢>\»4

Proof. We rewrite

|25
=0+ ) (vop —vop—1) + Z Vok41 — V2k)
k=1 k=1
Ln 1J
SUESS
Pt 2 2k+
251 k

_EJ%+ > 2% +1°

The conclusion in terms of the digamma function may be computed using
computational tools. O
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We continue by considering games consisting of flowers, i.e., copies of H,,. Let
us start by examining k£ H; for some small k.

Example 7.2.5. It is obvious that H» ends in a draw: Left’s first move removes
all edges. Hence, v(H3) = 0. The game 2H, proceeds to either H, if both players
choose to remove an edge from the same flower, or to H if the players choose
different flowers. In any case, the result is a draw, so also v(2Hz) = 0.

Finally, consider 3Hy. If the players pick the same flower to move on, we arrive
at 2H,, ending in a draw. If the players pick different flowers, we continue to
H + Hj. From here, if both players play on H, we arrive at H,. If both play
on Hj, we continue to H. If Left plays on H and Right on H;, we end up in
H, as well. Finally, if Left plays on H> and Right on H, we arrive at 1. Hence,
Right will always play on Hy, forcing a draw also in this case. So v(3H2) =0,
as well. N

In this example, we see that the optimal strategy for Right is to always play on
a flower with the largest number of petals. For Left, keeping to this strategy is
also optimal. Both players pick uniformly if there is a choice between multiple
identical copies of a flower. In general, this is always a Nash equilibrium pair
of strategies for the players, regardless of the number and size of the flowers.

Theorem 7.2.6. Letn € N, ay,...,an_1 € No, a,, € N and consider the game
G = Y"r_, aiHy. Left cutting her edge in any copy of H,, uniformly at random and
Right cutting any edge in any copy of H,, uniformly at random is a Nash equilibrium
for G.

We split the proof into proving that the strategies described are indeed best
responses to each other.

Definition 7.2.7. Let G = >_;'_, a;H}, as in Theorem We define
v(ay, ..., an) =v(G).

Lemma 7.2.8. Let G = ", _, ayHj, as before. Suppose Right employs the strategy
of cutting any edge in any copy of H,, uniformly at random. Then a best response for
Left is to cut an edge in any copy of H,, uniformly at random.

Proof. Suppose Left also plays on a copy of H,, uniformly at random. If both
players pick the same copy of H,,, we end up in the game with one H,, removed,
having value v(as, ..., a,—1,a, — 1). If the players pick a different copy, the
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game has two copies of H,, less, and one copy of H,_; more, giving value
’U((J,l7 SN ¢ 7oy | + 1,an — 2)

Now, if Left plays on any copy of Hy, if k < n, then this will result in a value
ofv(ay,...,ar—1,...,an—1 +1,a, — 1); or, otherwise, if k = n — 1, a value of
v(ay,...,an—1,a, — 1). We will show that these results are not preferable to
the results obtained when playing on the H,, uniformly at random.

First, note that v(aq,...,ax —1,...,an—1+1,a, — 1) <w(ai,...,an—1,a, — 1),
as in the game with the latter value, we simply have n— 1 — k fewer red edges on
one of the flowers, which does not change the game in Right’s favor. Similarly,
we have thatv(ay,...,ax —1,...;an_1+ 1,a, — 1) < w(ay,...,an—1+1,a, —
2). Hence, picking a copy of H), with k& < n — 1 is not better for Left than
any outcome which can be obtained by picking a copy of H,,. Finally, also
v(ay,...,ap-1,a, —1) < v(ay,...,an—1 + 1,a, — 2) for the same reason, so
also picking a copy of H,,_; is not preferable for Left.

Hence, the best response for Left is to play only on copies of H,,. By the last line
of the previous argument, we see that picking the same copy of H,, as Right is
preferable over picking a different copy. To maximize the probability of picking
the same copy, picking a copy uniformly at random suffices for Left. O

Lemma 7.2.9. Let G = Y_}'_, axHy. Suppose Left employs the strategy of cutting
any edge in any copy of H,, uniformly at random. Then a best response for Right is to
cut an edge in any copy of H,, uniformly at random.

Proof. The resulting game if Right employs this strategy is either
n—1
G = Z aprHy, + (an — 1)Hn
k=1

if Left and Right pick the same copy of H,,, or

n—2

Gy = Z apHj + (an—l + 1)Hn—1 + (an - 2)Hn
k=1

if they pick different copies. Now, suppose that Right deviates, playing on a
copy of Hj, to

Gs= > apHp+ (ajo1+ 1)Hj 1+ (a; — V)H; + (an — 1) Hy,.
k#j—1,j,n
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Note that G5 has strictly one less red edge than G4, so v(G3) > v(G1). Remains
to prove that v(G3) > v(G2). We proceed by induction on a,,. The case a,, = 1
is trivial: if Right does not play on the only copy of H,,, the resulting game will
have strictly one red edge less.

Hence, suppose a,, > 1. The game G5 then has at least one copy of H,. By
induction, it is optimal for Right to play on such a copy uniformly at random.
In the best case (for Right), Left chooses to play on the same copy, resulting in

G4 = Z (Zk-Hk + (aj—l + ]-)Hj—l + ((lj - ].)Hj + (an — Q)Hn
k#j—1,5,n

Now, we couple G2 and G4: by induction, both players will only play on copies
of H, uniformly at random until a,, = 0. We let both players pick the same
copy of H,, in G if and only if they pick the same copy in G4. Hence, G is
played to

n—2
CTY/2 = Z apH + (an_l + 1+ Z)I—In—l
k=1
and G4 to
Gil = Z arHy + (aj_l + I)Hj_l + (Clj — 1)Hj + (an—l + e)Hn—l

k#j—1,jn—1n

forsome ¢ € {0,1,...,a, —2}. Now, if j # n— 1, by deviating from the optimal
strategy and picking a petal from a copy of H;, Right can move from G5 to GY.
If j = n — 1, this move is optimal, but the worst case outcome for Right. Hence,
in both cases, v(G5) < v(GY). As this holds for all couples, we also find that
v(G2) < v(G4). Noting that the move from G5 to G4 was the best case possible
for Right, we conclude that v(G4) < v(G3), completing the proof. O

By the reasoning in the proof of Lemma we immediately see that the
value v(a1, ..., ay,) satisfies the following recurrence.
1 an —

U(ala"'aan):aiv(ala"'aan—han*l)‘i“ a
n n

v(at,...,an—1+1,a, —2).

Indeed, if both players pick a copy of H,, uniformly at random, the probability
of the players picking the same copy is i and the probability of them picking

anp—1
an

a different copy is

For large numbers of copies of flowers, we find the following.
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Theorem 7.2.10. Let m € N. Then lim,,_,oc (v(nHy,) —v((n — 1)H,y,)) =27™.

Proof. For any n € N, we define the stochastic process X (n) by X (0) = X (1) =
0 with probability 1 and

X(n) = X(n—1) with probability 1,
T 1+X(n—2)  with probability T — 1

Note that X (n) models the amount of single blue edges produced when
starting play from nH. Hence, E[X(n)] = v(nH), and, by Corollary
E[X(n) — X(n—1)] — 1 for n — oo for two copies X, X of the process. For
m € N, we define X" (n) inductively by X™(n) = X™ (X (n)), i.e.,, X™(n)
models the number of leftover blue edges when starting play from nH,,. Hence,
E[X™(n)] = v(nH,,) and we are interested in lim,, _, o E[X™(n) — X™(n —1)].
We proceed by induction to m, the base case m = 1 being Corollary [/.2.3| For
k =2,...,n, we define the random variables Z; by

5 1 with probability 1
71 0  with probability 1 — .

We couple X (k) and X (k) for all k = 2, ..., n by setting
X(k)=Zpy X(k-1)+(1-2Z,)(1 + X(k—-2))

and } } R
Xk)=ZX(k—1)+ (1 - Zp) 1+ X(k—2)).

Note that, by this definition, X (k) = X (k) for all k¥ = 0,1,...,n — 1. Let
¢ = max{k | Z, = 1} and suppose first that n — £ is even. In this case,

X(n) =27+ X(0) =L+ X(0-1)

and
X(n—1)="t+X(¢-1).
).

Hence, X(n) = X(n — 1). If n — £ is odd, we have X (n) = 2= + X (¢ - 1)
and 3 y ~

X(n—1)=" 4 X(0) = ==L + X (k- 1),
so X(n) = X(n — 1) 4 1. Thus, in any case, X (n) — X(n — 1) € {0,1}. By our
base case, we conclude that

P(X(n) - X(n—1)=1)=E[X(n) - X(n—1)] —» 1
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for n — oo. Now, we compute

lim E[X™(n) — X™(n—1)] = lim E[X™ Y(X(n)) - X™ Y X(n - 1))]

= lim. (E[Xm_l(X(n)) — X" Y X (n-1)) | X(n) = X(n—1) =1]

— (1)m—1 L1 1
2 2 2’7” b

where the last line only follows if X (n) — oo almost surely for n — oco. Hence,

remains to prove this. We compute

P(lim X(n)<oo>:[P’

n—oo

(X(h)=X(k+1) = })

|
~

/'\('\
18

s

==
Il
_

{zkzz,m:...:u)

INA
M8
2
Jac!
N
I
=

[

=0
I
-
Il
I

This concludes the proof. O

Note that for regular combinatorial Hackenbush, the value of H,, is precisely
27"™. Hence, the result again supports Conjecture [2.3.34

Finally, analyzing the sequences inspires the following result.

Theorem 7.2.11. Let m € N. Then v(nH,,) =0forn=20,1,...,2™ — 1.

Proof. Induction on m. The base case is m = 1; indeed v(0) = v(H;) = 0.
By Theorem both players will only play on copies of H,,, uniformly
at random, until none are left. At this point, we have a game consisting of
k< % = om-1 copies of Hy,_1; a copy of H,,_; is only created when both
players select a different copy of H,,, which removes two copies of H,,, from
the game. By induction, v(kH,,—1) = 0. O
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7.3 Inverse flowers

We continue with the analysis of sums of what we will call inverse flowers.

Definition 7.3.1. For n € N, the Hackenbush position given by

is called an inverse flower with n stems and a single leaf. We write H~ = Hy
for short.

In regular Hackenbush, the value of H~ is 1. We will show that this also holds
for multiples of H~ and —H~ in the synchronized version of the game.

Theorem 7.3.2. Let m,n € N. Thenv(mH~ —nH~) =m —n.

We will prove Theorem by induction. The base cases are handled by the
following lemma.

Lemma 7.3.3.

(1) v(H") = 1.
(2) v(2H") =2.
(3) v(2H- —H ) =1.

Proof.

(1) The players play to 1 on the first turn.

(2) If the players choose the same copy to play on, the resultis 1+ H ~, having
value 2. If the players choose a different copy, the result is H + 2 with
value 2. Hence, the value is 2.

(3) If both players play on the same copy of H~, we obtain 1 + H~ — H~
with value 1. If the players play on different copies of H ~, this leads to
H +2 — H~. From here, both players playing on H leads to 2 — H~ with
value 1, both players playing on —H ~ gives H + 2 — 1 with value 1, Left
playing on H and Right on —H~ yields 2 + H with value 2 and Left
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playing on —H ™~ and Right on H gives 1 + 2 — 2 = 1. Hence, Right will
play on H and force a value of 1.

If Left plays on a copy of H~ and Right on —H ~, this yields H + H~ — H.
From here, both players have three options, giving the following matrix
game, where the first row and column correspond to playing on H, the
second to playing on H~ and the third to playing on —H:

)

The first row dominates the other rows, so Left will play on H. Right will
then play on either H or —H, forcing a value of 1.

2
1
1

=Nl =

If Left plays on —H ~ and Right on a copy of H~, we end up in H~ +
2 — 2 having value 1. Finally, if both players play on —H ~, this results in
2H~ — 1, also having value 1. We conclude that 2H~ — H~ as a whole
has value 1.

O

Proof of Theorem We proceed by induction on m + n. The base cases for
m +n < 2 are given by Lemma Therefore, we assume that m +n > 2
and that the statement is true for smaller m + n. Throughout, if a move is
unavailable (because, e.g., m < 2 or n < 2), we may ignore it.

If both players play on the same copy of H~, the resulting game is 1 + (m —
1)H~ —nH ™, having value 1 +m—1—n = m—n by induction. Likewise, if both
players pick the same copy of —H ~ to play on, the resultismH ~ —(n—1)H ~ —1,
also with value m — n. If Right plays on a copy of H~ and Left on a copy of
—H~,weobtain (m —1)H™ +2— (n—1)H~ — 2, again with value m — n.

If Left and Right play on different copies of H ~, we arrive at 24+ H +(m—2)H ™ —
nH~. We will show by induction that v(H + (m —2)H™ —nH ™) =m—n—2.
The base case m = n = 0 is handled by Example

First, suppose Left plays on H. If Right also plays on H, the result is (m —
2)H~ —nH~, having value m — n — 2 by induction. If Right plays on a copy of
H~,wearriveat2+(m—3)H~ —nH~,having value2+m—-3—n=m—-n—1.
If Right plays on a copy of —H ~, we obtain (m —2)H~ — (n—1)H~ — H. Note



7.3. Inverse flowers 153

that, by induction,
v((im—-2)H —(n—1)H —H)=—-v(—-(m—-2)H +(n—1)H™ + H)
=—(n—-1—(m-2))

=m-—n-—1.

Next, suppose Left plays on a copy of H ~. If Right plays on H, or on the same
copy of H™, theresultis 1 + H + (m —3)H~ — nH—, with valuem —n — 2
by induction. If Right plays on a different copy of H~, if possible, we arrive at
2H + (m —4)H~ +2 —nH~. Note that

v2H+(m—-4)H +2—-nH ) <v2+H+(m—-3)H —nH )=m-n—1

by induction. If Right plays on a copy of —H —, the resultis 2H + (m —3)H~ —
H — (n— 1)H . First, note that
v2H4+(m—-3)H —H—-(n—1)H )<v(2H+(m—-3)H —(n—1)H");

indeed, adding a copy of —H will not decrease the value of the game. Right
can stick to his best response strategy in the new game, not touching —H until
no more contested red edges exist in the original game. Left’s best response to
this strategy is to also not touch —H until all contested blue edges are gone,
which results precisely in the value of the old game added to —H, which yields
value 0. Now, note that, by induction,

2H+(m—-3)H —(n—1)H )<v(H+(m—-2)H —(n—1)H")
=m-2—(n—1)

=m-—n—1.

Finally, suppose Left plays on a copy of —H ~. If Right plays on H, this yields
14+ (m—2)H  —(n—1)H~ — 2 with value m —n — 2. If Right plays on a copy of
H~,thisgives H+2+(m—3)H~ — (n—1)H~ —2, also with value m —n —2.If
Right plays on the same copy of —H —, this gives H+(m—2)H —(n—1)H ™ —1,
having value m — n — 2. If Right plays on a different copy of —H —, the result is
H+(m—-2)H —(n—2)H™ —2— H. We compute
v(H+(m—-2)H —(n—2)H™ —2—H)

<—-24v((m—-1)H —(n—2)H  — H)

==2—-v(-(m-1)H +(n—2)H + H)

=-2—(—(m—-1)4+n-2)

=m-—-n—1.
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Collecting all results, we find that playing on H is dominating for Left, after
which it follows that playing on H is also dominating for Right. The result is a
value of m — n — 2 as conjectured.

Back to mH ~ — nH . If the players play on different copies of —H ~, we arrive
atmH~ — (n—2)H~ —2— H.Note that

vimH™ —(n—2)H —H)=—-v(-mH 4+ (n—-2)H +H)=m—-n-+2.

Finally, if Left plays on a copy of H~ and Right on a copy of —H~, we arrive at
H+ (m—-1)H™ — (n—1)H~ — H. Now, note that, by the same reasoning as
before,

vH+m-1)H —(n-1)H —H)<vH+(m-1)H —(n—-1)H") =m—n.
Furthermore,
vH+(m-1)H —(n—1)H —H)>v(m—-1)H —(n—1)H —H)

=—v(—-(m—-1)H +(n—1)H™ + H)

=m—n.

Hence, we conclude that v(H + (m — 1)H- —(n —1)H- — H) = m — n.
Collecting all results, we find that, no matter the strategies of both players, our
game mH~ —nH~ will result in a value of m — n. O

For copies of the game H,, for different n, we obtain the following result
analogous to Theorem [7.2.6]

Theorem 7.3.4. Letn €N, ay,...,a, € Nand consider G =Y, _, a,H, . Then

n

v(G) =v(nH)+ Y ax(k—1).

k=1

The following partial result is easy to prove, and forms the basis for the proof
of Theorem [7.3.4]

Lemma 7.3.5. Letn € N, ay, ..., a, € Nand consider G =Y} _, apH, . Then

0(@) =Y an(k - 1).
k=2
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Proof. As there are Y, _, aj, red edges in total, the game cannot last more than
> r_, ay turns. Moreover, as removing a red edge never removes a blue edge,
and removing a blue edge never removes another blue edge, every turn, exactly
one blue edge will be removed. Hence, to minimize the outcome, Right needs
to make the game last >, _, ay, turns.

To do so, on the first turn, let Right remove a red edge at random. On the
next turns, if there is a copy of H, Right plays on this copy; otherwise, he
plays randomly. Note that at most one copy of H can be created by Left every
turn, so there will never be more than one copy of H. Moreover, by using this
strategy, Right prevents Left from ever removing a red edge. Hence, the game
lasts >, _, a turns, so Y, _, a;, blue edges are removed, leaving a value of

f2 Ok — 3oy ar = 32, an(k —1). O

Proof of Theorem We claim that the optimal strategy for both players is
to play on a copy of H uniformly at random until none are left. Proof will
go by induction on a;. For a; = 1, if both players adhere to this strategy, the
resulting game is >} _, ai H, with value >_}_, ax(k — 1) by Lemma If
Right deviates and plays on any copy of H;, say, the resulting game has value
J+ Y r_oax(k — 1), which is clearly not profitable. If Left deviates by playing
on H, the resulting game has value 1 + Y7, ,ap(k —1) = (j —2) +j — 3,
which is also not profitable. This concludes the base case.

Now, suppose a; > 1. If both players employ the described strategy, the result-
ing game is either

G = (a1 — 1)H—|— Zaka_
k=2
if both players pick the same copy of H to play on, or
Go=1+ (a1 —2)H+ Y apHy
k=2
if they pick different copies. First, suppose Right deviates, playing on a copy of
Hj,j >1,to
Gs=j+ Y apHy + (a1 —1)H + (a; — 1)H; .
k#1,j

Note that G'3 has strictly one less red edge than G4, so v(G3) > v(G1). Remains
to prove that v(G3) > v(G2). The game G5 has at least one copy of H. By
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induction, it is optimal for Right to play on such a copy uniformly at random.
In the best case (for Right), left chooses to play on the same copy, resulting in

Gy=j+ Z apHy + (a1 —2)H + (a; — 1)H; .
kA1,

Now, we couple G2 and G4: by induction, both players will only play on copies
of H uniformly at random until a; = 0. We let both players pick the same copy
of H in G if and only if they pick the same copy in G4. Hence, G5 is played to

Gy=1+0+> apH,
k=2
and G4 to
=j+0+ > apHy +(a; — VH;
K#1,j

for some ¢ € {0,1,...,a; — 2}. By Lemma|7.3.5, we have

0(Gh) =140+ ap(k—1)
k=2

and

v(G) =G+ L+ ar(k—1) = (j— 1) = v(GY).

k=2

Hence, also v(G2) = v(G4). Noting that the move from G3 to G4 was the best
possible for Right, we conclude that v(G4) < v(G3). Right thus cannot gain by
deviating.

Next, suppose Left deviates, playing on a copy of H;, j > 1, to

Gs=1+ Y aHy + (a1 — V)H + (aj1 + DH;_, + (a; — 1) H; .
k#1,7—1,5

Note that G has strictly one less red edge than G4, so v(G1) < v(G2). Remains
to prove that v(G5) < v(Gh). First, suppose j = 2. In this case, Left can move
from G to G5 by a non-optimal move (by induction), so indeed v(G5) < v(G1)
holds. Thus, assume that j > 2. We couple G, and Gf like before: by induction,
in both games, both players play on a copy of H uniformly at random until
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none are left — let the players play on the same copies in both games. The
resulting games are

Gy =0+ axH,
k=2
and
Gy=1+0+ > aHy + (a1 +1)H +(a; - 1)H;
k#1,5—1,j
for some ¢ € {0,1,...,a; — 1}, respectively. By Lemma it follows that

n

v(Gh) =L+ ap(k—1)

k=2
and N
v(GE) =1+L+ ) ap(k—1)+j-2—(j—1) =v(G).
k=2
We conclude that v(G1) = v(G5), which completes the proof. O

7.4 Halves and their negatives

We continue by analyzing how sums of H and —H behave, that is, finding out
what the value of mH —nH is for any m and n natural numbers. In this section,
we denote vy, , = v(mH — nH).

First, note that vy, ,, = v(nH — mH) = v(—(mH —nH)) = —v(mH —nH) =
—Up,n, 50 also vy, , = —Vp n, from which we conclude that v, ,, = 0 for all n,
in accordance with Proposition[2.3.31} Hence, any game consisting of an equal
number of copies of H and copies of —H will result in a draw.

For m # n, a more detailed analysis is required. Both players have the option
of playing on one of the copies of H, or on one of the copies of —H. Moving
from mH — nH, if both players play on the same copy of H, the game will
continue as (m — 1)H — nH, yielding value v,,_1 5. Similarly, if both players
play on the same copy of —H, the outcome will be vy, 1. If both players play
on different copies of H, the resultis 1 + v,,_2 5. Playing on different copies
of —H yields v, ,—2 — 1. If one player plays on a copy of H and the other
on a copy of —H, the result always has value v,;,_1,,—1. We thus arrive at the
following conclusion.
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Theorem 7.4.1. Let vy, , = v(mH — nH). If m = n, then vy, , = 0. Otherwise, it
is the Nash value of the following zero-sum matrix game:

Um—1,n 14+Vm_2.n 14+Um—2,n Vm—1,n—1 UVm—1,n—1
1+U7n72,n
1+vm—2.n
14+vm 2.0 1+vm—2n Vm—1,n Vm—1,n—1 VUm—1,n—1
Um—1,n—1 VUm—1,n—1 VUm,n—1 VUm,n—2—1 Vm,n—2—1
Um,n—2—1
Vm,n—2—1

Um—1,n—1 Vm—1,n—1 Vm,n—2—1 Um,n—2—1 VUmn_1

Theorem allows us to recursively compute the values v,, ,, using linear
programming. The results for m and n up to 8 are shown in Table[7.1]

m\n| 0 1 2 3 4 5 6 7 8
0 | 0.000

1 {0.000 0.000

2 0500 0.250 0.000

310833 0.643 0.250 0.000

4 |1.333 1.006 0.666 0.250 0.000

5 | 1.733 1459 1.059 0.666 0.250 0.000

6 |2233 1.867 1508 1.076 0.666 0.250 0.000

7 2662 2339 1.928 1.528 1.078 0.666 0.250 0.000

8 3162 2771 2394 1.959 1.534 1.078 0.666 0.250 0.000

Table 7.1: The Nash value v(mH — nH) rounded to three decimal places, for
n,m < 8. Note that v(mH — nH) = —v(nH — mH).

Looking at these values, we arrive at the following conjectures.

Conjecture 7.4.2. Let vy, , = v(mH —nH). Then

(1) Forall n > 2, we have vy, ,—1 = .
(2) For all n, we have lim, o0 (Vim,n — Um—1,n) =

(3) For all m, we have lim,,_, oo (Vi n, — Vmon—1) =

| (SIS

1
5
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(4) For all m, the limit limy,,_, oc Vpntn.n €Xists.

The values vy, », can also be computed using a recurrence relation derived from
the linear program formulation for solving the matrix game in Theorem[7.4.1]
Let y;, ¢ = 1,..., m be the probability of Left playing on the i-th copy of H,
corresponding to the first m columns of the matrix, and let z;, 7 = 1,...,n be
the probability of Left playing on the i-th copy of —H, corresponding with
the last n columns of the matrix. Note that, given any constraint in a row of
the matrix, by permuting the y;’s and z;’s in any way, we arrive at another
row in the matrix. Hence, by Theorem we may replace all y;’s by a new
variable z; and all z;’s by one new variable x5, where z; is the probability of
Left playing on some copy of H, and z is the probability of Left playing on
some copy of —H. The LP with these new variables then becomes

Zo
Zo

'Um,—l,nzl + (m - 1)(1 + Um—Q,n)xl + nvm—l,n—IIQ
mvm—l,n—lxl + vm,,n—ll'Q + (’Il - 1)(Um,n—2 - 1)35'2
mx; +nrg =1

r1,22 20

IAIA

max § To

Rewriting gives

(Vm—1n + (M = 1) (1 + Vm—2.n))T1 + NVUm—1,n—1%2
MUm—1,n-121 + (Um,n—l + (Tl - 1)(Um,n—2 - 1))$2
mx1 +nre =1

T1,x2 2 0

Lo
Lo

INIA

max § Tg

Note that z; = £=%1. Renaming = = 1, we may thus rewrite the program as

Lo
max 4§ To| To

('Umfl,n + (m — 1)(1 + Um,zn))x + vmfl,nfl(l _ mx)
MUm—1,n-1Z + (Umn—1 + (1 — 1) (Vm,n—2 — 1))1—%

1

<
<

For this one-dimensional problem, the optimal solution is found either at the
border of the interval (xr =0 or z = % ), or at the intersection point of the two
constraints. We compute this intersection point by simply solving the linear
equation, yielding the following result.

Theorem 7.4.3. Consider G = mH —nH, m,n > 2, and let v,, ,, = v(G). Define

1 m—1
6m = mUm—1n + m (1 + vm72,n) — Um—1,n—1

and

1 n—1
5n = 2 Vmmn—1 + T(’Um,n72 - 1) — Um—1,n—1-
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Then, in the Nash equilibrium, the probability p,, ,, for either player to play on any
one copy of H is

1 On

M O+ 0

if this value lies in [0, =]. Otherwise, Left plays on a copy of H with probability L,
and Right plays on a copy of —H with probability +.

Pmn =

Filling in the obtained value in the constraints, we thus arrive at the following
conclusion.

Theorem 7.4.4. Let vy, , = v(mH —nH), m,n > 2, and let §,,, 0y, and py, ,, be
as in Theorem[Z.4.3] Then

Um,n = Um—1,n—1 +
, 1 .
prm,n S [Oa E] and Um,n = Um—1,n—1 otherwise.

Some remarks are in order. First, note that the solution displayed in the above
theorems is in fact simply the solution to the non-cooperative game defined by
the following 2 x 2-matrix:

1 m—1
E'U'rn—l,n + m ('Um—2,n + 1) Um—1,n—1
1 n—1 .

Um—1,n—1 ﬁvm,n—l +

n (Um,n—Q - 1)

Furthermore, note that we may interpret d,, as the increase in payoff established
for Left when playing on —H uniformly at random instead of on H, assuming
that Right plays on —H uniformly at random.

We expand upon this a little more. Define a = Lv,,, 1, + 2L (vy0, + 1),
b= vy_1n-1 and c = %’Um,n—l + %(vm,n_g — 1). The matrix game then

becomes
a b
b ¢/

(i) a > b > c. Now the top-right entry b is a saddle point of the game, so the
optimal strategy for Left is to play uniformly at random on a copy of H
and for Right to play uniformly at random on a copy of —H, the value
being b = vy,—1,n—1. We have d,, > 0 > 0y,.

(ii) @ > b < c. The game has no saddle point, and the value is given by
Theorem Wehave i1, dr > 0, which guarantees p,,, ,, is well-defined
and Um,n > Um—1,n—1-

We distinguish four cases:
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(ili) ¢ < b > c. Again, there is no saddle point, and the Nash value and
strategies are the same as in (ii). We now have 4,,, 6,, < 0, from which it
follows that p,, ,, is well-defined and vy, », < Vy—1.n-1.

(iv) @ < b < c. Now, the bottom-left entry b is a saddle point. The optimal
strategy for Left is to play only on —H, and for Right to play on H, giving
avalue of b = vy, ,—1. We have §,,, <0 < §,,.

We conjecture that for m > n, we are always in case (i) or (ii), for m < n we are
always in case (i) or (iii), and case (iv) never occurs. To prove Conjecture
it would then be sufficient to show that vy, .., is bounded from above for
m > 0 and bounded from below for m < 0, and/or that, for n large enough,
we always end up in case (i). Hence, the relations between a, b and ¢, and
therewith the sign of d,,, and d,,, seem to be crucial.

Though a proof of Conjecture remains elusive, we are able to prove the
following, somewhat similar, result.

Theorem 7.4.5. For all m and n, we have

. Vkm,kn m—-n
lim —— =
k—o0 k 2

The following lemma turns out to be helpful.

Lemma 7.4.6. For all m,n > 0, we have vy, py1 + 1 > Vi1 .

Proof. Consider the games G; =1— H +mH —nH and G = H+mH —nH,
of which vy, 41 + 1 = v(G1) and vp,41,, = v(G2) are the Nash values. We
couple G and G5. Let Right play his Nash equilibrium strategy on ;. As for
his strategy on Gy, if he plays on mH — nH in G, the move is also executed in
Gs. If he plays on —H in G, he plays on the H in Gs. Likewise, let Left play
her Nash strategy on G, playing on —H in G if she plays on H in G. Denote
the values of the games under these strategy pairs by v2(G;) and vT(Gs),
respectively.

By the coupling, the mH — nH part of both games will play out the same. We
analyze the possible outcome of the other parts. If Left and Right simultane-
ously decide not to play on mH — nH, the resultis 1 in G; and 0 in Go. If Left
does not play on mH — nH, but Right does, the resultis1 —1 =0in G; and 0
in Go. Vice versa, if Right does not play on mH — nH, the result is 1 in both G
and G. Hence, we find that v*(G1) > v%(G5).

By the definition of a Nash equilibrium, we also find that v(G1) > v*(G1) and
vE(Ge) > v(Gy), so that indeed v(G1) > v(Gy). O
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Proof of Theorem Using Lemma and Theorem we compute, for
fixed k,

Vkm, kn <km+ Vo, km~+kn

k k I+ Lign + kmo
:km—i<2(km+kn)—2—¢( m A kn A1+ Lgn + dd})+w<3)>

2 2
<kmkn+¢(km+kn+2)+0(1)

-2 2 2

< l%n - ]%l - erlog(karkn)wLO(l)

= k‘7m - k?n + log(km + kn) 4+ O(1).
By a symmetrical argument, we find
kTm - I%L —log(km+kn) 4+ O(1) < Vkm kn < kTm - k?n +log(km+ kn)+ O(1).
Dividing by & and taking k — oo yields the result. O

7.5 Red-Blue-Green Hackenbush

We conclude the chapter with a brief overview of synchronized Red-Blue-
Green Hackenbush, mainly with the aim of providing an interesting topic for
future research. Incorporating green edges, which may be cut by either player,
results in the ruleset no longer being separable. Hence, the games at hand can
no longer be modelled as standard zero-sum matrix games. Instead, we obtain
games in which repetition is possible: if both players decide to cut the same
green edge simultaneously, this results in no change, forcing the players to try
again. If the equilibrium strategy — if this exists — prescribes both players to
take this move with probability 1, we declare the game a draw, having value 0.

Example 7.5.1. For n € N, consider the game

For n = 0, both players play on the only available green edge with probability
1, ending in a draw by definition. For n = 1, whichever strategy the players
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employ, the result is again a draw with value 0. For n = 2, the dominating
strategy for Left is to play on any blue edge, with Right removing the only
green edge, giving a value of n — 1. N

This example shows that the statement of Conjecture fails to hold for
this non-separable game: for Left, it is more beneficial to play on one of her
own blue edges, saving the positive value of the remaining ones, than to play
on the contested green edge, which would result in a value of 0.

Furthermore, as already touched upon in Section[2.3.4} the existence of Nash
equilibria is a priori no longer guaranteed, and, moreover, if they exist, they are
much harder to find. Indeed, recursively defining the value of a synchronized
move to be equal to the value of the game itself results in a quadratic problem
instead of a linear one, which is computationally much more complicated.

Example 7.5.2. Let a,b, c € R, and consider the game described by the matrix

G o)

where the * denotes a required repetition of the game. The program to find
the value of the game now reads

ro < Tor1 + ars
max< rol| g < bx1 + cxo
r1+22=1,21,02 20

This is indeed no longer linear. <

Instead, one could resolve to using partial derivatives and Lagrange multipliers
to find the value of the game. In any case, the result is computationally harder
than regular zero-sum games.

Example 7.5.3. Consider the game

L

Let p; be the probability of Left playing on the leftmost blue edge, p; on the
rightmost blue edge, and ps the probability that Left plays on the green edge.
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Similarly, let ¢; be the probability that Right cuts the red edge, and ¢ the
probability that he cuts the green edge.

The value of the game is given by

v=p1q1-0+p1g2-0+p2g1 - 0+ paga - 1 +p3q1 -2+ p3q2 - v
= p2g2 + 2p3q1 + p3qav,

. 2
ie, v = P2§2+ P3q1
—P39q2

%. Furthermore, note that Left can always force a value of at least 0
by picking p; = 1, so that we may set p; = 0. Hence, p2 + p3 = 1 and we obtain
v = P2=3P2q1+2¢

p2+qi—p2q1

Solving 38—;’2 = 0 yields ¢; = 0 as only feasible solution. Solving g—;’l = 0 yields

. Noting that ¢ + g2 = 0 must hold, we may rewrite v =

p2=0o0rpy = % Note that the combination p» = ¢; = 0 does not yield a Nash
equilibrium: Left can improve by playing on the rightmost blue edge instead,
obtaining value 1. Hence, the only Nash equilibrium is for Right to always play
on the green edge, and for Left to either play on the rightmost blue edge or the
green edge with probability 1, yielding a value of 1. <



Chapter 8

Synchronized Push

In this chapter, based on joint work with Ronald Takken [[19]], we discuss
some results on the synchronized versions of Push and Shove. Both games
being separable, the results largely mirror those in Chapter [7]and support
Conjecture In this chapter, we consider both the combinatorial and
synchronized version of Push in detail, showing that it behaves similarly but
not identically to Hackenbush. In Section we briefly consider the game of
Shove, again showing some similar behavior.

8.1 Basics

The ruleset of Push, described in Example provides us with separable
games. If the players pick two pieces of which the moves do not influence each
other, it is clear that the moves can be executed simultaneously in any order. If
the move of one of the pieces would cause the second piece to be pushed, we
perform the move on the second piece first.

Example 8.1.1. Consider the synchronized game

= [r] [r]

Here, moving either piece does not affect the position of the other piece, so
GEE = GEL = 9 is the only synchronized move of the game.

165
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Next, consider
a=[_[r]P]

We now find that the blue piece is pushed by moving the red piece, so the
only synchronized move amounts to first moving the blue piece out of the way,
followed by moving the red piece: G¥ = G* = GLE. <

Hence, by Corollary[2.3.11} all Push positions are numbers in combinatorial
sense. The numerical values of some simple combinatorial Push positions are
shown in [2| Problem 5.15], proven in [[19]].

Theorem 8.1.2. Writing Lr for n blank squares, we have

i) LT l=n+1;
i) [ JTeI7]=2 - 32+
Gi) [ 'TrT I[P l=m+1form > o.

For Push and Shove, we are able to prove Conjecture

Theorem 8.1.3. Let G and H be games of synchronized Push or Shove, and suppose
T is terminal. Then v(G +T) = v(G) + v(T).

Proof. We prove the statement for Push; for Shove, the proof is analogous.
If G is also terminal, the result is trivial. Hence, suppose G is non-terminal.
Furthermore, without loss of generality, suppose T' € £, in which case we may

represent T'by T' = C 17l

Let G be any move of Left which moves the leftmost piece on any one strip
of G, let G be any arbitrary move on G, and consider G; = GET7 + T and
Gy =GR+ TL = GE + T — 1. First, if GLTE = GEE = GE, j.e., if Left’s chosen
piece is pushed by Right’s move, then

v(Gy) = U(GL+R) +o(T) = ’U(GR) +o(T) > v(GF) + v(T) — 1 =v(Gy).

Next, suppose that Left’s chosen piece is not pushed by the move of Right.
Noting that the chosen piece is the leftmost blue one by assumption, the result

is
Glz.........+|:]n
Gy=---| Ip‘...’pl])‘..._|_|:I

Note that the amount of red pieces to the left of the moved blue piece may
be zero, and that the position of the empty square in G2 may vary depending
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on Right’s move. Now, couple G; and Gs. Let Left play her Nash strategy
on (3, and move the same piece on GG;. Conversely, let Right play his Nash
strategy on G1, moving the corresponding piece in G3. Denote the values under
these strategies by v©(G1) and vT*(G2), respectively. Let play continue until the
leftmost blue piece in G is moved off the board, ending in

+[l
G’ -

if this piece has not been pushed in G, or in

G=-+ |:r
Gy=-+[T
if it has been pushed. In the second case, it is clear that v(G}) > v(G5). In the

first case, continue the coupling, connecting a move on the leftmost piece in
G, to amove on H in G). We then arrive in either

G,l,:...+[]"j
Gy =+
G’1’:...+I:]Z
Gy =t [

depending on whether this piece is pushed at some time. In both cases, it is clear
that v(GY) > v(GY). Hence, we find that v(G;) > vE(G1) > vB(Ga) > v(Gy).

We thus conclude that moving on G dominates moving on T for Left. Hence,
by domination and induction, we conclude that v(G + T') = v(G) +v(T). O

or

In the sequel, we may write n and —n for integer Push and Shove games, and
consider these separately from the other summands in sums of games.

8.2 Halves

We continue by considering Conjecture[2.3.34in the light of Push games. To
this end, we start by analyzing copies of the games

H=2+[P[P] and H'=-1+[P]P]
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which are both equal to § in combinatorial sense by Theorem Let v, =
v(nH) and v], = v(nH'). We then find the following recurrence relations, akin
to Theorem [7.2.1]

Theorem 8.2.1. We have

1 —1
- 1+ ZUn—1+ nn Un—2 n >3,
n — 3

v1=1LLuv =3,

and

Proof. Computing v, is trivial; for vy, note that playing on either copy of H

uniformly at random is a Nash equilibrium by Theorem [2.2.20} resulting in
_1 1 _3 .

vy = 5(2—-1+2—-1)+35(2—2+2— 1) = 3. For the recurrence step, again by

Theorem [2.2.20} both players play on the same copy of H with probability <, to

(n—1)H + (2 — 1) with value v,,_; + 1; or on different copies with probability

=1 to (n—2)H + (2 - 2) 4+ (2 — 1) with value v,_» + 1.

Again, computing v} and v} is straightforward. For the recurrence step, once
more by Theorem [2.2.20} the players play on the same copy of H' with proba-
bility L, to (n — 1)H’ + (—1 + 1) with value v],_;; or on different copies with
probability %=1, to (n — 2)H’ + (=1 + 1) + (=1 + 2) with value v, _, +1. O

Just like for Hackenbush, the recurrence relations do not have a closed-form
solution, but the differences d,, = v, — v,—1 and d|, = v, — v},_, are well-
behaved.

Theorem 8.2.2. We have

and

The solutions are

C 2n4 (1)t 41

dy
4n " 4n




8.2. Halves 169

Proof. We expand:

dn = Up — Un-1

— 1 n—1
=1+ Evn—l + " Un—2 — Un—1

=1- nT_l(Unfl - ’Un72)

-1
=1-11q, ;.

and
dy= v, ~ vy
= o+ 5 (W 1) vy
=M e =
= %(1 —dy,_y).
The solutions may be verified by substituting them into the proven recurrences.
O
Corollary 8.2.3. We have
lim v(nH) = lim M = 1
n—oo N n—oo 1 2

Hence, we see that for these Push positions, Conjecture [2.3.34 holds. Note
that, just as for d,, in Section[.2} the parity of d,, is crucial to its value. Here,
do, = dby, 1 = 3 for k € N, doj41 converges to & from above and dj, from
below, as shown in Figure We will encounter a similar pattern again later
on.

Next, we consider games of the form mH — nH. Some computed values can
be found in Table[8.1]

We again follow a path similar to that in Chapter 7, mirroring Conjecture[7.4.2
Lemmal/.4.6land Theorem [7.4.5

Conjecture 8.2.4. Let vy, , = v(mH — nH). Then

(1) Foralln > 2, we have vy, ;1 = 3.

(2) For all n, we have lim 00 (Vry.n, — Um—1,n) =
(3) Forall m, we have limy, o (Vm n — Umn—1) =
(4) For all m, the limit limy,,_, oc Vpngn,n €XIsts.

‘ N[

1
5

Lemma 8.2.5. Forall m,n > 0, we have vy, py1 + 1 > Vi1 .
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o 20 40 60 80 100

o 20 40 60 80 100
n

Figure 8.1: The convergence of d,, (left) and d/, (right). The values for d,, for n
even and d, for n odd are shown in green; the other values in blue.

m\n 0 1 2 3 4 5 6 7
0 0.0000

1 1.0000 0.0000

2 1.5000 0.7500 0.0000

3 2.1667 1.3571 0.7500 0.0000

4 2.6667 1.9935 1.3338 0.7500 0.0000

5 3.2667 2.5415 1.9411 1.3338 0.7500 0.0000

6 3.7667 3.1333 2.4923 1.9236 1.3338 0.7500 0.0000

7 4.3381 3.6608 3.0719 2.4721 1.9220 1.3338 0.7500 0.0000

Table 8.1: The Nash value v(mH — nH) rounded to four decimal places. Note
that v(mH —nH) = —v(nH — mH).
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Proof. We couple G1 =1 — H +mH —nH and Go = H + mH — nH as in
Lemma again denoting the values under the coupled strategies by v*(G)
and vf(Gy), respectively. If Left and Right both not play on mH — nH, the
result is 0 in both G; and G5. If only Left does not play on mH — nH, the result
is the same. If only Right does not play on mH — nH, then the result is 1 in
both G and G». In any case, we conclude that v (G1) > v®(G3), so that also
v(G1) > v (Gy) > vR(Ga) > v(Ga). O

Theorem 8.2.6. For all m,n € N we have

. Vkm,kn m—-n
lim =
k—o0 k 2

Proof. Using Theorem and computational software, we find that

G (HEH R 6)]

The result then follows from Lemma and a computation along the lines
of the proof of Theorem[7.4.5] O

8.3 Quarters

In this section, we further explore the Nash values of synchronized Push
positions, continuing with copies of the position

which has value i in combinatorial sense. From Hj, Left plays to

which is also the result of both players playing on H; simultaneously. In the
previous section, we analyzed the result of playing on multiple copies of H,
and showed that in the limit the Nash value converges to the combinatorial
value. To ultimately prove the same behaviour of multiple copies of H,, we
start by analyzing H¥ in more detail.

while Right plays to
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Lemma 8.3.1. Forall ny,ny € N, we find v(n1 H + no HY) = v(n H).

Proof. By Theorem[2.2.20} the probability of a player playing on one given copy
of either of the games is equal across all these copies. This allows us to rewrite
the game as a two-dimensional zero-sum game. We continue by induction on
the birthday, the base cases for n;, ny < 2 being straightforward computation.

If both players play on the same copy of H, the resultis (2 — 1) 4 (ny — 1)H +
noHY =1+ (ny — 1)H + noHZ. If the players play on different copies of H,
the resultis (2 — 1) + (2 —2) + (ny — 2)H + noHY =1+ (ny — 2)H + no HE.
Hence, by induction, writing v,, = v(nH) as before, the expected result of both
parties playing on copies of H is

1—1 —
n1 Un1—2 - Unla

(Ut vp, ) + 2 (L4 vy —2) = L+ 7-0n, 1 + 2

where the last equality follows from Theorem [8.2.1] If Left plays on a copy of
H, while Right plays on a copy of HZ, the resultis (2 — 2) + (ny — 1)H + H +
(n2 — 1)HY = n1H + (ne — 1)HY, with value v,,, by induction. If, conversely,
Left plays on a copy of HZ and Right on a copy of H, the resultis (2 — 1) +
(n1 —1)H 4+ (2 —3) + (ne — 1)H¥ = (n1 — 1)H + (ny — 1)H¥ with value v,,, _;.

Finally, if both players play on the same copy of H¥, the resultis ni H + (2 —
2) + (ng — 1)HZ, with value v, . If they manage to play on different copies
of HY, theresultis niH + (2 — 3) + H + (ng — 2)H%, having value v,,, 11 — 1
by induction, Hence, both parties playing on HY yields an average result of
Loy, + 22=L (v, 11 — 1). We thus find that n H + ny HJ boils down to

na ny

Un, Un,
Uny—1 niz’l)nl + nigl (Un1+1 - 1) .
By Theorem Up, > Up,—1 and vy, 41 — 1 < wv,,. Hence, the first row
dominates, yielding a value of v,,, = v(n1H). O
Lemma 8.3.2. For m,n € N, let v,, ,, = v(mHs + nH). Then

(1) vmyin S Vma+ 1
(ii) Um,n < Um,n+1 < Um,n + 1;
(iﬁ) Umt1,n < Umintl

Proof. We prove all statements through Theorem [2.3.32

(i) Consider G = (m + 1)Hy + nH, from which Right can play to Gt =
mHs + (n — 1)H + 1 by moving on the same copy of HY twice.
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(ii) For the first inequality, consider G = mHz + (n + 1)H, from which
Left can move to GY = mH, 4+ nH. For the second inequality, consider
G = mH; + (n + 1)H, from which Right plays to GE =mH, +nH + 1.

(iii) Consider G = (m + 1)H» + nH and note that Right can move to G¥ =
mHs + (n+ 1)H.

O

Lemma 8.3.3. Forall ny,na,n3 € N, we find v(ny Hy+noH +nzHE) = v(n; Hy +
7’L2H)

Proof. Let G = ny1Hy + noH + ngHZ. By induction on the birthday, using the
previous lemmas, we compute G being equal to the zero-sum game given by
the matrix

1
*Unl—l,n2+1
1 vnl—l,ng—l + 1 vnl—l,ng-i-l

ni—1
+ ;1 Uny—2,n0+1

nlz (vm na—1+ 1)
(U7l17”2_2 + 1)

Uny—1,n ns—1 Uny,nay

+

na
1”3 Unhnfz

na—1
+ (Uﬂ1 na+1 = 1)

ns

vnl—l,n2+l -1 vnl,nrz—l

We first show that the first column dominates the third. Note that, from the
game (n1 —1)Ha+ (n2+1)H +n3 HY, Left can move to (nq —2)Ha+ (na+1)H +
(n3 + 1)HZ, which has value vy, —2 nz+1 by induction. Hence, v, —2 p,+1 <
Vny—1.np+1, SO also vnl Lnpt1 + 2 lvnl 21341 < Uny—1.m,+1- By similar
reasoning, also vn, —1.n, < Uny.ns and vnl 1na+1 < VUn, ny+1- By Lemma|8.3.2}
Unyi—1 n2+1_1 < Uy, ,n2s S0 that Uny—1, 712-1‘1_1 < ’Unlx7l2+n; ! (vnl,nz-i'l 1)
Hence, the first column indeed dominates the thlrd one.

Next, we show that the first row dominates the third. By Lemma we find
that Uny —2,ma+1 > Uny—1,m04+1 — 1 so also Unl 1,n2+1 + 1vn1—2,n2+1 >
Uni—1,n,+1 — 1. Moreover, vy, 1 n,—1 + 1 2 Ung no—1- Hence, the first row
indeed dominates the third.

By induction, play continues by making moves only on copies of H, and H until

only terminal games and copies of HZ are left, which do not contribute to the

value of the game by Lemma“ 8.3.1} We conclude that v(ny Ha +noH +ngHE) =
(n1 H. 2 + N2 H ) O

Note that, by the reasoning in the proof, we may conclude that vy, , < V410
for all m,n € N, extending Lemma Moreover, recall that, for Blue-Red-
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Hackenbush, a Nash equilibrium exists in which both players first play on
copies of Hy, only turning to copies of H after the quarters have been exhausted.
For Push, this is not the case, which makes the argument much less neat.

Lemma 8.3.4. Let G = Hy + nH for n > 4. Then Left moving on Hy and Right
moving on any copy of H uniformly at random is a Nash equilibrium, with value
v(G) =vp_1 + 1.

Proof. We proceed by induction on n. The base cases n = 4,5 can be checked
using computational software to find the Nash equilibria of the games. Hence,
suppose n > 6, in which case the game boils down to the zero-sum game given

by

Un+1 Up_1+1
Up %(Ul,n—l +1)+ %(Uz,n—z +1) )’

where the last entry evaluates to 1 + Lvy,_1 + “Lvy,, 5. First, note that
Unt1 > Un + 3 > vp—1 + 1 by Theorem Next, note that, by induction,
Vip—1 =Up—2+ land ve,,—1 = v,_3 + 1. Hence,
T+ 2oy 4+ 2 v 0 =1+ L(vp2 + 1) + L (vp_s + 1)
=2+ %'Un72 + 7L7_len73
S 2 + ﬁvn—Q + %vn—3

=1+4+v,-1,

where the inequality follows from Theorem and the last equality from
Theorem Hence, v,—1 + 1 is a saddle point. O

Theorem 8.3.5. Let G = mH, + nH for m > 11 and n € N. Then Left and Right
both moving on a copy of Hy uniformly at random is a Nash equilibrium.

Proof. Consider the game G = mH; + nH. We prove that the statement holds
for all pairs (m, n) for which n > max{1,5— |51 ]} by induction on m. For the
base cases, we prove the validity by using computational software to compute
the Nash equilibria for the pairs (m, n) € {(1,5), (2,5), (2,4), (3,4), (4,4), (4,3),

(5,3),(6,3),(6,2),(7,2),(8,2), (8, 1)}.

Now, let (m, n) be no base case, and such that n > max{1,5 — | % |}. Then
G = mH> + nH equals the zero-sum game

1 -1
Evm—l,n-l-l + mm Um—2,n+1 Um—1,n—1 +1
1 —1
Um—1,n ﬁ(vm,n—l + 1) + nT('Um,n—2 + 1)
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n—1

by induction, where the last entry evaluates to 1+ %vm,nf 1+ "=V n—2. We set
out to show that the first entry is a saddle point. By the extended Lemma|8.3.2}
we have Um—1,n < Um—2,n+1 < Um—1,n+1, SO that Um—1,n < %vm—17n+l +

-1 : 1 -1

P=VUm—2n+1- Remains to show that v, 1 011+ "= Vm—2041 S Vm—1n-1+
1.

Consider

Gi=(m—-1)Hy+ (n—1)H +1,
Go=(m—2)Hy+ (n+1)H,
By induction, the Nash equilibrium strategy for both players is to play on copies

of H; uniformly at random until none are left. We provide a coupling of the
three games. For 2 < k < m, define

0 with probability k = L

. o1 l
7 — { 1 with probability +,

and
14+ X(k—1)  with probability 1,

X (k) = { 1+ X(k—2) with probability .

Set X(0) = 0and X (1) = —1. Then X (k) models the number of copies of H
obtained when starting play from kH, for k sufficiently large; note that if we
end up with only one copy of H», this indeed costs a copy of H by Lemma(8.3.4]
Now, fori = 1,2, 3, set

Xi(k) =1+ Zu Xk — 1) + (1 — Zp) Xa(k — 2).

We consider X;(m — 1), Xo(m — 2) and X3(m — 1) and let A; be the event that
X;lands on 1. Then G1, G> and G5 will result in

t=Mm+1+Xs(m—1))H + 1(A),

and wehave v(G;) =Egz, ..z, ,[v(G})]fori = 1,2,3.Note that we may indeed
omit copies of HY if so created by Lemma Define

/= max{k |2<k<m-—1,Z, =1} ifHZ”;l(lek):O,
0, otherwise.

Then ¢ tells us the first time that both players play on the same copy of H»,
with ¢ = 0 signifying that this never happens. We distinguish between four
cases.
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X(1) = ™2 1 and Xa(m—2) = m=2 4 X(0) = m_3
we thus find that, in this case, v(G}) = v -1 + 2, U(G’) = Uprio and v( %)
Unr41 + 1. By Lemma 8.2.2] we find

First, suppose ¢ = 0 and m is even. Then X 1( ) X 3( —1)=m>2 4
1,

wo(Gy) + mbo(Gy) = m(vnHH) e

< %(Un +1 + ]-) + 7vn +2

=31 +dy +dp+1)+ 35 (vn/_l + dp + dyr g1 + dpyg2)
= ’U,n/_l + dn/ + dn/+1 + §dn/+2 + 5.

For n’ = 2, we have

do+ds+ 2ds+ 1 =

N
_|_
win
+
o=
N
_|_
(SIS
Il
>—-‘l\.’)
[\S] 9N}
AN
n

and n’ = 3 yields

=5 <9

dy+ds+ 3ds+5=5+5+ o

ol

+

N[ =
(SIS

Noting that dy; = % and dg;41 is decreasing in j, we conclude that d,,s + dp,r 1 +
$dp 42+ 5 < 2forall /, so that

HU(G3) + 20(Gy) < vy +2 = 0(GY).

Second, suppose ¢ =0and mis odd. Then X;(m — 1) = X3(m — 1) = 2+ +

X(O) =m- and Xo(m—2) = 221 4+ X(1) -1 = -1 — 2. Hence, now setting

n =n+4+ 2= we find v(G}) = vp—1 + 1 = v(GY) and v(G%) = vy 41. Again
by Theorem
w0(Gh) + 0(GY) = vwan + Pt (v o1 + 1)
< 3+ 5 (001 + 1)
= %('Un’—l +dy + dn’+1 + %(vn/—l + ]-)
=Up—1+ %dn’ + %dn’Jrl + %

By similar reasoning as above, for n’ > 2, we find
1 1 2 o1 1,1 2,2_19 _ 11
sdn +3dwiit3 <5 3+3 5+5= 155 <10

so that
2 0(G) + T tu(GY) S v+ 15 = 0(Gh) + 15
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Third, suppose £ > 2 and £ = m — 1 mod 2. Then X;(m — 1) = Xz(m — 1) =
Xa(m —2)+ 1, as the processes meet. Moreover, A; = A; = Az. Hence, setting
A=Ajand N =n+ X(m — 1), we find

v(GY) =vn-1 + 1+ 1(A),
v(Gy) = vy + 1(4),
v(G%) = vn41 + 1(A).
We compute
7 v(G3) Lo(Gy) = o (ung1 + 1(A)) + 222 (o + 1(4))
%(UNH +1(4)) + 3 (o + 1(4))
= 1(vn-1+dy +dni1 + 1(A) + 2 (vn_1 +dy + 1(A))
uvny—1+dn + dN+1+1(A)

<

We compute
di+3ds =% and ds+ ids= 3L

so that, noting that da; + 3da2s41 and da41 + 3das12 are decreasing in J,

%U(Gé) + %U(Gé) =UN-1+ dN + %dN—i-l + ]l(A)
<wun-1+ 15+ 1(4)
= (G}) ~

for N > 4.

Fourth, and finally, suppose ¢ > 2 and ¢ = m mod 2. Defining A and N as
above, we find v(G}) and v(GY%) arrive at the same values, the only difference
being that in this case v(G%) = vy 11 + 1(A). We thus compute

wU(Gy) + 2 to(GY) = o (onga + 1(A)) + 2ot (unr + 1(A))
= un+1 + 1(4)
=on_1 +dy +dys1 + 1(A).

We compute dy + ds = 0, so that

%’U(Gé) m=2 1 (G/)_UN_1+dN+dN+1+]1(A)
<uNn_ 1+11+1(A)
=v(GY) +
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In the cases ¢ > 2, the statements only hold for N =n + X;(m — 1) > 4, ie.,
n > 4 — X1(m — 1). Noting that X;(m — 1) > [+1] — 1, we find that the
statements hold for n > 5 — max{1,5 — | -1 |}, which was the assumption.

Next, we compute the relevant probabilities. As the Z;, are independent, for
k > 2 we compute

m—1 m—1 .
) = P(Ze — 1 g _ 1
P(Efk)flP’(Zkfl)‘H P(Z; 0)’1@, P ey |
j=k+1 j=k+1
For ¢ = 0, we compute
- m—2 1
P(l=0)=1-Pl>2)=1-Y Pl=k =1-——"=

B if m is even
> =m— = 2 it '
P(£>2,6=m—1mod?2) { L ifmisodd,

and

— _ 5 o1 if m is even,
P(€Z2,€_mmod2)_{ (m2—1_1)_ 1, if m is odd,

Hence, for m even, we compute

EZs....Zm 1[5 0(G3) + "L (GY)]
< IE”(E:O) (G}) +P({ > 2,0 =m—1mod 2)(v(G}) — 15)
(€>2€—mmod2)( (G )+i)
= = ( ) e ~r((G’) 15)
+ o= m_l(( D+ 1)
—H(Gy) = (G’)

=(r m—1)v(G
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For m odd, we compute

EZs...Z s [ 0(G) + Pt0(GY))]

SP(L=0)(v(G)) + 55) + P(£ > 2,0 =m — 1 mod 2)(v(G}) — 55)
+P({ > 2,0 =mmod 2)(v(G}) + 15)

= s (v(GY) + 15 + 5 5 (0(GY) — 1p)
() (G + )

Hence, indeed 20,1 n41+ ™20 2011 < Up—1,n—1+1, s0 the top-left entry
of the matrix is a saddle point. O

From the proof of Theorem it follows that, for m and n large enough,
Um,n = %'Umfl,n+1 + mT_l’UmfanrL

Defining d, , = Ym,n — Um—1,n, and using the base cases written in the afore-
mentioned proof, one may readily compute values for v,, o = v(mHs) and
dim,0 = v(mHy) — v((m — 1) Hy). Some results are shown in Figure 8.2}

0.29

0.28 1
.
Z I\
£027
026 °, "

0.25

T T T T T
50 100 150 200 250

Figure 8.2: Values of d,, o for 10 < m < 250. The line y = 1 is drawn in red,
and points are given a color based on their index modulo 4.



180 Chapter 8. Synchronized Push

We see that, just like the clearly distinguishable subsequences daj, and daj+1
when looking at copies of H, we now find four decreasing subsequences,
converging from above to ;.

Theorem 8.3.6. We have

lim (v(mHs) —v((m —1)Hy)) = 1.

m—0oQ

Proof. For n € N, define the stochastic process Y'(n) by Y(0) =0, V(1) =1,
and, forn > 2,

Y(n) = 1+Y(n—-1) with probability £,
Y=Y 1+ Y(n-—2) with probability %=1,

n

The process Y (n) models the amount of copies of 1 obtained when starting play
from nH. Hence, E[Y,,] = v(nH) and, by Theoremm E[Y(n) —Y(n)] — 3
for any two copies Y, Y of the process.

Next, define X (m), A, Z;, fork = 2, ..., m,and £ as in the proof of Theorem

Define two copies of each process, X and X, and Y and Y, coupling them
through

V() =14 ZY(k—1)+ (1 - Zo)Y (k- 2)

and

Y(k) =14+ Z,Y(k—1)+ (1 - Z,)Y (k- 2),

and analogous definitions for X and X. We will prove that

lim E[Y(X(m)) + 1(A) — Y(X(m)) — 1(A)] =

m—r o0

=

First, note that, by the proof of Theorem m P(¢ = 0) = —- — 0, so that

1

also E[1(A) — 1(A)] = 0. Next, we consider the difference Y (k) — Y(k—1).1f
k=/(mod?2 thenY(k)="£+1+Y((—1)andY(k—1) = ==L + Y (- 1).
Ifk=¢—1mod2, thenY (k) = k*TH—i-l—l-Y(f—l)andf/(k’—l) e

1+ Y (¢ —1). Hence, we find that Y (k) — Y (k — 1) € {0, 1} for both cases, so
that

P(Y(n)—Y(n—1)=1)=E[Y(n) - Y(n—1)] =

1
3
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By similar reasoning, the same holds for X and X. Hence, we compute

Jim LY (X(m)) +1(4) = ¥/(X(m — 1)) ~ 1(A)
= lim E[Y(X(m)) ~ V(X (m — 1))
= lim_ (]E[Y(X(m)) “V(X(m—1))| X(m) - X(m—1) =1]

N =
_|_
o
N[ =

PN ST

The reasoning only holds if X (m),Y (m) — oo for m — oo, which is indeed
the case. O

For higher powers of 1, the difficulties encountered in the proof of Theo-
rem[8.3.5|become critical. While for Red-Blue Hackenbush, both players always
play on the highest power of 1, and this is also almost always true if only copies
of H and H; are available for Push, such pure Nash equilibria fail to exist for
higher powers of 1 in Push. This makes theoretical analysis difficult. However,
experimental results do support the conjecture that a statement along the lines

of Theorem holds in a more general sense.

8.4 Shove

We conclude with some preliminary results for the game of Shove. The combi-
natorial version is fully solved; the following result is from [2]].

Theorem 8.4.1. Consider a single strip of Shove G containing n pieces. Let p(i) be
the position of the i-th piece from the left of the strip, and let c(i) = 1 if the i-th piece
is blue and —1 otherwise. Let r(i) be the number of pieces to the right of the i-th piece
up to and including both pieces of the last color alternation, setting r(i) = 0 if the i-th
piece and all pieces to the right are of the same color. Then

p(7)
or(i) "

G:

%

c(i)

1

n
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For the synchronized version, we consider copies of the game

Ko =[_[s]+[s]5]-[s]s]

—_
n

which has combinatorial value 27" by Theorem For n = 1, the resulting
game is isomorphic to H, and therefore the same results hold. For n = 2, some
computational results are shown in Figure

0.40

0384 *

0.36

0.34 4

0.32 1

0.30

0.28 1

0.26

0.24 1

T T T T T T T T
5 10 15 20 25 30 35 40
n

Figure 8.3: The difference v(nK; — (n — 1)K3) for k = 3,...,42. Theliney = 1
is drawn in red, and points are given a color based on their index modulo 4.

Just like for higher powers of % in Push, copies of K, (and also K, for n > 2)
display non-deterministic Nash equilibria, making the analysis difficult. How-
ever, Figure[8.3|suggest that also for this game, a result similar to Theorem|8.3.6|
holds.
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Summary

Combinatorial games are games for two competing players, moving in a turn-
by-turn fashion, in which there is no chance nor hidden information. Chess,
checkers and the simpler tic tac toe are well-known examples of this class of
games, as well as game of go. Though these games are by no means simple,
there does exist a beautiful mathematical framework for their analysis. Using
this theory, it is possible to efficiently determine the outcome of a given position
of a game without having to explicitly compute the results for every possible
move. Moreover, the theory provides a measure of how profitable a given
position is to either player, often denoted by the ‘value” of a position. An
example application of the theory is research on endgames in go.

However, not all games are combinatorial games. The game of poker, for ex-
ample, introduces hidden information. In practice, impressive results have
been obtained for these non-combinatorial games using artificial intelligence,
but theory and understanding are perhaps lacking. In this thesis, the main
question we address is whether the existing theory for combinatorial games
can be adapted or extended to non-combinatorial ones.

We will look at two types of variants of combinatorial games in particular. For
the first type, we introduce hidden information in a given combinatorial game
by no longer communicating the details of the current position to the opponent
after a move has been made. A variant of this type for the game of chess is
called Kriegspiel in the literature. Besides the two players, we now also need a
referee to whom the players can communicate their prospective moves. If the
move is legal, it is executed, and the other player may or may not be informed
about any or all aspects of the move that was made. If not, the player has to try
another move. By attempting different moves until a legal one is executed, a
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player can obtain information about the current state of the game.

The second way of altering an existing combinatorial game is by making the
players move simultaneously instead of turn by turn. We call this type of variant
the synchronized version of a game. Again, a referee is appointed, to whom
the players may communicate their prospective moves. After they have both
done so, the moves are executed simultaneously. In practice, this might cause
problems, as not all combinations of moves will allow for a natural way of
them being executed at the same time. What should happen, for example, if
two players want to move their chess pieces to the same unoccupied square?

We start with a concise introduction in Chapter 1. Next, in Chapter 2, we
provide some of the fundamental theory for combinatorial games, as well as
for the two types of variants as introduced above. We do not only provide
existing results for analyzing combinatorial games and games with hidden
information, but also introduce a new framework for analyzing synchronized
games. We state some properties which are sufficient for a combinatorial game
to allow for a synchronized version, and redefine the concept of value for
synchronized games.

In Chapters 3 and 4, we analyze a handful of combinatorial games. In Chapter
3, we consider two variants of the game of Hackenbush. We identify which
positions are easy and which are hard to analyze, and conclude that the results
more or less coincide with those for the original game. In Chapter 4, we consider
a variant of tic tac toe called Order versus Chaos. In this asymmetrical game,
one player, Order, attempts to construct a line of identical symbols, while the
other, Chaos, tries to prevent this. We show that some positions are always won
by Order, and that many positions are always won by Chaos. For some positions,
we do not find the winner. For these positions, we formulate a conjecture for
who the winner should be by using artificial intelligence.

In Chapter 5, we consider three variants of the combinatorial game of Nim
with hidden information. A position in this game consists of heaps of coins. A
turn consists of picking one of the heaps and removing any number of coins
from this heap. If a player finds no more coins to remove on their turn, they
lose the game. We introduce two variants in which the opponent only receives
partial information on the amount of coins that has been removed by a player
during a turn. One variant turns out to have an elegant solution; the other
seems to be complicated. Finally, we consider a Kriegspiel type variant, in
which the players have even less information on the current state of the game.
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We compute the value for some small positions.

In the final three chapters, we turn to synchronized variants of combinato-
rial games. In Chapter 6, we treat the game Cherries and a variant of this
game called Stack Cherries. We show that every Stack Cherries position can be
efficiently decomposed into basic building blocks. By looking at this decompo-
sition, it is easy to find out who the winning player is in any given position. We
conclude with the conjecture that every Cherries position can be decomposed
in a similar way.

In Chapter 7, we consider the synchronized version of Hackenbush. We show
that, for a specific type of position, many copies of this position set next to
each other behave almost identically in the synchronized and combinatorial
versions of the game. We conjecture that this statement holds more generally for
a certain class of synchronized combinatorial games. In Chapter 8, we further
explore this conjecture by considering synchronized versions of the games of
Push and Shove.






Samenvatting

Combinatorische spellen zijn spellen waarin twee spelers om de beurt een
zet doen, waarbij kans en verborgen informatie geen rol spelen. Welbekende
voorbeelden hiervan zijn schaken, dammen en het simpelere boter, kaas en
eieren. Ook het van oorsprong Chinese spel go valt in deze categorie. Hoewel
deze spellen zeker niet eenvoudig zijn, bestaat er wel een mooie wiskundige
machinerie om ze te analyseren. Met deze theorie valt voor een gegeven positie
van een spel snel te bepalen wie het spel zal winnen als er optimaal wordt
gespeeld, zonder daadwerkelijk alle mogelijke zetten uit te rekenen. Ook be-
vat de theorie een maat voor in hoeverre een positie een van beide spelers
bevoordeelt, vaak de ‘waarde’ van een positie genoemd. Met behulp van deze
theorie is bijvoorbeeld onderzoek gedaan naar eindspellen in go.

Niet alle spellen die we kennen zijn echter combinatorische spellen. Het spel
poker bijvoorbeeld voldoet niet aan de eis van het niet hebben van onvolledige
informatie. In de praktijk zijn er met behulp van kunstmatige intelligentie
indrukwekkende resultaten geboekt voor dergelijke spellen, maar het ontbreekt
wellicht aan theoretisch begrip. In dit proefschrift stellen we de vraag centraal
in hoeverre het wiskundige raamwerk voor combinatorische spellen in stand
gehouden kan worden voor spellen die niet combinatorisch zijn.

In het bijzonder zullen we kijken naar twee soorten varianten van bestaande
combinatorische spellen. Voor de eerste soort introduceren we onvolledige
informatie in een combinatorisch spel door na een zet niet meer alle details van
de bereikte positie aan de tegenstander door te geven. Een dergelijke variant
van schaken wordt in de literatuur Kriegspiel genoemd. Naast de twee spelers
is er nu ook een onafhankelijke scheidsrechter bij het spel betrokken aan wie
een speler diens beoogde zet kan doorgeven. Als deze mogelijk is, wordt de
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zet uitgevoerd en krijgt de andere speler hier al dan niet summiere informatie
over; anders moet er een nieuwe poging worden gewaagd. Door zetten uit te
proberen kunnen de spelers zo informatie verkrijgen over de huidige toestand
van het spel.

De tweede manier waarop we combinatorische spellen zullen aanpassen is
door de spelers tegelijk te laten spelen in plaats van om de beurt. Deze variant
noemen we de gesynchroniseerde versie van een spel. Wederom wordt er een
scheidsrechter ingeschakeld, aan wie beide spelers tegelijk hun boogde zet
doorgeven. Deze zetten worden vervolgens tegelijk uitgevoerd. Een probleem
dat hierbij kan ontstaan is dat niet alle mogelijke combinaties van zetten zonder
meer tegelijk uitgevoerd kunnen worden. Wat moet er bijvoorbeeld gebeuren
als beide spelers een schaakstuk naar hetzelfde lege veld willen verplaatsen?

Na een beknopte introductie in Hoofdstuk 1 beginnen we in Hoofdstuk 2
met een uiteenzetting van de fundamentele theorie voor combinatorische
spellen en voor de twee soorten varianten die hierboven zijn genoemd. We
bekijken hierbij niet alleen de bestaande oplossingsmethoden voor combina-
torische spellen en spellen met onvolledige informatie, maar introduceren ook
een nieuw wiskundig raamwerk voor het analyseren van gesynchroniseerde
spellen. Hierbij stellen we eisen op waaraan een combinatorisch spel moet vol-
doen om zonder meer gesynchroniseerd te kunnen worden en herdefiniéren
we het begrip van waarde van een positie voor dit soort spellen.

In Hoofdstukken 3 en 4 beschouwen we een aantal combinatorische spellen. In
Hoofdstuk 3 kijken we naar twee varianten van het spel Hackenbush. We identi-
ficeren welke posities eenvoudig zijn om te analyseren en welke ingewikkeld, en
concluderen dat de resultaten in grote lijnen overeenkomen met de bestaande
resultaten voor het originele spel. In Hoofdstuk 4 bekijken we een variant van
boter, kaas en eieren, genaamd Orde versus Chaos. Bij dit asymmetrische spel
probeert de ene speler Orde een rij van dezelfde symbolen te maken, terwijl
de andere speler Chaos dit juist probeert te verhinderen. We laten zien dat
sommige posities altijd gewonnen worden door Orde, en dat veel posities
altijd gewonnen worden door Chaos. Voor sommige posities vinden we geen
uitsluitsel, en gebruiken we kunstmatige intelligentie om een vermoeden op te
stellen voor wie deze posities zou moeten winnen.

In Hoofdstuk 5 bekijken we drie varianten van het combinatorische spel Nim
met onvolledige informatie. Een positie van dit spel bestaat uit een aantal
stapels muntjes. Als een speler aan de beurt is, kiest die één stapel, waarvan
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een aantal munten naar keuze wordt verwijderd. Kan een speler geen munten
meer verwijderen, dan verliest die het spel. We introduceren twee varianten
waarbij de andere speler niet volledig te horen krijgt hoeveel munten de ander
verwijderd heeft. De ene variant blijkt een elegante oplossing te hebben, terwijl
de analyse van de tweede variant lastig blijkt. Tenslotte bekijken we een variant
in de geest van Kriegspiel, waarbij de spelers nog minder informatie hebben
over de huidige toestand van het spel. We rekenen een aantal kleine posities
door.

In de laatste drie hoofdstukken richten we ons tenslotte op gesynchroniseerde
varianten van combinatorische spellen. In Hoofdstuk 6 gaat het over het spel
Cherries en een variant hiervan, Stack Cherries. We laten zien dat iedere positie
van gesynchroniseerd Stack Cherries op een efficiénte manier ontleed kan
worden in zekere basisblokken. Door vervolgens naar de configuratie van deze
blokken te kijken, is het eenvoudig te achterhalen wie de gegeven positie wint
bij optimaal spel. We sluiten af met het vermoeden dat een dergelijke ontleding
ook voor gesynchroniseerd Cherries bestaat.

In Hoofdstuk 7 kijken we naar de gesynchroniseerde versie van Hackenbush.
We laten zien dat voor een bepaald type positie geldt dat veel kopieén van
deze posities naast elkaar zich bijna net zo gedragen als bij het combinatorische
spel. We formuleren het vermoeden dat dit algemener geldt voor bepaalde
gesynchroniseerde combinatorische spellen. Dit vermoeden toetsen we verder
in Hoofdstuk 8, waarbij we kijken naar gesynchroniseerde versies van Push en
Shove.
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