
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490

Part II

Compilation

81

Chapter 4

Protocol Syntax

The protocol specifications introduced in Part I offer explicit information on the
interactions of tasks in a given application, and we can use this information for
scheduling. However, scheduling operates on concrete tasks, rather than their for-
mal specifications. Therefore, we now study compilation of these protocol specifica-
tion, which allows us to develop scheduling techniques for the generated executable.

History shows that the number of compilers for Reo is proportional to the
number of PhD students that worked on Reo, and each tool uses its own input
language. For example, the Dreams framework [PCdVA12] uses a graphical editor
in Eclipse, The Lykos compiler [Jon16] uses FOCAML, and Vereofy uses the RSL
[Klü12]. The current chapter aims to unify these toolsets by proposing a syntax
for Reo protocols called Treo1. A key feature of the Treo language is that it allows
tool developers to extend Treo with their own semantics of primitive components,
which is an essential feature in view of plethora of semantics models for Reo [JA12].

Many tools for Reo have been implemented as a collection of Eclipse plugins
called the ECT [ECT]. The main plugin in this tool set consists of a graphical
editor that allows a user to draw a connector on a canvas. The graphical editor
has an intuitive interface with a flat learning curve. However, it does not pro-
vide constructs to express parameter passing, iteration, recursion, or conditional
construction of connector graphs. Such language constructs are more easily of-
fered by familiar programming language constructs in a textual representation of
connectors.

In the context of Vereofy (a model checker for Reo), Baier, Blechmann, Klein,
and Klüppelholz developed the Reo Scripting Language (RSL) and its compan-
ion language, the Constraint Automata Reactive Module Language (CARML)
[BBKK09, Klü12]. RSL is the first textual language for Reo that includes a con-
struct for iteration, and a limited form of parameter passing. Primitive channels
and nodes are defined in CARML, a guarded command language for specification
of constraint automata. Programmers then combine CARML specified constraint
automata as primitives in RSL to construct complex connectors and/or complete
systems. In contrast to the declarative nature of the graphical syntax of Reo, RSL
is imperative.

1The work in this chapter is based on [DA18b]

83

84

Jongmans developed the First-Order Constraint Automata with Memory Lan-
guage (FOCAML) [Jon16], a textual declarative language that enables composi-
tional construction of connectors from a (pre-defined set of) primitive components.
As a textual representation for Reo, however, FOCAML has poor support for its
primary design principle: Reo channels are user-defined, not tied to any specific
formalism to express its semantics, and compose via shared nodes with predefined
merge-replicate behavior. Although FOCAML components are user-defined, FO-
CAML requires them to be of the same predefined semantic sort (i.e., constraint
automata with memory [BSAR06]). The primary concept of Reo nodes does not
exist in FOCAML, which forces explicit construction of their ‘merge-replicate’ be-
havior in FOCAML specifications.

Jongmans et al. have shown by benchmarks that compiling Reo specifications
can produce executable code whose performance competes with or even beats that
of hand-crafted programs written in languages such as C or Java using conventional
concurrency constructs [JHA14, JA15, JA16b, JA16a, JA18]. A textual syntax
for Reo that preserves its declarative, compositional nature, allows user-defined
primitives, and faithfully complies with the semantics of its nodes can significantly
facilitate the uptake of Reo for specification of protocols in large-scale practical
applications.

In this chapter, we introduce Treo, a declarative textual language for component-
based specification of Reo connectors with user-defined semantic sorts and prede-
fined node behavior. We describe the structure of a Treo file by means of an abstract
syntax (Section 4.1). In Listing 4.1, we provide a concrete syntax of Treo as an
ANTLR4 grammar [Par13]. In on-going work, we currently use Treo to compile Reo
into target languages such as Java, Promela, and Maude [Reo]. The construction
of the Treo compiler is based on the theory of stream constraints [DA18a].

In order to preserve the agnosticism of Reo regarding the concrete semantics of
its primitives, Treo uses the notion of user-defined semantic sorts. A user-defined
semantic sort consist of a set of component instances together with a composition
operator ∧, a substitution operator [/], and a trivial component > (Section 4.2).
The composition operator defines the behavior of composite components as a com-
position of its operands. The substitution operator binds nodes in the interface or
passes values to parameters.

For a given semantic sort, we define the meaning of abstract Treo programs
(Section 4.3). Treo is very liberal with respect to parameter values. A component
definition not only accepts the usual (structured) data as actual parameters, but
also other component instances and other component definitions. Among other
benefits, this flexible parameter passing supports component sharing, which is use-
ful to preserve component encapsulation [BCL+06, Figure 2].

A given semantics sort may possibly distinguish between inputs and outputs.
Thus, not all combinations of components may result in a valid composite compo-
nent. For example, the composition may not be defined, if two components share
an output. In Treo, however, it is safe to compose components on their outputs,
because, complying with the semantics of Reo, the compiler inserts special node
components to ensure well-formed compositions (Section 4.4).

We conclude by discussing related work (Section 4.5), and pointing out future
work (Section 4.6).

85 CHAPTER 4. PROTOCOL SYNTAX

4.1 Treo syntax

We now present a textual representation for the graphical Reo connectors in Sec-
tion 2.1.2. Table 4.1 shows the abstract syntax of Treo.

K ::= I | KND D ::= V | 〈U0〉(U1){C}
L ::= ε | L, T | L, T0..T1 C ::= V | A | C0C1 | {C | P} | D〈L〉(U)
U ::= ε | U, V T ::= V | C | D | [L] | T0 : T1 | T [L] | F (L)
V ::= N | V [L] P ::= V ∈ T | R(L) | ¬P | P0 ∧ P1 | P0 ∨ P1 | (P)

Table 4.1: Abstract syntax of Treo, with start symbol K (a source file), and ter-
minal symbols for imports (I), primitive components (A), functions (F), relations
(R), names (N), and the empty list (ε). The bold vertical bar in {C | P} is just
text.

We introduce the symbols in the abstract syntax by identifying them in some
concrete examples. These concrete examples are Treo programs that can be parsed
using the concrete Treo syntax shown in Listing 4.1.

grammar Treo;
file : sec? imp* assg* EOF;
sec : ’section ’ name ’;’;
imp : ’import ’ name ’;’;
assg : ID defn;
defn : var | params? nodes comp;
comp : defn vals? args | var | ’{’ atom+ ’}’ | ’{’ comp* (’|’ pred)? ’}’

| ’for ’ ’(’ ID ’in’ list ’)’ comp
| ’if’ ’(’ pred ’)’ comp (’else ’ ’(’ pred ’)’ comp)* (’else ’ comp)?;

atom : STRING ; /* Example syntax for primitive components */
pred : ’true ’ | ’false ’ | ’(’ pred ’)’ | var ’in’ list

| term op=(’<=’ | ’<’ | ’>=’ | ’>’ | ’=’ | ’!=’) term
| var | ’forall ’ ID ’in ’ list ’:’ pred
| ’exists ’ ID ’in ’ list ’:’ pred | ’not ’ pred | pred (’and ’|’,’) pred
| pred ’or ’ pred | pred ’implies ’ pred;

term : var | NAT | BOOL | STRING | DEC | comp | defn | list | ’len(’ term ’)’
| ’(’ term ’)’ | <assoc=right > term list | <assoc=right > term ’^’ term
| ’-’ term | term op=(’*’ | ’/’ | ’%’ | ’+’ | ’-’) term;

vals : ’<’ ’>’ | ’<’ term (’,’ term)* ’>’;
list : ’[’ ’]’ | ’[’ item (’,’ item)* ’]’;
item : term | term ’..’ term | term ’:’ term;
args : ’(’ ’)’ | ’(’ var (’,’ var)* ’) ’;
params : ’<’ ’>’ | ’<’ var (’,’ var)* ’>’;
nodes : ’(’ ’)’ | ’(’ node (’,’ node)* ’)’;
node : var (io=(’?’ | ’!’ | ’:’) ID?)?;
var : name list*;
name : (ID ’.’)* ID;
NAT : (’0’ | [1 -9][0 -9]*);
DEC : (’0’ | [1 -9][0 -9]*) ’.’ [0 -9]+;
BOOL : ’true ’ | ’false ’;
ID : [a-zA -Z_][a-zA -Z0 -9_]*;
STRING : ’\"’ .*? ’\"’;
SPACES : [\t\r\n]+ -> skip;
SL_COMM : ’//’ .*? (’\n’|EOF) -> skip;
ML_COMM : ’/*’ .*? ’*/’ -> skip;

Listing 4.1: Concrete ANTLR4 syntax of Treo (Treo.g4).

Consider the following Treo file (K in Table 4.1) representing the Alternator2:

import syncdrain;

import sync;

import fifo1;

4.1. TREO SYNTAX 86

alternator2(a1,a2,b1) {

sync(a1,b1) syncdrain(a1,a2) sync(a2,b2) fifo1(b2,b1)

}

On the first line, we import (I) three different component definitions. On the
second line, we define the alternator2 component (ND). Its definition (D) has
no parameters (〈U0〉), and three nodes, a1, a2, and b1, in its interface ((U1)). The
body ({C}) of this definition consists of a set of component instances that interact
via shared nodes. The first component instance sync(a1,b1) is an instantiation
(D〈L〉(U)) of the imported sync definition (D) with nodes a1 and b1 ((U)) and
without any parameters (〈L〉).

All nodes that occur in the body, but not in the interface, are hidden. Hiding
renames a node to a fresh inaccessible name, which prevents it from being shared
with other components. In the case of alternator2, node b2 is not part of the
interface, and hence hidden.

Constructed from existing components, alternator2 is a composite component
(C0C1). However, not every component is constructed from existing components,
and we call such components primitive (A). The following Treo code shows a
possible (primitive) definition of thefifo1 component.

fifo1(a?,b!) { empty -{a},true-> full; full -{b},true-> empty; }

The definition of the fifo1 differs from the definition of the alternator2 in two
ways.

The first difference is that the fifo1 component is (in this case) defined directly
as a constraint automaton [BSAR06]. Constraint automata constitute a popular
semantic sort for specification of Reo component types, and forms the basis of the
Lykos compiler [Jon16]. However, constraint automata are not the de facto stan-
dard: the literature offers more than thirty different semantic sorts for specification
of Reo components [JA12], such as the coloring semantics and timed data stream
semantics. To accommodate the generality that disparate semantics allow, Treo fea-
tures user-defined semantic sorts, which means that the syntax for primitive com-
ponents is user-defined. For example, this means that we may also define the fifo1
component by referring to a Java file via fifo1(a?,b!){ "MyFIFO1.java" }.

The second difference is that the nodes a and b in the interface are directed.
That is, each of its interface nodes is either of type input or output, designated
by the markers ? and !, respectively. In Reo, it is safe to join two channels on a
shared sink node (e.g., node b1 in Figure 2.3). However, the composition operators
in most Reo semantics do not automatically produce the correct behavior for such
nodes (e.g., see [BSAR06, Section 4.3] for further details). Therefore, most Reo
semantics require well-formed compositions, wherein each node has at most one
input channel end and at most one output channel end.

The restriction of well-formed compositions can be very inconvenient in practice.
To ensure well-formed compositions, a programmer must implement every Reo node
with more than one input or output channel end as a node component. The interface
of this node component is determined by its degree, which is a pair (i, o) giving
the numbers of its coincident source and sink ends. Such explicit node components
make component constructions verbose and hard to maintain. For convenience, the
Treo compiler uses the above input/output annotations to compute the degree of

87 CHAPTER 4. PROTOCOL SYNTAX

each node in a composition, and subsequently inserts the correct node components
in the construction. We may view the input/output annotations as syntactic sugar
that ensures well-formed compositions. This feature allows programmers to remain
oblivious to these annotations and well-formed composition.

The ellipses in Figure 2.3 signify the parametrized construction of the Alternatork
connector, for k > 2. This notation is informal and not supported in the graphical
Reo editor [ECT], which offers no support for parametrized constructions. In Treo,
however, we can define the Alternatork connector as:

alternator<k>(a[1:k],b[1]) {

sync(a[1],b[1])

{

syncdrain(a[i-1],a[i])

sync(a[i],b[i])

fifo1(b[i],b[i-1])

| i in [2..k]

}

}

The definition of the alternator depends on a parameter k. Since Treo is a
strongly typed language with type-inferencing, there is no need to specify a type
for the (integer) parameter k. The interface consists of an array of nodes a[1:k]

and the single node b[1]. Here, [1:k] is an abbreviation for the list [[1..k]]

that contains a single list of length k. The array a[1:2] stands for the slice
[a[1],a[2]] of a, while the expression a[1..2] stands for the element a[1][2]

in a (cf., Equation (4.2)). For iteration, we write { ... | i in [2..k] } using
set-comprehension ({C | P} in Table 4.1).

Instead of defining alternator iteratively, we may also provide a recursive
definition as follows:

recursive_alternator(a[1:k],b[1],b[k]) {

recursive_alternator(a[1:k-1],b[1],b[k-1])

{syncdrain(a[k-1],a[k]) sync(a[k],b[k]) fifo1(b[k-1],b[k]) | k > 1}

}

Here, the value of k is defined by the size of a[1:k], and we use set-comprehension
{ ... | k > 1 } for conditional construction, as well. Indeed, the resulting set
of component instances is non-empty, only if k > 1 holds. Although Treo syntax
allows recursive definitions, the semantics presented in Section 4.3 does not yet
support recursion, which we leave as future work.

We illustrate the practicality of Treo by providing code for a chess playing
program [Jon16, Figure 3.29]. In this program, two teams of chess engines compete
in a game of chess. We define a chess team as the following Treo component:

import parse; /* and the other imports */

team<engine[1:n]>(inp,out) {

for (i in [1..n]) {

engine[i](inp,best[i]) parse(best[i],p[i])

if (i > 1) concatenate(a[i-1],p[i],a[i])

}

4.2. SEMANTIC SORTS 88

sync(best[1],a[1]) majority(a[n],b) syncdrain(b,c)

fifo1(inp,c) move(b,d) concatenate(c,d,out)

}

The for-loop for (i in [1..n]) ... and if-statement if (i > 1) ... are just
syntactic sugar for set-comprehensions {... | i in [1..n]} and {... | i > 1},
respectively. The team component depends on an array engine[1:n] of param-
eters. This array does not contain the usual data values, but consists of Treo
component definitions. In the body of the team component, these definitions are
instantiated via engine[i](inp,best[i]). In RSL [BBKK09, Klü12] and FO-
CAML [Jon16], it is impossible to pass a component as a parameter, which makes
these languages less expressive than Treo.

We may view the team component as an example of role-oriented programming
[CDB+16]. Indeed, the team component encapsulates a list of chess engines in a
component, so that they can collectively be used as a single participant in a chess
match:

match() {

fifo1full<"">(a,b) fifo1(c,d)

team<[eng1, eng2]>(a,d) team<[eng3]>(b,c)

}

Treo treats not only component definitions, but also component instances as values.
By passing a single component instance as a parameter to multiple components,
this feature allows component (instance) sharing (cf., [BCL+06, Figure 2]). Hence,
it is straightforward to implement a chess match, wherein a single instance of a
chess engine plays against itself.

4.2 Semantic sorts

As noted in Section 4.1, Reo channels can be defined in many different seman-
tic formalisms [JA12], such as the constraint automaton semantics, the coloring
semantics, or the timed data stream semantics. Although each sort of Reo seman-
tics has its unique properties, each of them can be used to define a collection of
composable components with parameters and nodes, which we call a semantic sort:

Definition 4.2.1 (Semantic sort). A semantic sort over a set of names N with
values from V is a tuple (C,∧, [/],>) that consists of a set of components C, a
composition operator ∧ : C × C −→ C, a substitution operator [/] : C × (N ∪ V)×
N −→ C, and a trivial component > ∈ C.

We assume that the set of names and the set of values are disjoint, i.e., N ∩V =
∅. For convenience, we write C ∧ C ′ for ∧(C,C ′), and C[y/x] for [/](C, y, x). For
any semantic sort T , we write CT for its set of components, ∧T for its composition
operator, [/]T for its substitution operator, and >T for its trivial component. The
composition operator ∧T ensures that the behavior of finite non-empty composi-
tions is well-defined. To empty compositions we assign the trivial component >T .
The substitution operator [/]T allows us to change the interface of a component
via renaming or instantiation. Let C ∈ CT be a component and x ∈ N a name.

89 CHAPTER 4. PROTOCOL SYNTAX

For a name y ∈ N , the construct C[y/x]T renames every occurrence of name x in
C to y. For a value y ∈ V, the construct C[y/x]T instantiates (parameter) x in C
to y.(See Example 4.2.3 for an example of the distinction between renaming and
instantiations.)

A semantic sort T implicitly defines an interface for each component C ∈ C
via the map supp : CT −→ 2N defined as supp(C) = {x ∈ N | C[y/x]T 6=
C, for some name y ∈ N}. If name x does not ‘occur’ in C, substitution of x by
any name y does not affect C, i.e., C[y/x]T = C.

Example 4.2.1 (Systems of differential equations). The set ODE of systems of
ordinary differential equations with variables from N and values V = {v : R −→ R}
constitute a semantic sort. Composition is union, substitution is binding a name or
value to a given name, and the trivial component is the empty system of equations.
Using the ODE semantic sort, we can define continuous systems in Treo. ♦

Example 4.2.2 (Process calculi). Consider the process calculus CSP, proposed
by Hoare [Hoa78]. The set CSP of all such process algebraic terms comprises a
semantic sort. Each process can participate in a number of events, which we can
interpret as names from a given set N . We model the composition of CSP processes
P and Q by means of the interface parallel operator P |[X]| Q, where X ⊆ N is
the set of event names shared by P and Q. We define substitution as simply (1)
renaming the event, if a name is substituted for an event; or (2) hiding the event, if
a values is substituted for an event. Since neither STOP nor SKIP shares any event
with its environment, we may use either one to denote the trivial component. ♦

Example 4.2.3 (I/O-components). Let T be a semantic sort over N and V. We
define the I/O-component sort IOT over T using the notion of a primitive I/O-
component of sort T .

A primitive I/O-component P of sort T is a tuple (C, I,O), where C ∈ CT is a
component, I ⊆ N is a set of input names, O ⊆ N is a set of output names. For
P ⊆ N and x ∈ N and y ∈ N ∪ V, define

P [y/x] =


(P − {x}) ∪ {y} if x ∈ P and y ∈ N
P − {x} if x ∈ P and y ∈ V
P otherwise

(4.1)

We define substitution on primitive I/O-components as

(C, I,O)[y/x] = (C[y/x], I[y/x], O[y/x]),

for all x ∈ N and y ∈ N ∪V. We denote the set of primitive I/O-components over
T as PT .

An I/O-component of sort T is a sequence P1 · · ·Pn ∈ P∗T , with n ≥ 0, of prim-
itive I/O-components of sort T . Composition of I/O-components is concatenation
· of sequences. The trivial I/O-component is the empty sequence ε. We define sub-
stitution of composite I/O-components as (P1 · · ·Pn)[y/x] = P1[y/x] · · ·Pn[y/x],
for all x ∈ N and y ∈ N ∪ V. Hence, IOT = (P∗T , ·, [/], ε) is a semantic sort. ♦

4.3. DENOTATIONAL SEMANTICS 90

4.3 Denotational semantics

We define the denotational semantics of the Treo language over a fixed, but ar-
bitrary, semantic sort T . The main purpose of this denotational semantics is to
provide a clear abstract structure that guides the implementation of Treo parsers.
The syntax to which this denotational semantics applies is the abstract syntax in
Table 4.1. The general structure of our denotational semantics is quite standard,
and adheres to Schmidt’s notation [Sch86].

Although Treo syntax allows recursive definitions, the semantics presented in
this section does not support this feature. Since not all recursive definitions define
finite compositions of components, extending the current semantics with recursion
is not straightforward, and we leave it as future work.

Variables and terms in Treo are structured as non-rectangular arrays. The set
of all (ragged) arrays over a set X is the smallest set X� such that both X ⊆ X�

and [x0, . . . , xn−1] ∈ X�, if n ≥ 0 and xi ∈ X� for all 0 ≤ i < n. For example,
the set N� of ragged arrays over integers contains all natural numbers from N
as ‘atomic’ arrays, as well as the array [37, [], [[2, [55], 3]]] ∈ N�. Every ragged
array has a length, which can be computed via the map len : X� −→ N defined
inductively as len(x) = 0, if x ∈ X, and len([x0, . . . , xn−1]) = n, otherwise. If
x = [x0, . . . , xn−1] ∈ X� is a ragged array, we access its entries via the function
application x(i) = xi, for every 0 ≤ i < n. We extend the access map N� by
defining x([i0, . . . , in]) as{

x(i0)([i1, . . . , in]) if i0 ∈ N
[x(i00)([i1, . . . , in]), . . . , x(i0m)([i1, . . . , in])] if i0 = [i00, . . . , i0m]

, (4.2)

whenever the right-hand side is defined. Two ragged arrays x ∈ X� and y ∈ Y �

have the same structure (x ' y) iff x ∈ X and y ∈ Y , or len(x) = len(y) and
x(i) ' y(i) for all 0 ≤ i < len(x). We can flatten a ragged array from X� to a
sequence over X via the map flatten : X� −→ X∗ defined as flatten(x) = x, if
x ∈ X, and flatten([x0, . . . , xn−1]) = flatten(x0) · · · flatten(xn−1), otherwise.

Suppose that semantic sort T is defined over a set of names N and a set of
values V, with N ∩ V = ∅. For simplicity, we assume that, for every component
C ∈ CT , its support supp(C) ⊆ N is finite. Since Treo views components as values,
we assume the inclusion CT ⊆ V.

We assume that the set of names N is closed under taking subscripts from N.
That is, if x ∈ N is a name and i ∈ N is a natural number, then we can construct
a fresh name xi ∈ N . To construct sequences of data with variable lengths, we use
a map lst : N2 −→ N� that constructs from a pair (i, j) ∈ N2 of integers a finite
ordered list [i, i+ 1, . . . , j] in N�.

Recall from Section 4.1 that a component accepts an arbitrary but finite number
of parameters and nodes. Therefore, we define a component definition as a map
D : V� × N� −→ CT ∪ { } that takes an array of parameter values from V�

and an array of nodes from N� and returns a component or an error . Let

D = (CT ∪{ })V
�×N�

be the set of all definitions. As mentioned earlier, Treo also
allows definitions as values, which amounts to the inclusion D ⊆ V.2

2 Such a set of values V exists only if V 7→ CT ∪ (CT ∪ { })V
�×N�

admits a pre-fixed point.
In this work, we simply assume that such V exists.

91 CHAPTER 4. PROTOCOL SYNTAX

We evaluate every Treo construct in its scope σ : N −→ V�, with N ⊆ N
finite, which assigns a value to a finite collection of locally defined names. We
write Σ = {σ : N −→ V� | N ⊆ N finite} for the set of scopes. For a name
x ∈ N and a value d ∈ V�, we have a scope {x 7→ d} : {x} −→ V� defined as
{x 7→ d}(x) = d. For any two scopes σ, σ′ ∈ Σ, we have a composition σσ′ ∈ Σ such
that for every x ∈ dom(σ) ∪ dom(σ′) we have (σσ′)(x) = σ′(x), if x ∈ dom(σ′),
and (σσ′)(x) = σ(x), otherwise. The composite scope σσ′ can be viewed as an
extension of σ that includes definitions and updates from σ′.

Let Names be the set of parse trees with root N , and let NJ−K : Names −→ N
be the semantics of names. We define the semantics of variables as a map VJ−K :
Variables −→ (N� ∪ { })Σ, where Variables is the set of parse trees with root V .
For a scope σ ∈ Σ, we define VJ−K(σ) as follows:

1. VJNK(σ) = NJNK;

2. VJV [L]K(σ) =

{
x(k) if VJV K(σ) = x ∈ N� and LJLK(σ) = k ∈ N�

 otherwise
.

Since N is closed under taking subscripts, we can define n(i) = ni, for all n ∈ N
and i ∈ N, which ensures that x(k) ∈ N� is always defined.

The semantics of arguments is a map UJ−K : Arguments −→ (N� ∪ { })Σ,
where Arguments is the set of all parse trees with root U . For a scope σ ∈ Σ, we
define UJ−K(σ) as follows:

1. UJεK(σ) = [];

2. UJU, V K(σ) =

{
[x1, . . . , xn+1] if UJUK(σ) = [x1, . . . , xn] and VJV K(σ) = xn+1

 otherwise
.

Let Functions be the set of parse trees with root F , and let FJ−K : Functions −→
{Vk −→ V | k ∈ N} be the semantics of functions. The semantics of terms is a map
TJ−K : Terms −→ (V� ∪ { })Σ, where Terms is the set of parse trees with root T .
For a scope σ ∈ Σ, we define TJ−K(σ) inductively as follows:

1. TJV K(σ) =

{
σ(VJV K(σ)) if defined

 otherwise
;

2. TJCK(σ) = CJCK(σ), which is well-defined since CT ⊆ V;

3. TJDK(σ) = DJDK(σ), which is well-defined since D ⊆ V;

4. TJ[L]K(σ) = LJLK(σ);

5. TJT0 : T1K(σ) =

{
lst(x0, x1 − 1) if TJTiK(σ) = xi ∈ N for i ∈ {0, 1}
 otherwise

;

6. TJT [L]K(σ) =

{
x(k) if TJT K(σ) = x ∈ V� and LJLK(σ) = k ∈ N�

 otherwise
;

4.3. DENOTATIONAL SEMANTICS 92

7. TJF (L)K(σ) =

{
FJF K(LJLK(σ)) if FJF K : Vk −→ V and len(LJLK(σ)) = k

 otherwise
.

The semantics of lists is a map LJ−K : Lists −→ (V� ∪ { })Σ, where Lists is
the set of parse trees with root L. For a given scope σ ∈ Σ, we define SJ−K(σ)
inductively as follows:

1. LJεK(σ) = [];

2. LJL, T K(σ) =


[x1, . . . , xn+1] if LJLK(σ) = [x1, . . . , xn] ∈ V�

and TJT K(σ) = xn+1 ∈ V
 otherwise

;

3. LJL, T0..T1K(σ) =


[x1, . . . , xn+k] if LJLK(σ) = [x1, . . . , xn] ∈ V�,

TJTiK(σ) = ai ∈ V, for i ∈ {0, 1},
and lst(a0, a1) = [xn+1, . . . , xn+k]

 otherwise

.

Since we use predicates in Treo for list comprehension, we define the semantics
of predicates as a map PJ−K : Predicates −→ (2Σ)Σ, where Predicates is the set of
all parse trees with root P . For a scope σ ∈ Σ, we define the semantics PJ−K(σ) of
a predicate P as the set of all extensions of σ that satisfy P . We define PJ−K(σ)
inductively as follows:

1. PJV ∈ T K(σ) =


{σ{x 7→ ti} | 1 ≤ i ≤ n} if VJV K(σ) = x /∈ dom(σ),

and TJT K(σ) = [t1, . . . , tn]

{σ} if TJV K(σ) ∈ TJT K(σ)

∅ otherwise

,

2. If P is R(L), we define PJR(L)K(σ) = {σ′ ∈ Σ | σ′σ = σ′,LJLK(σ′) ∈ RJRK};

3. If P is ¬P , we define PJ¬P K(σ) = {σ′ ∈ Σ | σ′σ = σ′,¬PJP K(σ′)};

4. If P is P0 ∧ P1, we define PJP0 ∧ P1K(σ) = PJP0K(σ) ∩PJP1K(σ);

5. If P is P0 ∨ P1, we define PJP0 ∨ P1K(σ) = PJP0K(σ) ∪PJP1K(σ);

6. If P is (P), we define PJ(P)K(σ) = PJP K(σ).

For set and list comprehensions, we can iterate over only a finite subset of scopes
PJP K(σ) of P . We ensure this by restricting the set of scopes to those solutions that
are minimal with respect to inclusion of domains. Formally, we write min PJP K(σ)
for the set of all scopes that are minimal with respect to ≤ defined as σ1 ≤ σ2 iff
dom(σ1) ⊆ dom(σ2), for all σ1, σ2 ∈ PJP K(σ).

The semantics of component instances is a map CJ−K : Components −→ (CT ∪
{ })Σ, where Components is the set of parse trees with root C. Recall that Treo
views components as values (CT ⊆ V). Given a scope σ ∈ Σ, we define CJ−K(σ)
inductively as follows:

93 CHAPTER 4. PROTOCOL SYNTAX

1. CJV K(σ) =

{
σ(x) if VJV K(σ) = x ∈ dom(σ) and σ(x) ∈ CT
 otherwise

;

2. CJAK(σ) = AJAK, where AJ−K : Atoms −→ CT is the semantics of primitive
components;

3. CJC0C1K(σ) =

{
CJC0K(σ) ∧T CJC1K(σ) if CJCiK(σ) ∈ CT , for i ∈ {0, 1}
 otherwise

;

4. CJ{C : P}K(σ) =


>T if min PJP K(σ) is empty or infinite

C1 ∧T · · · ∧T Ck if min PJP K(σ) = {σ1, . . . , σk} 6= ∅,
and CJCK(σi) = Ci ∈ CT

 otherwise

;

5. CJD〈L〉(U)K(σ) =

{
DJDK(σ)(LJLK(σ),UJUK(σ)) if defined

 otherwise
.

The semantics of component definitions is a map DJ−K : Definitions −→ (D ∪
{ })Σ, where Definitions is the set of all parse trees with root D. For a scope
σ ∈ Σ, we define DJ−K(σ) as follows:

1. DJV K(σ) =

{
σ(VJV K(σ)) if VJV K(σ) = x ∈ dom(σ) and σ(x) ∈ D
 otherwise

;

2. If D is a component 〈U0〉(U1){C}, then for an array of parameter values
t ∈ V� and an array of nodes q ∈ N�, we define DJ〈U0〉(U1){C}K(σ)(t, q)
as follows: Recall from Section 4.1 that the number of parameters and nodes
can implicitly define variables. Suppose that there exists a unique ‘index-
defining’ scope σ′ ∈ Σ such that for m = len(t) and n = len(q). Then we
have

(a) UJU0K(σ′) = [s1, . . . , sm] 6= satisfies si ' t(i), for all 1 ≤ i ≤ m;

(b) UJU1K(σ′) = [p1, · · · , pn] 6= satisfies pi ' q(i), for all 1 ≤ i ≤ n;

(c) flatten([s1, . . . sm, p1, . . . pn]) ∈ N� has no duplicates;

(d) dom(σ′) ⊆ N is minimal such that properties (a)-(c) are satisfied.

We evaluate the body C of the component definition to the component
CJCK(σσ′), where σσ′ is the composition of σ and σ′. Define the map

r : supp(CJCK(σσ′)) −→ N

as

r(x) =


ti(k1) · · · (kl) if x = si(k1) · · · (kl)
qi(k1) · · · (kl) if x = pi(k1) · · · (kl)
v fresh otherwise

Map r is well-defined, because flatten([s1, . . . sm, p1, . . . pn]) ∈ N� has no
duplicates. Note that r is finite, since we assume that supp(CJCK(σσ′)) is

4.4. INPUT/OUTPUT NODES 94

P1 P2 P3

x y z

(a) P1 · P2 · P3

Nx

P ′
1 P ′

2

Ny

P ′
3

Nz

x x1 y1 y2 y3 z3 z

(b) surg(P1 · P2 · P3)

Figure 4.1: Surgery on an I/O-component to remove mixed nodes.

finite. We define DJ〈U0〉(U1){C}K(σ)(t, q) as the simultaneous substitutions
CJCK(σσ′)[r(x)/x : x ∈ dom(f)]. If such ‘index-defining’ scope σ′ does not
exists or is not unique, then we simply define DJ〈U0〉(U1){C}K(σ)(t, q) = .

We define the semantics of files as a map KJ−K : Files −→ Σ∪{ }, where Files
is the set of parse trees with root K. Let IJ−K : Imports −→ Σ be the semantics
of imports. For a scope σ ∈ Σ, we define KJ−K(σ) inductively as follows:

1. KJIK(σ) = IJIK;

2. KJKNDK(σ) =


σ0{x 7→ c} if σ0 = KJKK(σ) 6= , x = NJNK,

and c = DJDK(σ0) 6=
 otherwise

.

4.4 Input/output nodes

As mentioned in Section 4.1, nodes of primitive component definitions require in-
put/output annotations. Treo regards such port type annotations as attributes
of the primitive component. For a semantic sort T , we model the input nodes
and output nodes of its instances via two maps I,O : CT −→ 2N satisfying
supp(C) = I(C) ∪ O(C), for all C ∈ CT . If x ∈ I(C) ∩ O(C), then we call x
a mixed node.

Example 4.4.1 (Mixed nodes). Recall the I/O component sort from Example 4.2.3.
Let P1 = (C1, {x}, {y}), P2 = (C2, {y}, ∅), and P3 = (C3, {z}, {y}) be three primi-
tive I/O components. Figure 4.1(a) shows a graphical representation of composition
of P1, P2, and P3. In this figure, an arrow from a node a to a component P in-
dicates that a is an input node of P . An arrow from a component P to a node
a indicates that a is an output node of P . Node y is an output node of P1 and
P3, and it is an input node of P2. Thus, y is a mixed node in the composition
P1 · P2 · P3, where · is sequential composition of I/O components. ♦

Most semantic sorts that distinguish input and output nodes assume well-
formed compositions: each shared node in a composition is an output of one com-
ponent and an input of the other.

Definition 4.4.1 (Well-formedness). A composition C1 ∧T · · · ∧T Cn, with n ≥ 0,
is well-formed if and only if |{i ∈ {1, . . . , n} | x ∈ I(Ci)}| ≤ 1 and |{i ∈ {1, . . . , n} |
x ∈ O(Ci)}| ≤ 1, for all x ∈ N .

95 CHAPTER 4. PROTOCOL SYNTAX

For well-formed compositions, the behavior of the composition naturally corre-
sponds to the composition of Reo connectors. However, specification of complex
components as well-formed compositions is quite cumbersome, because it requires
explicit verbose expression of the ‘merge-replicate’ behavior of every Reo node in
terms of a suitable number of binary mergers and replicators. Reo nodes abstract
from such detail and yield more concise specifications. Like Reo, Treo does not
impose any restriction on the nodes of constituent components in a composition.
Indeed, the denotational semantics of components CJ−K in Section 4.3 uncondi-
tionally computes the composition. To define the semantics of CJ−K for a semantic
sort T where ∧T requires well-formedness, parsing a(non-well-formed) Treo com-
position needs the degree (i.e., the number of coincident input and output channel
ends) of each node to correctly express the ‘merge-replicate’ semantics of that node.
The degree of every node used in a definition can be known only at the end of that
definition. The Treo compiler could discover the degree of every node via two-pass
parsing.

Alternatively, Treo can delay applying composition ∧T in T until parsing com-
pletes, Treo accomplishes this by interpreting a Treo program over the I/O-component
sort IOT , as defined in Example 4.2.3, wherein compositions consist of lists of prim-
itive components. First, Treo wraps each primitive component C ∈ CT within a
primitive I/O-component (C, I(C), O(C)) ∈ PT . Using Section 4.3, Treo parses
the Treo program over the semantic sort IOT as usual, and obtains a single I/O-
component P1 · · ·Pn ∈ IOT .

However, the resulting composition P1 · · ·Pn may not be well-formed. There-
fore, the Treo compiler applies some surgery on P1 · · ·Pn to ensure a well-formed
composition. This surgery consists of splitting all shared nodes in X, and recon-
necting them by inserting a node component. We model these node components
(over semantic sort T) as a map node : (2N)2 × N −→ CT . For sets of names
I,O ⊆ N and a default name x ∈ N , the component node(I,O, x) ∈ CT has input
nodes I (or {x}, if I is empty) and output nodes O (or {x}, if O is empty).

Definition 4.4.2 (Surgery). The surgery map surg : IOT −→ IOT is defined
as surg(P1 · · ·Pn) = P ′1 · · ·P ′n ·

∏
x∈supp(P1···Pn)Nx, where P ′i = Pi[xi/x : x ∈

supp(Pi)], for all 1 ≤ i ≤ n, and Nx = (node(Ix, Ox, x), Ix, Ox), with Ix = {xi |
x ∈ O(Pi)} and Ox = {xi | x ∈ I(Pi)}. The composition

∏
is ordered arbitrarily.

Intuitively, the surgery map takes a possibly non-well-formed composition and
produces a well-formed composition by inserting node components. Although ini-
tially, multiple components may produce output at the same node. After applying
the surgery map, these components offer data for the same node component via
different ‘ports’.

Example 4.4.2 (Surgery). Figure 4.1(b) shows the result of applying the surgery
map to the I/O-component P1 · P2 · P3 from Example 4.4.1. The surgery map
consists of two parts. First, the surgery map splits every node a ∈ {x, y, z} by
renaming a to ai in Pi, for every 1 ≤ i ≤ n. Second, the surgery map inserts at
every node a ∈ {x, y, z} a node component Na. Clearly, surg(P1 · P2 · P3) is a
well-formed composition. ♦

4.5. RELATED WORK 96

4.5 Related work

The Treo syntax offers a textual representation for the graphical Reo language
[Arb04, Arb11]. We propose Treo as a syntax for Reo that (1) provides support
for parameterization, recursion, iteration, and conditional construction; (2) imple-
ments basic design principles of Reo more closely than existing languages; and
(3) reflects its declarative nature. The graphical Reo editor implemented as an
Eclipse plugin [ECT] does not support parameterization, recursion, iteration, or
conditional construction. RSL (with CARML for primitives) [BBKK09, Klü12] is
imperative, while Reo is declarative. FOCAML [Jon16], supports only constraint
automata [BSAR06], while Treo allows arbitrary user-defined semantic sorts for
expressing the behavior of Reo primitives.

Since Treo leaves the syntax for primitive subsystems (i.e., semantic sorts) as
user-defined, Treo is a “meta-language” that specifies compositional construction
of complex structures (using the common core language defined in this chapter)
out of primitives defined in its arbitrary, user-defined sub-languages. As such, Treo
is not directly comparable to any existing language. We can, however, compare
the component-based system composition of Treo with the system composition of
an existing language.

Treo components are similar to proctype declarations in Promela, the input
language for the SPIN model checker developed by Holzmann [Hol04]. However,
the focus of Promela is on imperative definitions of processes, while Treo is designed
for declarative composition of processes.

SysML is a graphical language for specification of systems [FMS14]. SysML
offers 9 types of diagrams, including activity diagrams and block diagrams. Each
diagram provides a different view on the same system [Kru95]. Diagram types in
SysML are comparable to semantic sorts in Treo. The main difference between the
two, however, is that Treo requires a well-defined composition operator, using which
it allows construction of more complex components, while diagram composition is
much less prominent in SysML.

A component model is a programming paradigm based on components and their
composition. Our Treo language can be viewed as one such component model with
a concrete syntax. Over the past decades, many different component models have
been proposed. For example, CORBA [OMG06] is a component model that is flat
in the sense that every CORBA component is viewed as a black box, i.e., it does
not support composite components. Fractal [BCL+06] is an example of a compo-
nent model that is hierarchical, which means a component can be a composition
of subcomponents. Concrete instances of Fractal consist of libraries (API’s) for a
variety of programming languages, such as Java, C, and OMG IDL [BCL+06]. Treo
components and Fractal component differ with respect to interaction: Treo com-
ponents interact via shared names, while Fractal component interact via explicit
bindings.

4.6 Discussion

We propose Treo as a textual syntax for Reo connectors that allows user-defined
semantic sorts, and incorporates Reo’s predefined node behavior. These features

97 CHAPTER 4. PROTOCOL SYNTAX

are not present in any of the existing alternative languages for Reo. We provided
an abstract syntax for Treo and its denotational semantics based on this abstract
syntax. We identify three possible directions for future work.

First, since our semantics disallows recursion, a component in Treo is currently
restricted to consist of a composition of finitely many subsystems. Consequently,
we cannot, for instance, express the construction of a primitive with an unbounded
buffer, Bω, from a set of primitives with buffer capacity of one, B1. It seems,
however, possible to use simulation and recursion to define Bω in terms of B1:
Bω is the smallest (with respect to simulation) component that simulates B1 and
is stable under sequential composition with B1. These assumptions readily imply
that Bω simulates a primitive with buffer of arbitrary large capacity. Semantically,
the unbounded buffer would then be defined as a least fixed point of a certain op-
erator on components. An extension of Treo semantics that allows such fixed point
definitions would provide a powerful tool to define complex ‘dynamic’ components.

Second, the current semantics in Section 4.3 does not support components with
an identity. If we instantiate a component definition twice with the same pa-
rameters, we obtain two instances of the same component. Ideally, component
instantiation should return a component instance with a fresh identity. Allowing
components with identities in Treo enables programmers to design systems more
realistically.

Finally, a semantic sort T from Definition 4.2.1 consists of a single composition
operator ∧T . Generally, a semantic sort consists of multiple composition operators
(each with it own arity). For example, we may need both sequential composi-
tion as well as parallel composition. Extending Treo with (a variable number of)
composition operators would enable users to model virtually all semantic sorts.

