
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490

Chapter 6

Protocols as Petri nets

Our constraint-based approach to the specification of interaction protocols is very
flexible, because many syntactically different constraints have the same meaning.
While such flexibility is useful for development of new compilation techniques, it
distracts attention from the fundamental principle that leads to the exponential
improvement of compilation in Figure 5.3. The most important concept in Chap-
ter 5 is that rule-based stream constraints expose concurrency in constraints that
define sequential behavior.

In the current chapter, we streamline this concept by expressing protocols in
terms of an enhanced version Petri nets called multilabeled Petri nets1. The explicit
concurrency in Petri nets helps us to develop alternative compilers that respect the
available concurrency in a protocol.

Although we desire the protocol specification as an orchestration, we want a
protocol implementation as a choreography. Indeed, implementing the protocol
with a single central protocol component can easily introduce a performance bot-
tleneck. To prevent the bottleneck, we aim for distributed protocols, i.e., protocols
implemented as multiple parallel components.

It is the responsibility of the compiler of the coordination language to produce
efficient protocol implementations. Jongmans [Jon16] developed a compiler that
generates protocol implementations based on constraint automata [BSAR06]. A
constraint automaton is a pair (P,A) consisting of a set of variables P and a
state machine A, whose transition labels are pairs (N, g) consisting of a set of
variables N ⊆ P and a constraint g on their values. The elements P , N , and g are
respectively called interface, synchronization constraint, and data constraint.

Constraint automata model protocols in a simple and intuitive manner. How-
ever, being a state machine, a constraint automaton is inherently sequential. As we
desire distributed protocols, the constraint automaton representation of protocols
is not completely adequate. State-space explosions for constraint automata serve
as evidence for this mismatch. Alternative algorithms to compute the composite
constraint automaton have only partial success [JKA17, Fig. 17(a)].

In contrast to state machines, Petri nets [Rei13] are inherently parallel. More-
over, a state machine can be viewed as a Petri net for which every transition has

1The work in this chapter is based on [Dok19]

117

118

a single input place and a single output place. It seems natural to generalize
constraint automata by replacing the underlying state machine by a Petri net.

In the current chapter, we introduce multilabeled Petri nets as an inherently
parallel extension to constraint automata. After stating some basic results on
monoids and multisets (Section 6.1), we view a constraint automaton as a multil-
abeled Petri net (Section 6.2), which is an ordinary Petri net whose transitions are
labeled by multisets of actions. If multiple (not necessarily distinct) transitions in
a multilabeled Petri net fire in parallel, the composite transition is labeled by the
union of the labels of its constituent transitions.

We generalize constraint automaton composition to composition of multilabeled
Petri nets (Section 6.3). While the composition of arbitrary multilabeled Petri nets
seems hard to compute, we develop an efficient algorithm that composes square-free
nets. Intuitively, a multilabeled Petri net is squarefree iff any action occurs at most
once in every (parallel) execution step of the net.

The number of places in the composite Petri net grows linearly, which prevents
the state-space explosion. Therefore, multilabeled Petri nets are an adequate in-
termediate representation of protocols. Since a transition-space explosion is still
possible, multilabeled Petri nets are not a silver bullet.

Multilabeled Petri nets can contain silent transitions, which have no observable
behavior. Such silent transitions can be the result of hiding irrelevant actions.
In protocol implementations based on multilabeled Petri nets, silent transitions
do not perform any I/O-operation and delay the throughput of the protocol. We
define an abstraction operator for multilabeled nets (Section 6.4) that removes
silent transitions. We develop an algorithm that computes the abstraction of a
multilabeled net.

Finally, we summarize the results (Section 6.5) and point out future work.

Running example We illustrate the composition and abstraction of multil-
abeled Petri nets by an example on a mail server and a client.

Figure 6.1(a) shows the Petri net of a client that can compose, send, receive, and
delete messages. Composed messages are stored as concepts, and received messages
end up in the inbox. The client can concurrently send and receive messages, as is
the case for a large company with internal mail between different departments. We
want every message to be transferred to two recipients (e.g., adding a recipient in
CC). We represent this intend labeling the send transition with the expression a2,
which denotes a multiset that contains a twice.

Figure 6.1(b) shows the Petri net of a server that can transfer messages. A
fingerprint of each transferred message is logged. We assume that message trans-
feral is not buffered: a send message is immediately received. We represent this
by labeling the transfer transition with the expression ab that denotes the multiset
that contains a and b. Note that the order of a and b is irrelevant, as ab and ba
denote the same multiset.

Figure 6.1(c) shows the composition of the client and server, as defined by the
composition operator presented in the current chapter. Composition of multil-
abeled nets synchronize transitions that agree on shared actions. Observe that the
transfer transition must fire twice in order to agree on a with the send transition.
Consequently, the receive transition must fire twice in order to agree on b with the

119 CHAPTER 6. PROTOCOLS AS PETRI NETS

concepts

inbox

c

compose

a2

send

b

receive

d

delete

(a) Client

log

ab

transfer

(b) Server

concepts

inbox

log

c

a2b2t

2

2

d

(c) Composition

concepts

inbox

log

c

ds
2

d

(d) Abstraction

Figure 6.1: Multilabeled nets of a client (a) and a mail server (b). Their compo-
sition (c) synchronizes a single send transition with two transfer and two receive
transitions (t equals send | transfer2 | receive2). The abstraction (d) hides the a
and b actions and eliminates the resulting silent transition (s equals t; delete).

transfer2 transition. Hence, the send, transfer, and receive transitions synchronize
into a single parallel transition send | transfer2 | receive2, which we denote as t.
The actions c (compose) and d (delete) of the client are not shared with the server.
Therefore, the client-server composition allows the client to compose and delete a
message, without synchronizing with the mail server.

Figure 6.1(d) shows the abstraction of the composite system, where message
transferal (actions a and b) is hidden. After hiding a and b, transition t becomes
silent. We eliminate this silent transition by sequentially composing t with the (ob-
servable) delete transition. In other words, we replace transition t by the sequential
composition, s, of t followed by delete (i.e., s = t; delete). Note that s deletes only
one of the two messages that are sent. The remaining message can be deleted by
the usual delete transition.

Related work The literature offers a wide variety of composition operators on
Petri nets, which can be divided in two categories, namely topological and parallel
compositions.

By topological compositions, we mean those operators that ‘glue Petri nets
along their places and transitions’. For example, Mazurkiewicz [Maz95, Section 8]
defines a composition operator that glues transitions with the same name. Bernar-
dinello and De Cindio [BdC92, Part II] define a composition that glues Petri nets
on places and transitions. Kotov [Kot78] defines multiple composition operators,
including superposition, which glue two Petri nets along shared places and transi-
tions. Hierarchical composition [Feh91] is a topological composition that identifies
a complete Petri net with a single transition of another Petri net.

6.1. PRELIMINARIES 120

By parallel compositions, we mean those operators that ‘synchronize transitions
of the constituent Petri nets’. A single transition of one Petri net can synchronize
with multiple transitions of the other net. Hence, parallel composition can be seen
as duplication plus gluing, which distinguishes it from topological composition.

Parallel composition is called synchronous, if subsystems must ‘run at the same
speed’. That is, both Petri nets in a composition must simultaneously fire a tran-
sition. Examples of these operators are those that are defined as a product in a
category of Petri nets [vGV87, Win87, MM90, Gol88]. Such composition operators
are not always convenient for specification.

In asynchronous parallel composition, subsystems can run at different speeds.
That is, one Petri net can fire a transition, while the other net does nothing.
Examples of asynchronous compositions include the composition of Petri Boxes
[BDH92], Signal Transition Graphs [VW02], extended safe nets [Tau89, Chapter 4],
zero safe nets [BM97], and general Petri nets [Gol88].

The asynchronous composition operator defined by Anisimov, Golenkov, and
Kharitonov [AGK01] comes closest to our composition operator. Their parallel
composition α‖β of Petri nets is relative to some transition (multi)labelings α and
β of its operands. Unlike our composition operator, Anisimov et al. suppose a
CCS-like synchronization that synchronizes an action a with its conjugate a. As
such, their composition cannot be used as a formal semantics for Reo circuits.

Silent transitions in safe Petri nets can be removed in at least two different ways.
Vogler and Wollowski [VW02] use contraction, which deletes a silent transition and
merges all its input and output places. In general, contraction does not yield a safe
net.

Wimmel [Wim04] eliminates silent transitions from safe Petri nets in three steps:
First, he unfolds a safe Petri net into an occurrence net, whose graph structure is
acyclic. Next, he finds the process [Pra86] (i.e., the set of all accepted pomsets)
of the occurrence net, while ignoring all silent transitions. Finally, he constructs a
suitable finite quotient of the process. By construction, the resulting Petri net has
no silent transitions and is pomset-equivalent to the original net.

6.1 Preliminaries

6.1.1 Graded monoids

A monoid is a triple (M,+, 0), where + : M ×M → M is an associative binary
operation, with identity element 0. A submonoid of (M,+, 0) is a monoid of the
form (S,+, 0), where S ⊆ M is a subset of M that contains 0 ∈ S and is closed
under addition.

An element x in a monoid M is invertible iff there exists some y ∈ M , such
that x+ y = 0. An element x in a monoid M is irreducible iff x = a+ b implies
that a or b is invertible, for all a, b ∈M .

A monoid (M,+, 0) is graded if there exists a map g : M → N, such that, for
all x, y ∈M , we have g(x+ y) = g(x) + g(y) and if g(x) = 0 then x is invertible.

Lemma 6.1.1. Every element in a graded monoid is a sum of irreducibles.

Proof. Let x ∈ M be arbitrary. We show by induction on the grading g(x) ∈ N
that x is a sum of irreducibles.

121 CHAPTER 6. PROTOCOLS AS PETRI NETS

If g(x) = 0, then x is invertible. Hence, x+y = 0, for some y ∈M . If x = a+b,
for some a, b ∈M , then a+ (b+ y) = 0 and a is invertible. Thus, x is irreducibile.
In particular, x is a sum of irreducibles.

Suppose that every y ∈ M , with g(y) < g(x), is a sum of irreducibles. If
x is irreducible, then x is a sum of irreducibles. Suppose that x is reducible,
i.e., x = a + b, for some non-invertible a, b ∈ M . By definition of the grading,
g(a), g(b) > 0. Hence, g(a), g(b) < g(a)+g(b) = g(x). By the induction hypothesis,
a and b are sums of irreducibles, and so is x.

By induction, every element in a graded monoid is a sum of irreducibles.

A right-ideal of a monoid (M,+, 0) is a subset I ⊆ M , such that x ∈ I and
y ∈M implies x+y ∈ I, for all x, y ∈M . A right-ideal I of a monoid M is proper
iff 0 /∈ I. An element x ∈ I is right-irreducible (in I) iff x = a + b and a ∈ I
implies that b is invertible, for all a, b ∈M .

Lemma 6.1.2. Let I be a proper right ideal of a graded monoid M . Every element
in M is a (possibly empty) sum of right-irreducibles in I plus an element r ∈M \I.

Proof. Since the lemma holds trivially for right-irreducibles in I, let x ∈ M be
right-reducible. We show by induction on the grading g(x) ∈ N that x is a possibly
empty sum of right-irreducibles in I plus an element r ∈M \ I.

If g(x) = 0, then x is invertible. Since I is proper, we have x ∈ M \ I. Hence,
x is an empty sum of right-irreducibles plus r = x.

Suppose that every y, with g(y) < g(x), is a possibly empty sum of right-
irreducibles in I plus an element r ∈M \I. Since x is right-reducible, we find some
a ∈ I and some non-invertible b, such that x = a+ b. Non-invertibility of b implies
that g(b) > 0. Hence,

g(a) < g(a) + g(b) = g(a+ b) = g(x).

The induction hypothesis shows that a = (
∑n
i=1 ai) + r is a sum of n ≥ 0 right-

irreducibles a1, . . . , an in I plus an element r ∈M \ I. Since a ∈ I and r ∈M \ I,
we have n ≥ 1. Thus,

∑n
i=1 ai is an element of the right-ideal I. As I is proper,∑n

i=1 ai is non-invertible, and g(
∑n
i=1 ai) ≥ 1. This implies that

g(r + b) < g(
∑n
i=1 ai) + g(r + b) = g((

∑n
i=1 ai) + r + b) = g(x).

The induction hypothesis applied to r + b yields right-irreducibles b1, . . . , bm and
an element r′ ∈ M \ I, such that r + b = (

∑m
j=1 bj) + r′. Hence, x = a + b =

(
∑n
i=1 ai) + r + b = (

∑n
i=1 ai) + (

∑m
j=1 bj) + r′, which proves the lemma.

6.1.2 Multisets

A multiset over a set X is an unordered collection of elements with duplicates,
which is formally represented as a map m : X → N that counts the number of
occurrences of each x ∈ X in the multiset. The set of all multisets over X is
denoted as NX . The cardinality |m| of a multiset m is defined as the cardinality
of the set {(x, k) | x ∈ X, 0 ≤ k < m(x)}. A multiset m is non-empty iff
0 < |m|, and finite iff |m| < ℵ0, where ℵ0 is the first infinite cardinal number. The
empty multiset is denoted as ∅. The set of all finite multisets over X is denoted as

6.2. MULTILABELED PETRI NETS 122

N(X) = {m : X → N | |m| < ℵ0}. The free commutative monoid is the triple
(N(X),∪, ∅).

For k ∈ N, and multisets m,m′ ∈ NX , the union m∪m′, intersection m∩m′,
difference m \m′, and multiplication km are defined, for x ∈ X, as

(m ∪m′)(x) = m(x) +m′(x),

(m ∩m′)(x) = min(m(x),m′(x)),

(m \m′)(x) = m(x) .−m′(x)

(k ·m)(x) = k ·m(x),

where .− is monus, defined as a .− b = max(a − b, 0), for all a, b ∈ N. The subset
relation of multisets is defined as m ⊆ m′ iff m(x) ≤ m′(x), for all x ∈ X.

Multisets m0,m1,m2 ∈ NX satisfy the following identities:

m0 \ (m1 ∪m2) = (m0 \m1) \m2

m0 ∪ (m1 \m0) = m1 ∪ (m0 \m1)

(m0 ∪m1) \m2 = (m0 \m2) ∪ (m1 \ (m2 \m0))

Restriction m|Y of a multiset m on X to a subset Y ⊆ X is defined, for all
y ∈ Y , as m|Y (y) = m(y).

It is convenient to represent a finite multiset over a set X as (an equivalence
class of) a finite sequence of elements from X. Let X∗ be the free monoid on X
that consists of all finite words of elements from X (including the empty word ε).
A word w ∈ X∗ induces a multiset w : X → N, by defining, for all x ∈ X,

ε(x) = 0, wx(x) = w(x) + 1, wy(x) = w(x), for y 6= x.

Note that different words might define the same multiset. For example, xy and yx
both denote the multiset wherein both x and y occur once.

6.2 Multilabeled Petri nets

Multilabeled Petri nets are Petri nets whose transitions are labeled with a multiset
of actions.

Definition 6.2.1. A multilabeled (Petri) net is a tuple (A,P, T, µ0) with

1. A a set of actions,

2. P a set of places,

3. T ⊆ NP × NA × NP a set of transitions, and

4. µ0 : P → N an initial marking.

Inspired by Goltz [Gol88], the notation in Definition 6.2.1 slightly differs from
the usual notation of Petri nets. The advantage of this presentation is that tran-
sitions (including its set of input and output places) can be studied in isolation,
which allows for parallel and sequential composition of transitions.

123 CHAPTER 6. PROTOCOLS AS PETRI NETS

For a transition t = (P, α,Q) ∈ T , we write •t = P for the multiset of input
places of t, we write t• = Q for the multiset of output places of t, and we write
`(t) = α for the multiset of labels of t.

For the development of the composition operator for multilabeled nets in Sec-
tion 6.3, we use the standard concurrent semantics of Petri nets, which allows
multiple transitions to fire in parallel.

Definition 6.2.2. A multitransition of a multilabeled net (A,P, T, µ0) is a finite
multiset θ : T → N of transitions. N(T) denotes the set of all multitransitions.

A multitransition θ ∈ N(T) of a multilabeled net N = (A,P, T, µ0) defines a
(concrete) transition τ(θ) = (•θ, `(θ), θ•) in NP × NA × NP , wherein

•θ =
⋃
t∈T θ(t) · •t

θ• =
⋃
t∈T θ(t) · t•

`(θ) =
⋃
t∈T θ(t) · `(t)

A multitransition θ of a N is enabled at a marking µ ∈ NP iff •θ ⊆ µ. A marking
µ′ ∈ NP is obtained from a marking µ ∈ NP via a multitransition θ (denoted
µ [θ〉 µ′) iff θ is enabled at µ, and µ′ = (µ \ •θ) ∪ θ•.
Definition 6.2.3. The concurrent semantics of a multilabeled net (A,P, T, µ0)
is a pointed, directed, labeled graph (V,E, µ0), consisting of

1. vertices V = {µ : P → N}, and

2. labeled edges E = {(µ, `(θ), µ′) ∈ V × NA × V | µ [θ〉 µ′, |θ| > 0}.
Note that the empty multitransition θ = ∅ does not constitute a valid step in

the semantics, as ∅ allows for internal divergent behavior (by always firing ∅).
For the development of the abstraction operator in Section 6.4, we rely on the

interleaving semantics of nets:

Definition 6.2.4. The interleaving semantics of a multilabeled net (A,P, T, µ0)
is a pointed, directed, labeled graph (V,E, µ0), consisting of

1. vertices V = {µ : P → N}, and

2. labeled edges E = {(µ, `(t), µ′) ∈ V × NA × V | µ [t〉 µ′}.
The only difference between the concurrent semantics and interleaving seman-

tics of multilabeled nets is the cardinality of the multitransitions.
We introduce some terminology for a multilabeled net N = (A,P, T, µ0). N is

called finite iff A, P , and T are all finite. For k ≥ 1, N is called k-bounded iff
every reachable marking µ satisfies µ(p) ≤ k, for all p ∈ P . N is called safe iff N
is 1-bounded.

A marking µ′ ∈ NP is reachable from a marking µ ∈ NP via a sequence of
transitions t1 · · · tn ∈ T ∗, with n ≥ 0, (denoted µ [t1 · · · tn〉 µ′) iff there exists
markings µ1, . . . , µn−1 ∈ NP , such that µ [t1〉µ1 · · ·µn−1 [tn〉µ′. A firing sequence
of N is a sequence of transitions t1 · · · tn ∈ T ∗, with n ≥ 0 and µ0 [t1 · · · tn〉 µ′, for
some marking µ′. A marking µ is called reachable iff µ is reachable from the
initial marking µ0.

6.2. MULTILABELED PETRI NETS 124

ab

(a) sync(a, b)

a

b

(b) fifo1(a, b)

a1am+1 · · · am+n

amam+1 · · · am+n

...

(c) nodem,n(a1, . . . , am+n)

ab〈db = f(da)〉

(d) transformerf (a, b)

Figure 6.2: Multilabeled nets for Reo primitives. The action 〈db = f(da)〉 in the
transformer is the encoding of a data constraint.

A transition t is dead in N iff t does not occur on any firing sequence. A
transition t is potentially fireable in N iff t is not dead in N . For k ≥ 1, a
transition t ∈ T in a multilabeled net N is k-live iff •t(p) ≤ k, for all p ∈ P . Every
potentially fireable transition in a k-bounded net is k-live.

6.2.1 Constraint automata

As stated earlier, multilabeled nets generalize constraint automata [BSAR06] (with-
out data constraints). If data constraints are ignored, the interpretation of con-
straint automata as multilabeled nets is rather straightforward. Figure 6.2 shows
the multilabeled nets for some frequently used Reo primitives.

The sync(a, b) protocol in Figure 6.2(a) accepts a datum at input a and immedi-
ately offers it at output b. Since the sync(a, b) protocol is stateless, its multilabeled
net does not contain a place. The fifo1(a, b) protocol in Figure 6.2(b) accepts a
datum at input a and stores it. In the next step, it offers the stored datum at
output b. The nodem,n(a, . . . , am+n) protocol in Figure 6.2(c) accepts a datum
at any input ai, with 1 ≤ i ≤ m, and immediately offers a copy of it at every
output aj , with m < j ≤ m + n. The place in the nodem,n(a, . . . , am+n) protocol
does not serve as memory, but encodes the conflict between the transitions. The
transformerf (a, b) protocol accepts a datum da from its input a, and simultaneously
offers the datum f(da) at its output b. The transformation of datum da into db is
modeled by the data constraint db = f(da).

In general, constraint automata can have non-trivial data constraints, as is
the case for transformerf (a, b). It is certainly possible to extend the definition of
multilabeled nets (Definition 6.2.1) to include data constraints as well. However,
such extension would not add any expressiveness to multilabeled nets, because
data constraints can be encoded as fresh actions. For example, the data constraint
db = f(da) can be encoded as a fresh action 〈db = f(da)〉, which we call a data-
constraint action. Freshness ensures that data-constraint actions are not used for
synchronization (as is defined in Section 6.3). After composition, data-constraint
actions can be decoded back into data constraints. If multiple data-constraint
actions end up in the same transition label, their decoded data constraints are
combined via conjunction. Figure 6.2(d) shows the multilabeled net for the trans-
former channel.

The above trick to encode data constraints as actions can be similarly applied
to other semantic models [JA12].

The multilabeled nets that come from constraint automata are square-free:

125 CHAPTER 6. PROTOCOLS AS PETRI NETS

Definition 6.2.5. A multitransition θ in a multilabeled net N is square-free
iff `(θ)(a) ≤ 1, for all a ∈ A(N). A multilabeled net N is square-free iff every
potentially-fireable multitransition θ in N is square-free.

It is easy to verify that all multilabeled nets in Figure 6.2 are square-free: every
transition is square-free and every multitransition θ of size |θ| > 1 is dead.

The main reason for considering square-free nets is that their composition can
be easily computed.

6.3 Composition

For this section, fix two multilabeled nets Ni = (Ai, Pi, Ti, µ0i), for i ∈ {0, 1},
which are interpreted according to the concurrent semantics in Definition 6.2.3.

We define the composition N0×N1 of N0 and N1 that synchronizes N0 and N1

on shared actions A0 ∩A1. We follow a standard approach to define the (parallel)
composition of multilabeled nets. First, we generate all combinations of transitions
in N0 and N1 that can fire in parallel. Next, we restrict to synchronizing combina-
tions that ‘agree on shared actions’. Finally, we restrict to a subset of combinations
that generate all synchronizing combinations.

Recall that the disjoint union X + Y of two sets X and Y is defined as (X ×
{0}) ∪ (Y × {1}).

Definition 6.3.1. A global transition is a finite multiset η : T0 + T1 → N.

A global transition η ∈ N(T0+T1) has, for i ∈ {0, 1}, a local component
η|i ∈ N(Ti) defined as η|i(t) = η(t, i), for all t ∈ Ti.

The set N(T0+T1) of all global transitions, endowed with the union ∪ of multiset
and the empty multiset ∅, constitutes a monoid. Moreover, multiset cardinality,
|·|, defines a grading on N(T0+T1). In particular, any submonoid of N(T0+T1) is a
graded monoid.

We now formalize the notion of agreement on shared actions:

Definition 6.3.2. A global transition η ∈ N(T0+T1) is S-compatible, S ⊆ A0∩A1,
iff `(η|0)(a) = `(η|1)(a), for all a ∈ S. The set of S-compatible global transitions is
denoted as C(S) ⊆ N(T0+T1). We call η compatible, if η is A0 ∩A1-compatible.

Intuitively, the local components η|0 and η|1 of an S-compatible multitransition
η ∈ N(T0+T1) agree only on the shared actions in S, while they may disagree on
shared actions a ∈ (A0 ∩A1) \ S outside of S.

A compatible global transition η ∈ C(A0 ∩ A1) defines a (concrete) transition
λ(η) = (•η, `(η), η•) ∈ NP0+P1 × NA0∪A1 × NP0+P1 , with

•η(p, i) = •(η|i)(p)
η•(p, i) = (η|i)•(p)
`(η)(a) = `(η|i)(a) if a ∈ Ai

for all (t, i) ∈ T0 + T1 and a ∈ A0 ∪ A1. Note that `(η)(a) is well-defined, since
`(η|0)(a) = `(η|1)(a), for a ∈ A0 ∩A1.

6.3. COMPOSITION 126

The empty global transition ∅ is trivially S-compatible, for all S ⊆ A0 ∩ A1.
Furthermore, the union α ∪ β of two compatible global transitions is again S-
compatible, for all S ⊆ A0∩A1. Hence, the set of S-compatibles C(S) is a (graded)
submonoid of the graded monoid N(T0+T1). Lemma 6.1.1 shows that every com-
patible global transition can be decomposed into irreducibles.

Any reducible S-compatible global transition η = α ∪ β, for some global tran-
sitions α and β, is redundant, as λ(η) can be simulated by firing λ(α) and λ(β) in
parallel. Hence, we consider the set C0(S) ⊆ C(S) of all irreducible S-compatible
global transitions.

The image of C0(A0∩A1) under the map λ : C(A0∩A1)→ NP0+P1×NA0∪A1×
NP0+P1 defines the set of transitions of the composition:

Definition 6.3.3. The composition N0×N1 of the multilabeled nets N0 and N1

is a multilabeled net with actions A0∪A1, places P0+P1, transitions λ(C0(A0∩A1)),
and initial marking µ0 defined as µ0(p, i) = µ0i(p), for all (p, i) ∈ P0 + P1.

It is laborious but straightforward to verify that the composition of multilabeled
Petri nets is associative. The composition is commutative only up to renaming of
places, due to the index from the disjoint union. The composition is idempotent
only up to semantic equivalence, as is duplicates the places.

Example 6.3.1. Consider the mail example in Figure 6.1, and suppose that the
set of actions of the client equals {a, b, c, d} and the set of actions of the server
equals {a, b}. According to Definition 6.3.3, the transitions in the composition
of the nets in Figures 6.1(a) and 6.1(b) consist of irreducible compatible global
transitions. The compose transition in Figure 6.1(a) and the (implicit) empty
multitransition ∅ in Figure 6.1(b) trivially agree on shared actions. Therefore,
(compose | ∅) is a compatible transition. Being of length 1, the compose transition
is necessarily irreducible, which implies that the compose transition is a transition
of the composition in Figure 6.1(c).

Similarly, the global transition η, with components η|0 = send | receive2 and
η|1 = transfer2, is also a compatible transition. Indeed, the label of η|0 and η|1
both equal a2b2. Clearly, η is irreducible, which shows that λ(η) is a transition of
the composition in Figure 6.1(c). ♦

6.3.1 Composition algorithm

Definition 6.3.3 only defines the transitions of the composition: it does not suggest
a procedure on how these transitions can be found. It seems difficult to compute
the composition of arbitrary multilabeled nets. Since the current work is motivated
by constraint automata, we develop an algorithm that computes the composition
of square-free multilabeled nets (Definition 6.2.5).

Lemma 6.3.1 shows that square-freeness must be checked only for atomic nets.

Lemma 6.3.1. If N0 and N1 are square-free, then so is N0 ×N1.

Proof. If a global transition η ∈ N(T0+T1) is potentially fireable, then so are its
local components η|0 and η|1. For i ∈ {0, 1}, square-freeness of Ni implies that
`(η|i)(a) ≤ 1 and a ∈ Ai. By construction, `(η)(a) ≤ 1, for all a ∈ A0 ∪A1. Hence,
N0 ×N1 is square-free.

127 CHAPTER 6. PROTOCOLS AS PETRI NETS

By Definition 6.3.3, the composition N0 × N1 can contain dead transitions.
Since these dead transitions do not contribute to the behavior of the multilabeled
net, it is no problem if our composition algorithm does not generate them. As the
composition, N0 ×N1, is square-free, we consider only square-free transitions:

Definition 6.3.4. A global transition η : T0 + T1 → N is square-free if λ(η)
is square-free. For S ⊆ A0 ∩ A1, we denote the set of all square-free, irreducible
S-compatible global transitions as C0(S) ⊆ C0(S).

We compute the composition of square-free nets N0 and N1 by recursion on
the number of shared actions. This procedure is conveniently expressed with the
following terminology:

Definition 6.3.5. The difference da(η) of a global transition η ∈ N(T0+T1) at a
shared action a ∈ A0 ∩A1 is defined as the integer

da(η) = `(η|0)(a)− `(η|1)(a).

The set of all square-free, irreducible, S-compatible global transitions with differ-

ence d ∈ Z is denoted as Cd0 (S).

It is straightforward to verify that da(α ∪ β) = da(α) + da(β), for global tran-
sitions α, β ∈ N(T0+T1).

Since every global transition is ∅-composite, C(∅) = N(T0+T1) and C0(∅) =
T0 + T1, where each (t, i) ∈ T0 + T1 is viewed as a singleton multiset on T0 + T1.

Lemma 6.3.2 expresses square-free, irreducible S-compatibles in terms of square-
free, irreducible S′-compatibles, with S′ ⊆ S.

Lemma 6.3.2. If S ⊆ A0 ∩A1, and a ∈ (A0 ∩A1) \ S then

C0(S ∪ {a}) ⊆ C0
0 (S) ∪ {α−1 ∪ α1 | αd ∈ Cd0 (S)} ⊆ C(S ∪ {a}).

Proof. For the first inclusion, let η ∈ C0(S ∪ {a}). Since every S ∪ {a}-compatible
is also S-compatible, we have that η ∈ C(S). As C(S) is a graded monoid,
Lemma 6.1.1 shows that, for some n ≥ 1 and β1, . . . , βn ∈ C0(S), we have

η = β1 ∪ · · · ∪ βn

Since η is square-free, we have,for every 1 ≤ k ≤ n, that

`(βk)(a) ≤∑n
i=1 `(βi)(a) = `(

⋃n
i=1 βi)(a) = `(η)(a) ≤ 1,

which shows that every βi, 1 ≤ i ≤ n, is square-free. In particular, the difference
of βi at a satisfies da(βi) ∈ {−1, 0, 1}. We distinguish two cases:

Case 1: Suppose that da(β1) = 0. Then, β1 and β2 ∪ . . . ∪ βn are both S-

compatible. Irreducibility of η shows that n = 1. Hence, η = β1 ∈ C0
0 (S).

Case 2: Suppose that da(β1) = ±1. Since η is S-compatible, we have that∑n
i=1 da(βi) = da(

⋃n
i=1 βi) = da(η) = 0

Since da(βi) ∈ {−1, 0, 1}, for 1 ≤ i ≤ n, we find some 1 < k ≤ n, such that
da(βk) = −da(β1) = ∓1. Without loss of generality, we assume that k = 2. From

6.3. COMPOSITION 128

Algorithm 1: Distribution

Input : Two finite, square-free multilabeled nets N0 and N1.
Output: C0(A0 ∩A1) ⊆ C ⊆ C(A0 ∩A1).

1 C ← T0 + T1 ⊆ N(T0+T1);
2 foreach a ∈ A0 ∩A1 do
3 foreach d ∈ {−1, 0, 1} do
4 Cd ← {η ∈ C | da(η) = d};
5 C ← C0 ∪ {α ∪ β | (α, β) ∈ C−1 × C1, α ∪ β square-free};

da(β1∪β2) = da(β1) +da(β2) = 0, it follows that β1∪β2 and β3∪ . . .∪βn are both
S-compatible. Irreducibility of η and non-emptyness of βi, for 1 ≤ i ≤ n, shows

that n = 2, which implies that η = β1 ∪ β2, with βi ∈ C±2i∓3
0 (S), for i ∈ {1, 2}. In

both cases, η ∈ C0
0 (S) ∪ {α−1 ∪ α1 | αd ∈ Cd0 (S)}.

For the second inclusion, let η ∈ C0
0 (S) ∪ {α−1 ∪ α1 | αd ∈ Cd0 (S)}. Suppose

that η ∈ C0
0 (S). By construction, da(η) = 0, which shows that η ∈ C(S ∪ {a}).

Every decomposition of η in C(S ∪ {a}) is also a decomposition in C(S). Hence,
irreducibility of η in C(S) implies that η ∈ C0(S ∪ {a}).

Suppose η ∈ {α−1 ∪ α1 | αd ∈ Cd0 (S)}. Then, we have da(η) = da(α−1 ∪ α1) =
da(α−1) + da(α1) = −1 + 1 = 0. Hence, η ∈ C(S ∪ {a}).

Algorithm 1 computes a set C ⊆ C(A0∩A1) of compatible global transitions of
two square-free multilabeled nets N0 and N1, including all square-free, irreducible
global transitions (i.e., C ⊇ C0(A0 ∩ A1)). We conjecture that Algorithm 1 ac-
tually generates C = C0(A0 ∩ A1), which means that Algorithm 1 produces only
irreducible global transitions.

For clarity, we present distribution (Algorithm 1) in its simplest form. Distribu-
tion can be optimized by using an appropriate data structure for set C for efficient
constructions of the subsets Cd = {η ∈ C | da(η) = d}, for d ∈ {−1, 0, 1}.

Theorem 6.3.3. Distribution (Algorithm 1) is totally correct.

Proof. By Lemma 6.3.2, after S ⊆ A0 ∩A1 iterations, set C consists of all square-
free, irreducible S-compatibles. Finiteness of N0 and N1 ensures that A0 ∩ A1 is
finite, which implies termination.

Example 6.3.2 (Alternator). Consider the alternatorn protocol, n ≥ 2, defined as
the following composition of node, sync, syncdrain, and fifo1 components:

alternatorn =
∏n
i=1

(
node1,3(ai; a

1
i , a

2
i , a

3
i)× node2,1(b1i , b

2
i ; bi)× sync(a2

i , b
1
i)
)

×∏n−1
i=1

(
syncdrain(a3

i , a
1
i+1)× fifo1(bi+1, b

2
i)
)
,

where the multilabeled net for syncdrain and sync are identical. For those familiar
with the syntax of Reo, alternator5 has the following diagram:

129 CHAPTER 6. PROTOCOLS AS PETRI NETS

e1

f1

e2

f2

e3

f3

e4

f4

a1 · · · a5b1 t1

b

t2

∅ t3 ∅t4 ∅
t5

(a) Composition

e1

f1

e2

f2

e3

f3

e4

f4

a1 · · · a5b1 s1

b1

s2 b1 s3

b1
s4

b1

s5

(b) Abstraction

Figure 6.3: Composition and abstraction of the alternator5 protocol.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

� � � �
Using Algorithm 1 and Theorem 6.3.3, we can compute the multilabeled net of
alternator5. The composition is shown in Figure 6.3(a). For readability, we do not
draw the places induced by the node components. Their contents remains the same
throughout the execution of the alternator5. We also hide all internal actions by
removing from the transition labels all actions other than b1 and a1, . . . , a5. We
formalize this procedure in Definition 6.4.1.

The multilabeled net in Figure 6.3(a) can be used for the implementation of
the alternator5 protocol. In a naive implementation, a place is implemented as
a variable, and a transtion is implemented as a thread. Each thread reads and
writes to these variables according to the flow relation, and performs I/O-operations
according to the transition label. In particular, transitions with an empty label do
not perform any I/O-operation. Of course, care must be taken for variables that
are shared amongst different threads. ♦

The number of places in a composition N0 ×N1 is the sum of the places in N0

and N1, which shows that the composition operator in Definition 6.3.3 does not
suffer from state-space explosions. The total number of transitions in a composition
N0×N1 equals the number of irreducible compatible subsets of N0 and N1, which
can potentially grow large. The following result shows that, for ‘nice compositions’,
the number of transitions in the composition does not blow up.

Corollary. The composition N0 × N1 has at most |T0| + |T1| transitions, if for
every a ∈ A0 ∩A1 there exists an i ∈ {0, 1} with |{t ∈ Ti | `(t)(a) > 0}| ≤ 1.

6.3. COMPOSITION 130

a

b

c

d

Figure 6.4: Synchronous regions lose concurrency.

Proof. The condition ensures that, in Algorithm 1, |C−1| = 1 or |C1| = 1. Hence,
the size of C does not increase, which shows that the upper bound holds.

Example 6.3.3. As shown in [JKA17, Fig. 17(a)], the constraint automaton
representation of the alternatorn protocol does not scale well in n ≥ 1. However,
for multilabeled Petri nets the situation is completely different. Applying Line 5
to the compositions in alternatorn in Example 6.3.2, it can be shown that, for every
n ≥ 1, the number of transitions of the alternatorn is equal to n. As such, the
multilabeled net representation of the alternatorn protocol does not suffer from a
state-space or a transition-space explosion. ♦

6.3.2 Discussion on concurrency in Reo

Despite the wealth of available semantics for Reo connectors [JA12], most of them
focus only on synchronization, but ignore the concurrent behavior of a Reo connec-
tor. Since these semantics form the basis of the Reo compilers, these deficiencies in
the semantics of Reo leads to problems in the implementation of the Reo language.

For example, Jongmans uses constraint automata (CA) for his compiler for Reo
protocols. Since CA are sequential machines, and a sequential implementation of
Reo connector is not utilizing all available resources, Jongmans first decomposes
the Reo protocol in synchronous regions and runs those regions in parallel with
minimal synchronization overhead. In other words, Jongmans partially compen-
sates for the loss of concurrency in CA by considering a decomposition of the CA
and synchronizing these components at run time.

Unfortunately, the synchronous regions decomposition does not recover all avail-
able concurrency that was present in the original Reo protocol, as demonstrated
by the following example:

Example 6.3.4. Consider the connector in Figure 6.4. It is a single synchronous
region and it compiled into a single threaded program that executes the constraint
automaton in Figure 6.5. The transitions ac and bd are independent and can fire
concurrently in the original Reo connector. However, the sequential implementa-
tion as a CA loses this independence. ♦

In contrast with the CA semantics, our multilabeled Petri net semantics models
both the concurrent and synchronous behavior of a Reo connector. It is captures
all available concurrency event within a single synchronous region:

Example 6.3.5. Figure 6.4 shows the multilabeled Petri net for the synchronous
regions from Example 6.3.4. The places ensure that no two adjacent transitions

131 CHAPTER 6. PROTOCOLS AS PETRI NETS

{a, c}, da = dc

{a, d}, da = dd{b, c}, db = dc

{b, d}, db = dd

{a, b, c, d}, da = dc ∧ db = dd {a, b, c, d}, da = dd ∧ db = dc

Figure 6.5: Constraint automaton of Figure 6.4

{a, c}

{a, d}

{b, d}

{b, c}

Figure 6.6: Multilabeled Petri net of Figure 6.4

can fire simultaneously. Hence, the {a, c} and {b, d} can fire at the same time. The
same applies to the {a, d} and {b, c} transitions. ♦

6.4 Abstraction

The definition of multilabeled Petri nets allows for silent transitions, i.e., transitions
t with an empty label `(t) = ∅. Such silent transitions can be introduced by hiding
internal actions:

Definition 6.4.1 (Hiding). Hiding an action a ∈ A in a multilabeled net N yields
the net ∃aN = (B,P, {(•t, `(t)|B , t•) | t ∈ T}, µ), where B = A \ {a} and `(t)|B is
the restriction of `(t) to B.

The hiding operator ∃a simply drops all occurrences of a from the label of every
transition in the given Petri net.

As indicated in Example 6.3.2, the naive implementation of a silent transition
is a thread that does not perform any I/O-operations. As a result, these silent
transitions can delay the throughput of the protocol.

In this section, we aim to improve the generated code by transforming a fixed
multilabeled net N = (A,P, T, µ0) into an equivalent net ∂N without any silent
transitions. To define the abstraction operator ∂, we follow the same strategy
as for composition of multilabeled nets. First, we consider all possible sequential
compositions of transitions. Next, we restrict to sequences of transitions with
observable behavior. Finally, we restrict to sequences of transitions that generate
all observable traces.

6.4. ABSTRACTION 132

6.4.1 Sequential compositions

Consider the set T ∗ of all firing sequences ofN , i.e., all finite sequences of transitions
of N . Following Mazurkiewicz [Maz95], strictly different firing sequences can be
considered identical up to permutation of independent transitions.

Definition 6.4.2. The dependency relation D ⊆ T × T is defined as

(s, t) ∈ D ⇔ s• ∩ •t 6= ∅ or t• ∩ •s 6= ∅ or `(s) 6= ∅ 6= `(t)

Intuitively, transitions s and t are dependent iff one transition takes the output
of the other as input, or if both transitions are observable. Note that conflicting
transitions are not necessarily dependent.

The dependency relation D induces a trace equivalence ≡ ⊆ T ∗ defined as
the smallest congruence on T ∗, such that st ≡ ts, for all (s, t) /∈ D. An equivalence
class [x] = {y ∈ T ∗ | y ≡ x} of a firing sequence x is called a trace.

The trace monoid T ∗/≡ is the set {[x] | x ∈ T ∗} of all traces, endowed with
composition, defined, for all x, y ∈ T ∗, as [x][y] = [xy]. Since ≡ is a congruence,
composition of traces is well-defined.

Observable behavior of traces is a map o : T ∗/≡ → (NA \ {∅})∗ defined, for
all x ∈ T ∗, as

o([ε]) = ε, o([xt]) =

{
o([x])`(t) if `(t) 6= ∅
o([x]) otherwise

Since observable transitions do not commute (Definition 6.4.2), o is well-defined.
Next, we define map σ : T ∗/≡ → NP × NA × NP that maps every trace w to

a concrete transition σ(w) ∈ NP × NA × NP . The definition of this map relies on
sequential composition of transitions:

Definition 6.4.3. The sequential composition s; t of transitions s, t in a mul-
tilabeled net N is defined as (•(s; t), `(s; t), (s; t)•), where

•(s; t) = •s ∪ (•t \ s•), (s; t)• = t• ∪ (s• \ •t), `(s; t) = o([st])

For a sequential composition s; t, transition t can use the tokens produced by s.
Hence, t consumes only the tokens from the multiset difference •t \ s•. Therefore,
the sequential composition s; t consumes only the tokens in the multiset union
•s ∪ (•t \ s•).

Example 6.4.1. Figure 6.7(b) shows some sequential compositions of transitions
s and t in Figure 6.7(a). Intuitively, the sequential composition s; t performs t after
s. The token generated in place q by s is immediately consumed by t. Therefore,
s; t does not have q as input place or output place.

Note, however, that t; s has q both as input place and output place, because
the token produced at place q by s comes too late. ♦

Sequential composition of traces is a map σ : T ∗/≡ → NP × NA × NP
defined, for all traces w ∈ T ∗/≡ and transitions t ∈ T , as

σ([ε]) = (∅, ∅, ∅), σ(wt) = σ(w); t. (6.1)

133 CHAPTER 6. PROTOCOLS AS PETRI NETS

p q r

α
s

β

t

(a) Two dependent transitions

p q r

αβ

s; t

β

t

βα

t; s

(b) Sequential composition

Figure 6.7: Sequential composition of transitions with multilabels α and β.

Lemmas 6.4.1 and 6.4.2 show that σ is a well-defined homomorphism, that is, σ(u)
does not depend on the representative of u ∈ T ∗/≡, and σ(uv) = σ(u);σ(v), for
all traces u, v ∈ T ∗/≡.

Lemma 6.4.1. If (s, t) /∈ D, then s; t = t; s.

Proof. If (s, t) /∈ D, then s• ∩ •t = t• ∩ •s = ∅ and either `(s) 6= ∅ or `(t) 6= ∅.
The latter condition implies that `(s; t) = o([st]) = o([ts]) = `(t; s). The former
condition implies that •t \ s• = •t and •s \ t• = •s, which implies

•(s; t) = •s ∪ (•t \ s•) = (•s \ t•) ∪ •t = •(t; s)

Similarly, it follows that (s; t)• = (t; s)•, which proves s; t = t; s.

By construction, sequential composition of traces σ parses each trace as a left-
associative composition. Thus, for traces u and v in T ∗/≡, σ(uv) and σ(u);σ(v)
could evaluate to different transitions. Lemma 6.4.2 shows that these expressions
are equal, and that sequential composition of traces is a homomorphism.

Lemma 6.4.2. Sequential composition of transitions is associative.

Proof. The identities in Section 6.1 show, for all transitions r, s, t ∈ T , that

•(r; (s; t)) = •r ∪ (•(s; t) \ r•)
= •r ∪ ((•s ∪ (•t \ s•)) \ r•)

= •r ∪ (•s \ r•) ∪ ((•t \ s•) \ (r• \ •s)))

= •(r; s) ∪ (•t \ (s• ∪ (r• \ •s)))

= •(r; s) ∪ (•t \ (r; s)•)

= •((r; s); t)

Similarly (r; (s; t))• = ((r; s); t)•. Since concatenation is associative,

`(x; (y; z)) = o(x)o(y)o(z) = `((x; y); z),

which shows that x; (y; z) and (x; y); z.

Sequential composition of traces induces observational equivalence ≈ ⊆
T ∗/≡ defined as v ≈ w iff σ(v) = σ(w). Since sequential composition of traces is a
homomorphism, observable equivalence ≈ is a congruence.

6.4. ABSTRACTION 134

6.4.2 Elimination of silent traces

Consider the setO = {w ∈ T ∗/≡ | o(w) 6= ε} of observable traces, which constitutes
a proper right-ideal in the trace monoid T ∗/≡. Lemma 6.1.2 shows that every
observable trace w, with o(w) 6= ε, can be decomposed as a sequence of right-
irreducibles in O followed by a silent trace v, with o(v) = ε.

Every trace w whose observable behavior o(w) has length greater than one
admits a decomposition uv, with o(u) 6= ε and v 6≡ ε. Hence, the observable
behavior o(w) of a right-irreducible trace w ∈ O must have length one.

Nevertheless, the length |w| of the trace w can be arbitrarily large. To shrink
the set of traces that generate all observable behavior, we consider two additional
conditions.

Definition 6.4.4. A trace w is acyclic iff |w| = minw′≈w |w′|.
Every contiguous subtrace of an acyclic trace is acyclic.

Lemma 6.4.3. If uvw is acyclic, then v is acyclic.

Proof. If v is not acyclic, then there exists a trace v′ ≈ v, such that |v′| < |v|. Then,
|uv′w| < |uvw|, and σ(uv′w) = σ(u);σ(v′);σ(w) = σ(u);σ(v);σ(w) = σ(uvw).
Hence, uv′w ≈ uvw, and uvw is not acyclic.

Definition 6.4.5. A trace w is k-live iff σ(w′) is k-live, for every suffix w′ of w.

Every contiguous subtrace of a k-live trace is k-live.

Lemma 6.4.4. If uvw is k-live, then v is k-live.

Proof. If v is not k-live, then v can be decomposed as v = v0v1, such that σ(v1)
is not k-live. Then, uvw can be decomposed as (uv0)(v1w). From •σ(v1w) =
•(σ(v1);σ(w)) = •σ(v1) ∪ (•σ(w) \ σ(v1)•) ⊇ •σ(v1), it follows that σ(v1w) is also
not k-live, and that uvw is not k-live.

The results in Lemmas 6.1.2, 6.4.3 and 6.4.4 show that the trace w = [t1 . . . tn]
of every firing sequence t1 . . . tn, n ≥ 1, can be generated from right-irreducible,
acyclic, k-live traces modulo observational equivalence ≈. To see this, note that
w comes from a firing sequence, which means that w is k-live by construction.
Now, select some acyclic w′ ≈ w (i.e., w′ is of minimal length). Lemma 6.1.2
applied for the right-ideal O = {u ∈ T ∗/≡ | o(u) 6= ε} yields a decomposition
w′ = a1 . . . anb, where a1, . . . , an are right-irreducible in O, and o(b) = ε is silent.
Since w is acylcic and k-live, Lemmas 6.4.3 and 6.4.4 show that the traces a1, . . . , an
are right-irreducible, acyclic, and k-live.

Definition 6.4.6. The abstraction ∂N of the multilabeled net N is defined as
(A,P, {σ(w) | w right-irreducible, acyclic, and k-live}, µ).

Example 6.4.2. Consider the composite net N in Figure 6.1(c). Hiding actions
a and b results in a net N ′ = ∃a∃bN , where send | transfer2 | receive2 is a silent
transition. From the current marking, the netN ′ can eventually produce observable
behavior. However, to do so, N ′ must first firing a silent transition.

Application of the abstraction operator yields the ∂N ′, as shown in Figure 6.1(d).
In contrast with N ′, the abstraction ∂N ′ can directly fire an observable transition

135 CHAPTER 6. PROTOCOLS AS PETRI NETS

Algorithm 2: Abstraction

Input : A finite, k-bounded multilabeled net N = (A,P, T, µ0).
Output: H = {x ∈ T ∗ | [x] right-irreducible, acyclic, and k-live}.

1 H ← {t | t ∈ T, `(t) 6= ∅};
2 repeat
3 h← |H|;
4 H ← H ∪ {sx | x ∈ H, s ∈ T, `(s) = ∅, sx 6≡ xs, σ([sx]) /∈

σ(H), [sx] k-live};
5 until h = |H|;

in the current marking. As a result, the abstraction ∂N ′ produces observable be-
havior faster than N ′, and the executable code generated from ∂N ′ potentially
optimizes the code generated from N ′. ♦

6.4.3 Abstraction algorithm

The transitions of the abstraction ∂N of a multilabeled net N can be computed
by recursion on the length of the underlying traces. Algorithm 2 shows a straight-
forward tree search that starts from the shortest possible acyclic, k-live, right-
irreducible traces, namely the observable transitions.

Theorem 6.4.5. Algorithm 2 is totally correct.

Proof. It is routine to check that, after n ≥ 0 iterations, H contains all acyclic,
k-live, right-irreducible traces of length n + 1. For termination, observe that a
finite, k-bounded net has only finitely many k-live transitions.

Example 6.4.3. We use Algorithm 2 to eliminate the silent transitions alternater5
protocol as shown in Figure 6.3(a). Table 6.1 shows the intermediate steps

Figure 6.3(b) shows the resulting multilabeled net ∂alternator5. In ∂alternator5,
a reader component at the output b1 of alternator5 does not need to wait for silent
transitions to move the data into the fifo1 buffer between b2 and b1. Instead, the
reader can immediately take the data from the first non-empty fifo1 buffer. As
such, the naive implementation of the abstraction ∂alternator5 should have higher
throughput than alternator5. We did not yet verify this claim experimentally. ♦

6.5 Discussion

We introduce multilabeled Petri nets, i.e., Petri nets whose transitions are labeled
by a multiset of actions. We define a binary composition operator for multilabeled
nets, and construct an algorithm to compute the composition. We define a unary
abstraction operator that removes silent transitions from multilabeled nets, and
construct an algorithm to compute the abstraction.

The composition algorithm Algorithm 1 assumes that the multilabeled nets are
square-free. Although the assumption of square-freeness is justified in the context

6.5. DISCUSSION 136

Table 6.1: Abstraction of the multilabeled net in Figure 6.3(a) using Algorithm 2.

w s •w w• `(w) acyclic 1-live irreduc.

t1 s1 e1e2e3e4 f1f2f3f4 a1 · · · a5b1 y y y
t2 s2 f1 e1 b y y y
t3 e1f2 e2f1 ∅ y y y
t4 e2f3 e3f2 ∅ y y y
t5 e3f4 e4f3 ∅ y y y
t3t1 e2

1e3e4f2 f2
1 f2f3f4 a1 · · · a5b1 y y

t4t1 e1e
2
2e4f3 f1f

2
2 f3f4 a1 · · · a5b1 y y

t5t1 e1e2e
2
3f4 f1f2f

2
3 f4 a1 · · · a5b1 y y

t3t2 s3 e1f2 e1e2 b y y y
t4t2 e2f1f3 e1e3f2 b y y
t5t2 e3f1f4 e1e4f3 b y y
t3t3t2 e2

1f
2
2 e1e

2
2f1 b y y

t4t3t2 s4 e1e2f3 e1e2e3 b y y y
t5t3t2 e1e3f2f4 e1e2e4f3 b y y
t3t4t3t2 e2

1f2f3 e1e2e3f1 b y y
t4t4t3t2 e1e

2
2f

2
3 e1e2e

2
3f2 b y y

t5t4t3t2 s5 e1e2e3f4 e1e2e3e4 b y y y
t3t5t4t3t2 e2

1e3f2f4 e1e2e3e4f1 b y y
t4t5t4t3t2 e1e

2
2f3f4 e1e2e3e4f2 b y y

t5t5t4t3t2 e1e2e
2
3f

2
4 e1e2e3e

2
4f3 b y y

of constraint automata, it would be very useful to be able to automatically compose
more general multilabeled nets (such as the running example).

While the definition of the composition operator relies on the concurrent se-
mantics of nets, the definition of the abstraction operator relies on interleaving
semantics. As a result, the composition and abstraction operator are not interop-
erable, in the sense that ∂(N0 × N1) 6= ∂N0 × ∂N1, for multilabeled nets N0 and
N1. Such an identity would allow for simplification of intermediate compositions,
which potentially speeds up the construction of the composition.

