
DrugEx: deep learning models and tools for exploration of drug-like
chemical space
Sicho, M.; Luukkonena, S.; Maagdenberg, H.W. van den; Schoenmaker, L.; Bequignon, O.J.M.;
Westen, G.J.P. van

Citation
Sicho, M., Luukkonena, S., Maagdenberg, H. W. van den, Schoenmaker, L., Bequignon, O. J.
M., & Westen, G. J. P. van. (2023). DrugEx: deep learning models and tools for exploration of
drug-like chemical space. doi:10.26434/chemrxiv-2023-spz0g
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3618570
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3618570


DrugEx: Deep Learning Models and Tools for
Exploration of Drug-like Chemical Space

Martin Šichoa,†,‡ Sohvi Luukkonena,† Helle W. van den Maagdenberga,† Linde
Schoenmakera,† Olivier J. M. Béquignona,† and Gerard J. P. van Westen∗,†

†Leiden Academic Centre for Drug Research, Leiden University, 55 Einsteinweg, 2333 CC
Leiden, The Netherlands

‡CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics
and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology

Prague, Technická 5, 166 28, Prague, Czech Republic

E-mail: gerard@lacdr.leidenuniv.nl

aThese authors have contributed equally to this work.

Abstract

The discovery of novel molecules with desir-
able properties is a classic challenge in medic-
inal chemistry. With the recent advancements
of machine learning, there has been a surge of
de novo drug design tools. However, few re-
sources exist that are both user-friendly as well
as easily customisable. In this application note,
we present the new versatile open-source soft-
ware package DrugEx for multi-objective rein-
forcement learning. This package contains the
consolidated and redesigned scripts from the prior
DrugEx papers including multiple generator ar-
chitectures and a variety of scoring tools and
multi-objective optimisation methods. It has a
flexible application programming interface and
can readily be used via the command line in-
terface or the graphical user interface GenUI.
The DrugEx package is publicly available at
https://github.com/CDDLeiden/DrugEx.

1 Introduction

Drug discovery is a tedious and resource-intensive
process taking up to tens of years and costing
millions of dollars on average.1 Early discontin-
uation of compounds with poor prognosis us-

ing computer-aided drug design can decrease the
number of experiments needed, thus helping re-
duce such costs. De novo drug design (DNDD)
aims at exploring the vastness of the drug-like
chemical space (∼ 1063 molecules)2 to identify
hit or lead compounds to be optimised into novel
drug candidates.
Rapid technological improvements over the last

decades have led to the rising popularity of ad-
vanced machine learning methods. These de-
velopments have also greatly influenced the field
of DNDD with state-of-the-art methods including
population-based metaheuristics, recurrent neural
networks, generative adversarial networks, vari-
ational autoencoders and transformers.3,4 More-
over, concepts such as transfer, conditional and
reinforcement learning are often applied to gener-
ate molecules with desired properties.
Typical objectives guiding the drug discovery

process are maximisation of predicted efficien-
cies, synthetic accessibility or drug-likeness of
the compounds, and minimising off-target effects
and toxicity. Even without optimisation towards
favourable physicochemical and pharmacokinetic
properties, DNDD is inherently a multi-objective
optimisation (MOO) problem.4,5

In this application note, we present the new
open-source software library DrugEx, a tool for de

1

gerard@lacdr.leidenuniv.nl


novo design of small molecules with deep learn-
ing generative models in a multi-objective rein-
forcement learning (RL) framework. This com-
prehensive tool represents the consolidation of
the original work of Liu et al.’s multiple scripts
based DrugEx releases. The first version of
DrugEx6 consisted of a recurrent neural network
(RNN) single-task agent of gated recurrent units
(GRU) which were updated to long short-term
memory (LSTM) units in the second version,7

also introducing MOO-based RL and an updated
exploitation-exploration strategy. In its third ver-
sion,8 generators based on a variant of the trans-
former9,10 and a novel graph-based encoding al-
lowing for the sampling of molecules with specific
substructures were introduced. These develop-
ments were built on the work of Olivecrona et al.11

for the use of reinforcement learning, that of Arus-
Pous et al.12 and of Yang et al.’s SynthaLinker 13

for the recurrent neural network and transformer
architectures respectively. Here all these versions
and capabilities have been consolidated in a single
package.
In subsection 2.1, we describe the currently

available generator algorithms, the different train-
ing modes, and data preprocessing steps and
amend the recently introduced graph encoding of
molecules from Ref. 8. In subsection 2.2, we
present the three steps to score compounds for
the RL, the computation and scaling of scores
per objective and the multi-objective optimisa-
tion, and detail some predefined options. Fur-
thermore, to facilitate usage, this work is supple-
mented with a rich Python application program-
ming interface (API), a command line interface
(CLI) and a graphical user interface (GUI) that are
described in section 3. Finally, pre-trained models
are made publicly available to ease the de novo
design of molecules.

2 Application overview

2.1 Molecular generator

2.1.1 Algorithms

The original DrugEx articles describe six dif-
ferent generator architectures.6–8 The current
DrugEx package includes four of these mod-

els: two SMILES-based recurrent neural network
(RNN) using GRU or LSTM units, and sequence-
and graph-based transformers using fragments as
starting blocks. The fragment-based LSTM mod-
els with and without attention from Ref. 8 have
been discontinued as they were outperformed by
the other models. The available models are shortly
introduced below and the detailed model architec-
tures are described in section S1.

Recurrent neural networks RNNs are used to
create molecules without the use of input frag-
ments. These molecules are generated in the
form of tokenized SMILES sequences. The RNNs
are built from long short-term memory (LSTM)
units14 or gated recurrent units (GRUs).15 The
RNN model consists of the following layers: an
embedding layer, three recurrent layers, a linear
layer and a softmax activation layer. These build-
ing blocks are trained to predict the most likely
next output token. Compared to the transformer
models this generator does not require inputs, is
quick to train and still has a relatively low error
rate.

Transformers In addition to the token-based
RNNs, DrugEx includes two fragment-based mod-
els that are variants of the transformer model us-
ing either graphs or sequences as molecular rep-
resentations. For the fragment-based modelling,
molecules are constructed from building blocks
(detailed in section 2.1.2). These fragments are
combined to create fragmented scaffolds, which
form the input for the model and are grown into
novel molecules.

Sequence-based transformer The sequence-
based transformer model is a decoder-only trans-
former that applies a multi-headed attention archi-
tecture and position-wise feed-forward layers fol-
lowed by a linear layer and an activation function
to predict the most likely output token.9,10 In con-
trast to the RNN, the transformer models allow
for user-defined inputs in the form of fragments.
Furthermore, contrary to the graph-based trans-
former, the sequence-based transformer allows for
easy incorporation of stereochemistry.

2



Graph-based transformer The Graph-based
transformer variant deals with the positional
encodings differently from the more classical
sequence-based transformer encodings.9 As with
a graph representation the atom index cannot di-
rectly be used, the encoding is a combination
of the atom index (current position) and the
connected atom index (previous position).8 For
more details on the graph representation of the
molecules see section 2.1.2). The graph-based
model consists of a transformer encoder and a
GRU-based decoder. The Graph transformer has
some considerable advantages compared to the
sequence-based transformer as it only creates valid
molecules and has a higher incorporation rate of
fragments.

2.1.2 Data preprocessing

The following section describes the default imple-
mentation of molecular preparation i.e. standard-
isation and fragmentation in DrugEx (detailed in-
formation in section S2). Nevertheless, custom
steps can easily be implemented with the provided
Python API (subsection 3.1).
In short, standardisation is applied, ensuring

that only small organic molecules are kept. Then
for the transformer models, fragmentation is per-
formed using the BRICS16 or RECAP17 algo-
rithms. Combinations of the obtained fragments
are made for the model to be pretrained or fine-
tuned on hybridising these fragments to form the
original molecules. For the RNN, no fragmenta-
tion is performed as the model creates molecules
from an empty solution. Encoding of the inputs
differs between sequence and graph-based models.
Figure Figure 1 illustrates the encoding types per
generator algorithm and gives a detailed descrip-
tion of the graph-based encoding as it amends
that described in Ref. 8. Details on the encoding
of SMILES sequences are available in section S2.

2.1.3 Training

Pretraining & Transfer learning Before guid-
ing a generator to create compounds with spe-
cific properties, it needs to be pretrained to
learn the language of drug-like molecules and be
able to generate reasonable molecules. This in-

volves training a generator to reproduce com-
pounds from a large set of (fragmented) drug-like
molecules. We have shared pretrained RNN-based
and transformer-based generators (pretrained on
ChEMBL27, ChEMBL3118 and Papyrus v5.519)
on Zenodo.20 Further details about the pretrained
models are given in section S1 and section S4.
Furthermore, a generator can be directed to-

wards the desired chemical space by ’fine-tuning’
a pretrained generator via transfer learning with
a set of molecules occupying the desired chemical
space.
During training, the loss on a separate test set is

assessed at each training epoch to select the best
model epoch and allow for early stopping. In brief,
for all models, the loss is calculated by taking the
average negative log-likelihood (softmax) of the
predicted outputs. For the SMILES-based model,
it is also possible to use SMILES validity for this
purpose.

Reinforcement learning During reinforcement
learning (RL), the ’desirability’ of generated
molecules is quantified by the environment based
on various properties and used as a reward (sub-
section 2.2). The generator is optimised using the
policy gradient scheme.21

In order to control the exploration rate,
molecules are generated based on the output of
two generators: a generator that is updated based
on the reward function and saved as the final gen-
erator (the ‘exploitation network’ or ’agent’) and
a static generator (the ‘exploration network’ or
’prior’). The fraction of outputs coming from
each generator mimics the mutation rate in evo-
lutionary algorithms and is tuneable. Currently,
this has been tested with the fine-tuned model as
exploitation network and the pretrained model as
exploration network.6–8 To improve exploration,
the exploitation network can use the outputs from
two networks, of which one is constantly updated
based on the reward function and the other is
only updated every 50 epochs by default (as is
shown by Figure 3 in the original paper7). This is
the default for the RNN-based generator, but due
to the higher computation costs of transformer-
based generators, we advise against using this
periodically updated generator.
Multiple metrics are computed at each epoch:

3



Figure 1: Correspondence of input and encoding types with generator models. Input molecules
are fragmented for sequence and graph transformers (A), and then input molecules or molecule-fragment
pairs are encoded (B) before being used for training and/or sampling by the three generator architectures
available (C). Graph encoding matrix of acetaminophen (D) based on the vocabulary next to it. To be
encoded as a graph, the molecule is split into three fragments by the BRICS algorithm along the bonds
on both sides of the nitrogen atom. Based on the atom-type and bond-type vocabulary encodings a
graph matrix is constructed. This matrix consists of 5 rows: (i) the current atom type as encoded by
the vocabulary, (ii) the 0-based atom index in the molecule, (iii) the index of one of its neighbouring
atoms, (iv) the bond type as encoded by the vocabulary and (v) the 1-based index of the fragment
being encoded respectively. The matrix consists of four major column blocks, from left to right, the
start token block (<GO>, pink), the columns used for the encoding of fragments (green), the end token
block (<EOS>, pink) and columns indicating the linking between fragments (purple). The dimension
of the graph matrix is 5×D with D = d− 2−nfragments, where nfragments is the number of fragments
encoded in the molecule and d the width of the block encoding fragments. Should d be greater than
the number of columns required to encode all fragments of a molecule, the remaining columns are filled
with zeros, as exemplified by the sub-block used for padding. During sampling, this sub-block is used to
grow the molecule. By default, the graph matrix has dimensions 5× 400.

4



the ratio of valid, accurate (only for fragment-
based models) unique or desired molecules, and
the average arithmetic and geometric mean score
per objective; and in the API users can define cus-
tomised metrics. A compound is ”desired” if it ful-
fils all objectives as defined in section 2.2.2. One
of the metrics, by default the desirability ratio is
used to select the best model epoch and to allow
for early stopping. For fragment-based sampling,
the inputs can either be a specific scaffold or the
unique fragment combinations of a given dataset.

2.2 Molecule scoring

The scoring of molecules with the environment at
each reinforcement learning epoch is done in three
stages: (i) obtaining raw scores for each of the se-
lected objectives (section 2.2.1), (ii) scaling of the
raw scores with modifier functions (section 2.2.2)
and (iii) a multi-objective optimisation step (sec-
tion 2.2.3) to obtain a final reward per molecule.

2.2.1 Objectives

The API gives a large flexibility to the user to
use custom scoring methods that take SMILES as
inputs and give a numeric score as output. More-
over, DrugEx is coupled with the QSPRpred pack-
age to allow the use of a wide range of ML models
and offers a range of other predefined objective
functions.

QSPRpred To optimize the binding affin-
ity for one or more targets or other molec-
ular properties, DrugEx users can choose to
add one or more quantitative-structure ac-
tivity/property (QSAR/QSPR) models as ob-
jectives for the reinforcement learning re-
ward. To this end, DrugEx is compatible
with any python script that receives SMILES
as input and produces a score as an output
through the API. A separate package, QSPRpred
(https://github.com/CDDLeiden/QSPRPred),
was developed to simplify the development of
QSAR models. The setup of QSPRpred is very
similar to DrugEx, using the same structure of the
API and command-line interface. It also comes
with tutorials to help users get started. QSPRpred

has a selection of scikit-learn22 models and a Py-
Torch23 fully-connected neural network available
through the API, so the user can train a wide
variety of QSAR models. Furthermore, due to its
modularity, QSPRpred is customizable; users can
for example add new model types and molecular
descriptors.

Predefined objectives The DrugEx package
offers a set of predefined property calculations
that can be used as objectives in the scoring en-
vironment. These components are summarised in
section S3 and include functions to compute lig-
and or lipophilic efficiencies from affinity predic-
tions, a variety of similarity measures to a refer-
ence structure, estimations of (retro)synthetic ac-
cessibility and a plethora of physicochemical de-
scriptors.

2.2.2 Modifiers

To ensure the optimisation, each objective is cou-
pled with a modifier function that transforms it
into a maximisation task and scales all raw scores
between 0 and 1. Custom modifiers are easily im-
plemented with the API, but DrugEx offers a va-
riety of predefined modifiers for both monotonic
(eg. ClippedScore) and non-monotonic objec-
tives (eg. Gaussian). Some of these modifiers
do not normalise or do not transform the ob-
jectives to maximisation tasks in all cases, and
should be used with caution, especially when us-
ing an aggregation-based multi-objective optimi-
sation scheme. All modifiers are summarised in
section S3. Each objective-modifier couple is as-
sociated with a desirability threshold set between
0 and 1 to determine if a compound fulfils the
desirability criteria on that objective or not. A
compound is considered desired if for all objectives
its modifier scores are above their corresponding
thresholds.

2.2.3 Multi-objective optimisation

Since version 2, DrugEx enables multi-objective
optimisation during RL.7 DrugEx offers three dif-
ferent MOO schemes: a parametric aggregation
method and Pareto ranking-based schemes. The
aggregation method is the parametric weighted

5



sum (WS) which uses dynamic weights for each
objective to especially reward compounds that
perform well on the worst-performing objective(s)
at each iteration. Pareto-based schemes do not
combine multiple objectives into one but rather
search for the best trade-off between them and
the initial ranking of molecules is done based on
the ranking of the Pareto frontiers. After assign-
ing each molecule to a front, the compounds in
each frontier are ranked based on a distance met-
ric to increase the diversity of solutions. DrugEx
proposes two distance metric formulations: the
crowding distance (PRCD) and the Tanimoto dis-
tance (PRTD). For the latter we propose sev-
eral subtly different ranking schemes all based on
the Tanimoto distance. Detailed descriptions of
three schemes are given in section S3. The WS
is slightly faster than the Pareto-based methods,
and more stable for many-objective optimisation
as the number of Pareto-equivalent solutions in-
creases with the number of objectives. On the
other hand, the Pareto-based schemes enforce di-
versity in the ranking which is not the case for the
WS.

3 Implementation

Aside from the addition of several new features
for the generation and scoring of molecular struc-
tures, a significant part of the development was
dedicated to creating a flexible and scalable soft-
ware architecture. We have extensively revised
the original Python source code of all published
DrugEx models6–8 and transformed it into a self-
contained open-source Python package with a
clear structure and API. In addition, a simple com-
mand line interface (CLI) was also implemented
that allows quick invocation of the main DrugEx
functions and improves the management of in-
puts and outputs. The package supports many
monitoring utilities that log training progress and
result in easy-to-read machine-readable formats
such as TSV (Tab Separated Values) and JSON
(JavaScript Object Notation) files. When using
the CLI, these files are backed up after each (even
unsuccessful) run so older results and settings are
not lost and can be retrieved at any time. These
and other modifications should empower users to

quickly explore different scenarios when building
their generative models and also ensure repro-
ducible results by keeping track of the set param-
eters. Both the CLI and Python API are docu-
mented and we also created easy-to-follow Jupyter
notebooks tutorials to help users get started. Fi-
nally, we have performed significant optimisations
in multiple parts of the workflow by utilizing mul-
tiprocessing where possible.

3.1 Python Package

Figure 2: A simplified diagram of the open source
Python package architecture. The two main sub-
packages of the drugex package are data and
training. The data package handles the prepa-
ration of data sets that can then be used to instan-
tiate and train models in training. Aside from
the model classes themselves (generators), the
training package also contains data structures
needed train model with reinforcement learning
(explorers) using a scoring environment based
on scoring functions (scorers).

The software package is divided into intuitively
organized sub-packages and modules, each han-
dling either preprocessing of the data, model train-
ing or generation of new molecules by loading the

6



model for sampling (Figure 2). The code is organ-
ised with modularity, extensibility, and testability
in mind. Each larger subpackage contains a clear
definition of its interfaces in the interfaces.py
module and also unit tests in tests.py. Inter-
face definitions are most of the time facilitated
through abstract classes for which each subpack-
age provides default implementations that can be
automatically tested with the provided unit tests.
These classes form the core of the DrugEx Python
API that users can exploit to make modifica-
tions to their workflows and/or interact with the
DrugEx models programmatically.

Application programming interface The
Python API exposes many functions from prepro-
cessing, model training and sampling of molec-
ular structures. Users can mix and match the
necessary objects or create custom classes to
accomplish their goals. For example, it is possi-
ble to apply customized fragmentation strategies
by implementing the fragmentation API or use a
modified training monitor class to change progress
and result tracking during model training.

Command line interface If no customisation
is required, the package also offers a command
line interface for quick setup of experiments with
default implementations of the most common
tasks. The package contains three main exe-
cutable scripts: (1) dataset.py, (2) train.py

and (3) generate.py. These scripts are usu-
ally executed in order to preprocess input data,
train new models and generate a virtual library of
compounds. These scripts are installed with the
package drugex. Each script also automatically
logs standard input and output, tracks the history
of executed commands and stores generated data
outputs so that they can be retrieved later which
adds to the reproducibility of experiments.

Documentation Both API and CLI us-
age is documented and we have tried to
provide sufficient description of each inter-
face, class and function. This Sphinx-
generated documentation is available at
https://cddleiden.github.io/DrugEx/docs and is
updated with each new DrugEx release.

Tutorials Aside from source code documenta-
tion, the DrugEx web page also provides descrip-
tions of command line arguments and usage ex-
amples for the CLI. In addition, we also compiled
a collection of Jupyter notebooks that provides
a comprehensive introduction to the Python API.
The tutorials feature more advanced concepts and
are a good starting point for any users who require
more customization or any future contributors to
familiarise themselves with the code.

3.2 Graphical User Interface

We also added support for the new DrugEx fea-
tures to our GenUI platform,24 which provides a
graphical user interface (GUI) for molecular gen-
erators. GenUI is an open-source web-based ap-
plication built with the Django web framework25

and the RDKit cheminformatics toolkit.26 GenUI
provides features for easy integration of chemin-
formatics tasks commonly used in de novo gen-
eration of molecules (i.e. management of a com-
pound database, QSAR modelling and chemical
space visualization). As of now most of the fea-
tures available through the DrugEx Python pack-
age are also exposed in this GUI to allow quick
creation and management of generative workflows
from the import of the training data to inter-
active visual analysis of the generated and real
chemical space. One notable feature of the new
GUI is the interactive creation of scoring environ-
ments, which makes the setup of desirability mod-
ifier functions for the multi-objective optimization
more intuitive (Figure 3).

4 Conclusion

In this paper, we have described the DrugEx open-
source software package that facilitates the train-
ing of a diverse set of generative models for de
novo design of small molecules. The package is
based on the original Python scripts previously in-
troduced by Liu et al. that were used to develop
and validate these models.6–8 It includes the fol-
lowing new features: early stopping in all training
modes, additional predefined scoring functions,
and improved QSPR modelling (hyperparameter
optimisation, new input features, etc.) with the

7



Figure 3: An impression of GenUI, showing the
interactive interface for visualising and creating
desirability modifiers by simply adjusting sliders or
inputting parameter values directly. In the shown
example, a Clipped Score modifier is used with
an activity classifier to give a maximum reward to
structures with probability scores higher than 0.8,
and a Smooth Hump function is used to reward
structures with molecular weight in between 200
and 500 Daltons).

separate QSPRpred package. The performance
has also been enhanced by utilizing parallel pro-
cessing where possible in both the DrugEx and
QSPRpred packages. Furthermore, the current
implementation features major revisions of the
original API source code of which most notable
are the addition of a command line interface (CLI)
and Python API. A graphical user interface (GUI)
is also provided via the GenUI web application.
We envisage that the new DrugEx software

package and its GenUI integration should be suit-
able for a diverse set of users. On one side,
the package provides a quick and easy way to
set up experiments and build models via the
CLI and GUI, but on the other side, it also en-
ables more advanced alterations to the workflow
through the new Python API. The documenta-
tion was also significantly improved and we now
provide an easy-to-follow tutorial for new users.
Finally, all software presented in this work is pro-
vided as open-source software and accessible at
https://github.com/CDDLeiden/DrugEx.
We regard the publication of this package as

an important step in the development of DrugEx
that will be the basis for many research projects
and innovations yet to come. In fact, we believe

that groundbreaking approaches are only possible
when developers of generative models for chem-
istry undertake such open-source software devel-
opment initiatives, to facilitate prospective valida-
tion and testing of their new methods and most
importantly their application. Additionally, pro-
viding rich documentation and tutorial helps en-
hancing the models’ usability and integration po-
tential, allowing for faster adoption and feedback
leading to the development of better AI-powered
models and tools.
In future developments of the DrugEx package,

we will not only focus on the integration of novel
objectives from the drug discovery toolbox (i.e.
molecular docking or retrosynthesis prediction),
but also on increasing the range of possible in-
puts to alternative linear representations of com-
pounds (i.e. SELFIES27) in sequence-based mod-
els or adding support for encoding stereochem-
istry. Moreover, we would like to focus on the
development of user-centric features such as pro-
viding an even better learning platform for teach-
ing the underlying concepts of AI-based molecular
generation and improving the GenUI integration.
The potential of artificial intelligence in drug dis-
covery is tremendous, but integrating these novel
tools in current workflows still remains a challenge
and we hope that our software package will help
to overcome at least some of those challenges.

Author information MS (orcid:0000-0002-
8771-1731); SL (orcid:0000-0001-9387-1427);
HWvdM (orcid:0000-0002-9718-7806); LS
(orcid:0000-0001-9879-1004); OJMB (orcid:0000-
0002-7554-9220); GJPvW (orcid:0000-0003-
0717-1817)

Author contributions MS: Methodology,
Software, Data Curation, Writing – Original Draft,
Writing - Review & Editing, Visualization SL:
Methodology, Software, Data Curation, Writing
– Original Draft, Writing - Review & Editing,
Visualization, Project administration HWvdM:
Methodology, Software, Data Curation, Writing
– Original Draft, Writing - Review & Editing,
Visualization LS: Methodology, Software, Data
Curation, Writing – Original Draft, Writing - Re-
view & Editing, Visualization OJMB: Methodol-

8



ogy, Software, Data Curation, Writing – Original
Draft, Writing - Review & Editing, Visualization
GJPvW: Resources, Writing - Review & Editing,
Supervision, Funding acquisition

Funding SL received funding from the Dutch
Research Council (NWO) in the framework of the
Science PPP Fund for the top sectors, and ac-
knowledges the Dutch Research Council (NWO
ENPPS.LIFT.019.010). MŠ was supported by
Czech Science Foundation Grant No. 22-17367O
and by the Ministry of Education, Youth and
Sports of the Czech Republic (project number
LM2023052).

Acknowledgement The authors thank Xuhan
Liu, the author of the original idea to develop the
DrugEx models and code, we are happy for his
continuous support of the project; Roelof van der
Kleij for his help using the university IT infras-
tructure; our Master student Yorick van Aalst for
testing of the code; and Alan K. Hassen and An-
drius Bernatavicius for fruitful discussions. Some
of the used computational resources were provided
by the e-INFRA CZ project (ID:90140), supported
by the Ministry of Education, Youth and Sports of
the Czech Republic.

References

(1) Wouters, O. J.; McKee, M.; Luyten, J. Es-
timated Research and Development Invest-
ment Needed to Bring a New Medicine to
Market, 2009-2018. Journal of the Ameri-
can Medical Association 2020, 323, 844–
853, DOI: 10.1001/jama.2020.1166.

(2) Kirkpatrick, P.; Ellis, C. Chemical
space. Nature 2004, 432, 823, DOI:
10.1038/432823a.

(3) Liu, X.; IJzerman, A. P.; van Westen, G.
J. P. In Artificial Neural Networks;
Cartwright, H., Ed.; Springer US: New York,
NY, 2021; Vol. 2190; pp 139–165, DOI:
10.1007/978-1-0716-0826-56, Series
Title: Methods in Molecular Biology.

(4) Luukkonen, S.; van den Maagden-
berg, H. W.; Emmerich, M. T.; van

Westen, G. J. Artificial Intelligence in
Multi-objective Drug Design. Current Opin-
ion in Structural Biology 2023, 79, DOI:
10.1016/j.sbi.2023.102537.

(5) Fromer, J. C.; Coley, C. W. Computer-
aided multi-objective optimization
in small molecule discovery. Pat-
terns 2023, 4, 100678, DOI:
10.1016/j.patter.2023.100678.

(6) Liu, X.; Ye, K.; van Vlijmen, H. W. T.; IJz-
erman, A. P.; van Westen, G. J. P. An explo-
ration strategy improves the diversity of de
novo ligands using deep reinforcement learn-
ing: a case for the adenosine A2A receptor.
Journal of Cheminformatics 2019, 11, 35,
DOI: 10.1186/s13321-019-0355-6.

(7) Liu, X.; Ye, K.; van Vlijmen, H.
W. T.; Emmerich, M. T. M.; IJzer-
man, A. P.; van Westen, G. J. P. DrugEx
v2: de novo design of drug molecules
by Pareto-based multi-objective reinforce-
ment learning in polypharmacology. Jour-
nal of Cheminformatics 2021, 13, 85, DOI:
10.1186/s13321-021-00561-9.

(8) Liu, X.; Ye, K.; van Vlijmen, H. W. T.; IJzer-
man, A. P.; van Westen, G. J. P. DrugEx v3:
scaffold-constrained drug design with graph
transformer-based reinforcement learning.
Journal of Cheminformatics 2023, 15, 24,
DOI: 10.1186/s13321-023-00694-z.

(9) Vaswani, A.; Shazeer, N.; Parmar, N.;
Uszkoreit, J.; Jones, L.; Gomez, A. N.;
Kaiser, L.; Polosukhin, I. Attention is All You
Need. 2017.

(10) Radford, A.; Narasimhan, K.; Salimans, T.;
Sutskever, I., et al. Improving language
understanding by generative pre-training.
2018,

(11) Olivecrona, M.; Blaschke, T.; Engkvist, O.;
Chen, H. Molecular de-novo design through
deep reinforcement learning. Journal of
Cheminformatics 2017, 9, 48, DOI:
10.1186/s13321-017-0235-x.

9

http://dx.doi.org/10.1001/jama.2020.1166
http://dx.doi.org/10.1038/432823a
http://dx.doi.org/10.1007/978-1-0716-0826-5_6
http://dx.doi.org/10.1016/j.sbi.2023.102537
http://dx.doi.org/10.1016/j.patter.2023.100678
http://dx.doi.org/10.1186/s13321-019-0355-6
http://dx.doi.org/10.1186/s13321-021-00561-9
http://dx.doi.org/10.1186/s13321-023-00694-z
http://dx.doi.org/10.1186/s13321-017-0235-x


(12) Arús-Pous, J.; Patronov, A.; Bjerrum, E. J.;
Tyrchan, C.; Reymond, J.-L.; Chen, H.; En-
gkvist, O. SMILES-based deep generative
scaffold decorator for de-novo drug design.
Journal of Cheminformatics 2020, 12, 38,
DOI: 10.1186/s13321-020-00441-8.

(13) Yang, Y.; Zheng, S.; Su, S.; Zhao, C.;
Xu, J.; Chen, H. SyntaLinker: auto-
matic fragment linking with deep condi-
tional transformer neural networks. Chem-
ical Science 2020, 11, 8312–8322, DOI:
10.1039/D0SC03126G.

(14) Hochreiter, S.; Schmidhuber, J. Long
Short-Term Memory. Neural Com-
putation 1997, 9, 1735–1780, DOI:
10.1162/neco.1997.9.8.1735.

(15) Cho, K.; van Merrienboer, B.; Bah-
danau, D.; Bengio, Y. On the Prop-
erties of Neural Machine Translation:
Encoder-Decoder Approaches. CoRR 2014,
abs/1409.1259 .

(16) Degen, J.; Wegscheid-Gerlach, C.;
Zaliani, A.; Rarey, M. On the Art
of Compiling and Using ’Drug-Like’
Chemical Fragment Spaces. ChemMed-
Chem 2008, 3, 1503–1507, DOI:
https://doi.org/10.1002/cmdc.200800178.

(17) Lewell, X. Q.; Judd, D. B.; Watson, S. P.;
Hann, M. M. Journal of Chemical Informa-
tion and Computer Sciences 1998, 38, 511–
522, DOI: 10.1021/ci970429i.

(18) Gaulton, A. et al. The ChEMBL database
in 2017. Nucleic Acids Research 2016, 45,
D945–D954, DOI: 10.1093/nar/gkw1074.

(19) Béquignon, O. J. M.; Bongers, B. J.; Jes-
pers, W.; IJzerman, A. P.; van der Water, B.;
van Westen, G. J. P. Papyrus: a large-scale
curated dataset aimed at bioactivity predic-
tions. Journal of Cheminformatics 2023, 15,
3, DOI: 10.1186/s13321-022-00672-x.

(20) (a) Béquignon, O. J. M. DrugEx RNN-
GRU pretrained model (ChEMBL31).
2023; https://doi.org/10.5281/

zenodo.7550739; (b) Béquignon, O.

J. M. DrugEx RNN-GRU pretrained
model (Papyrus 05.5). 2023; https:

//doi.org/10.5281/zenodo.7550792;
(c) Liu, X. DrugEx v2 pretrained
model (ChEMBL27). 2022; https:

//doi.org/10.5281/zenodo.7096837;
(d) Béquignon, O. J. M. DrugEx v2 pre-
trained model (ChEMBL31). 2022; https:
//doi.org/10.5281/zenodo.7378916;
(e) Schoenmaker, L.; Béquignon, O. J. M.
DrugEx v2 pretrained model (Papyrus
05.5). 2022; https://doi.org/10.

5281/zenodo.7378923; (f) Sicho, M.
DrugEx pretrained model (SMILES-
based; Papyrus 05.5). 2023; https:

//doi.org/10.5281/zenodo.7635064;
(g) Béquignon, O. J. M. DrugEx pre-
trained model (SMILES-based; RE-
CAP; Papyrus 05.5). 2023; https:

//doi.org/10.5281/zenodo.7622774;
(h) Liu, X. DrugEx v3 pretrained model
(graph-based; ChEMBL27). 2022; https:

//doi.org/10.5281/zenodo.7096823;
(i) Béquignon, O. J. M. DrugEx v3 pre-
trained model (graph-based; Papyrus
05.5). 2022; https://doi.org/10.5281/
zenodo.7085421; (j) Béquignon, O. J. M.
DrugEx pretrained model (graph-based;
RECAP; Papyrus 05.5). 2023; https:

//doi.org/10.5281/zenodo.7622738.

(21) Sutton, R. S.; McAllester, D.; Singh, S.;
Mansour, Y. Policy Gradient Methods for
Reinforcement Learning with Function Ap-
proximation. Advances in Neural Information
Processing Systems 12. 1999.

(22) Pedregosa, F. et al. Scikit-learn: Machine
Learning in Python. Journal of Machine
Learning Research 2011, 12, 2825–2830.

(23) Paszke, A. et al. Advances in Neural Infor-
mation Processing Systems 32 ; Curran As-
sociates, Inc., 2019; pp 8024–8035.

(24) Sicho, M.; Liu, X.; Svozil, D.; van
Westen, G. J. P. GenUI: interactive
and extensible open source software plat-
form for de novo molecular genera-
tion and cheminformatics. Journal of

10

http://dx.doi.org/10.1186/s13321-020-00441-8
http://dx.doi.org/10.1039/D0SC03126G
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/https://doi.org/10.1002/cmdc.200800178
http://dx.doi.org/10.1021/ci970429i
http://dx.doi.org/10.1093/nar/gkw1074
http://dx.doi.org/10.1186/s13321-022-00672-x
https://doi.org/10.5281/zenodo.7550739
https://doi.org/10.5281/zenodo.7550739
https://doi.org/10.5281/zenodo.7550792
https://doi.org/10.5281/zenodo.7550792
https://doi.org/10.5281/zenodo.7096837
https://doi.org/10.5281/zenodo.7096837
https://doi.org/10.5281/zenodo.7378916
https://doi.org/10.5281/zenodo.7378916
https://doi.org/10.5281/zenodo.7378923
https://doi.org/10.5281/zenodo.7378923
https://doi.org/10.5281/zenodo.7635064
https://doi.org/10.5281/zenodo.7635064
https://doi.org/10.5281/zenodo.7622774
https://doi.org/10.5281/zenodo.7622774
https://doi.org/10.5281/zenodo.7096823
https://doi.org/10.5281/zenodo.7096823
https://doi.org/10.5281/zenodo.7085421
https://doi.org/10.5281/zenodo.7085421
https://doi.org/10.5281/zenodo.7622738
https://doi.org/10.5281/zenodo.7622738


Cheminformatics 2021, 13, 73, DOI:
10.1186/s13321-021-00550-y.

(25) Django Software Foundation, Django Web
Framework. https://djangoproject.

com.

(26) RDKit, RDKit: Open-source cheminformat-
ics. https://www.rdkit.org.

(27) Krenn, M.; Häse, F.; Nigam, A.;
Friederich, P.; Aspuru-Guzik, A. Self-
referencing embedded strings (SELFIES):
A 100% robust molecular string repre-
sentation. Machine Learning: Science
and Technology 2020, 1, 045024, DOI:
10.1088/2632-2153/aba947, Publisher:
IOP Publishing.

11

http://dx.doi.org/10.1186/s13321-021-00550-y
https://djangoproject.com
https://djangoproject.com
https://www.rdkit.org
http://dx.doi.org/10.1088/2632-2153/aba947


TOC Graphic

12


	Abstract
	Introduction
	Application overview
	Molecular generator
	Algorithms
	Data preprocessing
	Training

	Molecule scoring
	Objectives
	Modifiers
	Multi-objective optimisation


	Implementation
	Python Package
	Graphical User Interface

	Conclusion
	References

