
Scheduled protocol programming
Dokter, K.P.C.

Citation
Dokter, K. P. C. (2023, May 24). Scheduled protocol programming. Retrieved
from https://hdl.handle.net/1887/3618490

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3618490

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618490

Chapter 3

Protocols with Preferences

The comparison between BIP en Reo in the Chapter 2 shows that priority layer in
BIP has no clear counterpart in graphical Reo language. Although Reo designers
recognize the need for language constructs that express priority, the straightfor-
ward approach to priority taken in BIP is not satisfactory, because BIP lacks a
composition operator that propagates local priorities to global ones. Such a prior-
ity composition operator is required for a full priority model in Reo, because the
semantics of larger Reo connectors is defined as the composition of the semantics
of its channels and nodes. The current chapter aims to partially resolve the dis-
crepancy between BIP and Reo by further developing a (compositional) semantics
for Reo connectors that includes a notion preference1.

The literature offers several semantic formalisms to express the behavior of
Reo connectors. The work in [JA12] collects, classifies, and surveys around thirty
semantics based on co-algebraic or coloring techniques, and other models based on,
for instance, constraints and Petri nets. The operational models (i.e., automata)
are probably the most popular approaches: the main classes are represented by
constraint automata, and (several) related variants, and context-sensitive automata.

The aim of the current work is to generalize soft constraint automata [AS12] or
soft component automata [KAT16, KAT17] (SCA in both cases), which is a variant
of constraint automata that is developed after the publication of the survey [JA12].
An SCA is a state-transition system where transitions are labelled with actions
and preferences. Higher-preference transitions typically contribute more towards
the goal of the component.

The contribution of this chapter is twofold. First, we relax the definition of the
underlying structure that models preferences. Instead of semirings (as in [AS12,
KAT16, KAT17]), we use complete lattice monoids (see Section 3.1.1) to allow
bipolar preferences. Since the unit element, 1, is the only sensible preference of an
idling transition, any useful transition must have a positive preference p > 1.

Second, we extend SCA with a notion of memory (SCAM), as already accom-
plished for (non-soft) constraint automata [JKA17]. Each transition of a SCAM
can also impose a condition on the current data assigned to a finite set of mem-
ory locations, and update their respective values. Therefore, together with states,

1The work in this chapter is based on [DGLS21, DGS18]

57

3.1. PRELIMINARIES ON SOFT CONSTRAINTS 58

memory locations determine the configuration of a connector, and influence its
observable behavior.

The outline of the chapter is as follows: Section 3.1 defines soft constraints and
shows that they can be compared and composed, and their variables renamed and
hidden. Section 3.2 introduces soft constraint automata with memory (SCAMs)
and their interpretation as soft constraints. We define their composition and hiding,
and show their correctness with respect to the soft constraint semantics. Section 3.3
presents a case study illustrating the composition and hiding operations on SCAMs.
Section 3.4 offers a novel encoding of context-sensitive behavior based on SCAMs.
Finally, Section 3.5 summarizes the related work on different semantics proposed
for CA, and Section 3.6 wraps up with conclusive thoughts and hints about future
research.

3.1 Preliminaries on soft constraints

In contrast to Boolean constraints, a soft constraint is a constraint that need not
be fully satisfied [BMR97]. Instead, such a constraint assigns a preference value
that measures the degree of satisfaction of a solution. The goal is to find a solution
that maximizes this preference value.

The structure of this section is as follows: Section 3.1.1 proposes complete lattice
monoids (CLMs) to serve as a structured domain of preference values, which allows
us to compare and compose preference values. Section 3.1.2 develops a complete
lattice monoid of streams equipped with a lexicographic order. We use this con-
struction in the semantics of soft constraint automata in Section 3.2. Section 3.1.3
presents our personal take on cylindric and diagonal operators [SRP91]: they are
mostly drawn with minor adjustments from [GSPV17]. Section 3.1.4 shows that
the set of soft constraints is itself a complete lattice monoid that admits cylindric
and diagonal operators. As such, soft constraints can be compared and composed,
and variables in a soft constraint can be renamed and hidden.

3.1.1 Complete lattice monoids

The first step is to define an algebraic structure that models preference values.
We refer to [GS17] for the missing proofs as well as for an introduction to bipolar
preferences and a comparison with other proposals.

Definition 3.1.1 (Partial order). A partial order (PO) is a pair 〈A,≤〉, such that
A is a set and ≤ ⊆ A×A is a reflexive, transitive, and anti-symmetric relation. A
complete lattice (CL) is a PO, such that any subset of A has a least upper bound
(LUB).

The LUB of a subset X ⊆ A is denoted as
∨
X, and it is unique by anti-

symmetry of ≤. Note that
∨
A and

∨ ∅ correspond respectively to the top, denoted
as >, and to the bottom, denoted as ⊥, of the CL.

Definition 3.1.2 (Complete lattice monoid). A (commutative) monoid is a triple
〈A,⊗,1〉, such that ⊗ : A × A → A is a commutative and associative operation
and 1 ∈ A is its identity element.

59 CHAPTER 3. PROTOCOLS WITH PREFERENCES

A partially ordered monoid (POM) is a 4-tuple 〈A,≤,⊗,1〉, such that 〈A,≤〉 is
a PO and 〈A,⊗,1〉 a commutative monoid. A complete lattice monoid (CLM) is
a POM, such that its underlying PO is a CL.

As usual, we use the infix notation: a⊗ b stands for ⊗(a, b).
According to Definition 3.1.2, the partial order ≤ and the product ⊗ can be

unrelated. This is not the case for monotone CLMs.

Definition 3.1.3 (Monotonicity). A CLM 〈A,≤,⊗,1〉 is monotone if and only if,
for all a, b, c ∈ A, we have that a ≤ b implies a⊗ c ≤ b⊗ c.

Our framework (Lemma 3.1.6) requires a condition that is slightly stronger than
monotonicity:

Definition 3.1.4 (Distributivity). A CLM 〈A,≤,⊗,1〉 is distributive if and only
if, for every element a ∈ A and every subset X ⊆ A, we have

a⊗
∨
X =

∨
{a⊗ x | x ∈ X}.

Note that a ≤ b is equivalent to
∨{a, b} = b, for all a, b ∈ A. Hence, a

distributive CLM is monotone and ⊥ is its zero element (i.e., a ⊗ ⊥ = ⊥, for all
a ∈ A).

Example 3.1.1 (Boolean CLM). The Boolean CLM B = 〈{0, 1},≤,×, 1〉, with
the usual order and multiplication, is a distributive CLM. ♦

Distributive CLMs generalize tropical semirings, which define their (idempo-
tent) sum operator as a ⊕ b =

∨{a, b}, for all a, b ∈ A. If, moreover, 1 is the top
of the CL, we end up with absorptive semirings [Gol03](in the algebraic literature)
or c-semirings [BMR97] (in the soft constraint literature). See [BG06] for a brief
survey on residuation for such semirings. Together with monotonicity, imposing 1
to coincide with > means that preferences are negative(i.e., a ≤ 1, for all a ∈ A).
Since we allow the top of the CL to be strictly positive(i.e., 1 < >), our approach
based on complete lattice monoids falls into the category of bipolar approaches.

Example 3.1.2 (Bipolar CLM). The bipolar CLM K = 〈{0, 1,∞},≤,×, 1〉, with
the usual order and multiplication (extended to ∞ by defining 0 × ∞ = 0 and
1×∞ =∞×∞ =∞ > 1), is a distributive CLM. ♦

Example 3.1.3 (Power set). Given a (possibly infinite) set V of variables, we
consider the monoid 〈2V ,∪, ∅〉 of (possibly empty) subsets of V , with union as the
monoidal operator. Since the operator is idempotent (a ⊗ a = a, for all a ∈ A),
the natural order (a ≤ b ⇔ a ⊗ b = b, for all a, b ∈ A) is a partial order, and
it coincides with subset inclusion: in fact, the power set 〈2V ,⊆,∪, ∅〉 is a CLM.
Moreover, since the LUB,

∨
, and the product, ⊗, both model set-union, the power

set CLM is distributive. ♦

Example 3.1.4 (Extended integers). The extended integers 〈Z ∪ {±∞},≤,+, 0〉,
where ≤ is the natural order, such that, for all k ∈ Z,

−∞ ≤ k ≤ +∞,

3.1. PRELIMINARIES ON SOFT CONSTRAINTS 60

+ is the natural addition, such that, for all k ∈ Z ∪ {+∞},

±∞+ k = ±∞, +∞+ (−∞) = −∞,

and 0 the identity element, constitutes a distributive CLM. Here, +∞ and −∞ are
respectively the top and the bottom element of the CL. ♦

The following construction allows us to compose primitive CLMs (such as those
in Examples 3.1.1 to 3.1.4) into more complex CLMs:

Definition 3.1.5 (Cartesian product). The Cartesian product of two CLMs 〈A1,≤1

,⊗1,11〉 and 〈A2,≤2,⊗2,12〉 is the CLM 〈A1 × A2,≤,⊗, (11,12)〉, such that, for
all (a1, a2), (b1, b2) ∈ A1 ×A2,

1. (a1, a2) ≤ (b1, b2) if and only if a1 ≤1 b1 and a2 ≤2 b2;

2. (a1, a2)⊗ (b1, b2) = (a1 ⊗1 b1, a2 ⊗2 b2).

Note that the Cartesian product is a well-defined CLM.

Lemma 3.1.1. The Cartesian product of distributive CLMs is distributive.

3.1.2 Streams of preferences

We now introduce the CLM of streams, which we use for our semantics of SCAMs
in Definition 3.2.5. Here we generalize the results in [GHMW13] on binary lexi-
cographic operators. In the following, we denote by Aω the set of streams(infinite
sequences) of elements of A.

Definition 3.1.6 (Lexicographic order). Let 〈A,≤〉 be a PO. The lexicographic
order ≤l on Aω is given by

a0a1 · · · ≤l b0b1 · · · iff

{
∀i. ai = bi ∨
∃j. aj < bj ∧ ∀i < j. ai = bi

We write <l for the usual strict version of the lexicographic order ≤l.
The following lemma provides a recursive description of LUBs in lexicographi-

cally ordered streams:

Lemma 3.1.2. Let 〈A,≤〉 be a CL and X ⊆ Aω a subset of the PO 〈Aω,≤l〉.
Then,

∨
X = x0x1x2 · · · ∈ Aω exists and satisfies, for all i ≥ 0, the recursion

xi =
∨
{bi | x0x1 · · ·xi−1bibi+1 · · · ∈ X}.

Proof. Define x0x1 · · · ∈ Aω using the recursion in the lemma.
We prove that x0x1 · · · is an upper bound of X. Let a0a1 · · · 6= x0x1 · · · be

in X. Find the smallest i ≥ 0, such that ai 6= xi. Then, we have ai ∈ {bi |
x0x1 · · ·xi−1bibi+1 · · · ∈ X}, and ai < xi. Thus, a0a1 · · · ≤l x0x1 · · · .

We prove that x0x1 · · · is minimal. Let u0u1 · · · 6= x0x1 · · · be an upper bound
of X. Find the smallest i ≥ 0, such that ui 6= xi. For every x0 · · ·xi−1bi · · · ∈ X, we
have x0 · · ·xi−1bi · · · ≤l u0u1 · · · = x0 · · ·xi−1ui · · · , which implies bi ≤ ui. Hence,
xi =

∨{bi | x0 · · ·xi−1bi · · · ∈ X} ≤ ui, and x0x1 · · · ≤l u0u1 · · · .
We conclude that

∨
X = x0x1 · · · , which proves the result.

61 CHAPTER 3. PROTOCOLS WITH PREFERENCES

Let ⊗ω be the operator on data stream given by the point-wise application
of ⊗, and let 1ω the data stream composed just by 1. Lemma 3.1.2 shows that
〈Aω,≤l,⊗ω,1ω〉 is a CLM. However, it turns out (Lemma 3.1.3) that this CLM is
not distributive due to the presence of non-cancellative (or collapsing) elements in
A:

Definition 3.1.7 (Cancellative elements). An element c in a CLM 〈A,≤,⊗,1〉 is
cancellative if and only if there a⊗ c = b⊗ c implies a = b, for all a, b ∈ A.

In any distributive CLM, ⊥ is a non-cancellative element.

Lemma 3.1.3. The CLM 〈Aω,≤l,⊗ω,1ω〉 is not distributive.

Proof. Let c be a non-cancellative element in a distributive CLM 〈A,≤,⊗,1〉. By
definition, we find distinct elements a, b ∈ A, with a ⊗ c = b ⊗ c. Without loss
of generality, we may assume that a < b (otherwise, take b′ =

∨{a, b} and use
distributivity to show that a⊗c = b′⊗c). Point-wise multiplication of the inequality
a>ω <l b⊥ω by c1ω yields

b⊥ω ⊗ω c1ω = (b⊗ c)⊥ω <l (a⊗ c)>ω = a>ω ⊗ω c1ω,

which contradicts monotonicity (and, hence, distributivity).

To obtain a distributive CLM of streams, we restrict its carrier, Aω, to a suitable
subset. Let Aι be the set of cancellative elements, and let Ac be the set of non-
cancellative elements. The following example shows that the subset Aωι ⊆ Aω of
streams of cancellative elements is not a suitable domain for the CLM of streams,
as it is not closed under LUBs.

Example 3.1.5. Let 〈A,≤,+, 0〉, with A = Z ∪ {±∞}, be the CLM of extended
integers from Example 3.1.4. Observe that Aι = Z and Ac = {±∞}. Although ∅
and {1ω, 2ω, 3ω, · · · } are subsets of Aωι , their respective LUBs are (by Lemma 3.1.2)
equal to (−∞)ω and (+∞)(−∞)ω, and not included in Aωι . ♦

To ensure that the set of streams is closed under LUBs, we further include ele-
ments of the shape A∗ιAc⊥ω: streams prefixed by a (possibly empty) finite sequence
of cancellative elements, then followed by a single occurrence of a non-cancellative
element, and then closed by an infinite sequence of ⊥.

Theorem 3.1.4 (Lexicographic CLM). If S = 〈A,≤,⊗,1〉 is a distributive CLM,
then Sω = 〈Aωι ∪A∗ιAc⊥ω,≤l,⊗ω,1ω〉 is so.

Proof. The POM Sω is a CLM, because its carrier B = Aωι ∪A∗ιAc⊥ω is closed with
respect to LUBs: Let X ⊆ B and

∨
X = x0x1 · · · . Suppose that xi ∈ Ac, for some

i ≥ 0. Let j > i be arbitrary, and consider the set Xj = {b | x0 · · ·xi · · ·xj−1b · · · ∈
X}. Since X ⊆ B and xi ∈ Ac, we have either Xj = ∅ or Xj = {⊥}. By
Lemma 3.1.2, we have xj =

∨
Xj = ⊥, and we conclude that

∨
X ∈ B.

Next, we show that the CLM Sω is distributive, i.e., that a⊗ω∨X =
∨{a⊗ωx |

x ∈ X}. Let X ⊆ B be a subset of the carrier, and a ∈ B. Let also p =
∨
X and

q =
∨{a ⊗ω x | x ∈ X}: we show by induction that ai ⊗ pi = qi for all i ≥ 0. So,

let us suppose that aj ⊗ pj = qj for all 0 ≤ j < i, which is vacuously true for i = 0.

3.1. PRELIMINARIES ON SOFT CONSTRAINTS 62

Lemma 3.1.2 shows that qi =
∨
S, with S = {b | q0 · · · qi−1b · · · ∈ {a⊗ωx | x ∈ X}}.

We distinguish two cases:
Case 1: Suppose that some aj , 0 ≤ j < i, is non-cancellative. Then, a ∈ B

implies that ai = ⊥. Hence, we have either S = ∅ or S = {⊥}, and we find
qi =

∨
S = ⊥ = ai ⊗ pi.

Case 2: Suppose that all aj , 0 ≤ j < i, are cancellative. Then,

qi =
∨
S =

∨
{ai ⊗ xi | x0x1 · · · ∈ X ∧ aj ⊗ xj = qj for all j < i}.

Distributivity of the original CLM and the induction hypothesis implies

qi = ai ⊗
∨
{xi | x0x1 · · · ∈ X, aj ⊗ xj = aj ⊗ pj , for all j < i}.

Applying Lemma 3.1.2 yields

qi = ai ⊗
∨
{xi | p0 · · · pi−1xi · · · ∈ X} = ai ⊗ pi.

In both cases, we find qi = ai ⊗ pi, which completes the proof.

Example 3.1.6. Looking at the CLM 〈Z ∪ {±∞},≤,+, 0〉 of extended integers
from Example 3.1.4 and Example 3.1.5, the set of elements of the associated lexi-
cographic CLM is Zω ∪ Z∗{⊥,>}⊥ω. ♦

3.1.3 Cylindric operators for ordered monoids

We introduce two families of operators on CLMs, which enable hiding and renam-
ing of variables (cf., [GSPV17, GSPV15]). The first family is parameterized by a
cylindric operator, and models existential quantification. The second family is pa-
rameterized by a diagonal operator, and models of equality of variables. Cylindric
and diagonal operators originate in the context of cylindric algebras [HMT81], and
entered the constraint literature via [SRP91].

Definition 3.1.8 (Pomonoid action). Let S = 〈A, popl91 ≤,⊗,1〉 be a CLM and
let P = 〈E,≤〉 a PO. An action of S on P is a function φ : A× E → E, such that,
for all a, b ∈ A and all e ∈ E,

1. φ(1, e) = e,

2. φ(a, φ(b, e)) = φ(a⊗ b, e),

3. a ≤ b =⇒ φ(a, e) ≤ φ(b, e).

The first two requirements state that φ is a monoid action of S on E, and the
third one states that φ is monotone in the first argument.

Let V be a set of variables, and recall the power set CLM 〈2V ,⊆,∪, ∅〉 from
Example 3.1.3. Consider a CLM 〈A,≤,⊗,1〉, whose elements a ∈ A can be thought
of as expressions with variables from V . The partial order, ≤, the product, ⊗, and
the identity, 1, can be thought of as implication, conjunction, and tautology, re-
spectively. The following definition axiomatizes existential quantification for these
expressions.

63 CHAPTER 3. PROTOCOLS WITH PREFERENCES

Definition 3.1.9 (Cylindric operator and support). A cylindric operator ∃ over a
CLM 〈A,≤,⊗,1〉 and set of variables V is an action ∃ : 2V × A → A, such that,
for all X ⊆ V , all a, b ∈ A, and all C ⊆ A,

1. ∃(X,1) = 1,

2. ∃(X, a⊗ ∃(X, b)) = ∃(X, a)⊗ ∃(X, b),

3. ∃(X,∨C) =
∨{∃(X, c) | c ∈ C}.

The support of a ∈ A is the set of variables supp(a) = {x | ∃({x}, a) 6= a}.

In the following, we use ∃Xa for ∃(X, a) and ∃xa, when X = {x}.
Item 3 in Definition 3.1.9 is required for the correctness proofs of SCAM oper-

ations on SCAMs (Theorems 3.2.1 and 3.2.2). Item 3 implies monotonicity of ∃ in
the second argument (a ≤ b implies ∃Xa ≤ ∃Xb, for all X ⊆ V and all a, b ∈ A).
By Definition 3.1.8 it holds that a = ∃∅a ≤ ∃Xa and X ∩ supp(∃(X, a)) = ∅.

Next, we axiomatize expressions that equate two variables:

Definition 3.1.10 (Diagonalisation). Let ∃ be a cylindric operator over a CLM
〈A,≤,⊗,1〉 and a set of variables V . A diagonal operator δ for ∃ is a family of
idempotent elements δx,y ∈ A, indexed by pairs of variables in V , such that, for all
x, y, z ∈ V and a ∈ A,

1. δx,x = 1,

2. δx,y = δy,x,

3. z 6∈ {x, y} =⇒ δx,y = ∃z(δx,z ⊗ δz,y),

4. x 6= y =⇒ δx,y ⊗ ∃x(a⊗ δx,y) ≤ a.

Axioms 1, 2, and 3 plus idempotency of δx,y imply ∃xδx,y = 1, which in turn
implies (using also idempotency of ∃X) supp(δx,y) = {x, y} for x 6= y.

Diagonal operators can be used for modelling variable substitution [GSPV17]:
substituting y for x 6= y in a yields ∃x(a⊗ δx,y).

3.1.4 Soft constraints (on infinite domains)

We define the notion of soft constraints, following the approach in [BMR06], but
generalizing the preference structure, as in [GSPV17, GSPV15]. Soft constraints
are expressions that evaluate to a value in a given CLM. They generalize crisp
constraints, which are expressions that evaluate into the Boolean CLM.

Definition 3.1.11 (Soft constraints). Let V be a set of variables, D a domain
of interpretation and S = 〈A,≤,⊗,1〉 a CLM. A soft constraint is a function
c : (V → D)→ A associating a value in A with each assignment η : V → D of the
variables.

We write C(V,D,S) for the set of all such soft constraints.

3.1. PRELIMINARIES ON SOFT CONSTRAINTS 64

We write cη to denote the application of a constraint c : (V → D) → A to a
variable assignment η : V → D.

Definition 3.1.11 does not impose any restriction on the number of variables and
the size of the domain of interpretation. In fact, our framework requires infinitely
many timed variables, as introduced in Section 3.2.1. Different from standard
practice in soft constraint literature, we also consider a possibly infinite domain
of interpretation, D, which necessitates the introduction of memory locations in
Definition 3.2.3.

In the following example, we introduce notation to view preference values and
Boolean constraints as soft constraints.

Example 3.1.7 (Constant constraints). A preference value a ∈ A induces a soft
constraint [a] defined as [a]η = a, for every assignment η : V → D. ♦

Example 3.1.8 (Boolean constraints). A Boolean constraint B induces a soft
constraint [B] defined, for every assignment η : V → D, as

[B]η =

{
1 if η satisfies B

⊥ otherwise

For example, for a variable v ∈ V , a datum d ∈ D, and an assignment η : V → D,
we have [v = d]η = 1 if and only if η(v) = d. Since conjunction with a tautology
should act as the identity, we choose 1 instead of >. ♦

The set of constraints forms a CLM, with the structure lifted from S.

Lemma 3.1.5 (The CLM of constraints). The set C(V,D, S) of soft constraints,
endowed with partial order ≤, composition ⊗, and unit [1] defined as

1. c1 ≤ c2 if c1η ≤ c2η for all η : V → D

2. (c1 ⊗ c2)η = c1η ⊗ c2η
is a CLM denoted as C(V,D, S). The LUB of a subset C ⊆ C(V,D, S) satisfies
(
∨
C)η =

∨{cη | c ∈ C}, for all assignments η : V → D. The CLM C(V,D,S) is
distributive if S is so.

Combining constraints using the ⊗ operator builds a new constraint whose sup-
port involves at most the variables of the original ones. The composite constraint
associates, with every assignment, a preference that is equal to the product of the
preferences of its constituents.

Note that, in a bipolar setting, we do not have conjunction elimination: for
constraints c1, c2 ∈ C(V,D, S), c2 > 1, monotonicity implies c1 ⊗ c2 > c1, where ≤
is interpreted as implication.

Given a function η : V → D and a set X ⊆ V , we denote by η|X : X → D the
usual restriction.

Lemma 3.1.6 (Cylindric and diagonal operators for constraints). If S is a dis-
tributive CLM, then the CLM of constraints C(V,D, S) admits a diagonal operator
δx,y = [x = y], for all x, y ∈ V , and a cylindric operator ∃X , defined, for all soft
constraints c ∈ C(V,D, S) and all subsets X ⊆ V of variables, as

(∃Xc)η =
∨
{cρ | ρ|V \X = η|V \X}.

65 CHAPTER 3. PROTOCOLS WITH PREFERENCES

Proof. Using the definitions from Example 3.1.8, Lemma 3.1.5, and distributivity
of S, it is straightforward to verify that all axioms in Definitions 3.1.8 to 3.1.10 are
satisfied. For example, for all soft constraints c, d ∈ C(V,D, S) and all X ⊆ V , we
have, for all assignments η : V → D, that

(∃X(c⊗ ∃Xd))η =
∨
{cρ⊗ (∃Xd)ρ | ρ|V \X = η|V \X}

=
∨
{cρ⊗ (

∨
{dξ | ξ|V \X = η|V \X}) | ρ|V \X = η|V \X}

=
∨
{cρ | ρ|V \X = η|V \X} ⊗

∨
{dξ | ξ|V \X = η|V \X}

= (∃Xc⊗ ∃Xd)η,

which shows that ∃X(c⊗ ∃Xd) = ∃Xc⊗ ∃Xd.

Hiding removes variables from the support: supp(∃Xc) ⊆ supp(c) \ X.2 Note
that both the infinite number of variables and the infinite domain of interpretation
necessitate the existence of LUBs in the definition of ∃Xc, which motivates the
introduction of complete lattices in the previous section.

Although a soft constraint c evaluates mappings η : V → D that assign a
value in D to every variables in V , the evaluation cη may depend on the as-
signment of a (finite) subset of them, called its support. The cylindric operator
from Lemma 3.1.6, together with Definition 3.1.9, provides a precise characteriza-
tion of the support of a soft constraint. For instance, a binary constraint c with
supp(c) = {x, y} is a function c : (V → D) → A that depends only on the as-
signment of variables {x, y} ⊆ V , meaning that two assignments η1, η2 : V → D
that differ only for the image of variables z 6∈ {x, y} coincide (i.e., cη1 = cη2). The
support corresponds to the classical notion of scope of a constraint.

3.2 Soft constraint automata with memory

Constraint automata have been introduced in [BSAR06] as a formalism to de-
scribe the behavior and data flow in coordination models(such as the Reo lan-
guage [BSAR06]); they can be considered as acceptors of timed data streams [BSAR06,
DGS18, AR02]. Constraint automata have been enriched with new features to
create more expressive formalisms. On the one hand, constraint automata with
memory (CAM) enrich constraint automata with a finite set of memory loca-
tions [JKA17]. This extension allows one to handle infinite state spaces by enabling
the values of each memory location to range over an infinite data domain. On the
other hand, soft constraint automata (SCA) enrich constraint automata with soft
constraints [AS12]. This extension allows one to express preference amongst dif-
ferent executions.

We present soft constraint automata with memory (SCAM): a generic framework
that captures both CAM and SCA in a single formalism. Our approach differs
significantly from both existing works with respect to its semantics. Originally,
SCA are acceptors of tuples of weighted timed data streams [AS12, DGS18]. In the
current work, we interpret a SCAM as a special kind of soft constraint, encoding
the same information in an alternative way.

2The operator is called projection in constraints literature, and ∃Xc is denoted c ⇓V \X .

3.2. SOFT CONSTRAINT AUTOMATA WITH MEMORY 66

3.2.1 Soft languages

Memory is the capacity to preserve information through time. Therefore, given a
finite set of memory locations L, we model the behavior of a location v ∈ L as an
infinite sequence of timed variables

(v, 0), (v, 1), . . . , (v, i), . . . ,

where variable (v, i) represents the value of memory location v ∈ L at time step
i ∈ N0.

We write L̂ = L×N0 for the set of timed variables. We define the k-th derivative
of a variable x = (v, i) ∈ L̂ as xk = (v, i)k = (v, k+i). We define the k-th derivative

of a set of variables X ⊆ L̂ as Xk = {xk | x ∈ X}.
For notational convenience, we treat a timed variable (v, 0) ∈ L̂ and a plain

variable v as equal, and we write a prime for the first derivative. For example, the
expression m′ = a expands to an expression (m, 1) = (a, 0) on timed variables.

Next, we extend the data domain D with a special symbol ∗ /∈ D that denotes
“no-data”, and write D∗ = D ∪ {∗}. We model a single execution of a SCAM as
an assignment to timed variables.

Definition 3.2.1 (Data stream). A data stream is a map η : L̂→ D∗.

Intuitively, η(v, i) ∈ D∗ represents the data observed at location v ∈ L and time
step i ≥ 0. If η(v, i) = ∗, no data is observed at location v and time step i. We

define the k-th derivative ηk : L̂→ D∗ of a data stream η as ηk(v, i) = η(v, k + i),
for all v ∈ L and i ≥ 0.

We can visualize a data stream η as an infinite table, with columns indexed
by variables v ∈ L, rows indexed by non-negative integers i ∈ N0, and entries
containing either ∗ or data from D. For a time step i ≥ 0, we can represent the
i-th row of η as the partial map ηi : L ⇀ D, with dom(ηi) = {v ∈ L | η(v, i) 6= ∗}
and ηi(v) = η(v, i), for all v ∈ dom(ηi). We refer to ηi as the i-th data assignment.
The empty function τ : L ⇀ D, with dom(τ) = ∅, is also a valid data assignment.
We use τ to represent an explicit silent step.

Definition 3.2.2 (Soft languages). A soft language over a CLM 〈A,≤,⊗,1〉 is a

function c : (L̂→ D∗)→ A.

Suppose that we have a morphism h : A → B. Then, we can view any soft
language c over A as a soft constraint over B. Indeed, the composition h ◦ c
that maps a data stream η to the value h(cη) ∈ B constitutes a soft constraint
over B. In particular, if B is the Boolean CLM B, we can view a soft constraint
as a crisp constraint that defines a set of accepted executions. Hence, such a
constraint corresponds naturally to a constraint automaton [BSAR06], which are
thus subsumed by Definition 3.2.2.

Lemma 3.1.6 shows that soft constraints form a cylindric algebra. Thus, relevant
notions, such as composition and hiding, carry over from soft constraints to SCAMs.
It is straightforward to verify that all these notions correspond to their classical
definitions in the literature.

67 CHAPTER 3. PROTOCOLS WITH PREFERENCES

3.2.2 Syntax

We fix a finite set of memory locations X , a data domain D, and a distributive and
cancellative CLM S. Recall the CLM of constraints C(V,D,S) from Lemma 3.1.5,
for some set of variables V and domain of interpretation D.

Definition 3.2.3 (SCAM). A soft constraint automaton with memory over D and
S is a 6-tuple 〈Q,N ,X ,−→,Q0, c0〉, such that

1. Q is a finite set of states,

2. N is a finite set of port variables,

3. X is a finite set of memory locations,

4. −→ ⊆ Q× 2N × C(N̂ ∪ X ,D∗,S)×Q is a finite set of transitions,

5. Q0 ⊆ Q is a set of initial states, and

6. c0 ∈ C(N̂ ∪ X ,D∗,S) is an initial constraint

such that X ∩N = ∅, supp(c0) ⊆ X , and (q,N, c, p) ∈ −→ implies that supp(c) ⊆
N ∪ X ∪ X ′ (where X ′ = {x′ | x ∈ X} is the set of first derivatives).

We usually write q
N,c−−→ p instead of (q,N, c, p) ∈ −→ and we call N the synchro-

nization constraint and c the guard of the transition, respectively. We say that a
transition is invisible, whenever N = ∅.

Different from [DGS18], the condition supp(c) ⊆ N ∪ X ∪ X ′ means that the
guards are soft constraints with a single time step look-ahead for memory loca-
tions. This is just a simplifying assumption: the following results would carry over
smoothly.

Definition 3.2.4 (Runs). Let T = 〈Q,X ,N ,−→,Q0, c0〉 be a SCAM. A run λ of
T from q ∈ Q is an infinite sequence in −→ω, with λi = (pi, Ni, ci, qi) ∈ −→, such
that p0 = q and qi = pi+1, for all i ≥ 0. We write R(T , q) for the set of runs of T
from q and R(T) =

⋃
q∈Q0

R(T , q) for the set of runs of T .

The intuitive meaning of a SCAM T as an operational model for service queries
is similar to the interpretation of labelled transition systems as models for reactive
systems. The states represent the configurations of a service. The transitions
represent the possible one-step behavior, where the meaning of a transition p

N,c−−→ q

is that we can move from configuration p to q, whenever

1. all ports in n ∈ N perform an I/O operation,

2. all other ports in N\N perform no I/O operation,

3. all ports/memory locations in N ∪ X ∪ X ′ satisfy the guard c.

Each assignment to ports in N represents the data exchanged by the I/O operations
through these ports, while assignments to variables in X and X ′ represent the data
in memory locations before and after the transition.

For example, a transition p
{a,b},[x=a]⊗[x′=b]−−−−−−−−−−−−→ q from state p to q fires ports a and

b, and the value at port a is equal to the current value of the memory x, and the

3.2. SOFT CONSTRAINT AUTOMATA WITH MEMORY 68

q0[a = 10]⊗ [l = 0] q1

〈{b}, cb〉

〈{s}, cs〉

Figure 3.1: A SCAM over the data domain N0 and CLM 〈Z ∪ {±∞},≤,+, 0〉,
where cb = [−b]⊗ [a′ = a− b]⊗ [b ≤ a]⊗ [l′ = b] buys an affordable item and saves
its price, and cs = [s]⊗ [a′ = a+ s]⊗ [l ≤ s] sells that item for a higher price.

next value at the memory x is equal to the current value at port b. Port variables,
if not hidden, can be shared with other SCAM (cf., Definition 3.2.6), while memory
variables are not shared (cf., Theorem 3.2.1).

Example 3.2.1 (A SCAM for buying and selling). We describe an agent that
prefers to buy an item as cheap as possible, and prefers to maximize its profit.
We use the set N0 of natural numbers as a data domain, and we use the extended
integers 〈Z ∪ {±∞},≤,+, 0〉 as preference values. In particular, every datum can
be viewed as a preference value.

Figure 3.1 shows a (deterministic) SCAM for buying and selling. The set of
ports, N , is {b, s}, where the value at b is the purchase price of an item, and the
value at s is the selling price of an item. The set of variables, X , is {a, l}, where a is
the current balance, and l is the price of current item. The soft constraint cb buys
(a′ = a−b) an affordable (b ≤ a) item, and stores its value (l′ = b). The preference
of −b ensures that maximizing preference amounts to minimizing purchase price.
The soft constraint cs sells the current item (a′ = a+ s) for a higher price (l ≤ s).
The preference of s ensures that maximizing preference amounts to maximizing
selling price. ♦

3.2.3 Semantics

Recall the lexicographically-ordered CLM of streams Sω from Theorem 3.1.4. We
interpret a SCAM T as a soft language

L(T) : (N̂ ∪ X → D∗)→ Sω

that assigns a preference stream from Sω to every possible execution. The con-
straint L(T) can be seen as the language of the SCAM T .

We describe the intuitive semantics of a SCAM. Let η : N̂ ∪ X → D∗ be a
data stream. First, we define the preference stream cλη ∈ Sω of η with respect
to a run λ = t0t1t2 · · · ∈ R(T , q) from a state q ∈ Q. We compute the initial
preference c0η ∈ S and, for every transition ti = (pi, Ni, ci, qi) in the run λ, we
compute the preference ctiη

i ∈ S of transition ti, where ηi is the ith derivative of η,
and cti is the soft constraint composed from the guard ci and the synchronization
constraint Ni. For i ≥ 0, consider the composition ai = c0η ⊗ ctiη

i ∈ S. If
the initial condition and all transition guards and synchronization constraints are
satisfied (i.e., ai cancellative, for all i ≥ 0), then the preference stream of η equals
cλη = a0a1a2 · · · ∈ Sω. Otherwise, we set cλη = ⊥ω.

69 CHAPTER 3. PROTOCOLS WITH PREFERENCES

Next, we define the preference value of the data stream η assigned by the SCAM
T as the least upper bound (in the lexicographically-ordered CLM of streams Sω)
over all possible runs that start from an initial state. The lexicographic order
implies that, at any given state, the SCAM prefers to take the outgoing transition
of maximal preference. Indeed, any run that starts with an outgoing transition
of suboptimal preference results in a preference stream that is suboptimal in the
lexicographic order.

Finally, we hide all memory locations, which prevents SCAMs from synchroniz-
ing on shared memory locations (Theorem 3.2.1).

Definition 3.2.5 (SCAM semantics). Let T = 〈Q,N ,X ,−→,Q0, c0〉 be a SCAM.
The semantics of a transition t = (p,N, c, q) ∈ −→ is a soft constraint ct ∈
C(N̂ ∪ X ,D∗,S) defined as

ct = c⊗
⊗
n∈N

[n 6= ∗]⊗
⊗

n∈N\N
[n = ∗].

The semantics of a run λ = t0t1t2 · · · ∈ R(T , q) from a state q ∈ Q is a soft

constraint cλ that maps a data stream η : N̂ ∪ X → D∗ to the preference stream
cλη defined as

cλη =

{
a0a1a2 · · · if ai = c0η ⊗ ctiηi is cancellative, for all i ≥ 0,

⊥ω otherwise

The accepted language of T at q ∈ Q is defined as

L(T , q) =
∨
{cλ | λ ∈ R(T , q)}.

The language of T is defined as

L(T) = ∃X̂
∨
{L(T , q) | q ∈ Q0}.

Definition 3.2.5 deals exclusively with infinite paths in a SCAM T : if a state q
has no outgoing transitions, then c(T , q)η = ⊥, for every data stream η.

Example 3.2.2 (The language of business). Let T be the SCAM from Exam-

ple 3.2.1. Consider a data stream η : ̂{b, s, a, l} → N0 whose prefix is defined in
Figure 3.2. From η(a, 0) = 10 and η(l, 0) = 0, it follows that

c0η = ([a = 10]⊗ [l = 0])η = 1,

which means that the initial condition is satisfied. There exists only one possible
run λ = t0t1 · · · in T from the initial state q0. Hence, the stream of preferences
associated with η satisfies

L(T)η = (∃{̂a,l}
∨
{cλ})η = (∃{̂a,l}cλ)η = cλη,

where the last equality follows from the fact that the preferences are independent
of the memory locations a and l. Concretely, the stream of preferences L(T)η =
a0a1 · · · satisfies

a0 = c0η ⊗ ct0η0 = 1⊗ cbη0 = −η0(b, 0) = −η(b, 0) = −6

a1 = c0η ⊗ ct1η1 = 1⊗ csη1 = η1(s, 0) = η(s, 1) = 7

3.2. SOFT CONSTRAINT AUTOMATA WITH MEMORY 70

x b s a l

η(x, 0) 6 ∗ 10 0

η(x, 1) ∗ 7 4 6

η(x, 2)
...

... 11
...

Figure 3.2: Data stream for the SCAM from Example 3.2.1, wherein the agent
starts with 10 units of money, buys an item for 6 units, and sells it for 7 units.

The lexicographic order on preference streams ensures that any other data stream

ρ : ̂{b, s, a, l} → N0, for which ρ(b, 0) < 6, satisfies L(T)η <l L(T)ρ, which means
that the data stream ρ is preferred over η. In other words, the SCAM T prefers to
minimize the purchase price. ♦

3.2.4 SCAM composition

We now introduce the product of automata, extending [AS12, Definition 5].

Definition 3.2.6 (Soft join). Let Ti = (Qi,Xi,Ni,→i,Q0i, c0i) for i ∈ {0, 1} be
two SCAMs over D and S, with (N0∪N1)∩(X0∪X1) = ∅. Then, their soft product
T0 ./ T1 is the tuple 〈Q0 ×Q1,X0 ∪ X1,N0 ∪ N1,−→,Q00 ×Q01, c00 ⊗ c01〉 where
−→ is the smallest relation that satisfies the rule

q0
N0,c0−−−→0 p0, q1

N1,c1−−−→1 p1, N0 ∩N1 = N1 ∩N0

〈q0, q1〉 N0∪N1,c0⊗c1−−−−−−−−−→ 〈p0, p1〉

The rule applies when there is a transition in each automaton such that they can
fire together. This happens only if the two local transitions agree on the subset of
shared ports that fire (which is empty, if no ports are shared). The transition in the
resulting automaton is labelled with the union of the name sets on both transitions,
and the constraint is the conjunction of the constraints of the two transitions.

Note that the new automaton may include asynchronous executions: it suffices

that the SCAM is reflexive, i.e., every q has an idling transition q
∅,1−−→ q. To avoid

such idling transitions to be of maximal preference, we must use a bipolar CLM of
preferences, wherein > > 1.

We now express the composition of SCAM in Definition 3.2.6 in terms of com-
position of languages as defined in Lemma 3.1.5.

Theorem 3.2.1 (Correctness of soft join). Let T0 and T1 be two SCAMs sharing
no memory location. Then, L(T0 ./ T1) = L(T0)⊗ L(T1).

Proof. We first show that, for all (q0, q1) ∈ Q0 ×Q1, we have

L(T0 ./ T1, (q0, q1)) =
∨
{cρ0 ⊗ cρ1 | ρi ∈ R(Ti, qi), i ∈ {0, 1}}. (3.1)

Let ρ ∈ R(T0 ./ T1, (q0, q1)) be a run from (q0, q1). By construction of T0 ./ T1, we
find runs ρi ∈ R(Ti, qi), for i ∈ {0, 1}, such that cρ = cρ0 ⊗ cρ1 . Hence, cρ is less

71 CHAPTER 3. PROTOCOLS WITH PREFERENCES

than or equal to the right-hand side of Equation (3.1). Since, ρ is arbitrary, we
conclude the ≤ part of Equation (3.1).

For i ∈ {0, 1}, let ρi ∈ R(Ti, qi) be, a run from qi. If ρ0 and ρ1 are not compatible
according to the rule in Definition 3.2.6, we have cρ0 ⊗ cρ1 = [⊥ω] ≤ L(T0 ./
T1, (q0, q1)). If ρ0 and ρ1 are compatible according to the rule in Definition 3.2.6,
we find a run ρ ∈ R(T0 ./ T1, (q0, q1)) from (q0, q1), such that cρ0 ⊗ cρ1 = cρ ≤
L(T0 ./ T1, (q0, q1)). Since ρ0 and ρ1 are abritrary, we conclude the ≥ part of
Equation (3.1), which proves Equation (3.1).

Using Equation (3.1) and Theorem 3.1.4, we find, for (q0, q1) ∈ Q0 ×Q1, that

L(T0 ./ T1, (q0, q1)) =
1⊗
i=0

∨
{cρi | ρi ∈ R(Ti, qi)}

= L(T0, q0)⊗ L(T1, q1)

Since no memory is shared, we have X0 ∩ X1 = ∅. Then,

L(T0 ./ T1) = ∃X̂
∨
{L(T0, q0)⊗ L(T1, q1) | q0 ∈ Q00, q1 ∈ Q01}

= ∃X̂0
∃X̂1

1⊗
i=0

∨
{L(Ti, qi) | qi ∈ Q0i}

=

1⊗
i=0

∃X̂i

∨
{L(Ti, qi) | qi ∈ Q0i} = L(T0)⊗ L(T1),

which proves the result.

3.2.5 SCAM hiding

The hiding operator [BSAR06] abstracts the details of the internal communication
in a constraint automaton. For SCA [AS12, Definition 6], the hiding operator
∃OT removes from the transitions all the information about the ports in O ⊆ N ,
including those in the(support of the) constraints. The definition smoothly extends
over SCAMs: in fact, since we allow silent transitions, our definition is much more
compact.

Definition 3.2.7 (Soft hiding). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM and
O ⊆ N a set of ports. Then, ∃OT is the SCAM 〈Q,X ,N \O −→∗,Q0〉 where −→∗
is defined by q

N\O,∃Oc−−−−−−→∗ p iff q
N,c−−→ p.

We express the correctness of hiding in terms of the cylindric operator on soft
constraints from Lemma 3.1.6.

Theorem 3.2.2 (Correctness of soft hiding). Let T be a SCAM and O a set of its
ports. Then, L(∃OT) = ∃OL(T).

Proof. We prove that, for all q ∈ Q, we have

L(∃OT , q) =
∨
{∃Oc(ρ) | ρ ∈ R(T , q)}. (3.2)

3.3. CASE STUDY 72

By construction of ∃OT in Definition 3.2.7, we have a natural 1-1 correspondence
between runs ρ ∈ R(∃OT , q) in ∃OT from q and runs ρ′ ∈ R(T , q) in T from
q, which satisfies cρ = ∃Ocρ′ . Using the same approach used in the proof of
Theorem 3.2.1 (i.e., ≤ and ≥ on LUBs), we conclude that Equation (3.2) holds.
For all q ∈ Q, we now find that L(∃OT , q) = ∃OL(ρ, q). Hence, L(∃OT) = ∃OL(T),
which proves the result.

3.3 Case study

We present an example that illustrates the operations of composition and hiding for
SCAMs. The example consists of an interrupt management-system tied to a data-
flow of information. Even if academic, it is rooted into concepts widely adopted by
several real-world examples, e.g., a computer CPU receiving hardware and software
interrupts.

We show that, even if the machine has the ability to keep executing a process,
in the presence of a kill signal sent by the operator, the machine chooses to stop.
The given construction could be adapted to express the case where more than one
machine is controlled by an operator.

As a carrier for the preferences of the soft constraints, we use the CLM of
extended integers S = 〈Z ∪ {±∞},≤,+, 0〉 from Example 3.1.4. Recall that a
tautology has preference 1, which is the element 0 ∈ S, and a false constraint has
the least preference −∞ ∈ S. We refer to +∞ as the element >, and −∞ as the
element ⊥.

3.3.1 Operator

Let A = 〈{q0, q1}, {k, s, i, ack}, {c, id},−→, {q0}, [id = ∗] ⊗ [c = 0]〉 be the SCAM
representation of the operator, with transition relation −→ as defined in Figure 3.3.
Initially, the memory id is empty. The operator, in state q0, waits to receive a signal
i and stores the value carried by the signal in the memory location id. Then, the
operator waits for a signal s 6= ∗ to arrive, and takes the outgoing transition from
q0 to q1 only if the value of s equals the current value of memory location id.
Simultaneously, the operator starts a counter by setting the memory location c
to 10. Being in state q1, the operator repeatedly decreases its counter c. When
the value of memory location c becomes negative, the operator sends a kill signal
carrying the value stored in memory location id. If the operator receives, in state
q1, an acknowledge signal ack with the value stored in the memory location id, the
operator sets the counter memory location c to 0, and returns to its initial state
q0.

The preference values in Figure 3.3 ensure that, if the guards of the self tran-
sition at q1 and the transitions from q1 to q0 are satisfied by the same assignment,
the operator prefers to send a kill or acknowledge signal (transitions from q1 to q0)
instead of decreasing its counter (self transition at q1).

73 CHAPTER 3. PROTOCOLS WITH PREFERENCES

q0[id = ∗]⊗ [c = 0] q1

〈∅, [1]〉 〈∅, [1]〉

〈∅, [1]⊗ [c′ = c− 1]〉〈{i}, [>]⊗ [id′ = i]⊗ [id = ∗]〉
〈{s}, [1]⊗ [s = id]⊗ [c′ = 10]〉

〈{k}, [>]⊗ [k = id]⊗ [c ≤ 0]〉

〈{ack}, [>]⊗ [ack = id]⊗ [c′ = 0]〉

Figure 3.3: The operator’s SCAM A over an arbitrary data domain and the CLM
〈Z ∪ {±∞},≤,+, 0〉.

p0

[id = 1]⊗ [c = 0]

p1 p2

〈∅, [1]〉 〈∅, [1]〉 〈∅, [1]〉

〈∅, [2]⊗ [c′ = c− 1]⊗ [c > 0]〉

〈{ack}, [1]⊗ [ack = id]⊗ [c = 0]〉

〈{s}, [e = id]⊗ [c′ ≤ 20]〉 〈{k}, [1]⊗ [k = id]〉

Figure 3.4: The machine’s SCAM B over an arbitrary data domain and the CLM
〈Z ∪ {±∞},≤,⊗,1〉.

3.3.2 Machine

Let B = 〈{p0, p1, p2}, {k, s, ack}, {c, id},−→, {p0}, [id = 1]⊗ [c = 0]〉 be the SCAM
representation of a machine, whose transition relation −→ is shown in Figure 3.4.
The machine starts in p0, with the identity value 1 stored in the memory id.
Whenever the value observed on port s corresponds to its identity id, the machine
can start executing and moves from state p0 to p1. In state p1, the execution of the
machine is simulated by decreasing a counter from a non-deterministically selected
initial value of at most 20. Once the counter reaches 0, the machine sends an
acknowledgement with its own id value, and gets back to state p0. At any point,
however, the machine can be interrupted by a kill signal and goes to state p2.

The constraints of the machine ensure that the machine terminates, if a kill
signal is received. In absence of a kill signal, the machine prefers to execute the
process before sending the acknowledgement.

3.3.3 Composition

Figure 3.5 shows the SCAM of the composition A ./ B of the operator, A, and
the machine, B. Their composition synchronizes on the shared ports k, ack, and s
between A and B. While the I/O direction of a port is not explicitly mentioned,
one should think of the port k as an input port for the machine and output port
for the operator. Similarly, the port ack is used as an output port for the machine
and input port for the operator.

3.3. CASE STUDY 74

s00

[id = 1]⊗ [c = 0]

s11 s02

〈∅, cq1,q1,∅,1 ⊗ cp1,p1,∅,2〉

〈∅, [1]〉

〈∅, [1]〉

〈∅, cp1,p1,∅,2〉

〈∅, cq1,q1,∅,1〉
〈∅, [1]〉

〈{ack}, cq1,q0,{ack} ⊗ cp1,p0〉

〈{s}, cq0,q1 ⊗ cp0,p1〉

〈{i}, cq0,q0,{i} ⊗ cp0,p0〉

〈{k}, cq1,q0,{k} ⊗ cp1,p2〉

Figure 3.5: The product A ./ B of the machine’s SCAM and operator’s SCAM,
where sij = (qi, pj) and cx,y,N,e is the constraint of the underlying SCAM labelling
transition from state x to state y with synchronization set N and constant pref-
erence e. If clear from the context, some elements from x, y,N, e are omitted to
identify the constraint.

s00

[id = 1]⊗ [c = 0]

s11 s01

〈∅, cq1,q1,∅,1 ⊗ cp1,p1,∅,2〉

〈∅, [1]〉
〈∅, cp1,p1,∅,2〉

〈∅, cq1,q1,∅,1〉
〈∅, [1]〉

〈{ack}, cq1,q0,{ack} ⊗ cp1,p0〉

〈{s}, cq0,q1 ⊗ cp0,p1〉

〈{i}, cq0,q0〉

〈∅, cp1,p1,∅,2〉

〈∅, [1]〉

〈{i}, cq0,q0,{i} ⊗ cp0,p0〉

〈{k}, cq1,q0,{k}〉

Figure 3.6: The product A ./ ∃k(B) of the machine’s SCAM and operator’s SCAM
after hiding k in the machine, using the same notation for states and guards as in
Figure 3.5.

If satisfied, the soft constraint cq1,q1,∅,1 ⊗ cp1,p1,∅,23 evaluates to the preference
2 + 1 = 3, and the soft constraint cq1,q0,{k} ⊗ cp1,p2 evaluates to the preference >.
Since 3 < >, when the counter memory of the operator reaches 0, the run where
the kill signal is sent has higher preference than the run where the machine keeps
executing its process.

3.3.4 Hiding

We compare the product A ./ B with the product A ./ ∃k(B), wherein we first
hide the port k in B. As displayed in Figure 3.6, the composite system goes to the
state s01, where the transition 〈∅, cp1,p1,∅,2〉 can still be taken (i.e. the machine
is still running). Hence, hiding the kill signal in B does not force the machine to
terminate its execution. Note that state s01 is a deadlock, because the operator
cannot receive an acknowledge signal or send a kill signal.

3See the label of Figure 3.5 for clarification on the notation.

75 CHAPTER 3. PROTOCOLS WITH PREFERENCES

q 〈{a}, [ε]〉〈{a, b}, [>]⊗ [a = b]〉
〈∅, [1]〉

a b

Figure 3.7: SCAM representation of the context-sensitive lossysync channel, and
its Reo notation. The passing transition, 〈{a, b}, [>] ⊗ [a = b]〉, has priority over
the losing transition, 〈{a}, [ε]〉, and the losing transition has priority over the idling
transition, 〈∅, [1]〉.

3.4 Application to context-sensitivity

We apply our SCAM framework to model context-sensitivity, which is also known
as context-dependency or as context-awareness.

Definition 3.4.1. A component is context-sensitive iff an I/O request by the
environment can disable an action of the component.

One source of context-sensitivity is priority. If an I/O request by the envi-
ronment enables a high-priority action, then previously enabled actions of lower
priority become disabled. Although other sources of context-sensitivity must exist
in theory, we do not know of any convincing example.

The notion of context-sensitivity received considerable attention in the Reo
community. The primal example of a context-sensitive Reo connector is a lossysync
channel, which accepts a datum d from its input end, and either atomically offers d
at its output end, or loses d if the output is not ready to accept. The literature offers
a variety of semantic models that encode context-sensitive behavior, namely color-
ing semantics [CCA07], augmented Büchi automata of records [IBC08], intentional
automata [CNR11], and guarded automata [BCS12]. Context-sensitivity can be en-
coded in context-insensitive models by adding dual ports [JKA11]. Although we
consider context-sensitivity in the realm of Reo, we stress that context-sensitivity
is a fundamental concept that applies to languages other than Reo.

The environment of a connector can be represented in at least two ways. On
the one hand, augmented Büchi automata of records, intentional automata, and
guarded automata represent the environment as the subset of ports of the connec-
tor that have pending requests. On the other hand, coloring semantics and the
encoding in [JKA11] represent the environment as another connector of identical
type that composes with current connector.

All existing context-sensitive models for Reo [CCA07, IBC08, CNR11, BCS12,
JKA11] have special syntax to detect the presence or absence of pending I/O re-
quests. Intentional automata, guarded automata, and augmented Büchi automata
of records query the presence of I/O request via a Boolean guard. The coloring
semantics uses two colors for the absence of data flow, which allows the connector
to detect the presence of I/O requests. The dual ports in the encoding in [JKA11]
serve the same purpose as the two colors in the coloring semantics.

We now propose a context-sensitive semantics without any syntax to detect the
presence or absence of pending I/O requests. As such, our approach is arguably

3.4. APPLICATION TO CONTEXT-SENSITIVITY 76

q0 [m = ∗] q1

〈{a}, [>]⊗ [m′ = a]〉

〈{b}, [>]⊗ [b = m]〉〈∅, [1]〉 〈∅, [1]〉

a

m

b
�

Figure 3.8: SCAM representation of the fifo channel, and its Reo notation.

q0 [m = ∗] q1

〈{a, b}, [>]⊗ [a = b]⊗ [m′ = b]〉

〈{c}, [>]⊗ [c = m]〉〈∅, [1]〉 〈∅, [1]〉

〈{a}, [ε]〉 〈{a}, [ε]〉
a b c

�

Figure 3.9: Composition of the lossysync and fifo in Figures 3.7 and 3.8. If the fifo
channel can drain its buffer, then the lossysync channel cannot lose any datum.

simpler than existing approaches. The basic idea is to distinguish four types of
transitions, namely

1. illegal transitions with unsatisfiable soft constraint.

2. idling transition (i.e., a silent self-loop transition).

3. losing transition (as in the lossysync).

4. regular transitions (i.e., legal, non-idling, non-losing transitions).

We assign to each transition type a unique preference value from the CLM E =
K × B, where ⊥ = (⊥,⊥), 1 = (1,>), ε = (>,⊥), and > = (>,>) correspond
respectively with illegal, idling, losing, and regular transitions.

The partial order ≤ on E induces a priority relation on the set of enabled
transitions in a SCAM over E . If present, the connector fires any enabled transition
of highest priority. The multiplication, ⊗, is used to propagate the types through
composition.

Figure 3.7 shows the SCAM representation of the lossysync channel. We verify
that the SCAM representation of lossysync behaves as desired, if it operates in
isolation. Note that ⊥ < 1 < > and ⊥ < ε < >, but ε and 1 are incomparable. If
the lossysync has no pending I/O operations on a or b, then the idling transition,
〈∅, [1]〉, is the only enabled transition. If there is a pending input at port a, then the
losing transition, 〈{a}, [ε]〉, and the idling transition, 〈∅, [1]〉, are enabled. Since 1
and ε are incomparable, the choice between losing and idling is non-deterministic. If
there are pending I/O operations on both a and b, then all transitions are enabled.
In particular, the passing transition, 〈{a, b}, [>] ⊗ [a = b]〉, has priority over all
other transitions.

77 CHAPTER 3. PROTOCOLS WITH PREFERENCES

We now verify that the SCAM representation of lossysync behaves as desired, if
it operates in a composition. Our approach crucially relies on the correct identifi-
cation of the three different transition types, namely the illegal, idling, and losing
transitions. We define the type of a global transition τ = τ1 | · · · | τn as follows:

1. τ is illegal iff one local transitions τi is illegal,

2. τ is idling iff all local transitions τi are idling,

3. τ is losing iff τ is not illegal and one transitions τi is losing.

4. τ is regular iff τ is not idling and all τi are idling or regular.

The following result ensures that the transition types are correctly propagated
through the composition of SCAMs.

Lemma 3.4.1. Consider the CLM E, and let x = a1 ⊗ · · · ⊗ an, for some n ≥ 2,
and a1, . . . , an ∈ E. Then, for I = {1, . . . , n}, we have

1. x = ⊥ if and only if ∃i ∈ I. ai = ⊥.

2. x = 1 if and only if ∀i ∈ I. ai = 1.

3. x = ε if and only if (∃i ∈ I. ai = ε) ∧ (∀i ∈ I. ai 6= ⊥).

4. x = > if and only if (∃i ∈ I. ai = >) ∧ (∀i ∈ I. ai ∈ {1,>}).

Proof. Follows immediately from the definition.

Example 3.4.1. Consider the composition C of the lossysync channel and the fifo
channel, as depicted in Figure 3.9. Suppose that C is in state q1, which means that
the fifo channel is full. If there is a pending I/O request on port c, then the data
can be taken out of the can drain its buffer, then the lossysync channel cannot lose
any datum. ♦

It is important to observe that the bipolar approach is essential for the construc-
tion of our context-sensitive model. To see this, note that 1 is the only sensible
preference value for an idling transition. Otherwise, composition with an idling
transition would change the preferences. If 1 = > holds (as is the case for c-
semirings), then the priority of the losing transition is necessarily lower than the
priority of the idling transition. Consequently, any component would prefer idling
(which is always possible) over losing, which is clearly undesirable.

3.5 Related work on constraint automata

The closest related work to what is discussed in this chapter concerns other exten-
sions of constraint automata (CAs), previously advanced in the ample literature
about Reo.

Quantitative CAs (QCAs) are introduced in [ACMM07, MA09] with the aim of
describing the behavior of connectors tied to their quality of service (QoS), e.g., a
reliability measure or the shortest transmission time. Similarly to CAs, the states

3.5. RELATED WORK ON CONSTRAINT AUTOMATA 78

of a QCAs correspond to the internal states of the connector it models. The la-
bel on a transition consists instead of a firing set, a data constraint, and a cost
that represents a QoS metric. Hence, QCAs differ from timed [ABdBR07] and
probabilistic [Bai05] constraint automata, because these latter two classes of mod-
els describe functional aspects of connectors, while QoS represents non-functional
properties.

As applications, SCAs have been already used in [AS12, SSAA13] and [KAT16,
KAT17, TNAK16]. Different from previous related work, the main motivation
behind SCAs is to associate an action with a preference. In [AS12, SSAA13] the
authors present a formal framework that is able to discover stateful web services,
and to rank the results according to a similarity score expressing the affinities
between the query, asked by a user, and the services in a database. Preference for
the similarity between the query and each service is modeled through SCAs. In the
second group of works instead, the authors advance a framework that facilitates
the construction of autonomous agents in a compositional fashion; these agents
are ‘soft’, in that their actions are associated with a preference value, and agents
may or may not execute an action depending on a threshold preference. Hence, at
design-time, SCAs can be used to reason about the behavior of the components in
an uncertain physical world, i.e., to model and verify the behavior of cyber-physical
systems.

Research on SCAs is currently a trending topic among all the different lines
concerning Reo. An example is [Tal18], where the authors describe two com-
plementary approaches to the specification and analysis of robust cyber-physical
agent systems: the first one focuses on abstract theoretical concepts based on au-
tomata and temporal logics, called soft component automata; the second approach
describes a concrete experimental approach based on executable rewriting logic
specifications, simulation, search, and model checking, called soft agents [Tal18].
The soft agents framework combines ideas from several previous works: i) the use
of soft constraints and SCAs for specifying robust and adaptive behavior, ii) par-
tially ordered knowledge sharing for communication in disrupted environments, iii)
and the real-time Maude approach to modelling timed systems.

The work in [JKA17] extensively presents a kind of CA (there named as W/MC)
consisting of a finite set of states, a finite set of transitions, three sets of directed
ports, and a set of memory cells. The presence of memory cells in W/MC allows
one to explicitly model the content of buffers, instead of using states. The main
difference is that constraints are not soft in [JKA17], and consequently they do not
allow for representing preference values, as needed by application summarized in
the following paragraph.

Along the same line concerning cyber-physical systems, the related literature
is represented by several works, as for example is [TNAK16] and [BMMS16]. In
[TNAK16] the authors formalize soft agents in the Maude rewriting logic system
[CDE+02]. The most important features of this framework are the explicit rep-
resentation of the physical state, the cyber perception of this state, the robust
communication via sharing of partially ordered knowledge, and the robust behav-
ior based on soft constraints. In [BMMS16] the authors address the problem of
finding what local properties the agents in a cyber-physical system have to satisfy
to guarantee a global required property φ; preferences are modeled via semirings
on actions, and verified through a model checking function. Note that also all

79 CHAPTER 3. PROTOCOLS WITH PREFERENCES

the examples in [KAT16] use SCAs (with preferences) to model the behavior of
cyber-physical systems.

The feature of enhancing automata with memory has roots in the dawn of com-
puter science. In this way, an automaton can base its transition on both the current
symbol being read and values stored in memory; moreover, it can issue commands
to the memory device whenever it makes a transition. For example, pushdown
automata (PDAs) employ a stack through which operations can be determined by
the first element on such a data structure; a transition rule optionally pops the top
of the stack, and optionally pushes new symbols onto the stack. Stack automata
allow access to and operations on deeper elements instead, and can recognize a
strictly larger set of languages than PDAs [HU67]. Applications may concern also
computational models in biology: e.g., automata can use memory to stabilize the
behavior of modeled proteins [AA16].

A conclusive related work is represented by [MSKA14], where Reo channels
are annotated with stochastic values for data arrival rates at channel ends and
processing delay rates at channels. Automata are thus stochastically extended in
order to compositionally derive a QoS-aware semantics for Reo. The semantics
is given by translating a component into continuous-time Markov chains. Our
approach deals with preferences by using a more general approach: we do not only
consider time but different systems of preferences (even bipolar ones), as long as
they can be cast in the algebraic structure we present in Section 3.2.

3.6 Discussion

We have reworked soft constraint automata as originally proposed in [AS12, KAT16],
with the dual purpose of first, extending the underlying algebraic structure in or-
der to model both positive and negative preferences, and second, adding memory
locations as originally provided for ‘standard’ constraint automata [JKA17].

As future work, we have many directions in mind. First, we would like to
extend existing Reo compilers [Jon16, DA18a] to a SCAM-based compiler. Our
results allow the user to conveniently compile context-sensitive connectors.

Next, we would like to exploit the properties of soft constraints to give additional
operators on SCAMs, such as operators for port renaming or for determinizing
guards by adding [m′ = m], whenever m′ is unbound.

Finally, we would like to encode the behavior of SCAMs into a concurrent
constraint programming language [GSPV17]. Such languages provide agents with
actions to tell (i.e., add) and ask (i.e., query) constraints to a centralized store of
information; this store represents a constraint satisfaction problem, and standard
heuristic-based techniques might be applied to find a solution to complex conditions
on filter channels [Arb11].

