
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490

Chapter 5

Protocols as Constraints

Given the standardized specification of Reo connections in Treo developed in Chap-
ter 4, we now proceed with the development of a compiler that accepts Treo as
input. The first step in the construction of a compiler for Treo is the selection
of an appropriate semantics of Treo components. The selected semantics has seri-
ous effects on the implementability and scalability of the resulting compiler, and
this decision should therefore not be taken lightly. The current chapter proposes
a semantics for Reo connectors whose intermediate representation is significantly
smaller than the representation of existing semantics, without sacrificing perfor-
mance1. As a result, our approach can compile Reo connectors for which it was
previously infeasible to generate efficient code.

Over a decade ago, Baier et al. introduced constraint automata for the specifi-
cation of interaction protocols [BSAR06]. Constraint automata feature a powerful
composition operator that preserves synchrony: composite constructions not only
yield intuitively meaningful asynchronous protocols but also synchronous protocols.
Constraint automata have been used as basis for tools, like compilers and model
checkers. Jongmans developed Lykos: a compiler that translates constraint au-
tomata into reasonably efficient executable Java code [Jon16]. Baier, Blechmann,
Klein, and Klüppelholz developed Vereofy, a model checker for constraint automata
[BBKK09, Klü12]. Unfortunately, like every automaton model, composition of con-
straint automata suffers from state space and transition space explosions. These
explosions limit the scalability of the tools based on constraint automata.

To improve scalability, Clarke et al. developed a compiler that translates a
constraint automaton to a first-order formula [CPLA11]. The transitions of the
constraint automaton correspond to the solutions of this formula. At run time, a
generic constraint solver finds these solutions and simulates the automaton. Since
composition and abstraction for constraint automata respectively correspond to
conjunction and existential quantification, the first-order specification does not
suffer from state space or transition space explosion. However, the approach pro-
posed by Clarke et al. only delays the complexity until run time: calling a generic
constraint solver at run time imposes a significant overhead.

Jongmans realized that the overhead of this constraint solver is not always

1The work in this chapter is based on [DA18a]

99

5.1. RELATED WORK 100

necessary. He developed a commandification algorithm that accepts constraints
without disjunctions (i.e., conjunctions of literals) and translates them into a small
imperative program [JA16b]. The resulting program is a light-weight, tailor-made
constraint solver with minimal run time overhead. Since commandification accepts
only constraints without disjunction, Jongmans applied this technique to data con-
straints on individual transitions in a constraint automaton. Relying on constraint
automata, his approach still suffers from scalability issues [JKA17].

We aim to prevent state space and transition space explosions by combining
the ideas of Clarke et al. and Jongmans. To this end, we present the language
of stream constraints: a generalization of constraint automata based on temporal
logic. A stream constraint is an expression that relates streams of observed data at
different locations (Section 5.2). We identify a subclass of stream constraints, called
regular (stream) constraints, which is closed under composition and abstraction
(Section 5.3). Regular constraints can be viewed as a constraint automata, and
conjunction of reflexive regular constraints is similar to composition of constraint
automata (Section 5.4).

A straightforward application of the commandification algorithm of Jongmans
to regular stream constraints entails transforming a stream constraint into disjunc-
tive normal form and applying the algorithm to each clause separately. However,
the number of clauses in the disjunctive normal form may grow exponentially in
the size of the composition. To prevent such exponential blowups of the size of
the formula, we recognize and exploit symmetries in the disjunctive normal form.
Each clause in the disjunctive normal form can be constructed from a set of basic
stream constraints, which we call rules. This idea allows us to represent a single
large constraint as certain combination of a set of smaller constraints, called the
rule-based form (Section 5.5). We express the composition of stream constraints
in terms of the rule-based normal form (Section 5.6), and show that, for simple
sets of rules, the number of rules to describe the composition is only linear in the
size of the composition (Section 5.7). The class of stream constraints defined by a
simple set of rules contains constraints for which the size of the disjunctive normal
form explodes, which shows that our approach improves upon existing approaches
by Clarke et al. and Jongmans. We express abstraction on stream constraints in
terms of the rule-based normal form and provide a sufficient condition under which
the number of rules remains constant (Section 5.8). Finally, we conclude and point
out future work (Section 5.10).

5.1 Related work

Representation of stream constraints in rule-based form is part of a larger line
of research on symbolic approaches, such a symbolic model checking [BCM+92,
BCH+97, KNSW07] and symbolic execution [CDE+07]. These approaches not
only use logic (cf., SAT solving techniques [Kem12, Ehl10] for verification), but also
other implicit representations, like binary decision diagrams [Bry86] and Petri nets
[Mur89]. Petri nets offer a small representation of protocols with an exponentially
large state space. While our focus is more on compilation, Petri nets have been
studied in the context of verification. As inspiration for future work, it is interesting
to study the similarities between Petri nets and stream constraints.

101 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

Since regular stream constraints correspond to constraint automata, we can
view regular stream constrains as a restricted temporal logic for which distributed
synthesis is easy. In general, distributed (finite state) synthesis of protocols is
undecidable [PR89, PR90]. Pushing the boundary from regular to a larger class of
stream constraints can be useful for more effective synthesis methods.

5.2 Syntax and semantics

The semantics of constraint automata is defined as a relation over timed data
streams [AR02], which are pairs, each consisting of a non-decreasing stream of time
stamps and a stream of observed (exchanged) data items. The primary significance
of time streams is the proper alignment of their respective data streams, by allowing
“temporal gaps” during which no data is observed. For convenience, we drop the
time stream and model protocols as relations over streams of data, augmented by
a special symbol that designates “no-data” item.

We first define the abstract behavior of a protocol C. Fix an infinite set X of
variables, and fix a non-empty set of user-data Data ⊇ {0} that contains a datum
0. Consider the data domain D = Data ∪ {∗} of data stream items, where we use
the “no-data” symbol ∗ ∈ D \ Data to denote the absence of data. We model a
single execution of protocol C as a function

θ : X −→ DN (5.1)

that maps every variable x ∈ X to a function θ(x) : N −→ D that represents a
stream of data at location x. We call θ a data stream tuple (over X and D). For all
n ∈ N and all x ∈ X, the value θ(x)(n) ∈ D is the data that we observe at location
x and time step n. If θ(x)(n) = ∗, we say that no data is observed at x in step n
(i.e., we may view θ as a partial map N ×X ⇀ Data). The behavior of protocol
C consists of the set

L(C) ⊆ (DN)X (5.2)

of all possible executions of C, called the accepted language of C. We can think of
accepted language L(C) as a relation over data streams. In this chapter, we study
protocols that are defined as a stream constraint:

Definition 5.2.1 (Stream constraints). A stream constraint φ is an expression
generated by the following grammar

φ ::= ⊥ | t0 .
= t1 | φ0 ∧ φ1 | ¬φ | ∃xφ | �φ

t ::= x | d | t′

where x ∈ X is a variable, d ∈ D is a datum, and t is a stream term.

We use the following standard syntactic sugar: > = ¬⊥, φ0∨φ1 = ¬(¬φ0∧¬φ1),
♦φ = ¬�¬φ, (t1 6 .= t2) = ¬(t1

.
= t2), (t1

.
= · · · .= tn) = (t1

.
= t2 ∧ · · · ∧ tn−1

.
= tn),

t(0) = t, and t(k+1) = (t(k))′, for all k ≥ 0. Following Rutten [Rut01], we call t(k),
k ≥ 0, the k-th derivative of term t.

We interpret a stream constraint as a constraint over streams of data in DN. For
a datum d ∈ D, d is the constant stream defined as d(n) = d, for all n ∈ N. The

5.2. SYNTAX AND SEMANTICS 102

operator (−)′, called stream derivative, drops the head of the stream and is defined
as σ′(n) = σ(n+ 1), for all n ∈ N and σ ∈ DN. Streams can be related by

.
= that

expresses equality of their heads: x
.
= y iff x(0) = y(0), for all x, y ∈ DN. The modal

operator � allows us to express that a stream constraint holds after applying any
number of derivatives to all variables. For example, �(x

.
= y) iff x(k)(0) = y(k)(0),

for all k ∈ N and x, y ∈ DN. Stream constraints can be composed via conjunction
∧, or negated via negation ¬. Streams can be hidden via existential quantification
∃.

Each stream term t evaluates to a data stream in DN. Let θ : X −→ DN be
a data stream tuple. We extend the domain of θ from the set of variables X to
the set of terms T ⊇ X as follows: we define θ : T −→ DN via θ(d) = d and
θ(t′) = θ(t)′, for all d ∈ D and terms t ∈ T .

Next, we interpret a stream constraint φ as a relation over streams.

Definition 5.2.2 (Semantics). The language L(φ) ⊆ (DN)X of a stream constraint
φ over variables X and data domain D is defined as

1. L(⊥) = ∅;

2. L(t0
.
= t1) = {θ : X −→ DN | θ(t0)(0) = θ(t1)(0)};

3. L(φ0 ∧ φ1) = L(φ0) ∩ L(φ1);

4. L(¬φ) = (DN)X \ L(φ);

5. L(∃xφ) = {θ : X −→ DN | θ[x 7→ σ] ∈ L(φ), for some σ ∈ DN};

6. L(�φ) = {θ : X −→ DN | θ(k) ∈ L(φ), for all k ≥ 0},

where θ[x 7→ σ] : X −→ DN is defined as θ[x 7→ σ](x) = σ and θ[x 7→ σ](y) = θ(y),
for all y ∈ X \ {x}; and θ(k) : X −→ DN is defined as θ(k)(x) = θ(x(k)), for all
x ∈ X.

Let φ and ψ be two stream constraints and θ : X −→ DN a data stream tuple.
We say that θ satisfies φ (and write θ |= φ), whenever θ ∈ L(φ). We say that φ
implies ψ (and write φ |= ψ), whenever L(φ) ⊆ L(ψ). We call φ and ψ equivalent
(and write φ ≡ ψ), whenever L(φ) = L(ψ).

Example 5.2.1. One of the simplest stream constraints is Sync(a, b), which is
defined as �(a

.
= b). Constraint Sync(a, b) encodes that the data streams at a

and b are equal: θ(a)(k) = θ(b)(k), for all k ∈ N and all θ ∈ (DN)X . Therefore,
Sync(a, b) synchronizes the data flow observed at ports a and b.

Conjunction ∧ and existential quantification ∃ provide natural operators for
composition and abstraction for stream constraints. For example, the composi-
tion Sync(a, b) ∧ Sync(b, c) synchronizes ports a, b, and c. Hiding port b yields
∃b(Sync(a, b) ∧ Sync(b, c)), which is equivalent to Sync(a, c). ♦

Example 5.2.2. Recall that x(k), for k ≥ 0, is the k-th derivative of x. We can
express that a stream x is periodic via the stream constraint �(x(k) .

= x), for some
k ≥ 1. For k = 1, stream x is constant, like 0 and ∗. ♦

103 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

Example 5.2.3. The stream constraint FIFO(a, b,m) defined as m
.
= ∗ ∧ �((a

.
=

m′
.
= 0 ∧ b .= m

.
= ∗) ∨ (a

.
= m′

.
= ∗ ∧ b .= m

.
= 0) ∨ (a

.
= b

.
= ∗ ∧m′ .= m)) models

a 1-place buffer with input location a, output location b, and memory location m
that can be full (m

.
= 0) or empty (m

.
= ∗). ♦

Example 5.2.4. Recall that ∗ models absence of data. Stream constraint �♦(a 6 .=
∗) expresses that always eventually we observe some datum at a. A constraint of
such form can be used to define fairness. ♦

5.3 Regular constraints

We identify a subclass of stream constraints that naturally correspond to constraint
automata. We first introduce some notation.

To denote that a string s occurs as a substring in a stream constraint φ or a
stream term t, we write s ∈ φ or s ∈ t, respectively.

Every stream constraint φ admits a set free(φ) ⊆ X of free variables, defined
inductively via free(⊥) = ∅, free(t0

.
= t1) = {x ∈ X | x ∈ t0 or x ∈ t1}, free(φ0 ∧

φ1) = free(φ0)∪ free(φ1), free(¬φ) = free(�φ) = free(φ), and free(∃xφ) = free(φ) \
{x}.

For every variable x ∈ X, we define the degree of x in φ as

degx(φ) = max({−1} ∪ {k ≥ 0 | x(k) ∈ φ}),

and the degree of φ as deg(φ) = maxx∈X degx(φ). Note that for x /∈ φ we have
degx(φ) = −1. For k ≥ 0, we write freek(φ) = {x ∈ free(φ) | degx(φ) = k} for the
set of all free variables of φ of degree k.

We call a variable x of degree zero in φ a port variable and write P (φ) = free0(φ)
for the set of port variables of φ. We call a variable x of degree one or higher in φ a
memory variable and write M(φ) =

⋃
k≥1 freek(φ) for the set of memory variables

of φ.

Definition 5.3.1 (Regular). A stream constraint φ is regular if and only if φ =
ψ0 ∧�ψ, such that � /∈ ψ0 ∧ ψ and degx(ψ0) < degx(ψ) ≤ 1, for all x ∈ X.

For a regular stream constraint φ = ψ0 ∧ �ψ, we refer to ψ0 as the initial
condition of φ and we refer to ψ as the invariant of φ. Stream constraints Sync(a, b)
and FIFO(a, b,m) in Examples 5.2.1 and 5.2.3 are regular stream constraints.

A regular stream constraint φ has an operational interpretation in terms of
a labeled transition system JφK. States of the transition system consist of maps
q : M(φ) −→ D that assign data to memory locations, and its labels consist of
maps α : P (φ) −→ D that assign data to ports. We write Q(φ) for the set of states
of φ and A(φ) for the set of labels of φ.

Definition 5.3.2 (Operational semantics). The operational semantics JφK of a
regular stream constraint φ = ψ0 ∧ �ψ consists of a labeled transition system
(Q(φ), A(φ),→, Q0), with set of states Q(φ), set of labels A(φ), set of transitions
→ = {(qφ(θ), qφ(θ′), αφ(θ)) | θ ∈ L(ψ)}, and set of initial states Q0 = {qφ(θ) | θ ∈
L(ψ0 ∧ ψ)}, where

1. qφ(θ) : M(φ) −→ D is defined as qφ(θ)(x) = θ(x)(0), for x ∈M(φ); and

5.3. REGULAR CONSTRAINTS 104

[a 7→ 0, b 7→ ∗]

[a 7→ ∗, b 7→ 0]

[a 7→ ∗, b 7→ ∗] [a 7→ ∗, b 7→ ∗]

Figure 5.1: Semantics of FIFO(a, b,m) over the trivial data domain {0, ∗}.

2. αφ(θ) : P (φ) −→ D is defined as αφ(θ)(x) = θ(x)(0), for x ∈ P (φ).

and θ′ is defined as θ′(x)(n) = θ(x)(n+ 1), for all x ∈ X and n ∈ N.

Example 5.3.1. Consider the regular stream constraint FIFO(a, b,m) from Exam-
ple 5.2.3. Note that in this example, the set of ports equals free0(FIFO) = {a, b}
and the set of memory locations equals free1(FIFO) = {m}. The semantics of
FIFO(a, b,m) over the trivial data domain D = {0, ∗} consists of 4 transitions:

1. ([m 7→ ∗], [m 7→ 0], [a 7→ 0, b 7→ ∗]);

2. ([m 7→ 0], [m 7→ ∗], [a 7→ ∗, b 7→ 0]); and

3. ([m 7→ d], [m 7→ d], [a 7→ ∗, b 7→ ∗]), for every d ∈ {∗, 0}.

Figure 5.1 shows the semantics of FIFO over the trivial data domain. ♦

Equivalent stream constraints do not necessarily have the same operational
semantics. We are, therefore, interested in operational equivalence of constraints:

Definition 5.3.3 (Operational equivalence). Stream constraints φ and ψ are op-
erationally equivalent (φ ' ψ) iff φ ≡ ψ and freek(φ) = freek(ψ), for k ≥ 0.

Example 5.3.2. Let φ be a stream constraint, let t be a term and let x /∈ t be
a variable that does not occur in t. Then, we have ∃x(x

.
= t ∧ φ) ≡ φ[t/x], where

φ[t/x] is obtained from φ by substituting t for every free occurrence of x. Observe
that ∃x(x

.
= t∧φ) and φ[t/x] may admit different sets of free variables: if φ is just

> and t is a variable y, the equivalence amounts to ∃x(x
.
= y) ≡ >. To ensure that

the free variables coincide, we can add the equality t
.
= t and obtain the operational

equivalence ∃x(x
.
= t ∧ φ) ' φ[t/x] ∧ t .= t. ♦

Operational equivalence of stream constraints φ and ψ implies that their oper-
ational semantics are identical, i.e., JφK = JψK. It is possible to introduce weaker
equivalences by, for example, demanding that JφK and JψK are only weakly bisimilar.
Such weaker equivalence offer more room for simplification of stream constraints
than operational equivalence does. As our work does not need this generality, we
leave the study of such weaker equivalences as future work.

The most important operations on stream constraints are composition (∧) and
hiding (∃). The following result shows that regular stream constraints are closed
under conjunction and existential quantification of degree zero variables.

Theorem 5.3.1. For all stream constraints φ and ψ and variables x, we have

1. �φ ∧�ψ ≡ �(φ ∧ ψ); and

105 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

2. ∃x�φ ≡ �∃xφ, whenever degx(φ) ≤ 0 and � /∈ φ.

Proof. For assertion 1, L(�φ ∧ �ψ) = {θ ∈ (DN)X | ∀k ≥ 0 : θ(k) |= φ ∧ ψ} =
L(�(φ ∧ ψ)) shows that �φ ∧�ψ ≡ �(φ ∧ ψ).

For assertion 2, suppose that degx(φ) ≤ 0 and � /∈ φ. We show that θ ∈
L(�∃xφ) if and only if θ ∈ L(∃x�φ), for all θ ∈ (DN)X . By Definition 5.2.2, this
equivalence can be written as

θ(k)[x 7→ µk] |= φ ⇔ (θ[x 7→ σ])(k) |= φ, (5.3)

for all k ≥ 0, σ ∈ DN, and µk ∈ DN such that µk(0) = σ(k)(0).
To prove Equation (5.3), we proceed by induction on the length of φ:
Case 1 (φ := ⊥): Since L(⊥) = ∅, Equation (5.3) holds trivially.
Case 2 (φ := t0

.
= t1): Observe that, since degx(φ) ≤ 0, for all terms t, we have

x ∈ t iff t = x. We conclude Equation (5.3) from µk(0) = σ(k)(0) and

θ(k)[x 7→ µk](t)(0) =

{
µk(0) if t = x

θ(k)(t)(0) if t 6= x

}
= (θ[x 7→ σ])(k)(t)(0).

Case 3 (φ := ψ0 ∧ ψ1): By the induction hypothesis, Equation (5.3) holds for
ψ0 and ψ1. By conjunction of Equation (5.3), we conclude Equation (5.3) for φ.

Case 4 (φ := ¬ψ): By the induction hypothesis, Equation (5.3) holds for ψ. By
contraposition of Equation (5.3), we conclude Equation (5.3) for φ.

Case 5 (φ := ∃yψ): If y = x, then x /∈ free(φ) and both sides in Equation (5.3)
are equivalent to θ(k) |= φ. Hence, Equation (5.3) holds for y = x. Suppose y 6= x.
Then, θ(k)[x 7→ µk] |= φ is equivalent to (θ[y 7→ τ])(k)[x 7→ µk] |= ψ, for some
τ ∈ DN. Applying the induction hypothesis for θ equal to θ[y 7→ τ], we conclude
that θ(k)[x 7→ µk] |= φ is equivalent to (θ[y 7→ τ][x 7→ σ])(k) |= ψ, for some τ ∈ DN.
Since y 6= x, we conclude that Equation (5.3) holds.

We conclude that the claim holds for all φ with degx(φ) ≤ 0 and � /∈ φ.

5.4 Reflexive constraints

Conjunction of stream constraints is a simple syntactic composition operator with
clear semantics: a data stream tuple θ satisfies a conjunction φ0 ∧ φ1 if and only if
θ satisfies both φ0 and φ1. In view of the semantics of regular stream constraints
in Definition 5.2.2, it is less obvious how Jφ0 ∧ φ1K relates to Jφ0K and Jφ1K. The
following result characterizes their relation when no memory is shared.

Theorem 5.4.1. Let φ0 and φ1 be regular stream constraints such that free(φ0) ∩
free(φ1) ⊆ P (φ0 ∧ φ1), and let (qi, q

′
i, αi) ∈ Q(φi)

2 × A(φi), for i ∈ {0, 1}. The
following are equivalent:

1. q0
α0−→ q′0 in Jφ0K, q1

α1−→ q′1 in Jφ1K, and α0|P (φ1) = α1|P (φ0);

2. q0 ∪ q1
α0∪α1−−−−→ q′0 ∪ q′1 in Jφ0 ∧ φ1K,

where | is restriction of maps, and ∪ is union of maps.

5.4. REFLEXIVE CONSTRAINTS 106

Proof. Write φi = ψi0 ∧�ψi, with � /∈ ψi0 ∧ ψi and degx(ψi0) < degx(ψi) ≤ 1, for
all x ∈ X. Then, freek(φi) = freek(ψi), for all i, k ∈ {0, 1}.

Suppose that assertion 1 holds. By Definition 5.2.2, we find, for all i ∈ {0, 1},
some θi ∈ L(ψi) such that qi = qφi

(θi), q
′
i = qφi

(θ′i), and αi = αφi
(θi). Define

θ : X −→ DN by θ(x) = θi(x), if x ∈ free(φi), and θ(x) = ∗, otherwise. Since
free(φ0) ∩ free(φ1) ⊆ P (φ0 ∧ φ1) and α0|P (φ1) = α1|P (φ0), we have that θ0(x) =
θ1(x), for all x ∈ free(φ0) ∩ free(φ1). Hence, θ is well-defined. By construction,
θ |= ψ0 and θ |= ψ1. By Definition 5.2.2, we have θ |= ψ0∧ψ1. By Theorem 5.3.1, we
have φ0∧φ1 = ψ00∧ψ10∧�(ψ0∧ψ1). Since q0∪q1 = qφ0∧φ1

(θ), q′0∪q′1 = qφ0∧φ1
(θ′),

and α0 ∪ α1 = αφ0∧φ1(θ), we conclude assertion 2.
Suppose that assertion 2 holds. We find some θ ∈ L(ψ0 ∧ ψ1), such that

q0 ∪ q1 = qθ, q
′
0 ∪ q′1 = qθ′ , and α0 ∪ α1 = αθ. Then, we conclude assertion 1, for

qi = qφi
(θ), q′i = qφi

(θ′), and αi = αφi
(θ).

Stream constraints φ0 and φ1 without shared variables (free(φ0)∩ free(φ1) = ∅)
seem completely independent. However, Theorem 5.4.1 shows that their composi-
tion φ0∧φ1 admits a transition only if φ0 and φ1 admit respective local transitions
(q0, q

′
0, α0) and (q1, q

′
1, α1), such that α0|P (φ1) = α1|P (φ0). Since φ0 and φ1 do not

share variables, the latter condition on α0 and α1 is trivially satisfied. Still, for one
protocol φi, with i ∈ {0, 1}, to make progress in the composition φ0∧φ1, constraint
φ1−i must admit an idling transition.

To allow such independent progress, we assume that φ1−i admits an idling
transition (q, q, τ), where τ is the silent label over P (φ1−i). The silent label over a
set of ports P ⊆ X is the map τ : P −→ D that maps x ∈ P to ∗ ∈ D. If such
idling transitions are available in every state of φ1, we say that φ1 is reflexive:

Definition 5.4.1 (Reflexive). A stream constraint φ is reflexive if and only if

q
τ−→ q in JφK, for all q ∈ Q(φ).

For regular constraints, we can define reflexiveness also syntactically, for which
we need some notation. For a variable x ∈ X and an integer k ∈ N ∪ {−1}, we
define the predicate x†k (pronounced: “x is blocked at step k”) as follows:

x†k := (x(k) .
= x(k−1)), with x(k) .

= ∗, for all k < 0.

Predicate x†−1 ≡ > is trivially true. Predicate x†0 ≡ (x
.
= ∗) means that we

observe no data flow at port x. Predicate x†1 ≡ (x′
.
= x) means that the data in

memory variable x remains the same.
We now provide a syntactic equivalent of Definition 5.4.1 for regular constraints.

Lemma 5.4.2. A regular stream constraint φ = ψ0 ∧�ψ is reflexive if and only if∧
x∈X x†d(x) |= ψ, where d(x) = degx(φ), for all x ∈ X.

Proof. Since d(x) = −1, for all but finitely many x ∈ X, the stream constraint∧
x∈X x†d(x) is well-defined. By definition,

∧
x∈X x†d(x) |= ψ if and only if, for all

q ∈ Q(φ), there exists some θ ∈ L(ψ), such that qθ = qθ′ = q and αθ = τ .

Example 5.4.1. The stream constraint Sync(a, b) := �(a
.
= b) from Example 5.2.1

is reflexive, because
∧
x∈X x†d(x) = a

.
= ∗ ∧ b .

= ∗ implies a
.
= b. The stream

constraint FIFO from Example 5.2.3 is reflexive, because
∧
x∈X x†d(x) = a

.
= ∗∧b .=

∗ ∧m′ .= m is one of the clauses of FIFO. ♦

107 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

Theorem 5.4.1 suggests a composition operator × on labeled transition systems,
satisfying Jφ0K× Jφ1K = Jφ0∧φ1K. For reflexive constraints φ0 and φ1, composition
× simulates composition of constraint automata [BSAR06]. Constraint automata
also feature a hiding operator that naturally corresponds to existential quantifica-
tion ∃ for stream constraints. We leave a full formal comparison between stream
constraints and constraint automata as future work.

5.5 Rule-based form

The commandification algorithm developed by Jongmans accepts only constraints
without disjunction (i.e., conjunctions of literals) [JA16b]. To apply commandifi-
cation to the invariant ψ of an arbitrary regular stream constraint ψ0 ∧ �ψ, we
can first transform ψ into disjunctive normal form (DNF). However, the number
of clauses in the disjunctive normal form may be exponential in the length of the
constraint. In this section, we introduce an alternative to the disjunctive normal
form that prevents such exponential blow up, for a strictly larger class of stream
constraints. Our main observation is that the clauses of the disjunctive normal form
may contain many symmetries, in the sense that we may generate all clauses from
a set of stream constraints R, called a set of rules. A rule is a stream constraint ρ,
such that deg(ρ) ≤ 1 and � /∈ ρ.

Definition 5.5.1 (Rule-based form). A reflexive stream constraint φ is in rule-
based form iff φ equals

rbf(R) =
∧

x∈free(R)

x†d(x) ∨
∨

ρ∈R:x∈free(ρ)

ρ

 (5.4)

with R a finite set of rules, free(R) =
⋃
ρ∈R free(ρ), and d(x) = maxρ∈R degx(ρ).

A stream constraint φ is defined by R iff φ ' rbf(R).

We provide some intuition behind Definition 5.5.1. For a variable x, there are
two possibilities:

1. Nothing happens at x (i.e., x†d(x)). For a port variable (d(x) = 0) this means
that we do not observe any data (x

.
= ∗). For a memory variable (d(x) = 1)

this means that the data does not change in (x′
.
= x).

2. Something happens at x (i.e., x†d(x) does not hold). Then, the rule-based
form states that (at least) one of the rules with x as a free variable must hold
(and this rule explains what happens at x).

Both possibilities are captured by Equation (5.4).
We apply the rule-based form to the invariant of regular constraints, via ψ0 ∧

� rbf(R), for some degree zero stream constraint ψ0 and set of rules R. Intuitively,
R remains smaller than the DNF of rbf(R) under composition.

Example 5.5.1. Let ψ be a reflexive stream constraint, with deg(ψ) ≤ 1 and
� /∈ ψ. By Definition 5.5.1 and Lemma 5.4.2 and the distributive law, we have

rbf({ψ}) =
∧

x∈free({ψ})

(
x†degx(ψ) ∨ ψ

)
≡

 ∧
x∈free({ψ})

x†degx(ψ)

 ∨ ψ ≡ ψ

5.5. RULE-BASED FORM 108

Now, for ψ = (a
.
= b), we get from Example 5.4.1 that Sync(a, b) = �(a

.
= b) ≡

� rbf({a .
= b}), which shows the Sync from Example 5.2.1 can be expressed in

rule-based form. ♦

Example 5.5.2. The stream constraint LossySync(a, b) := � rbf({a .
= a, a

.
= b})

is equivalent to �(b
.
= ∗ ∨ a .

= b). Note that � rbf({>, a .
= b}) ' � rbf({a .

= b}) '
Sync(a, b). Hence, rules a

.
= a and > are different, because they have different sets

of free variables. ♦

Example 5.5.3. The set of rules that define a stream constraint is not unique.
Consider the stream constraint FIFO from Example 5.2.3. On the one hand, we
have FIFO(a, b,m) ' m

.
= ∗ ∧ � rbf({ϕ,ψ}), where ϕ ' a

.
= m′

.
= 0 ∧ m .

= ∗
models the action that puts data in the buffer and ψ ' m′

.
= ∗ ∧ b .

= m
.
= 0

models the action that takes data out of the buffer. On the other hand, we have
FIFO(a, b,m) ' m

.
= ∗ ∧ � rbf({a .

= m′
.
= 0 ∧ b .

= m
.
= ∗, a .

= m′
.
= ∗ ∧ b .

= m
.
=

0}). ♦

Example 5.5.4. Rule-based forms are an alternative to disjunctive normal forms.
Consider the reflexive constraint φ :=

∨n
i=1 ρi in DNF for which the first conjunctive

clause ρ1 is equivalent to
∧
x∈free(φ) x†d(x), with d(x) = degx(φ). By adding equali-

ties of the form x
.
= x, we assume without loss of generality that free(ρi) = free(φ),

for all 2 ≤ i ≤ n. For R = {ρi | 2 ≤ i ≤ n}, it follows from

rbf(R) ≡
∧

x∈free(R)

x †d(x) ∨
∨
ρ∈R

ρ

 ≡

 ∧
x∈free(φ)

x†d(x)

 ∨ ∨
ρ∈R

ρ ≡ φ (5.5)

that φ is defined by the set R. We therefore conclude that every reflexive constraint
can be written in rule-based form. ♦

Definition 5.5.1 presents the rule-based form as a conjunctive normal form. The
following result computes the disjunctive normal form of rbf(R).

Lemma 5.5.1. For every set of rules R, we have

rbf(R) ' dnf(R) :=
∨
T⊆R

∧
ρ∈T

ρ ∧
∧

x∈free(R)\free(T)

x†d(x).

Proof. Let x ∈ X be arbitrary. By construction, degx(dnf(R)) ≤ maxρ∈R degx(ρ).
Since d(x) = maxρ∈R degx(ρ), the clause for T = ∅ shows that degx(dnf(R)) ≥
d(x). By Lemma 5.6.2, degx(rbf(R)) = degx(dnf(R)), for all x ∈ X. Hence,
freek(rbf(R)) = freek(dnf(R)), for all k ≥ 0.

Next, we show that rbf(R) |= dnf(R). Let θ ∈ L(rbf(R)). We find, for every
x ∈ free(R), some rule ρx ∈ R, such that θ |= ρ and x ∈ free(ρ). Now, define
Tθ := {ρx | x ∈ free(R) and θ /∈ L(x†d(x))}. By construction, θ |= ρx, for every
ρx ∈ Tθ. If x ∈ free(R) and θ /∈ L(x†d(x)), then ρx ∈ Tθ and x ∈ free(ρx) ⊆ free(Tθ).
By contraposition, we conclude that θ |= x†d(x), for all x ∈ free(R)\free(Tθ). Hence,
θ |= dnf(R), and L(rbf(R)) ⊆ L(dnf(R)).

Finally, we show that dnf(R) |= rbf(R). Let θ ∈ L(dnf(R)). By definition of
dnf(R), we find some T ⊆ R with θ |= ρ, for all ρ ∈ T , and θ |= x†d(x), for all

109 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

x ∈ free(R) \ free(T). Suppose that x ∈ free(R) and θ 6|= x†d(x). Since θ |= x†d(x),
for all x ∈ free(R) \ free(T), we find by contraposition that x ∈ free(T). Hence, we
find some ψ ∈ T with x ∈ free(ψ). Since θ |= ρ, for all ρ ∈ T , we find that θ |= ψ.
Hence, θ |= rbf(R) and we conclude that rbf(R) ' dnf(R).

5.6 Composition

We express conjunction of stream constraints in terms of their defining sets of rules.
That is, for two sets of rules R0 and R1, we define the composition R0 ∧R1 of R0

and R1, such that rbf(R0 ∧ R1) ' rbf(R0) ∧ rbf(R1). If R0 and R1 do not share
any variable (i.e., free(R0) ∩ free(R1) = ∅), composition R0 ∧ R1 is given by the
union R0 ∪ R1. It is not hard to verify that dnf(R0 ∪ R1) ≡ dnf(R0) ∧ dnf(R1),
whenever R0 and R1 do not share any variable. This result already demonstrates
the power of the rule-based form, because the number of rules grows linearly, while
the number of clauses is the disjunctive normal form grows exponentially. Recall
that we compare the rule-based form with the disjunctive normal form, because
Jongmans’ commandification algorithm requires conjunctions of literals as input.

Of course, the assumption that R0 and R1 do not share any variable is very
strong. In this section, we define the composition R0 ∧ R1 of R0 and R1 for
free(R0) ∩ free(R1) 6= ∅. Intuitively, we must find ‘small’ subsets S ⊆ R0 ∪ R1 of
rules that must synchronize (i.e., fire together) as a result of a shared variable. The
conjunction of all rules in such a subset S yields a rule in the composition R0∧R1.

In view of Example 5.5.4, consider the normal form dnf(R0 ∧ R1). Since
dnf(R0 ∧R1) equals dnf(R0)∧dnf(R1), it suffices to characterize the set of clauses
of dnf(R0)∧dnf(R1). Every such clause is a conjunction of a clause in dnf(R0) and
a clause in dnf(R1). Lemma 5.5.1 shows that the clauses of dnf(Ri) correspond to
subsets Ti of Ri, for all i ∈ {0, 1}. Not every pair of subsets T0 ⊆ R0 and T1 ⊆ R1

yields a clause of dnf(R0) ∧ dnf(R1), but only if S = T0 ∪ T1 is synchronous:

Definition 5.6.1 (Synchronous). A synchronous set over sets of rules R0 and R1

is a subset S ⊆ R0 ∪R1, with free(S) ∩ free(Ri) ⊆ free(S ∩Ri), for all i ∈ {0, 1}.

Example 5.6.1. For any integer i ≥ 1, let ϕi := ai
.
= m′i

.
= 0 ∧ mi

.
= ∗ and

ψi := m′i
.
= ∗∧ ai+1

.
= mi

.
= 0 be the two rules that define FIFO(ai, ai+1,mi), from

Example 5.5.3. The synchronous sets consist of exactly those sets S ⊆ {ϕ1, ψ1} ∪
{ϕ2, ψ2} that satisfy ψ1 ∈ S iff ϕ2 ∈ S. That is, the synchronous sets are given by
∅, {ϕ1}, {ψ2}, {ψ1, ϕ2}, {ϕ1, ψ1, ϕ2}, {ψ1, ϕ2, ψ2}, {ϕ1, ψ1, ϕ2, ψ2}. ♦

Next, we recognize symmetries in the collection of synchronous sets. We can
construct every synchronous set as a union of irreducible synchronous subsets:

Definition 5.6.2 (Irreducibility). A non-empty synchronous set ∅ 6= S ⊆ R0 ∪R1

is irreducible if and only if S = S0∪S1 implies S = S0 or S = S1, for all synchronous
subsets S0, S1 ⊆ R0 ∪R1.

Example 5.6.2. Let R0 and R1 be sets of rules, and let ρ ∈ R0 be a rule, such
that free(ρ) ∩ free(R1) = ∅. We show that {ρ} is irreducible synchronous. Since
free({ρ}) ∩ free(R0) = free(ρ) = free({ρ} ∩ R0) and free({ρ}) ∩ free(R1) = ∅ ⊆
free({ρ} ∩ R1), we conclude that {ρ} is synchronous. Suppose {ρ} = S0 ∪ S1.

5.6. COMPOSITION 110

Then, ρ ∈ Si, for some i ∈ {0, 1}. Hence, {ρ} ⊆ Si ⊆ {ρ}, which shows that
Si = {ρ}. We conclude that {ρ} is irreducible synchronous in R0 ∪R1. ♦

Example 5.6.3. Consider ϕi and ψi, for i ∈ {1, 2}, from Example 5.6.1. The
irreducible synchronous sets of {ϕ1, ψ1}∪{ϕ2, ψ2} are {ϕ1}, {ψ2}, and {ψ1, ϕ2}. ♦

Definition 5.6.3 (Composition). The composition of sets of rules R0 and R1 is
R0 ∧R1 := {∧ρ∈S ρ | S ⊆ R0 ∪R1 irreducible synchronous}.

Example 5.6.4. Let R0 and R1 be sets of rules, with free(R0) ∩ free(R1) = ∅.
By Example 5.6.2, we find that {ρ} ⊆ R0 ∪ R1, for all ρ ∈ R0 ∪ R1, is irreducible
synchronous. Hence, every synchronous set S ⊆ R0∪R1, with |S| ≥ 2, is reducible.
Therefore, S ⊆ R0 ∪R1 is irreducible synchronous if and only if S = {ρ}, for some
ρ ∈ R0 ∪R1. We conclude that R0 ∧R1 = R0 ∪R1. Consequently, ∅ is a (unique)
identity element with respect to composition ∧ of sets of rules. ♦

To show that the composition of sets of rules coincides with conjunction of
stream constraints, we need the following result that shows that every non-empty
synchronous set can be covered by irreducible synchronous sets.

Lemma 5.6.1. Let R0 and R1 be sets of rules, and let S ⊆ R0 ∪ R1 be a non-
empty synchronous set. Then, S =

⋃n
i=1 Si, where Si ⊆ R0 ∪R1, for 1 ≤ i ≤ n, is

irreducible synchronous.

Proof. We prove the lemma by induction on the size |S| of S. For the base case,
suppose that |S| = 1. We show that S is irreducible synchronous, which provides
a trivial covering. Suppose that S = S0 ∪ S1, for some synchronous sets S0, S1 ⊆
R0 ∪ R1. Since, |S| = 1, we have S ⊆ Si ⊆ S, for some i ∈ {0, 1}. Hence, S = Si,
and S is irreducible. We conclude that the lemma holds, for |S| = 1.

For the induction step, suppose that |S| = k > 1, and suppose that the lemma
holds, for |S| < k. If S is irreducible, we find a trivial covering of S. If S is reducible,
we find S = S0 ∪ S1, where S0 6= S 6= S1 are synchronous sets in R0 ∪ R1. Since
|Si| < |S|, for i ∈ {0, 1}, we find by the hypothesis that Si =

⋃ni

j=1 Sij . Hence,

S = S0 ∪ S1 =
⋃1
i=0

⋃ni

j=1 Sij . We conclude that the lemma holds, for |S| = k. By
induction on |S|, we conclude the lemma.

Lemma 5.6.2. degx(rbf(R)) = maxρ∈R degx(ρ), for all sets of rules R and x ∈ X.

Proof. For any set of rules R and y ∈ X, we have

degy(rbf(R)) = max
x∈free(R)

max(degy(x†d(x)), max
ρ∈R:x∈free(ρ)

degy(ρ)).

Note that degy(x†d(x)) = d(y), if y = x, and degy(x†d(x)) = −1, otherwise. Since
d(y) = maxρ∈R degy(ρ), we have degy(rbf(R)) = maxρ∈R degy(ρ).

Theorem 5.6.3. rbf(R0 ∧ R1) ' rbf(R0) ∧ rbf(R1), for all sets of rules R0 and
R1.

Proof. By Lemma 5.6.2 and Definition 5.6.3, degx(rbf(R0∧R1)) = degx(rbf(R0)∧
rbf(R1)), for all x ∈ X. Hence, freek(rbf(R0 ∧R1)) = freek(rbf(R0)∧ rbf(R1)), for
all k ≥ 0.

111 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

Next, we show rbf(R0)∧rbf(R1)) |= rbf(R0∧R1). Let θ ∈ L(rbf(R0)∧rbf(R1)).
By Definition 5.5.1, we must show that for every x ∈ free(R0 ∧ R1) there exists
some ρx ∈ R0 ∧ R1 such that x ∈ free(ρx) and either θ |= x†d(x) or θ |= ρx.
Hence, suppose that θ /∈ L(x†d(x)), for some variable x ∈ free(R0 ∧ R1). Since
free(R0 ∧ R1) = free(R0) ∪ free(R1) and θ |= free(R0) ∧ free(R1), we find from
Definition 5.5.1 some ψ ∈ R0∪R1, with θ |= ψ and x ∈ free(ψ). We now show that
there exists an irreducible synchronous set S ⊆ R0∪R1, such that, for ρx :=

∧
ρ∈S ρ,

we have θ |= ρx and x ∈ free(ρx). By repeated application of Definition 5.6.1, we
construct a finite sequence

{ψ} = S0 (· · · (Sn,

such that Sn ⊆ R0 ∪R1 is synchronous, and θ |= ∧ρ∈Sn
ρ. Suppose Sk ⊆ R0 ∪R1,

for k ≥ 1, is not synchronous. By Definition 5.6.1, there exists some i ∈ {0, 1}
and a variable x ∈ free(Sk) ∩ free(Ri), such that x /∈ free(Sk ∩ Ri). Since x ∈
free(Ri), we have Rxi := {ρ ∈ Ri | x ∈ free(ρ)} 6= ∅. Since θ |= rbf(Ri), there
exists some ψk ∈ Rxi such that θ |= ψk. Now define Sk+1 := Sk ∪ {ψk}. Since
x /∈ free(Sk ∩ Ri) and x ∈ free(Sk+1 ∩ Ri), we have a strict inclusion Sk (Sk+1.
Due to these strict inclusions, we have, for k ≥ |R0∪R1|, that Sk = R0∪R1, which
is trivially synchronous in R0 ∪R1. Therefore, our sequence S0 (· · · of inclusions
terminates, from which we conclude the existence of Sn. By Lemma 5.6.1, we find
some irreducible synchronous set S ⊆ Sn, such that ψ ∈ S. We conclude that
ρx :=

∧
ρ∈S ρ ∈ R0 ∧ R1 satisfies θ |= ρx and x ∈ free(ψ) ⊆ free(S) = free(ρx). By

Definition 5.5.1, we have θ |= rbf(R0 ∧R1), and rbf(R0)∧ rbf(R1) |= rbf(R0 ∧R1).
Finally, we prove that rbf(R0 ∧ R1) |= rbf(R0) ∧ rbf(R1). Let θ ∈ L(rbf(R0 ∧

R1)). We show that θ |= rbf(Ri), for all i ∈ {0, 1}. By Definition 5.5.1, we must
show that for every i ∈ {0, 1} and every x ∈ free(Ri) there exists some ρ ∈ Ri
such that x ∈ free(ρ) and either θ |= x†d(x) or θ |= ρ. Hence, let i ∈ {0, 1}
and x ∈ free(Ri) be arbitrary, and suppose that θ /∈ L(x†d(x)). Since free(Ri) ⊆
free(R0 ∧ R1), it follows from our assumption θ |= rbf(R0 ∧ R1) that θ |= ∧

ρ∈S ρ,
for some irreducible synchronous set S ⊆ R0 ∪ R1 satisfying x ∈ free(S). Since
S ⊆ R0∪R1 synchronous, we find that x ∈ free(S)∩free(Ri) = free(S∩Ri). Hence,
we find some ρ ∈ S ∩ Ri, such that θ |= ρ and x ∈ free(ρ). By Definition 5.5.1,
we conclude that θ |= rbf(Ri), for all i ∈ {0, 1}. Therefore, rbf(R0 ∧ R1) '
rbf(R0) ∧ rbf(R1).

Example 5.6.5. Let ϕi and ψi, for i ≥ 1, be the rules from Example 5.6.1. By
Example 5.6.3, the composition FIFO2 :=

∧2
i=1 FIFO(ai, ai+1,mi) is defined by

the set of rules {ϕ1, ψ1 ∧ ϕ2, ψ2}.2 To compute a set of rules that defines the
composition, it is not efficient to enumerate all (exponentially many) synchronous
subsets of R0 ∪ R1 and remove all reducible sets. Our tools use an algorithm
based on hypergraph transformations to compute the irreducible synchronous sets.
Although is would certainly be possible to offer the details of this algorithm here,
we postpone the description of such an algorithm until Section 6.3.1. The reason

2The rules for the composition of two FIFO stream constraints has striking similarities with
synchronous region decomposition developed by Proença et al. [PCdVA12]. Indeed, ϕ1, ψ1 ∧ϕ2,
and ψ2 correspond to the synchronous regions in the composition of two buffers. Therefore, rule-
based composition generalizes synchronous region decomposition that has been used as a basis
for generation of parallel code [JA18].

5.7. COMPLEXITY 112

ϕ1

ψ1

ϕ2

ψ2

a1

m1

a2

m2

a3

(a)
∧2
i=1 rbf({ϕi, ψi})

ϕ1

ψ1 ∧ ϕ2

ψ2

a1

m1

a2

m2

a3

(b) rbf(
∧2
i=1{ϕi, ψi})

Figure 5.2: Hypergraph representations of
∧2
i=1 FIFO(ai, ai+1,mi).

is that the composition operator does not depend on the particular details of the
syntax of stream constraints. Indeed, knowing which rules share a variable is the
only relevant information for composition. This is precisely the information that is
available in multilabeled Petri nets (introduced in Chapter 6), which can be viewed
as a data-agnostic abstraction of stream constraints.

Figure 5.2 shows a graphical representation of composition FIFO2, using hy-
pergraphs. These hypergraphs consist of sets of hyperedges (x, F), where x is a
variable and F is a set of rules. Each hyperedge (x, F) in a hypergraph corresponds
to a disjunction x†d(x) ∨

∨
ρ∈F ρ of the rule-based form in Definition 5.5.1. ♦

5.7 Complexity

In the worst case, composition R0 ∧ R1 of arbitrary sets of rules R0 and R1 may
consists of |R0| × |R1| rules. However, if R0 and R1 are simple, the size of the
composition is bounded by |R0|+ |R1|.

Recall that P (φ) = free0(φ) is the set of port variables of a stream constraint
φ.

Definition 5.7.1 (Simple). A set R of rules is simple if and only if free(ρ) ∩
free(ρ′) ∩ P (rbf(R)) 6= ∅ implies ρ = ρ′, for every ρ, ρ′ ∈ R.

In other words, a set of rules R is simple if no two (distinct) rules share a port
variable. This implies that the dataflow through each port variable is governed by
exactly one rule.

Not every stream constraint can be represented by a simple set of rules. For
example, a binary exclusive router (Figure 2.5(a) and Example 2.1.7) requires two
rules that govern dataflow through its input port A: one rule that routes data from
port A to port B and one rule that routes data from port A to port B′. Since both
rules share port A, the set of rules is not simple.

Example 5.7.1. By Example 5.5.3, the invariant of FIFO(a, b,m) is defined by
R := {a .

= m′
.
= 0 ∧ m .

= ∗,m′ .= ∗ ∧ b .
= m

.
= 0} as well as R′ := {a .

= m′
.
=

0 ∧ b .= m
.
= ∗, a .

= m′
.
= ∗ ∧ b .= m

.
= 0}. The set R is simple, while R′ is not. ♦

113 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

Lemma 5.7.1. Let R0 and R1 be sets of rules, such that free(R0) ∩ free(R1) ⊆
P (rbf(R0 ∪ R1)), and let S ⊆ R0 ∪ R1 be synchronous. Let GS be a graph with
vertices S and edges ES = {(ρ, ρ′) ∈ S2 | free(ρ)∩ free(ρ′)∩P (rbf(R0 ∪R1)) 6= ∅}.
If S irreducible, then GS is connected.

Proof. Suppose that GS is disconnected. We find ∅ 6= S0, S1 ⊆ S, with S0∪S1 = S,
S0 ∩ S1 = ∅ and free(S0) ∩ free(S1) ∩ P (rbf(R0 ∪ R1)) = ∅. We show that S0 and
S1 are synchronous. Let i, j ∈ {0, 1} and x ∈ free(Si) ∩ free(Rj). We distinguish
two cases:

Case 1 (x ∈ free(R1−j)): Then, x ∈ free(R0) ∩ free(R1) ⊆ P (rbf(R0 ∪ R1)).
Since free(S0)∩ free(S1)∩P (rbf(R0 ∪R1)) = ∅, we have x /∈ free(S1−i). Since S is
synchronous, we have x ∈ free(Si) ∩ free(Rj) ⊆ free(S) ∩ free(Rj) ⊆ free(S ∩ Rj).
Hence, we find some ρ ∈ S∩Rj , with x ∈ free(ρ). Since x /∈ free(S1−i), we conclude
that ρ ∈ Si ∩Rj . Thus, x ∈ free(Si ∩Rj), if x ∈ free(R1−j).

Case 2 (x /∈ free(R1−j)): Since x ∈ free(Si), we find some ρ ∈ Si, with x ∈
free(ρ). Since x /∈ free(R1−j), we conclude that ρ ∈ Rj . Hence, x ∈ free(ρ) ⊆
free(Si ∩Rj), if x /∈ free(R1−j).

We conclude in both cases that x ∈ free(ρ) ⊆ free(Si ∩ Rj). Hence, free(Si) ∩
free(Rj) ⊆ free(Si ∩ Rj), for all i, j ∈ {0, 1}, and we conclude that S0 and S1 are
synchronous. Since S0 6= S 6= S1, we conclude that S is reducible. By contraposi-
tion, we conclude that GS is connected, whenever S is irreducible.

Lemma 5.7.2. Let R0 and R1 be simple sets of rules, with free(R0) ∩ free(R1) ⊆
P (rbf(R0∪R1)), and let S0, S1 ⊆ R0∪R1 be irreducible synchronous. If S0∩S1 6= ∅,
then S0 = S1.

Proof. Suppose that S0 ∩ S1 6= ∅. Then, there exists some ρ0 ∈ S0 ∩ S1. We show
that Si ⊆ S1−i, for all i ∈ {0, 1}. Let i ∈ {0, 1}, and ρ ∈ Si. By Lemma 5.7.1,
we find an undirected path in GSi

from ρ0 to ρ. That is, we find a sequence
ρ0ρ1 · · · ρn ∈ S∗, such that ρn = ρ and (ρi, ρi+1) ∈ ESi

, for all 0 ≤ i < n. We
show by induction on n ≥ 0, that ρn ∈ S1−i. For the base case (n = 0), observe
that ρn = ρ0 ∈ S0 ∩ S1 ⊆ S1−i. For the induction step, suppose that ρn ∈ S1−i.
By construction of GSi , we find that free(ρn) ∩ free(ρn+1) ∩ P01 6= ∅, where P01 =
P (rbf(R0 ∪R1)). Let j ∈ {0, 1}, such that ρn+1 ∈ Rj . Since ρn ∈ S1−i and S1−i is
synchronous, we have ∅ 6= free(S1−i) ∩ free(Rj) ∩ P01 = free(S1−i ∩Rj) ∩ P01. We
find some ρ′ ∈ S1−j ∩Rj , with free(ρn+1) ∩ free(ρ′) ∩ P01 6= ∅. Since Rj is simple,
we have ρn+1 = ρ′ ∈ S1−i, which concludes the proof by induction. It follows from
ρn ∈ S1−i that Si ⊆ S1−i, for all i ∈ {0, 1}, that is, S0 = S1.

As seen in Lemma 5.5.1, the number of clauses in the disjunctive normal form
dnf(R0∧R1) can be exponential in the number of rules |R0∧R1| of the composition
of R0 and R1. However, the following (main) theorem shows the number of rules
required to define

∧
i φi is only linear in k.

Theorem 5.7.3. If R0 and R1 are simple sets of rules, and free(R0)∩ free(R1) ⊆
P (rbf(R0 ∪R1)), then R0 ∧R1 is simple and |R0 ∧R1| ≤ |R0|+ |R1|.

Proof. From Lemmas 5.6.1 and 5.7.2, we find that the irreducible synchronous
subsets partition R0 ∪ R1. We conclude that |R0 ∧ R1| ≤ |R0| + |R1|. We now
show that R0 ∧ R1 is simple. Let ρ0 and ρ1 be rules in R0 ∧ R1, with free(ρ0) ∩

5.8. ABSTRACTION 114

free(ρ1) ∩ P01 6= ∅, where P01 = P (rbf(R0 ∪R1)). By Definition 5.6.3, we find, for
all i ∈ {0, 1}, an irreducible synchronous set Si, such that ρi =

∧
ψ∈Si

ψ. Since
free(ρ0)∩ free(ρ1)∩P01 6= ∅ and free(ρi) = free(Si), for all i ∈ {0, 1}, we find some
x ∈ free(S0)∩ free(S1)∩P01. Suppose that x ∈ free(Rj), for some j ∈ {0, 1}. Since
S0 and S1 are synchronous sets, we have x ∈ free(Si)∩ free(Rj) ⊆ free(Si∩Rj), for
all i ∈ {0, 1}. We find, for all i ∈ {0, 1}, some ψi ∈ Si ∩Rj , such that x ∈ free(ψi).
Hence, free(ψ0) ∩ free(ψ1) ∩ P01 6= ∅, and since Rj is simple, we conclude that
ψ0 = ψ1. Therefore, S0 ∩ S1 6= ∅, and Lemma 5.7.2 shows that S0 = S1 and
ρ0 = ρ1. We conclude that R0 ∧R1 is simple.

The number of clauses in the disjunctive normal form of direct compositions of
k fifo constraints grows exponentially in k. This typical pattern of a sequence of
queues manifests itself in many other constructions, which causes serious scalability
problems (cf., the benchmarks for ‘Alternatork’ in [JKA17, Section 7.2]). However,
Theorem 5.7.3 shows that rule-based composition of k fifo constraints does not
suffer from scalability issues: by Example 5.7.1, the fifo constraint can be defined by
a simple set of rules. The result in Theorem 5.7.3, therefore, promises (exponential)
improvement over the classical constraint automaton representation.

Unfortunately, it seems impossible to define any arbitrary stream constraint by
a simple set of rules. Therefore, the rule-based form may still blow up for certain
stream constraints. It seems, however, possible to recognize even more symmetries
(cf., the queue-optimization in [JHA14]) to avoid explosion and obtain comparable
compilation and execution performance for these stream constraints.

5.8 Abstraction

We now study how existential quantification of stream constraints operates on its
defining set of rules.

Definition 5.8.1 (Abstraction). Hiding a variable x in a set of rules R yields
∃xR := {∃xρ | ρ ∈ R}.

Unfortunately, ∃xR does not always define ∃xφ, for a stream constraint φ de-
fined by a set of rules R. The following result shows that ∃xR defines ∃xφ if and
only if rbf(∃xR) |= ∃x rbf(R). In this case, we call variable x hidable in R.

It is non-trivial to find a defining set of rules for ∃xφ, if x is not hidable in R,
and we leave this as future work.

Theorem 5.8.1. Let R be a set of rules, and let x ∈ X be a variable. Then,
∃x rbf(R) ' rbf(∃xR) if and only if rbf(∃xR) |= ∃x rbf(R).

Proof. Trivially, ∃x rbf(R) ' rbf(∃xR) implies rbf(∃xR) |= ∃x rbf(R). Conversely,
suppose that rbf(∃xR) |= ∃x rbf(R). From Lemma 5.5.1, it follows that ∃x rbf(R) ≡
∃xdnf(R). Since existential quantification distributes over disjunction and ∃xφ ∧
ψ |= ∃xφ ∧ ∃xψ, for all stream constraints φ and ψ, we find

∃xdnf(R) |=
∨
S⊆R

∧
ρ∈S
∃xρ ∧

∧
x 6=y∈free(R)\free(S)

y†d(y) ≡ dnf(∃xR).

115 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

By Lemma 5.5.1, we have ∃x rbf(R) |= rbf(∃xR), and by assumption ∃x rbf(R) ≡
rbf(∃xR). Using Lemma 5.6.2, we have degy(∃x rbf(R)) = maxρ∈R degy(∃xρ) =
degy(rbf(∃xR)), for every variable y. We conclude ∃x rbf(R) ' rbf(∃xR).

Example 5.8.1. Suppose Data = {0, 1}, which means that the data domain
equals D = {0, 1, ∗}. Let 1 be the constant stream defined as 1(n) = 1, for all
n ∈ N. For i ∈ {0, 1}, consider the set of rules Ri = {x = x, x = yi = i}. Observe
that {x = x, x = yi = i} ⊆ R0 ∪ R1 is synchronous, for all i ∈ {0, 1}. Hence,
x = yi = i ∈ R0∧R1, for all i ∈ {0, 1}. However, for θ = [y0 7→ 0, y1 7→ 1], we have
θ |= ∧

i∈{0,1} ∃x(x = yi = i), while ∃x∧i∈{0,1} x = yi = i ≡ ⊥. Thus, variable x is
not hidable from R0 ∧R1. ♦

5.9 Application

In on-going work, we applied the rule-based form to compile protocols (in the form
of Reo connectors) into executable code. Reo is an exogenous coordination lan-
guage that models protocols as graph-like structures [Arb04, Arb11]. We recently
developed a textual version of Reo, which we use to design non-trivial protocols
[DA18b]. An example of such non-trivial protocol is the Alternatork, where k ≥ 2
is an integer. Figure 5.3(a) shows a graphical representation of the Alternatork
protocol.

Intuitively, the behavior of the alternator protocol is as follows: The nodes
P1, . . . , Pk accept data from the environment. Node C offer data to the environ-
ment. All other nodes are internal and do not interact with the environment. In
the first step of the protocol, the Alternatork waits until the environment is ready
to offer data at all nodes P1, . . . , Pk and is ready to accept data from node C. Only
then, the Alternatork transfers the data from Pk to C via a synchronous channel,
and puts the data from Pi in the i-th fifo channel, for all i < k. The behavior of
a synchronous channel is defined by the sync stream constraint in Example 5.2.1.
Each fifo channel has buffer capacity of one, and its behavior is defined by the fifo
stream constraint from Example 5.2.3. In subsequent steps, the environment can
one-by-one retrieve the data from the fifo channel buffers, until they are all empty.
Then, the protocol cycles back to its initial configuration, and repeats its behavior.
For more details on the Reo language and its semantics, we refer to [Arb04, Arb11].

As mentioned in the introduction, Jongmans developed a compiler based on
constraint automata [JKA17]. The otherwise stimulating benchmarks presented
in [JKA17] show that Jongmans’ compiler still suffers from state-space explosion.
Figure 5.3(b) shows the compilation time of the Alternatork protocol for Jongmans’
compiler and ours. Clearly, the compilation time improved drastically and went
from exponential in k to almost linear in k.

Every fifo channel in the Alternatork, except the first, either accepts data from
the environment or accepts data from the previous fifo channel. This choice is made
by the internal node at the input of each fifo channel. Unfortunately, the behavior
of such nodes is not defined in terms of a simple set of rules. Consequently, we
cannot readily apply Theorem 5.7.3 to conclude that the number of rules depends
only linearly on k. However, it turns out that Alternatork can be defined using only
k rules: one rule for filling the buffers of all fifo channels, plus k − 1 rules, one for

5.10. DISCUSSION 116

P1 P2 Pk
· · ·

· · · C• •

(a) Alternatork

 0

 13

 26

 39

 52

 65

 0 125 250 375 500

s
e

c

k

(b) Compilation times

Figure 5.3: Graphical representation (a) of the Alternatork protocol in [JKA17], for
2 ≤ k ≤ 500, and its compilation time (b). The dotted red line is produced by the
Jongmans’ compiler (and corresponds to [JKA17, Fig 11(a)]), and the solid blue
line is our compiler.

taking data out of the buffer of each of the k − 1 fifo channels. This observation
explains why our compiler drastically improves upon Jongmans’ compiler.

5.10 Discussion

We introduce (regular) stream constraints as an alternative to constraint automata
that does not suffer from state space explosions. We define the rule-based form for
stream constraints, and we express composition and abstraction of constraints in
terms of their rule-based forms. For simple sets of rules, composition of rule-based
forms does not suffer from ‘transition space explosions’ either.

We have experimented with a new compiler for protocols using our rule-based
form, which avoids the scalability problems of state- and transition-space explosions
of previous automata-based tools. Our approach still leaves the possibility for
transition space explosion for non-simple sets of rules. In the future, we intend
to study symmetries in stream constraints that are not defined by simple sets of
rules. The queue-optimization of Jongmans serves as a good source of inspiration
for exploiting symmetries [JHA14].

The results in this chapter are purely theoretical. In on-going work, we show
practical implications of our results by developing a compiler based on stream
constraints. Such a compiler requires an extension to the current theory on stream
constraints: we did not compute the abstraction ∃xR on sets of rules R wherein
variable x is not hidable. Example 5.5.4 indicates the existence of situations where
we can compute ∃xR even if x is not hidable, a topic which we leave as future
work.

