
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490


Summary

With the advent of multicore processors and data centers, computer hardware has
become increasingly parallel, allowing one to run multiple pieces of software at the
same time on different machines. Coordination of these pieces is best expressed in
a coordination language as an explicit interaction protocol that clearly defines the
interactions among all components in the software.

An explicit interaction protocol not only improves code structure but also en-
ables automated analysis of the protocol to improve execution efficiency of the
software. Specifically, interaction protocols contain significant information that is
essential for efficient scheduling, an activity that concerns the allocation of (com-
puting) resources to software tasks. In this thesis, we focus in particular on im-
proving execution efficiency through scheduling. Almost always, scheduling is the
responsibility of a general-purpose operating system that makes no assumptions on
the software and thereby ignores all relevant scheduling information in that soft-
ware. As a result, the operating system alone cannot ensure optimally scheduled
execution of the software.

In this thesis, we propose a solution that changes the protocol in the software
such that it will be efficiently scheduled by the general-purpose operating system.
The main idea is to take advantage of the duality between scheduling and coor-
dination. To be precise, we analyze the protocol of the software to determine an
optimal scheduling strategy for this software. Then, we enforce this optimal sched-
ule by incorporating the strategy in the original protocol. As a result, we force the
ignorant operating scheduler to follow our precomputed optimal schedule.

To achieve this larger goal, we present three smaller contributions. First, we
obtain a baseline for the scheduling information that is available in a coordination
language by comparing two coordination languages, BIP and Reo. Our comparison
leads to the proposal of a composition operator for data-sensitive BIP architectures
and the expansion of the theory of soft constraint automata with memory cells and
bipolar preference values.

Next, we concretely establish all independent parts in the software (including
those in the protocol) that can be scheduled. Here, we introduce two truly concur-
rent semantics namely multilabeled Petri nets and stream constraints in rule-based
form. Using these semantics as an intermediate representation, we significantly im-
prove state-of-the-art Reo compiler. As a byproduct, we propose a textual language
called Treo that allows us to construct large protocols by composing primitive ones.

Finally, we represent all relevant scheduling information of each part of the
software by expressing the software as a work automaton that expresses how much
work each part of the software can/must do. We use these work automata to

197



Summary 198

develop a game-theoretic scheduling framework that formalizes scheduling as a
two-player zero-sum game played on a graph. We slightly adapt existing solutions
to compute a scheduling strategy for a small cyclo-static dataflow application that
optimizes throughput. As promised, we enforce the optimal scheduling strategy
by integrating it with the original protocol, which avoids custom changes to the
default operating system scheduler.

A more extensive summary of this thesis appears in Chapter 9.


