
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490

Chapter 8

Protocol Scheduling

The work automata developed in Section 7.1 encode all relevant scheduling infor-
mation of a concurrent application and its protocol. For optimal performance of
a concurrent software, the scheduler must take these dependencies into account.
However, operating systems schedulers are application-independent and remain
oblivious to the dependency information inherent in a protocol, even if such in-
formation is available. At best, these schedulers detect consequential effects of a
protocol, such as blocking on an I/O-operation or waiting for a lock.

In this chapter, we develop a scheduling framework that extracts all scheduling
information from a given work automaton and produces an ideal scheduler for the
given software1. The most straightforward implementation of this ideal scheduler
is to replace the operating system scheduler with our ideal scheduler. However, this
approach is not possible if the operating system runs multiple different applications,
each of which requiring its own ideal scheduler.

We offer an alternative approach that implements the ideal scheduler without
changing the operating system scheduler. The main idea is to exploit the dual-
ity between schedules and protocols mentioned in Chapter 1 and transform the
ideal schedule into a scheduling protocol. Then, we refine the original protocol
by composing it with the scheduling protocol. The refined protocol forces the
operating system scheduler to closely follows the ideal schedule, which improves
the performance of the concurrent application. The scheduling protocol exploits
the fact that the operating system scheduler executes only processes that are not
blocked or waiting. Hence, it can enforce a custom schedule by blocking all appli-
cation processes, except for those that should run according to the application’s
desired schedule. We block a process by prolonging existing blocking operations
like I/O operations or waiting for a lock. Therefore, our approach assumes that
the application’s desired custom schedule is non-preemptive.

We synthesize non-preemptive schedules for concurrent applications using algo-
rithms for games on graphs (Section 8.1). A graph game is a two-player zero-sum
game played by moving a token on a directed graph, wherein each vertex is owned
by one of the players. Typically, the ownership of the nodes along a path through
the graph alternates between the two players. If the token is at a vertex owned

1The work in this chapter is based on [DA21, DJA16]

153

8.1. GRAPH GAMES 154

by a player, this player moves the token along one of the outgoing edges to the
next vertex, after which the process repeats. The winning condition determines
the player that wins based on the resulting path of the token.

We represent the scheduling problem as a graph game between the scheduler
and the application (Section 8.2). The scheduler selects the processes that can
execute, and the application resolves possible non-determinism within the processes
of the concurrent program. Game-theoretic machinery computes a strategy for the
scheduler that optimizes the execution of the concurrent program (according to
an objective function that embodies some desired performance measure). Here,
we consider only the objective of maximizing throughput, but similar techniques
can also optimize for other scheduling performance measures, like fairness, context-
switches, or energy consumption.

We view the resulting non-preemptive scheduling strategy itself as a scheduling
protocol, and we compose the original protocol with this scheduling protocol to
obtain a composite, scheduled protocol (Section 8.3). To evaluate the effect of
the restricted protocol on a practical situation, we implement a reference version
and a scheduled version of a simple cyclo-static dataflow network. This network
consists of four processes, called actors, that interact asynchronously via five buffers
(Figure 8.1). A buffer can handle overflows by dropping items to match its capacity.
We measure the throughput (i.e., the time between consecutive productions) of
both versions of the program. The throughput of the reference version varies
significantly, and is on average worse than the throughput of the scheduled version,
which, moreover, shows only a small variation.

Finally, we conclude and point to future work in Section 8.5.

8.1 Graph games

Our scheduling framework uses algorithms for games on graphs to construct non-
preemptive schedules [DJA16]. A graph game is a two-player game of infinite
duration. The possible move sequences are characterized by a safety automaton:

Definition 8.1.1. A safety automaton is a tuple (Q,Σ, δ, q0, F), with Q a finite
set of states, Σ a finite set of moves, δ : Q×Σ→ Q a transition function, q0 ∈ Q an
initial state, and F ⊆ Q a set of accepting states, such that for every state q ∈ Q,
we have q ∈ F if and only if δ(q, σ) ∈ F , for some move σ ∈ Σ.

In other words, a safety automaton is a deterministic finite automaton (DFA),
wherein accepting states cannot be reached from non-accepting states, and every
accepting state has an accepting successor.

As usual, we extend the transition function δ to finite move sequences by defin-
ing δ(q, λ) = q and δ(q, sσ) = δ(δ(q, s), σ), for every state q ∈ Q, finite move
sequence s ∈ Σ∗, move σ ∈ Σ, and empty sequence λ ∈ Σ∗.

Since we are interested in infinite games only, we define the accepted language
of a safety automaton as follows:

Definition 8.1.2. The accepted language L(A) of a safety automaton A is the set
of infinite words σ1σ2 · · · ∈ Σω, such that δ(q0, σ1 · · ·σn) ∈ F , for all n ≥ 0.

155 CHAPTER 8. PROTOCOL SCHEDULING

Instantiating Definition 8.1.2 for n = 0, we see that δ(q0, σ1 · · ·σn) = δ(q0, λ) =
q0 ∈ F , which means that the accepted language is non-empty if and only if the
initial state q0 is accepting.

Consider a state q ∈ Q of a safety automaton. While all moves are possible in
q (the transition function is defined for all pairs of states and moves), not every
move is enabled in the sense that it leads to an accepted word. In view of Defini-
tion 8.1.2, we consider the set Σq = {σ | δ(q, σ) ∈ F} of enabled moves at q. By
Definition 8.1.1, Σq is non-empty, for accepting states q ∈ F .

Based on safety automata, we construct a graph game as follows:

Definition 8.1.3. A graph game is a tuple (A,C,W), with A = (Q,Σ, δ, q0, F)
a safety automaton, C ⊆ Q a set of controlled states, and W ⊆ Σω a winning
condition.

A graph game (A,C,W) is played by two players (say Player 1 and Player
2) who take turns to move a token from state to state. We consider Player 1 a
protagonist and Player 2 an antagonist. To simplify notation, we write C1 = C for
the states controlled by Player 1, and we write C2 = Q\C for the states controlled
by Player 2. Initially, the token is in state q0 ∈ Q. If the token is in state q ∈ Ck,
with k ∈ {1, 2}, then Player k selects an enabled move σ ∈ Σq and moves the token
to state δ(q, σ). As a result, the token moves along a path

q0
σ1−→ q1

σ2−→ q2
σ3−→ · · ·

through the safety automaton. Player 1 wins if the sequence σ1σ2σ3 · · · ∈ Σω of
moves is contained in the winning condition W . Otherwise, Player 2 wins.

A joint strategy (for both players) is a function ζ : Σ∗ → Σ that selects a
move, for every finite move sequence. A strategy for Player k ∈ {1, 2} is a function
ζk : Pk → Σ, with Pk = {σ1 · · ·σn ∈ Σ∗ | δ(q0, σ1 · · ·σn) ∈ Ck}, that selects a
move, for every finite move sequence that leads to a state controlled by Player k.
If Player k follows a strategy ζk, then the resulting move sequence is contained in
the set

L(ζk) = {σ1σ2σ3 · · · ∈ L(A) | ζk(σ1 · · ·σn) = σn+1 whenever defined}

of outcomes of the game that are ensured by following strategy sk. A strategy ζ1
for Player 1 is winning if L(ζ1) ⊆W . That is, strategy ζ1 ensures that the resulting
move sequence is contained in W , irrespective of the moves of Player 2. Winning
strategies for Player 2 are defined similarly. A strategy ζk for Player k is optimal,
if it is winning or if no winning strategy for Player k exists.

Of course, for a given game, it is impossible that both players have a winning
strategy. However, for general winning conditions, it is possible that neither player
has a winning strategy. In this case, the game is not determined. Nevertheless,
Martin proved [Mar75] that graph games are determined if the winning condition
is a Borel set2. Unfortunately, the results by Martin are descriptive and do not
suggest a practical algorithm to find a winning strategy.

For simpler winning conditions, such as the ratio objective, we do have algo-
rithms that compute a winning strategy:

2A Borel set is a subset of Σω obtained from languages of safety automata by repeated com-
plements and countable intersections.

8.1. GRAPH GAMES 156

Definition 8.1.4. A ratio game is a graph game with a winning condition

Ws/t≥v =

{
σ1σ2σ3 · · · ∈ Σω

∣∣∣ lim inf
n→∞

∑n
i=1 s(σi)∑n
i=1 t(σi)

≥ v and t(σ1) 6= 0

}
for some functions s : Σ→ Z and t : Σ→ N0, and value v ∈ Q.

To the best of our knowledge, ratio games are introduced by Bloem et al. for the
synthesis of robust systems [BGHJ09]. The winning condition Ws/t≥v stipulates
that, for every ε ≥ 0 there exists some time N ≥ 0, such that for all n ≥ N after
this time, the fraction (

∑n
i=1 s(σi))/(

∑n
i=1 t(σi)) is at most ε less than v.

If t(σ) = 1, for all moves σ ∈ Σ, then we obtain a mean-payoff game. Much
research has been devoted to finding efficient algorithms that solve mean-payoff
games. One of the best known algorithms for mean-payoff games is due to Brim
et al. [BCD+11]. Their solution for mean-payoff games generalize easily to ratio
games. We provide a brief explanation of this algorithm, and refer to [BCD+11]
for full details.

A classical result by Ehrenfeucht and Mycielsky [EM79], called memoryless
determinacy, states that there exists a positional optimal joint strategy for mean-
payoff games (and ratio games).

Definition 8.1.5. A joint strategy ζ : Σ∗ → Σ is positional, if δ(q0, s1) = δ(q0, s2)
implies ζ(s1) = ζ(s2), for all move sequences s1, s2 ∈ Σ∗.

A positional strategy depends only on the current state δ(q0, s), instead of the
full history s ∈ Σ∗. If both players follow some positional strategy, the outcome of
the game is a path

q0
σ1−→ · · · → qk

σk−→ · · · → qn
σn−−→ qk

σk−→ · · · (8.1)

in the safety automaton that ends with a cycle in the distinct states qk, . . . , qn.
The outcome of a ratio game is winning for a value v = a/b ∈ Q if and only if
(
∑n
i=k s(σi))/(

∑n
i=k t(σi)) ≥ v = a/b, which is equivalent to

∑n
i=k w(σi) ≥ 0, with

w(σ) = b · s(σ)− a · t(σ), for all moves σ ∈ Σ.
Brim et al. observed that positional winning strategies for Player 1 in a ratio

game correspond with consistent valuations:

Definition 8.1.6. A valuation f : Q→ N0 ∪ {∞} is consistent in state q ∈ Q iff

1. q ∈ C1 implies f(q) + w(σ) ≥ f(δ(q, σ)), for some move σ ∈ Σq, or

2. q ∈ C2 implies f(q) + w(σ) ≥ f(δ(q, σ)), for every move σ ∈ Σq,

A valuation is consistent if it is consistent in every state.

Suppose that there exists a consistent valuation f : Q → N0 ∪ {∞}. Re-
peated application of Definition 8.1.6 to the path in Equation (8.1) yields f(qk) +∑n
i=1k w(σi) ≥ f(δ(qk, σ1 · · ·σn)) = f(qk). If f(qk) <∞ is finite, then the outcome

is winning for Player 1.
Brim et al. suggest a value iteration method to find the smallest possible

valuation (we compare valuations pointwise: f ≤ f ′ iff f(q) ≤ f ′(q), for all states

157 CHAPTER 8. PROTOCOL SCHEDULING

Algorithm 3: Synthesis problem for ratio games.

Input : A ratio game (A,C,Ws/t≥v), with A = (Q,Σ, δ, q0, F), functions
s : Σ→ Z and t : Σ→ N0, and a value v = a

b ∈ Q.
Output: A the largest quasi-strategy ζ : Q→ 2Σ that is winning.

1 foreach σ ∈ Σ do w(σ)← b · s(σ)− a · t(σ);
2 foreach q ∈ Q do f(q)← 0;
3 foreach q ∈ C do c(q)← |{σ ∈ Σq | f(q) + w(σ) < f(δ(q, σ))}|;
4 B ←∑

q∈Q max({0} ∪ {−w(q, σ) | σ ∈ Σq});
5 L← {q ∈ Q | f inconsistent in q};
6 while L 6= ∅ 6= {q ∈ Q | f(q) = 0} and f(q0) <∞ do
7 Pick q ∈ L, with f(q) minimal;
8 fq ← f(q);
9 f(q)← min{n ∈ {1, . . . , B,∞} | f [q 7→ n] consistent in q};

10 L← L \ {q};
11 if q ∈ C then c(q)← |{σ ∈ Σq | f(q) + w(σ) < f(δ(q, σ))}|;
12 foreach (p, σ) with δ(p, σ) = q 6= p and f(p) + w(σ) < f(q) do
13 if p ∈ C then
14 if f(p) + w(σ) ≥ fq then c(p)← c(p)− 1;
15 if c(p) = 0 then L← L ∪ {p};
16 if p ∈ Q0 then L← L ∪ {p};
17 foreach q ∈ Q do

ζ(q)← {σ ∈ Σq | f(q) + w(σ) ≥ f(δ(q, σ)), and f(q) <∞};

q ∈ Q). Our Algorithm 3 shows a variation of their algorithm with only a few
minor, but novel, adjustments.

The first modification is on Lines 6 and 7. Let a = minq∈Q f∗(q) be the smallest
value of the smallest valuation f∗. If a <∞, then the valuation f ′ : Q→ N0 defined
as f ′(q) = f∗(q) − a, for all q ∈ Q, is less than or equal to f∗. Minimality of f∗
shows that a = 0, which means that there exists a state q ∈ Q with f∗(q) = 0. We
refer to q ∈ Q with f∗(q) = 0 as a pivot state. If there are no more pivot states,
we can terminate the value iteration.

The second (minor) modification is on Line 9, which becomes apparent for states
q ∈ Q with a negative self loop transition (i.e., some σ ∈ Σ with δ(q, σ) = q and
w(σ) < 0). While the original algorithm by Brim et al. repeatedly adds −w(σ)
to the valuation f(q) at state q, Algorithm 3 immediately jumps to the smallest
valuation that resolves the inconsistency at q.

Value problem For given functions s and t, we have a family {Ws/t≥v | v ∈ Q}
of winning conditions. Since Player 1 wishes to maximize the ratio between the
cumulatives of s and t, it is natural to look for the largest value v ∈ Q for which
there exists a winning strategy. This problem is known as the value-problem. The
set of values that are winning for Player 1 is a half-open interval (−∞, v∗], with v∗
the optimal value. Using Algorithm 3, we can test the query v ≥ v∗ for any value
v ∈ Q. Hence, the value problem can be solved by a binary search. Comin and
Rizzi [CR17] improved this idea by reusing results from earlier queries.

8.2. SCHEDULING GAME 158

E1

E2

E3

E4

E5

A1
15

A2
15

A3
15

A1
2

8

A1
3

24

A1
4 4

A2
4 4

A3
4 4

Figure 8.1: Petri net representation of a small cyclo-static dataflow graph.

8.2 Scheduling Game

We use the graph games from Section 8.1 to develop a game-theoretic framework for
the synthesis of non-preemptive schedules. We assume that a concurrent program
is given in the form of a work automaton (Q,Σ, J, T, I, c0) (cf., Section 7.1). Of
course, we assume that the work automaton accurately models the real application.
It may be nontrivial to verify whether or not the work automaton in fact models
the application sufficiently accurately, but this concern is beyond the scope of our
work on scheduling. In the worst case, one can ensure the application’s compliance
with the work automaton model by means of runtime verification.

As a running example, we formalize a simple cyclo-static dataflow network as
a work automaton.

Example 8.2.1. Figure 8.1 shows the Petri net representation [Mur89] of a small
cyclo-static dataflow (CSDF) graph from [Bam14, p. 29]. Recall that a Petri
net consists of places (depicted as circles) that contain zero or more tokens, and
transitions (depicted as rectangles). A transition firing consumes a single token
from each of its input places and produces a token in each of its output places.

The system in Figure 8.1 consists of 4 actors (A1 to A4), which are connected
via 5 buffers (E1 to E5). The original example in [Bam14] does not make any
assumptions on the nature of the buffers: they can be FIFO, LIFO, lossy, or priority
buffers. For our purpose, we assume that writing to a full buffer loses the written
data. For simplicity, Figure 8.1 represents each buffer as a place in the Petri net.
The losing behavior is made precise in the work automaton in Figure 8.2(e).

Each actor Ai, for 1 ≤ i ≤ 4, cycles through a number of phases (hence the name
cyclo-static). Figure 8.1 represents each phase as a transition Aji , for some index
j, in the Petri net. Each phase of an actor requires time to execute. Although the
actual times may vary, we consider only the worst-case execution times (WCET).
We assume that all phases of a given actor have the same WCET. The integer
value next to each transition in Figure 8.1 specifies its WCET. ♦

Although the functional behavior (as a Petri net) of the dataflow network in
Figure 8.1 is very precise, its non-functional behavior (the timing of transitions)
is still unclear. The following example makes this precise by providing a work
automaton for each actor and buffer in Figure 8.1:

Example 8.2.2. Figure 8.2 shows the work automata that encode the informal

159 CHAPTER 8. PROTOCOL SCHEDULING

description of the behavior of the CSDF graph in Example 8.2.1. The work au-
tomaton for Ai, with 1 ≤ i ≤ 4, has a real-valued job variable ji that measures the
progress of its respective actor. The initial condition j1 = 0 in Figure 8.2(a) shows
that actor A1 must first perform 5 units of work on j1 before it can produce on
E1 and E3. In contrast, the initial condition j4 = 4 in Figure 8.2(b) shows that
actor A4 can immediately consume tokens from E3 and E4. The work automata
for A2 and A3 in Figures 8.2(c) and 8.2(d) are very similar. Each first consumes a
datum from its input buffer, then executes for a given amount of time, and finally
produces a datum in its output buffer. Figure 8.2(e) shows the work automaton for
a buffer of capacity 4 (buffers of other capacity are defined similarly). The self-loop
transition on state s4 loses the data, if the buffer is full. ♦

s0j1=0

j1=0

s1

j1≤5

s2

j1=0

s3

j1≤5

s4

j1=0

s5

j1≤5

{
x
1 }
,>
,∅

{y1,e1,e3},j1=5,{j1}

{x
1
},
>,
∅

{
y
1 ,e

1 ,e
3 }
,j

1 =
5,{
j
1 } {x1},>,∅ {y

1
,e
2
,e
3
},
j 1

=
5,
{j

1
}

(a) A1

s0j4=4

j4≤4

s1

j4=0

s2

j4≤4

s3

j4=0

s4

j4≤4

s5

j4=0

{
x
4 }
,j

4 =
4,{
j
4 }

{y4,ē3,ē4},>,∅

{x
4
},
j 4

=
4,
{j

4
}

{
y
4 ,ē

3 ,ē
4 }
,>
,∅

{x4},j4=4,{j4}

{y
4
,ē
3
,ē
5
},
>,
∅

(b) A4

s0 j2=0j2=0 s1 j2≤8

{x2,ē1},>,∅

{y2,e4},j2=8,{j2}

(c) A2

s0 j3=0j3=0 s1 j3≤24

{x3,ē2},>,∅

{y3,e5},j3=24,{j3}

(d) A3

s0

>

s1

>

s2

>

s3

>

s4

>

{ek},>,∅

{ēk},>,∅

{ek},>,∅

{ēk},>,∅

{ek},>,∅

{ēk},>,∅

{ek},>,∅

{ēk},>,∅
{ek},>,∅

(e) Ek

Figure 8.2: Work automata for the dataflow graph in Figure 8.1, without the idling
transitions (si, ∅,>, ∅, si), for all states i. The self-loop transition in (e) loses the
data, if the buffer is full.

By definition, non-preemptive scheduling relies on the cooperation of the appli-
cation for managing its execution. We therefore, assume that the work automaton
is cooperative:

Definition 8.2.1. A work automaton A is cooperative if and only if for every job

8.2. SCHEDULING GAME 160

bj = 0

j = 0

r

j ≤ B

{xj},>, ∅

{yj}, j ≤ B, {j}

Figure 8.3: Work automaton specifying cooperative behavior of a job j. Signal
xj executes job j, and signal yj yields job j. The bound B ∈ N0 ensures job j
eventually yields.

0>
>

1

>

X,>, ∅

Y,>, ∅
Z,>, ∅

Figure 8.4: Work automaton GA specifying the rules of the scheduling game for
a work automaton A. The scheduler selects any signal X ⊆ N that intersects
XJ = {xj | j ∈ J}. The application selects a signal Y ⊆ N \ XJ that intersects
YJ = {yj | j ∈ J} or a signal Z ⊆ N \XJ that does not intersect YJ .

j ∈ J of A, we have that A ./ Aj and A are identical up to renaming of states,
where Aj is the work automaton in Figure 8.3.

To obtain a scheduling game from a given cooperative work automaton A, we
compose A with the auxiliary work automaton GA in Figure 8.4 that allows us to
determine which player is to move and what moves are allowed by each player. In
the composition A ./ GA, every state is either controlled (if GA is in state 0) or
uncontrolled (if GA is in state 1).

In the sequel, we assume without loss of generality that the work automaton
GA is already integrated in the specification of the cooperative work automaton:

Definition 8.2.2. A cooperative work automaton is playable iff A ./ GA and A
are identical up to state renaming.

The semantics of a playable cooperative work automaton A from Definition 7.1.3
cannot be used directly in a graph game, because there are infinitely many ways
to make progress via the d-transitions. Of course, not all progressions are equally
likely to happen. In fact, if sufficiently many processors are available, we expect
that all running processes make an equal amount of progress. We assume that
these processes run uninterruptedly and at equal speeds. That is, we use job
assignments [S] : J → R, for a subset of jobs S ⊆ J , such that [S](j) = 1 if j ∈ X,
and [S](j) = 0, otherwise. We denote the expected transition in the semantics with
a double arrow:

Definition 8.2.3. The expected semantics JAKe of a work automaton A is the
subgraph of JAK with the ⇒ edges defined by the rules

c
[S]−−→ c′ if c

[S′]−−→ c′ and S′ 6= S then S * S′

c
[S]
=⇒ c′

and
c
σ−→ c′

c
σ
=⇒ c′

161 CHAPTER 8. PROTOCOL SCHEDULING

1 1 1 3 1 1 3

2 4 2 4 1 4 2 4

Figure 8.5: Generated schedule. The vertical dashed line indicates the start of the
period.

The expected transition relation is just a subrelation of the real transition re-
lation of the semantics of a work automaton. Note that there is no guarantee that
the real execution follows the expected one. However, we show in Section 8.3 that
deviations of real execution from expected execution do not cause deadlocks.

Lemma 8.2.1. The expected semantics of a cooperative work automaton is finite.

Proof. Since A is cooperative, the progress of every job is bounded by B ∈ N0 in
every state (Figure 8.3). By a simple induction, it follows that the configurations

of the expected semantics are contained in the finite set Q× {0, . . . , B}J .

The final ingredient for a scheduling game is an objective. The only restriction
that we impose on a scheduling objective is that it must be expressible as a ratio
objective Ws/t≥v, in terms of some functions s : M → Z and t : M → N0.

Example 8.2.3. The composition of the work automata in Figures 8.2 and 8.4
yields a game graph. We maximize the throughput, which we define as the ratio
between the number of productions and the number of time steps (ticks). We can
count the productions by counting how often e5 fires. Hence, we define

s(a1 · · · an) = |{i | e5 ∈ ai ∈ Σ}| and t(a1 · · · an) = |{i | ai ∈ RJ+}|.

Algorithm 3 finds a subgame for which every play is of optimal throughput.
As the CSDF graph is a deterministic program, all non-determinism is con-

trolled by the scheduler. Since all options ensure optimal throughput, we can
resolve the non-determinism arbitrarily. We resolve non-determinism by preferring
idling. The deterministic scheduling strategy for this example can be presented as
a Gantt chart, shown in Figure 8.5. ♦

8.3 Protocol restriction

Consider a playable cooperative work automaton A from Section 7.1 and a non-
preemptive scheduling strategy ζ : C → Σ from Section 8.2, with C the set of
configurations of the expected semantics JAKe of A. Now we intend to implement
the schedule ζ as a protocol A(ζ) that blocks precisely those jobs that are not
supposed to make progress, such that the operating system scheduler has to closely
follow the desired scheduling strategy.

The solution to ratio games in Algorithm 3 returns a subgraph of the original
game graph. For a scheduling game, vertices are configurations of A, and the
edge come from the expected transition relation. Hence, the resulting scheduling
strategy can be easily transformed back into a work automaton.

8.3. PROTOCOL RESTRICTION 162

Definition 8.3.1. The scheduling work automaton A(ζ) of a scheduling strategy
ζ is defined as the tuple (C,Σ, ∅,→, I, c0) with states C = Q×NJ0 , trivial invariant
I(c) = > for all states c ∈ C, and transition relation defined by the rule

c ∈ C controlled c
a

=⇒ c′ ζ(c) defined implies a = ζ(c)

c
a,>,∅−−−→ c′

We enforce the scheduling strategy by considering the composition A ./ A(ζ).
The composition A ./ A(ζ) does not introduce any new, undesired executions,
but merely restricts the composition to a subset of desired executions of A. By
construction, A and A(ζ) synchronize only on signals, which agrees with the fact
that the schedule ζ is non-preemptive.

For the construction of the scheduling game in Section 8.2, we assume that
scheduled jobs run as expected, i.e., they run continuously and at constant speed.
However, it is actually very likely that the actual execution deviates from the
expected execution. A natural question is whether such deviations may confuse
the scheduler enough to introduce deadlocks.

Theorem 8.3.1. If A is a composition of simple work automata, then A ./ A(ζ)
is deadlock free.

A simple work automaton is a work automaton with at most one job and no
silent transitions that in every configuration can either make progress or fire a
transition, but cannot do both. The work automata in Figure 8.2 are examples of
simple work automata.

of Theorem 8.3.1. The state-space of A ./ A(ζ) is defined by tuples consisting
of a state q ∈ Q and a configuration (q′, p′) of A(ζ). Let c = ((q, (q′, p′)), p) ∈
(Q × (Q × NJ0)) × RJ be a reachable configuration of A ./ A(ζ). The absence of
silent transitions ensures that the scheduler A(ζ) knows the state of A (i.e, we have
q = q′). The progress p : J → R of the jobs may still be unknown (i.e., p 6= p′

is possible). By construction, there exists some expected execution of A ./ A(ζ)
that passes through the same state q (although the progress may be different from
p) and enables a transition t = (q, σ, g, R, q′). Since the work automaton for each
job is simple, the guard g of transition t states that the progress of a subset of
jobs is maximal (while the progress of other jobs is irrelevant). Hence, from c we
can make sufficient progress to enable transition t, which implies that c is not a
deadlock.

Example 8.3.1. To evaluate the schedule in Figure 8.5, we implement the CSDF
graph in Figure 8.1 in Python. We performed the experiment on a 64-bit Windows
10 Home Edition with a Intel R© CoreTM i7-7700HQ CPU at 2.80 GHz and 16 GB
RAM. We executed the source code with a 64-bit Python 3.9.0 interpreter.

Appendix B shows the source code of the scheduled application. It is obtained
manually, but mechanically, from the original source code in Appendix A by adding
barrier synchronizations between the actors and a scheduler process. This scheduler
process implements the non-preemptive schedule in Figure 8.5.

Figure 8.6 shows the histogram (with a bin-size of 10 ms) of the output of both
versions of the program. We measure the throughput (i.e., the time between suc-
cessive productions) of each version. Both the expected value and the standard

163 CHAPTER 8. PROTOCOL SCHEDULING

200 400 600 800
0

200

(a) Original

200 400 600 800
0

2000

4000

(b) Scheduled

Figure 8.6: Throughput of original program (a) and scheduled program (b). The
horizontal axis is the time in milliseconds between successive firings of A3

4 (grouped
in bins of 10 milliseconds), and the vertical axis is the frequency of each bin.

deviation of the two versions differ. The original version has an expected through-
put of 441 ms with a standard deviation of 95 ms. The scheduled version has an
expected throughput of 386 ms and a standard deviation of 6 ms.

The quality of the schedule alone does not explain the improvement of the
expected throughput; the characteristics of the original protocol are the most im-
portant factor in this example. Recall that we use overflow buffers, which means
that an actor loses its datum, if its respective buffer is full. If a datum is lost, all
effort invested in its production is also lost. The general-purpose scheduler of the
operating system is unaware of these losses. ♦

Although the game-theoretic framework in Section 8.1 aims to optimize the
expected throughput, Example 8.3.1 shows that the most significant improvement
in the scheduled protocol is in its impact on the standard deviation of the through-
put. The time between successive productions is much more predictable for the
scheduled version compared to the original version. Since we force the operating
system scheduler to closely follow a fixed, deterministic schedule, predictability of
the throughput is not surprising.

Predictable timing is a requirement for many systems. For example, a pace-
maker must assist a patient’s heart to beat at a regular and predictable rate, and
a self-driving car must sense and analyze its environment at a predictable rate to
avoid collisions. The results of Example 8.3.1 show that the unpredictable behav-
ior of the scheduler of the operating systems can be made tightly predictable by
restricting the protocol through composition with a scheduling protocol.

8.4 Related work

There is a wealth of literature on different models for concurrent software, ranging
from the well-known Petri nets [Mur89], to the lesser-known higher-dimensional
automata [Pra91, vG06].

Our implementation of the scheduler as a composition is very similar to the
definition of a scheduler defined by Goubault [Gou95]. In his work, Goubault
specifies the application as a higher dimensional automaton and views the scheduler

8.5. DISCUSSION 164

as a subautomaton. While our scheduling framework builds on graph games, his
work depends on the solution of a particular problem on huge sparse matrices.

The work on (variants of) timed automata [AD90] is closely related to our work
in Chapters 7 and 8. In fact, syntax of work automata is identical that of timed
automata, and the clock variables in timed automata correspond naturally with
the jobs in work automata. However, their semantics differs significantly: in a
timed automaton all clocks progress at the same speed, while work automata do
not make assumptions on the relative speeds of job progress.

Stopwatch automata [CL00] are one step closer to work automata, as in each
state a clock is either running or paused. This feature allows stopwatch automata
to use the clocks to measure the progress of jobs [AM02].

Uppaal Stratego [DJL+15] is a tool the analysis of stochastic priced timed
games. Similar to our work, this tool uses strategies to achieve safety and per-
formance. Uppaal Stratego enforces these strategies via parallel composition with
the original automaton. In contrast with our work, Uppaal Stratego can handle
stochastic environments by means of simulation and reinforcement learning. Up-
paal Stratego’s ideas complement our work. Currently, we use the algorithm for
ratio games from Section 8.1 to solve the scheduling game in this chapter. How-
ever, replacing this algorithm with Uppaal Stratego’s algorithms would provide the
benefits of both approaches.

8.5 Discussion

Protocols contain valuable information indispensable for construction of optimal
(non-preemptive) schedules for allocation of resources to execute a concurrent ap-
plication. Exogenous languages like Reo express a protocol as an explicit software
construct, which makes this scheduling information accessible. We express proto-
cols together with their scheduling information in terms of the work automaton se-
mantics of Reo. We construct a generic scheduling framework based on ratio games
to find optimal non-preemptive schedules for an application defined as a work au-
tomaton. By composing such a scheduling protocol with the original protocol of an
application, we obtain a composite scheduled protocol that forces generic operating
system preemptive schedulers to closely follow the desired optimal schedule. The
exogenous nature of Reo guarantees that the application code remains oblivious to
the substitution of the composite scheduled protocol for its original protocol. An
experiment shows that a scheduled version of a cyclo-static dataflow network (with
the composite protocol) has higher and more predictable throughput compared to
its original version.

Future work The algorithm by Brim et al. to solve ratio games requires the full
state-space of an application. In view of the state-space explosion problem, we can
use other schemes (like Monte-Carlo tree search) to find good schedules.

Although the work presented in our current chapter focuses on maximizing
throughput, the ratio objective can express many other scheduling performance
measures, like fairness, context-switches, or energy consumption. We intend to
express these performance measures in terms of ratio objectives.

