
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490

Part III

Scheduling

137

Chapter 7

Protocols with Workloads

The interaction protocol in a concurrent software imposes dependencies amongst
the different processes in this software. For example, the rate at which a producer
process can fill a buffer of bounded capacity depends on the rate at which a con-
sumer process drains it. In most applications, the protocol is defined implicitly as a
combination of locks and semaphores. For software written in an exogenous coordi-
nation language (cf., Part I) the protocol is explicit, which reveals the dependencies
that are relevant for scheduling.

We can exploit this relevant scheduling information to optimize the execution
of concurrent software. For example, smart scheduling of processes can offer pro-
tection against concurrent access of shared resources in a concurrent application,
without suffering from drawbacks of the standard mutual exclusion protocols (e.g.,
locks). Imagine we have a crystal ball that accurately reveals when each process
accesses its resources and their proper order of execution. We can then use this in-
formation to synthesize a scheduler that executes the processes in the correct order
and prevents concurrent access to shared resources by speeding up or slowing down
the execution of each process. Locks now become redundant, and their overhead
can be avoided.

Unfortunately, some relevant scheduling information is lost if we represent the
protocol in one of the existing protocol semantics (such as our stream constraints
from Part II), which leaves us with a blurred crystal ball. Existing semantics encode
precisely the order of all interactions, but they ignore the amount of work that must
be performed in between these interactions. Therefore, existing protocol semantics
are inadequate and prevent us from formulating the scheduling problem. In the
current chapter, we develop work automata, which is a semantics for components
and protocols that allows us to formalize the scheduling problem1.

In Section 7.1 we introduce the syntax and semantics of work automata and
define a weak simulation relation that allows us to compare the behavior of two
work automata. We define two fundamental operations, namely composition and
hiding. Composition allows us to construct a work automaton for a large system
by composing the work automata of its smaller subsystems. The composition op-
eration synchronizes the behavior on shared (inter)actions. Although these shared

1The work in this chapter is based on [DA17]

139

7.1. WORK AUTOMATA 140

interactions are relevant for composition, we might want to ignore them in a larger
context. The hiding allows us to do this. By defining composition and hiding
of work automata, we can extend our Treo language from Chapter 4 with syntax
to express primitive work automata. Our generic (semantics-agnostic) Reo then
automatically computes the work automaton of the complete application. We po-
tentially benefit from all semantics-independent compiler optimizations, such as
the queue-optimization [JHA14] and protocol splitting [JCP16].

Composition of work automata may suffer from a state space explosion. A large
number of states in a work automaton complicates its analysis. In Section 7.2, we
introduce state-space minimization techniques to counter this state space explosion.
We define in Section 7.2 two procedures, called translation and contraction, that
simplify a given work automaton by minimizing its number of states. We provide
conditions (Theorems 7.2.3 and 7.2.5) under which translation and contraction
preserve weak simulation.

We show by means of an example that some large work automata can be sim-
plified to their respectively “equivalent” single state work automata. The state-
invariant of the single state of such a resulting automaton defines a region in a
multidimensional real vector space. Geometric features of this region reveal in-
teresting behavioral properties of the corresponding concurrent application. For
example, (explicit or implied) mutual exclusion in an application corresponds to
a hole in its respective region, and non-blocking executions correspond to straight
lines through this region. Since straight lines are easier to detect than non-blocking
executions, the geometric perspective provides additional insight into the behavior
of an application. We postulate that such information may be used to develop a
smart scheduler that avoids the drawbacks of locks.

In Section 7.3, we discuss related work, and in Section 7.4 we conclude and
point out future work.

7.1 Work automata

7.1.1 Syntax

Consider an application A that consists of n ≥ 1 concurrently executing processes
X1, . . . , Xn. We measure the progress of each process Xi in A by a positive real
variable xi ∈ R+, called a job, and represent the current progress of application
A by a map p : J → R+, where J = {x1, . . . , xn} is the set of all jobs in A. We
regulate the progress using boolean constraints φ ∈ B(J) over jobs:

φ ::= > | ⊥ | x ∼ n | φ0 ∧ φ1 | φ0 ∨ φ1, (7.1)

with ∼ ∈ {≤,≥,=}, x ∈ J a job and n ∈ N0 ∪ {∞}. We define satisfaction
p |= φ of a progress p : J → R+ and a constraint φ ∈ B(J) by the following rules:
p |= x ∼ n, if p(x) ∼ n; p |= φ0 ∧ φ1, if p |= φ0 and p |= φ1; p |= φ0 ∨ φ1, if p |= φ0

or p |= φ1. The interface of application A consists of a set of ports through which
A interacts with its environment via synchronous operations, each one involving a
subset N ⊆ P of its ports.

We define the exact behavior of a set of processes as a labeled transition system
called a work automaton. The progress value p(x) of job x may increase in a state

141 CHAPTER 7. PROTOCOLS WITH WORKLOADS

0xi = 0

xi ≤ 1
1

xi ≤ 1

2

xi ≤ 1
{ai}, xi = 1, {xi}

take

{bi}, xi
= 1, {xi}

relea
se

restart

∅,>, {xi}

(a) Process Ai

−
>

+

>

{a1},>, ∅

{a2},>, ∅

{b1},>, ∅

{b2},>, ∅

(b) Lock L

Figure 7.1: Mutual exclusion of processes A1 and A2 by means of a lock L.

q of a work automaton, as long as the state-invariant I(q) ∈ B(J) is satisfied. A
state-invariant I(q) defines the amount of work that each process can do in state
q before it blocks. A transition τ = (q,N,w,R, q′) allows the work automaton
to reset the progress of each job x ∈ R ⊆ J to zero and change to state q′,
provided that the guard, defined as synchronization constraint N ⊆ P together
with the job constraint w ∈ B(J), is satisfied. That is, the transition can be fired,
if the environment is able to synchronize on the ports N and the current progress
p : J → R+ of A satisfies job constraint w.

Definition 7.1.1 (Work automata). A work automaton is a tuple (Q,P, J, I,→
, φ0, q0) that consists of a set of states Q, a set of ports P , a set of jobs J , a state
invariant I : Q → B(J), a transition relation → ⊆ Q × 2P × B(J) × 2J × Q, an
initial progress φ0 ∈ B(J), and an initial state q0 ∈ Q.

Example 7.1.1 (Mutual exclusion). Figure 7.1 shows the work automata of two
identical processes A1 and A2 that achieve mutual exclusion by means of a global
lock L. The progress of process Ai is recorded by its associated job xi, and the
interface of each process Ai consists of two ports ai and bi. Suppose we ignore
the overhead of the mutual exclusion protocol. Then, lock L does not need a job
and its interface consists of ports a1, a2, b1, and b2. Each process Ai starts in
state 0 with φ0 := xi = 0 and is allowed to execute at most one unit of work, as
witnessed by the state-invariant xi ≤ 1. After finishing one unit of work, Ai starts
to compete for the global lock L by synchronizing on port ai of lock L. When Ai
succeeds in taking the lock, then lock L changes its state from − to + and process
Ai moves to state 1, its critical section, and resets the progress value of job xi to
zero. Next, process Ai executes one unit of work in its critical section. Finally, Ai
releases lock L by synchronizing on port bi, executes asynchronously its last unit
of work in state 2, and resets to state 0. ♦

7.1.2 Semantics

We define the semantics of a work automaton A = (Q,P, J, I,→, φ0, q0) by means
of a finer grained labeled transition system JAK whose states are configurations:

Definition 7.1.2 (Configurations). A configuration of a work automaton A is a
pair (p, q) ∈ RJ+ ×Q, where p : J → R+ is a state of progress, and q ∈ Q a state.

The transitions of JAK are labeled by two kinds of labels: one for advancing
progress of A and one for changing the current state of A. To model advance of

7.1. WORK AUTOMATA 142

x1

x2

I(q)p

p+ d
γ

(a) Progress

x1

x2

I(q)

w ∧ I(q)
p p[{x1}]

x1

x2

I(q′)

(b) State transition with reset

Figure 7.2: Progress (a) of the application along the path γ in I(q) from p to p+d,
and (b) transition from state q to q′ with reset of job x1.

progress of A, we use a map d : J → R+ representing that d(x) units of work has
been done on job x. Such a map induces a transition

(p, q)
d−→ (p+ d, q), (7.2)

where + is component-wise addition of maps (i.e., (p+ d)(x) = p(x) + d(x), for all
x ∈ J). Figure 7.2(a) shows a graphical representation of transition Equation (7.2).
A state of progress p of A corresponds to a point in the plane.

In practice, the value of each job x ∈ J continuously evolves from p(x) to
p(x) + d(x). We assume that, during transition Equation (7.2), each job makes
progress at a constant speed. This allows us to view the actual execution as a path
γ : [0, 1]→ RJ+ defined by γ(c) = p+ c · d, where RJ+ is the set of maps from J to
R+ and · is component-wise scalar multiplication (i.e., (p+c ·d)(x) = p(x)+c ·d(x),
for all x ∈ J). At any instant c ∈ [0, 1], the state of progress p+ c · d must satisfy
the current state-invariant I(q). Figure 7.2(a) shows execution γ as the straight
line connecting p and p + d. For every c ∈ [0, 1], state of progress γ(c) = p + c · d
corresponds to a point on the line from p to p + d. Note that, since we have a
transition from p to p+c·d in JAK for all c ∈ [0, 1], Figure 7.2(a) provides essentially
a finite representation of an infinite semantics, i.e., one with an infinite number of
transitions through intermediate configurations between (p, q) and (p + d, q). In
Section 7.2.1, we use this perspective to motivate our gluing procedure.

The transition in Equation (7.2) is possible only if the execution does not block
between p and p + d, i.e., state of progress p + c · d satisfies the state-invariant
I(q) of q, for all c ∈ [0, 1]. Since I(q) defines a region {p ∈ RJ+ | p |= I(q)} of a
|J |-dimensional real vector space, the non-blocking condition just states that the
straight line γ between p and p+ d is contained in the region defined by I(q) (see
Figure 7.2(a)).

A transition τ = (q,N,w,R, q′) changes the state of the current configuration
from q to q′, if the environment allows interaction via N and the current state of
progress p satisfies job constraint w. As a side effect, the progress of each job x ∈ R
resets to zero. Such state changes occur on transitions of the form

(p, q)
N−→ (p[R], q′), (7.3)

where p[R](x) = 0, if x ∈ R, and p[R](x) = p(x) otherwise. Figure 7.2(b) shows a
graphical representation of transition Equation (7.3). The current state of progress
satisfies both the current state-invariant and the guard of the transition, which

143 CHAPTER 7. PROTOCOLS WITH WORKLOADS

allows to change to state q′ and reset the value of x1 to zero. For convenience, we
allow at every configuration (p, q) an ∅-labeled self loop which models idling.

Definition 7.1.3 (Operational semantics). The semantics of a given work au-
tomaton A = (Q,P, J, I,→, φ0, q0) is the labeled transition system JAK with states
(p, q) ∈ RJ+ ×Q, labels RJ+ ∪ 2P , and transitions defined by the rules:

d : J → R+, ∀c ∈ [0, 1] : p+ c · d |= I(q)

(p, q)
d−→ (p+ d, q)

(S1)

τ = (q,N,w,R, q′) ∈ →, p |= w ∧ I(q), p[R] |= I(q′)

(p, q)
N−→ (p[R], q′)

(S2)

(p, q)
∅−→ (p, q)

(S3)

where p[R](x) = 0, if x ∈ R, and p[R](x) = p(x) otherwise.

Based on the operational semantics JAK of a work automaton A, we define
the trace semantics of a work automaton. The trace semantics defines all finite
sequences of observable behavior that are accepted by the work automaton.

Definition 7.1.4 (Actions, words). Let P be a set of ports and J a set of jobs.
An action is a pair [N, d] that consist of a set of ports N ⊆ P and a progress
d : J → R+. We write ΣP,J for the set of all actions over ports P and jobs J . We
call the action [∅,0], with 0(x) = 0 for all x ∈ J , the silent action. A word over P
and J is a finite sequence u ∈ Σ∗P,J of actions over P and J .

Definition 7.1.5 (Trace semantics). Let A = (Q,P, J, I,→, φ0, q0) be a work
automaton. A run r of A over a word ([Ni, di])

n
i=1 ∈ Σ∗P,J is a path

r : (p0, q0)
N1−−→ d1−→ s1 · · · sn−1

Nn−−→ dn−→ sn

in JAK, with p0 |= φ0∧I(q0). The language L(A) ⊆ Σ∗P,J of A is the set of all words
u for which there exists a run of A over u.

Example 7.1.2. The language of the process Ai in Figure 7.1(a) trivially contains
the empty word, and the word u = [∅,1][{a},1][{b},1], where 1(xi) = 1. Using
Definitions 7.1.3 and 7.1.5, we conclude that v = [∅,1][{a},1][{b},0.5][∅,0.5], with
0.5(xi) = 0.5, is also accepted by Ai. Note that we can obtain v from u by splitting
[{b},1] into [{b},0.5][∅,0.5]. ♦

7.1.3 Weak simulation

Different work automata may have similar observable behavior. In this section,
we define weak simulation as a formal tool to show their similarity. Intuitively, a
weak simulation between two work automata A and B can be seen as a map that
transforms any run of A into a run of B with identical observable behavior.

Following Milner [Mil89], we define a new transition relation, ⇒, on the opera-
tional semantics JAK of a work automaton A that ‘skips’ silent steps.

7.1. WORK AUTOMATA 144

Definition 7.1.6 (Weak transition relation). For any two configurations s and t

in JAK, and any a ∈ RJ+ ∪ 2P we define s
a

=⇒ t if and only if either

1. a = ∅ and s (
∅−→)∗ t; or

2. a ∈ 2P \ {∅} and s
∅

=⇒ s′
a−→ s′′

∅
=⇒ t; or

3. a ∈ RJ+, s
∅

=⇒ s1
c1·a−−→ t1

∅
=⇒ s2 · · · tn−1

∅
=⇒ sn

cn·a−−−→ tn
∅

=⇒ t, and
∑n
i=1 ci = 1,

with n ≥ 1, si, ti configurations in JAK, ci ∈ [0, 1], (ci · a)(x) = ci · a(x), for all
x ∈ J and all 1 ≤ i ≤ n.

Definition 7.1.7 (Weak simulation). Let Ai = (Qi, P, J, Ii,→i, φ0i, q0i), for i ∈
{0, 1} be two work automata, and let � ⊆ (RJ+ × Q0) × (RJ+ × Q1) be a binary
relation over configurations of A0 and A1. Then, � is a weak simulation of A0 in
A1 (denoted as A0 � A1) if and only if

1. p00 |= φ00 ∧ I0(q00) implies (p00, q00) � (p01, q01), with p01 |= φ01 ∧ I1(q01);

2. s � t and s
a−→ s′, with a ∈ RJ+ ∪ 2P , implies t

a
=⇒ t′ and s′ � t′, for some t′.

We call � a weak bisimulation if and only if � and its inverse �−1 = {(t, s) | s � t}
are weak simulations. We call A0 and A1 weakly bisimilar (denoted as A0 ≈ A1)
if and only if there exists a weak bisimulation between them.

7.1.4 Composition

Thus far, our examples used work automata to define the exact behavior of a single
job (or just a protocol L in Figure 7.1(b)). We now show that work automata are
expressive enough to define the behavior of multiple jobs simultaneously. To this
end, we define a product operator × on the class of all work automata. Before we
turn to the definition, we first introduce some notation. For i ∈ {0, 1}, let Ai =
(Qi, Pi, Ji, Ii,→i, φ0i, q0i) be a work automaton and let τi = (qi, Ni, wi, Ri, q

′
i) ∈ →i

be a transition in Ai. We say that τ0 and τ1 are composable (denoted as τ0 _ τ1)
if and only if N0 ∩ P1 = N1 ∩ P0. If τ0 _ τ1, then we write τ0 | τ1 = ((q0, q1), N0 ∪
N1, w0 ∧ w1, R0 ∪R1, (q

′
0, q
′
1)) for the composition of τ0 and τ1.

Definition 7.1.8 (Composition). Let Ai = (Qi, Pi, Ji, Ii,→i, φ0i, q0i), i ∈ {0, 1},
be two work automata. We define the composition A0 × A1 of A0 and A1 as the
work automaton (Q0 ×Q1, P0 ∪ P1, J0 ∪ J1, I0 ∧ I1,→, φ00 ∧ φ01, (q00, q01)), where
→ is the smallest relation that satisfies:

i ∈ {0, 1}, τi ∈ →i, τ1−i ∈ →1−i ∪ {(q, ∅,>, ∅, q) | q ∈ Q1−i}, τ0 _ τ1
τ0 | τ1 ∈ →

By means of the composition operator in Definition 7.1.8, we can construct
large work automata by composing smaller ones. The following lemma shows that
the composite work automaton does not depend on the order of construction.

Lemma 7.1.1. (A0 × A1) × A2 ≈ A0 × (A1 × A2), A0 × A1 ≈ A1 × A0, and
A0 ×A0 ≈ A0, for any three work automata A0, A1, and A2.

145 CHAPTER 7. PROTOCOLS WITH WORKLOADS

00x1, x2 = 0

x1, x2 ≤ 1

10 x1, x2 ≤ 1 20

x1, x2 ≤ 1

01
x1, x2 ≤ 1

21
x1, x2 ≤ 1

02

x1, x2 ≤ 1

12
x1, x2 ≤ 1

22

x1, x2 ≤ 1

{a}, x1 = 1, {x1} {b}, x1 = 1, {x1}
{a}, x2 = 1, {x2}

{b}, x2 = 1, {x2}
{a}, x1 = 1, {x1} {b}, x1 = 1, {x1}

{a}, x2 = 1, {x2}

{b}, x2 = 1, {x2}

∅, x1 = 1, {x1}

∅, x1 = 1, {x1}

∅
,x

2
=

1,{
x
2 }

∅,x
2
=

1,{x
2 }

∅, x1 = 1, {x1}

∅
,x

2
=

1,{
x
2 }

Figure 7.3: The complete application M = L×A1×A2. In state q1q2, lock L is in
state (−1)q1+q2+1 and process Ai is in state qi.

Example 7.1.3. Consider the work automata from Example 7.1.1. The behavior
of the application is the composition M of the two processes A1 and A2 and the
lock L. Figure 7.3 shows the work automaton M = L × A1 × A1. Each state-
invariant equals >∧ x1 ≤ 1∧ x2 ≤ 1. The competition for the lock is visualized by
the branching at the initial state 00. ♦

7.1.5 Hiding

Given a work automaton A and a port a in the interface of A, the hiding operator
A \ {a} removes port a from the interface of A. As a consequence, the hiding
operator removes every occurrence of a from the synchronization constraint N of
every transition (q,N,w,R, q′) ∈ → by transforming N to N \ {a}. In case N
becomes empty, the resulting transition becomes silent. If, moreover, the source
and the target states of a transition are identical, we call the transition idling.

Definition 7.1.9 (Hiding). Let A = (Q,P, J, I,→, φ0, q0) be a work automaton,
and M ⊆ P a set of ports. We define A\M as the work automaton (Q,P \M,J,→M

, φ0, q0), with →M = {(q,N \M,w,R, q′) | (q,N,w,R, q′) ∈ →}.
Lemma 7.1.2. Hiding partially distributes over composition: M ∩ P0 ∩ P1 = ∅
implies (A0×A1) \M ≈ (A0 \M)× (A1 \M), for any two work automata A0 and
A1 with interfaces P0 and P1, respectively.

Example 7.1.4. Consider the work automaton M in Figure 7.3. Work automaton
M ′ = M \ {a, b} is M where every occurrence of {a} or {b} is substituted by ∅. ♦

7.2 State Space Minimization

The composition operator from Definition 7.1.8 may produce a large complex work
automaton with many different states. In this section, we investigate if, and how, a
set of states in a work automaton can be merged into a single state, without break-
ing its semantics. In Section 7.2.1, we present by means of an example the basic
idea for our simplification procedures. We define in Section 7.2.2 a translation op-
erator that removes unnecessary resets from transitions. We define in Section 7.2.3

7.2. STATE SPACE MINIMIZATION 146

00

01

02

10

12

20

21

22

0 1

1

x1

x2

s s′

(a) JM ′K

0 1 2 3

1

2

3

t

x1

x2

α

α

α

β

β

β

(b) JKK

Figure 7.4: Graphical representation (a) of semantics JM ′K of the work automaton
M ′ in Example 7.1.4, where white regions represent state-invariants, and (b) result
after gluing the regions in(a). Starting in a configuration below line α and above
line β, parallel execution of x1 and x2 never blocks on lock L.

a contraction operator that identifies different states in a work automaton. We
show that translation and contraction are correct by providing weak simulations
between their pre- and post-operation automata.

7.2.1 Gluing

The following example illustrates an intuitive gluing procedure that relates the prod-
uct work automaton M in Figure 7.3 to the punctured square in Figure 7.4(b).
Formally, we define the gluing procedure as the composition of translation (Sec-
tion 7.2.2) and contraction (Section 7.2.3).

Example 7.2.1 (Gluing). Consider the work automaton M ′ in Example 7.1.4
that describes the mutual exclusion protocol for two processes. Our goal is to
simplify M ′ to a work automaton K that simulates M ′. To this end, we introduce
in Figure 7.4(a) a finite representation of the infinite semantics JM ′K of M ′, based
on the geometric interpretation of progress discussed in Section 7.1.2. For any
given state q of M ′, the state-invariant I(q) = x1 ≤ 1 ∧ x2 ≤ 1 is depicted in
Figure 7.4(a) as a region in the first quadrant of the plane. Each configuration (p, q)
of M ′ corresponds to a point in one of these regions: q determines its corresponding
region wherein point p resides. Each transition of M ′ is shown in Figure 7.4(a) as
a dotted arrow from the border of one region to that of another region. We refer
to these dotted arrows as jumps. A jump λ from a region R of state q to another
region R′ of state q′ represents infinitely many transitions from configurations (p, q)
to configurations (p′, q′), for all p and p′, as permitted by the semantics JM ′K. By
the job constraint of the transition corresponding to λ, p and p′ must lie on the
borders of R and R′, respectively, that are connected by λ.

From a topological perspective, a jump from one region to another can be viewed
as ‘gluing’ the source and target configuration of that jump. We can glue any two

147 CHAPTER 7. PROTOCOLS WITH WORKLOADS

0x1 = 0 ∧ x2 = 0 (x1 ≤ 1 ∨ x1 ≥ 2 ∨ x2 ≤ 1 ∨ x2 ≥ 2) ∧ x1 ≤ 3 ∧ x2 ≤ 3

∅, x1 = 3, {x1}∅, x2 = 3, {x2}

Figure 7.5: Work automaton K that corresponds to Figure 7.4(b).

regions in Figure 7.4(a) together by putting regions (i.e., state-invariants) of the
source and the target states side by side to form a single state with a larger region.
Each jump in Figure 7.4(a) from a source to a target state corresponds to an idling
transition (c.f., rule Equation (S3) in Definition 7.1.3) within a single state. When
we apply this gluing procedure in a consistent way to every jump in Figure 7.4(a),
we obtain a single state work automaton K that is defined by a single large region,
as shown in Figure 7.4(b). Figure 7.5 shows the actual work automaton that
corresponds to this region. Note that the restart transition allows the state of
progress to jump in Figure 7.4(a) from configuration ((x, 1), i2) to ((x, 0), i0) and
from configuration ((1, y), 2j) to ((0, y), 0j), for all x, y ∈ [0, 1] and i, j ∈ {0, 1, 2}.
Thus, the restart transition identifies opposite boundaries in Figure 7.4(b), turning
the punctured square into a torus. ♦

The next example shows that the geometric view of the semantics of the work
automaton in Example 7.2.1 reveals some interesting behavioral properties of M ′.

Example 7.2.2. Consider the mutual exclusion protocol in Example 7.1.1. Is it
possible to find a configuration such that parallel execution of jobs x1 and x2 (at
identical speeds) never blocks, even temporarily, on lock L? It is not clear from the
work automata in Figure 7.1 (or in their product automaton as, e.g., in Figure 7.3)
whether such a non-blocking execution exists. Since only one process can acquire
lock L, the execution that starts from the initial configuration blocks after one unit
of work. However, using the geometric perspective offered by Figure 7.4(b) and the
fact that a parallel execution of jobs x1 and x2 at identical speeds correspond to a
diagonal line in this representation, it is not hard to see that any execution path
below line α and above line β is non-blocking. ♦

Regions of lock-free execution paths as revealed in Example 7.2.2 are interesting:
if some mechanism (e.g., higher-level semantics of the application or tailor-made
scheduling) can guarantee that execution paths of an application remains contained
within such lock-free regions, then their respective locks can be safely removed
from the application code. With or without such locks in an application code, a
scheduler cognizant of such lock-free regions can improve resource utilization and
performance by regulating the execution of the application such that its execution
path remains in a lock-free region.

Example 7.2.3 (Correctness). Let M ′ be the work automaton in Example 7.1.4,
and K the work automaton in Figure 7.5. We denote a configuration of M ′ as
a tuple (p1, p2, q0, q1, q2), where pi ∈ R+ is the state of progress of job xi, for
i ∈ {0, 1}, and (q0, q1, q2) ∈ {−,+} × {0, 1, 2}2 is the state of M ′. We denote a
configuration of K as a tuple (p1, p2, 0), where pi ∈ R+ is the state of progress
of job xi, for i ∈ {0, 1}. The binary relation � over configurations of M ′ and

7.2. STATE SPACE MINIMIZATION 148

0x = 0

x ≤ 1

1

x ≤ 1

∅, x ≤ 1, {x}

(a) A

0x = 0

x ≤ 1

1

x ≤ 2

∅, x ≤ 1, ∅

(b) B

Figure 7.6: Shifting state-invariant x ≤ 1 of state 1 in A by one unit.

K defined by (p1, p2, q0, q1, q2) � (q1 + p1, q2 + p2, 0), for all 0 ≤ pi ≤ 1 and
(q0, q1, q2) ∈ {−,+} × {0, 1, 2}2, is a weak simulation of M ′ in K.

Note that �−1 is not a weak simulation of K in M ′ due to branching. Consider
the configurations s = (1, 1,−, 0, 0) and s′ = (0, 1,+, 1, 0) of M ′, and t = (1, 1, 0)
of K (cf., Figures 7.4(a) and 7.4(b)). While in configuration t job x2 can make
progress, execution of x2 is blocked at s′ because process A1 has obtained the lock.
Since s′ � t, we conclude that �−1 is not a weak simulation of K in M ′.

Fortunately, we can still prove that K is a correct simplification of M by trans-
forming �−1 into a weak simulation. Intuitively, such transformation remove pairs
like (t, s′) ∈ �−1. We make this argument formal in Section 7.2.3. ♦

As illustrated in Example 7.2.2, gluing can reveal interesting and useful proper-
ties of an application. To formalize the gluing procedure, we define two operators
on work automata. The main idea is to transform a given work automaton A1 into

an equivalent automaton A2, such that (almost) any step (p1, q1)
∅−→ (p′1, q

′
1) in JA1K

corresponds with an idling step (p2, q2)
∅−→ (p′2, q

′
2) in JA2K, i.e., a step with p′2 = p2

and q′2 = q2. To achieve this correspondence, we define a translation operator that
ensures p′2 = p2, and a contraction operator that ensures q′2 = q2.

7.2.2 Translation

In this section, we define the translation operator that allows us to remove resets
of jobs from transitions. The following example shows that removal of job resets
can be compensated by shifting the state-invariant of the target state.

Example 7.2.4 (Shifting). Suppose we remove the reset of job x on the transition
of work automaton A in Figure 7.6(a). If we fire the transition at x = a ≤ 1, then
the state of progress of x in state 1 equals a instead of 0. We can correct this error
by shifting the state-invariant of 1 by a, for every a ≤ 1. We, therefore, transform
the state-invariant of 1 into x ≤ 2 (see Figure 7.6(b)). ♦

The transformation of work automata in Example 7.2.4 suggests a general trans-
lation procedure that, intuitively,(1) shifts each state-invariant I(q), q ∈ Q, along
the solutions of some job constraint θ(q) ∈ B(J), and(2) removes for every transi-
tion τ = (q,N,w,R, q′) some resets ρ(τ) ⊆ J from R.

Definition 7.2.1 (Shifts). A shift on a work automaton (Q,P, J, I,−→, φ0, q0) is
a tuple (θ, ρ) consisting of a map θ : Q→ B(J) and a map ρ : −→→ 2J .

We define how to shift state-invariants along the solutions of a job constraint.

149 CHAPTER 7. PROTOCOLS WITH WORKLOADS

Definition 7.2.2. Let φ, θ ∈ B(J) be two job constraints with free variables among
x = (x1, . . . , xn), n ≥ 0. We define the shift φ ↑ θ of φ along (the solutions of) θ
as any job constraint equivalent to ∃t(φ(x− t) ∧ θ(t)).

Lemma 7.2.1. ↑ is well-defined: for all φ, θ ∈ B(J) there exists ψ ∈ B(J) such
that ∃t(φ(x− t) ∧ θ(t)) ≡ ψ.

We use a shift (θ, ρ) to translate guards and invariants along the solutions of
job constraint θ and to remove resets occurring in ρ:

Definition 7.2.3 (Translation). Let σ = (θ, ρ) be a shift on a work automaton
A = (Q,P, J, I,→, φ0, q0). We define the translation A ↑ σ of A along the shift σ
as the work automaton (Q,P, J, Iσ,→σ, φ0 ↑ θ(q0), q0), with Iσ(q) = I(q) ↑ θ(q)
and →σ = {(q,N,w ↑ θ(q), R \ ρ(τ), q′) | τ = (q,N,w,R, q′) ∈ →}.

Lemma 7.2.2. If θ ∈ B(J) has a unique solution δ |= θ, then p+δ |= φ ↑ θ implies
p |= φ, for all p ∈ RJ+ and φ ∈ B(J).

Theorem 7.2.3. If p |= w ∧ I(q) and δ |= θ(q) implies (p+ δ)[R \ ρ(τ)]− p[R] |=
θ(q′), for every transition τ = (q,N,w,R, q′) and every p, d ∈ RJ+, then A � A ↑ σ.
If, moreover, θ(q) has for every q ∈ Q a unique solution, then A ≈ A ↑ σ.

For at transition τ = (q,N,w,R, q′), suppose θ(q) and θ(q′) define unique so-
lutions δ and δ′, respectively. If σ eliminates job x ∈ R (i.e., x ∈ ρ(τ)), then
p(x)+δ(x) = δ′(x), for all p |= w∧I(q). Thus, w∧I(q) must imply x = δ′(x)−δ(x),
which seems a strong assumption. For a deterministic application, however, it
makes sense to have only equalities in transition guards. In this case, a transition
is enabled only when a job finishes some fixed amount of work, which corresponds
to having only equalities in transition guards.

Example 7.2.5. Let M ′ be the work automata in Example 7.1.4, σ = (δ, ρ) the
shift defined by θ(q) := x1 = q1 ∧ x2 = q2, and ρ(τ) = Rτ . Theorem 7.2.3 shows
that M ′ ↑ σ and M ′ are weakly bisimilar. ♦

7.2.3 Contraction

In this section, we define a contraction operator that merges different states into a
single state. To determine which states merge and which stay separate, we use an
equivalence relation ∼ on the set of states Q.

Definition 7.2.4 (Kernel). A kernel of a work automaton A is an equivalence
relation ∼ ⊆ Q×Q on the state space Q of A.

Recall that an equivalence class of a state q ∈ Q is defined as the set [q] = {q′ ∈
Q | q ∼ q′} of all q′ ∈ Q related to q. The quotient set of Q by ∼ is defined as
the set Q/∼ = {[q] | q ∈ Q} of all equivalence classes of Q by ∼. By transitivity,
distinct equivalence classes are disjoint and Q/∼ partitions Q.

Definition 7.2.5 (Contraction). The contraction A/∼ of a work automaton A =
(Q,P, J, I,→, φ0, q0) by a kernel ∼ is defined as (Q/∼, P, J, I ′,→′, φ0, [q0]), where
→′ = {([q], N,w,R, [q′]) | (q,N,w,R, q′) ∈ →} and I ′([q]) =

∨
q̃∈[q] I(q̃).

7.2. STATE SPACE MINIMIZATION 150

The following results provides sufficient conditions for preservation of weak
simulation by contraction. The relation � defined by (p, [q]) � (p, q), for all (p, q) ∈
RJ+ ×Q, is not a weak simulation of A/∼ in A. As indicated in Example 7.2.3, we
can restrict � and require only (p, [q]) � (p, α(p, [q])), for some section α.

Definition 7.2.6 (Section). A section is a map α : RJ+ ×Q/∼ → Q such that for
all q, q′ ∈ Q and p, d ∈ RJ+

1. p |= I ′([q]) implies p |= I(α(p, [q]));

2. q ∼ α(p, [q]);

3. p |= φ0 ∧ I(q0) implies α(p, [q0]) = q0;

4. (p, [q])
N−→ (p′, [q′]) implies (p, α(p, [q]))

N
=⇒ (p′, α(p′, [q′]));

5. (p, q)
d−→ (p+ d, q) implies (p, α(p, [q]))

d
=⇒ (p+ d, α(p+ d, [q])).

In contrast with conditions (1), (2), and (3) in Definition 7.2.6, conditions (4)
and (5) impose restrictions on the contraction A/∼. These restrictions allow us to
prove, with the help of the following lemma, weak simulation of A/∼ in A.

Lemma 7.2.4. If (p, [q])
d−→ (p+d, [q]), then there exist k ≥ 1, 0 = c0 < · · · < ck =

1 and q1, . . . , qk ∈ [q] such that p+ c · d |= I(qi), for all c ∈ [ci−1, ci] and 1 ≤ i ≤ k.

Theorem 7.2.5. A � A/∼; and if there exists a section α, then A/∼ � A.

In our concluding example below, we revisit our intuitive gluing procedure mo-
tivated in Section 7.2.1 to show how the theory developed in Sections 7.2.2 and
7.2.3 formally supports our derivation of the geometric representation of JKK from
JM ′K and implies the existence of mutual weak simulations between K and M ′.

Example 7.2.6. Consider the work automaton M ′ ↑ σ from Example 7.2.5, and let
∼ be the kernel that relates all states ofM ′ ↑ σ. The contraction (M ′ ↑ σ)/∼ results
in K, as defined in Example 7.2.1 (modulo some irrelevant idling transitions).
Define α(p, [(q1, q2)]) = minH, where H = {(q1, q2) ∈ {0, 1, 2}2 | p |= Iσ(q1, q2)} is
ordered by (q1, q2) ≤ (q′1, q

′
2) iff q1 ≤ q′1 and q2 ≤ q′2. By Theorem 7.2.5, we have

M ′ � K and M �M ′. By Example 7.2.3, M ′ and K are not weakly bisimilar. ♦

The work automaton in Figure 7.3 and the geometric representation of its infi-
nite semantics in Figure 7.4(a), only indirectly define a mutual exclusion protocol
in M ′. By Example 7.2.6, we conclude that M ′ is weakly language equivalent to a
much simpler work automaton K that explicitly defines a mutual exclusion proto-
col by means of its state-invariant. Having such an explicit dependency visible in
a state-invariant, reveals interesting behavioral properties of M ′, such as existence
of non-blocking paths. These observations may be used to generate schedulers that
force the execution to proceed along these non-blocking paths, which would enable
a lock-free implementation and/or execution.

151 CHAPTER 7. PROTOCOLS WITH WORKLOADS

7.3 Related work

Work automata without jobs correspond to port automata [KC09], which is a data-
agnostic variant of constraint automata [BSAR06]. In a constraint automaton, each
synchronization constraint N ⊆ P is accompanied with a data constraint that inter-
relates the observed data da, at every port a ∈ N . Although it is straightforward to
extend our work automata with data constraints, we refrain from doing so because
our work focuses on synchronization rather then data-aware interaction. Hiding on
constraint automata defined by Baier et al. in [BSAR06] essentially combines our
hiding operator in Definition 7.1.9 with contraction from Theorem 7.2.5.

The syntax of work automata is similar to the syntax of timed automata [AD94].
Semantically, however, timed automata are different from work automata because
jobs in a work automaton may progress independently (depending on whether or
not they are scheduled to run on a processor), while clocks in a timed automaton
progress at identical speeds. For the same reason, work automata differ semanti-
cally from timed constraint automata [ABdBR04], which is introduced by Arbab et
al. for the specification of time-dependent connectors.

This semantic difference suggests that we may specify a concurrent application
as a hybrid automaton [Hen00], which can be seen as a timed automaton wherein the
speed of each clock, called a variable, is determined by a set of first order differential
equations. Instead of fixing the speed of each process beforehand, via differential
equations in hybrid automata, our scheduling approach aims to determine the speed
of each process only after careful analysis of the application. Therefore, we do not
use hybrid automata to specify a concurrent application

Weighted automata [DKV09] constitute another popular quantitative model for
concurrent applications. Transitions in a weighted automaton are labeled by a
weight from a given semiring. Although weights can define the workload of tran-
sitions, weighted automata do not show dependencies among different concurrent
transitions, such as mutual exclusion [vGV97]. As a consequence, weighted au-
tomata do not reveal dependencies induced by a protocol like work automata do.

A geometric perspective on concurrency has already been studied in the context
of higher dimensional automata, introduced by Pratt [Pra91] and Van Glabbeek
[vG91]. This geometric perspective has been successfully applied in [vGV97] to
find and explain an essential counterexample in the study of semantic equivalences
[vG06], which shows the importance of their, and indirectly our, geometric perspec-
tive. A higher dimensional automaton is a geometrical object that is constructed
by gluing hypercubes. Each hypercube represents parallel execution of tasks associ-
ated with each dimension. This geometrical view on concurrency allows inheritance
of standard mathematical techniques, such as homology and homotopy, which leads
to new methods for studying concurrent applications [GJ92, Gun01].

7.4 Discussion

We extended work automata with state-invariants and resets and provided a for-
mal semantics for these work automata. We defined weak simulation of work
automata and presented translation and contraction operators that can simplify
work automata while preserving their semantics up to weak simulation. Although

7.4. DISCUSSION 152

translation is defined for any shift (θ, ρ), the conditions in Theorem 7.2.3 prove
bisimulation only if θ has a unique solution. In the future, we want to investigate
if this condition can be relaxed—and if so, at what cost—to enlarge the class of
applications whose work automata can be simplified using our transformations.

Our gluing procedure in Example 7.2.1 associates a work automaton with a
geometrical object, and Example 7.2.2 shows that this geometric view reveals in-
teresting behavioral properties of the application, such as mutual exclusion and
existence of non-blocking execution paths. This observation suggests our results
can lead to smart scheduling that yields lock-free implementation and/or execu-
tions.

State-invariants and guards in work automata model the exact amount of
work that can be performed until a job blocks. In practice, however, these ex-
act amounts of work are usually not known before-hand. This observation suggests
that the ‘crisp’ subset of the multidimensional real vector space defined by the
state-invariant may be replaced by a density function. We leave the formalization
of such stochastic work automata as future work.

