
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490


Chapter 9

Conclusion

9.1 Summary

With the advent of multicore processors [ABD+09] and data centers [Kan09] com-
puter hardware has become increasingly parallel, which allows one to run multiple
pieces of software at the same time on different machines. Programmers can en-
joy the fruits of parallelism by partitioning software into relatively independent
components and running these components simultaneously.

Of course, these components are not completely independent: they must cooper-
ate to achieve the common goal of the complete software system. Such cooperation
of components requires shared resources and coordination. As explained in Part I,
coordination is best expressed in an explicit interaction protocol that clearly defines
the interactions amongst all components in the software. An explicit interaction
protocol not only improves code structure, but also enables automated analysis of
the protocol [Klü12], and improved execution efficiency by compiler optimizations
[Jon16]. In Chapter 2, we compare two coordination languages, BIP and Reo,
and offer formal translations between them. Our comparison reveals differences
between BIP and Reo with respect to composition and priority. The difference in
composition leads to the proposal of a composition operator for data-sensitive BIP
architectures.

We aim to narrow the ‘priority gap’ between BIP and Reo in Chapter 3 by
expanding the theory of soft constraint automata with memory cells and bipolar
preference values. These soft constraint automata offer a semantics for Reo wherein
bipolar preference values can express a weak form of priority, such as context-
sensitivity. Our approach to context-sensitivity differs significantly from other ap-
proaches (that do not model preferences as explicit values), such as connector
coloring [CCA07], dual ports [JKA11], intentional automata [CNR11], augmented
Büchi automata of records [IBC08], and guarded automata [BCS12]. Although we
consider context-sensitivity in the realm of Reo, we stress that context-sensitivity
is a fundamental concept that applies to languages other than Reo.

Part II of our thesis focuses on the generation of executable code for a given
interaction protocol that merges its coordinated components into a single concur-
rent software. We temporarily ignore the coordinated components and study the

165



9.1. SUMMARY 166

interaction protocol in isolation. The basis of any compiler is a well-defined in-
put language. Many Reo tools use a plugin in the Eclipse editor as a graphical
editor for Reo connectors. The graphical editor not only commits the user to the
Eclipse editor, but also lacks important features such as parameter passing, itera-
tion, recursion, or conditional construction of connectors. Some Reo tools therefore
develop their own textual language, each having a specific Reo semantics in mind.
In Chapter 4, we propose a textual language, called Treo, that does not commit to
any specific semantics.

We use the freedom of the semantics in Treo to propose a new semantics that
represents Reo connectors as temporal logic formulas called stream constraints.
Such constraints can be written in may equivalent forms. Since composition is
conjunction, the composite constraint grows linearly in size. However, compila-
tion of such a conjunction is hard and requires a constrain solver (possibly at run
time). Chapter 5 identifies the rule-based form as a form that balances the trade-
off between composition and compilation of constraints. A rule in a rule-based
form corresponds naturally to a loosely coupled thread or process, which makes
compilation straightforward. The composition of rule-based constraints grows lin-
early most many practical cases (such as the Alternatork in Figure 5.3), and grows
exponentially only in the worst case. We implemented a Reo compiler based on
stream constraints, and showed that it outperforms the state-of-the-art Reo com-
piler ([JKA17]).

Reflecting on our stream constraints, our main observation is the discrepancy
with respect to concurrency between Reo connectors and their formal semantics
[JA12]. While Reo connectors are considered concurrent, almost all semantics for
Reo are expressed in an inherently sequential model (such as streams or automata).
The encoding of Reo connectors into zero-safe (Petri) nets is the only exception.
This mismatch results in ad hoc extraction of concurrency via techniques like ‘syn-
chronous region decomposition’ [JCP16], ‘local multiplication’ [Jon16], or our rule-
based form in Chapter 5. In Chapter 6, we propose an inherently concurrent
semantics for Reo connectors as Multilabeled Petri nets, which turns the ad hoc
extraction of concurrency from our rule-based form into the standard interpreta-
tion of concurrency in Petri nets. While the syntax and semantics of Petri nets
is standard, our main contribution is a composition operator on Petri nets that
mimics the composition in stream constraints. As a result, we obtain a simple
expressive Reo semantics that can be effectively compiled into efficient code.

In Part III, we study the effect of the interaction protocol schedulability of the
complete software (including the coordinated components). In order to compute
high quality schedules for a software system, we must know how much processing
time (or work) each component requires. To this end, we develop work automata
in Chapter 7, which express, for a fixed number of components, how much work
each component can/must do. We develop a gluing technique that allows us to
minimize the state space of a work automaton to potentially a single state with a
complex invariant. This invariant exposes mutual exclusion as holes in a higher-
dimensional space. If a scheduler can avoid such holes, we can potentially drop the
(costly) locks that prevent the application from transgressing into these holes.

Next, we use work automata to develop a game theoretic scheduling framework.
In general, the scheduler decides which components can run, while the application
decides how to resolve non-determinism during execution. In Chapter 8 we for-



167 CHAPTER 9. CONCLUSION

malize this game as a two-player zero-sum game played on a graph, and slightly
adapt existing solutions to compute a scheduling strategy for a small cyclo-static
dataflow application that optimizes throughput.

The most straightforward solution to implement our synthesized strategy is to
replace the default operating system scheduler with a custom application-specific
scheduler. While this approach is possible, it is a non-trivial, costly task that re-
quires administrative rights on the operating system. We present a novel alternative
that implements the synthesized strategy in the software, while keeping the default
operating system scheduler in place. First, we transform the resulting strategy into
a scheduling protocol, and subsequently compose this scheduling protocol with the
original protocol of the application. As a result, a general-purpose operating system
scheduler (which schedules all non-blocked components in a round-robin fashion)
will closely follow our optimal strategy. As a result, we avoid complex custom
schedulers, while still obtaining our scheduling goals.

9.2 Future work

In this thesis, we demonstrated the practical use of the schedule-protocol duality
from Chapter 1 by applying it to the special case of cyclo-static dataflow soft-
ware. However, the applications of the schedule-protocol duality are not limited
to this special case, and further research can study the implications of this duality
on cyber-physical software and real-time systems. These more general systems of-
ten have real-time constraints and alternative objectives (other than throughput),
which we do not consider in the current thesis.

Even if a program is represented as a small Petri net, its scheduling game can
have a very large number of positions. The scheduling game of the cyclo-static
dataflow program from Chapter 8 turned out to be just small enough to be solved
on our personal laptop, but solving the scheduling game for larger programs requires
superior hardware like a computer cluster. To handle even larger applications, we
can improve the scalability of schedule synthesis by using different solvers that
avoid the state-space explosion. One direction is to search for classes of programs
that can be scheduled by existing powerful solvers (like ILP solvers, SAT solvers, or
SMT solvers). Another direction is to develop scheduling heuristics that simplify
scheduling synthesis at the cost of suboptimal solutions.

The work automata introduced in Chapter 7 encode all relevant scheduling
information and we use them as input to our scheduling framework. In this thesis,
we assumed that these work automata are given and put our focus on the resulting
scheduling problem. Although the problem of finding the work automata of a
given program is non-trivial, the search can be automated, if all necessary details
(such as the exact machine instructions and the hardware architecture) are known.
Even if not all necessary details are known, we can still approximate the size of
the workloads through experimentation. The workload can then be represented
as a distribution (rather than a single value), which can be encoded as a work
automaton via non-deterministic transitions.


