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Part I

Coordination
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Chapter 2

Coordination Languages

Software scheduling requires detailed information on the interaction and workload
of the tasks in the given application1. For software written in general-purpose pro-
gramming languages, such information is generally not available, because the in-
teraction protocol is implemented with basic primitives such as locks, semaphores,
and (a)synchronous message passing. With such primitives, the code of the in-
teraction protocol gets easily mixed with the application code, which renders the
analysis, optimization and reusability of the implemented protocol impossible.

Exogenous coordination languages, like BIP [BBS06, BS07] and Reo [Arb04,
Arb11], make the interaction protocol explicit by separating coordination of inter-
actions from computation in processes [PA01]. This enables designers to control
interaction using language constructs, making coordination visible to tools like
model checkers, compilers and schedulers.

In BIP, a concurrent system consists of a superposition of three layers: behavior,
interaction and priorities. The behavior layer contains the processes that need to
be coordinated. The interaction layer explicitly specifies which interactions are
possible, which gives full control over the interactions in the system. Mutually
exclusive execution of these interactions ensures that overlapping interactions do
not cause a conflict. If multiple interactions are possible, then the priority layer
selects a preferred one.

In Reo, processes interact by means of a coordination protocol. A protocol con-
sists of a graph-like structure, called a connector, that models the synchronization
and dataflow among the processes. Reo connectors may compose together to form
more complex connectors, allowing reusability and compositional construction of
coordination protocols.

Although BIP and Reo address the same coordination problem, their underlying
design principles and toolchains (containing tools for editing, code generation and
model checking [bip16, reo16, Arb11]) differ significantly. By combining their prin-
ciples and tools, we would conquer new terrain in the field of concurrent languages.
However, some principles(visible in the formal definitions of each language) may
be conflicting, and prevent such a complete unification. A formal relation between
BIP and Reo is necessary to identify these conflicts.

1The work in this chapter is based on [DJAB17, DJAB15]
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2.1. OVERVIEW OF BIP AND REO 20

In this chapter, we provide such a formal relation between BIP and Reo by
relating their semantic models. We consider two kinds of semantic models for
BIP and Reo: data-agnostic and data-sensitive. In the data-agnostic domain, we
relate port automata as semantics of Reo and BIP architectures [JA12, ABB+14].
We show that connectors in BIP and Reo coincide modulo internal transitions
and independent progress of transitions. In the data-sensitive domain, we relate
stateless constraint automata as semantics of Reo with BIP interaction models
[JA12, BSBJ14]. The restriction to stateless constraint automata arises from the
fact that BIP interaction models are stateless. We show that stateless constraint
automata and BIP interaction models have the same observable behavior.

Stateful data-sensitive Reo connectors require stateful constraint automata for
their semantics, which informally correspond to data-sensitive BIP architectures.
A data-sensitive BIP architecture consists of a (data-sensitive) BIP interaction
model together with a set of coordinating components. However, current literature
on BIP does not provide definitions that allow composition of data-sensitive BIP
architectures. Indeed, only hierarchical composition of interaction models is defined
in [BSBJ14], which is insufficient to define a full composition of data-sensitive BIP
architectures.

We address this problem by using our formal translations to propose a compo-
sition operator for data-sensitive BIP architectures. In addition, we show that it is
possible to relate (stateful) constraint automata and data-sensitive BIP architec-
tures.

Although BIP’s notion of priority is equally applicable to the constraint au-
tomata semantics of Reo, Reo provides no syntax to specify such global priority
preferences.2 Therefore, in this chapter, “BIP” generally refers to “BI(P)”, a name
that others have already used to designate BIP without its priority layer.

The rest of this chapter is organized as follows: In Section 2.1, we recall the
semantic models of BI(P) and Reo. In Section 2.2, we relate port automata in
Reo and BIP architectures. In Section 2.3, we relate BIP interaction models with
stateless constraint automata in Reo. In Section 2.4, we propose an extension of
data-agnostic BIP architectures to the data-sensitive domain, and show how this
enables incremental translation from stateful constraint automata to data-sensitive
BIP architectures. In Section 2.5, we discuss related work. In Section 2.6, we
conclude and point out future work.

2.1 Overview of BIP and Reo

2.1.1 BIP

A BIP system consists of a superposition of three layers: Behavior, Interaction,
and Priority. The behavior layer encapsulates all computation, consisting of atomic
components processing sequential code. Ports form the interface of a component
through which it interacts with other components. BIP represents these atomic

2 Reo does have a weaker priority mechanism to specify local preferences, called context-
sensitivity. A premier example in the Reo literature is the context-sensitive channel LossySync,
which prefers locally maximal dataflow. Clarke et al. first studied context-sensitivity through a
special context-sensitive semantic model for Reo [CCA07]; later, Jongmans et al. showed how to
encode context-sensitivity in non-context-sensitive models [JKA11].
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components as Labelled Transition Systems (LTS) having transitions labelled with
ports and extended with data stored in local variables. The second layer defines
component coordination by means of BIP interaction models [BSBJ14]. For each
interaction among components in a BIP system, the interaction model of that
system specifies the set of ports synchronized by that interaction and the way
data is retrieved, filtered and updated in each of the participating components. In
the third layer, priorities impose scheduling constraints to resolve conflicts in case
alternative interactions are possible.

In the rest of this chapter, we disregard priorities and focus mainly on interac-
tion models (cf. footnote 2).

Data-agnostic semantics We first introduce a data-agnostic semantics for BIP.

Definition 2.1.1 (BIP component [ABB+14]). A BIP component C over a set of
ports PC is a labelled transition system (Q, q0, PC ,→) over the alphabet 2PC . If
C is a set of components, we say that C is disconnected iff PC ∩ PC′ = ∅ for all
distinct C,C ′ ∈ C. Furthermore, we define PC =

⋃
C∈C PC .

Then, BIP defines an interaction model over a set of ports P to be a set of
subsets of P . Interaction models are used to define synchronizations among com-
ponents, which can be intuitively described as follows. Given a disconnected set
of BIP components C and an interaction model γ over PC , the state space of the
corresponding composite component γ(C) is the cross product of the state spaces
of the components in C; γ(C) can make a transition labelled by an interaction
N ∈ γ iff all the involved components (those that have ports in N) can make the
corresponding transitions. A straightforward formal presentation can be found in
[BS07] (cf. Definition 2.1.3 below). Thus, BIP interaction models are stateless: ev-
ery interaction in γ is always allowed; it is enabled if all ports in the interaction are
ready. However, [ABB+14] shows the need for stateful interaction, which motivates
BIP architectures.

Definition 2.1.2 (BIP architecture [ABB+14]). A BIP architecture is a tuple
A = (C, PA, γ), where C is a finite disconnected set of coordinating BIP components,
PA is a set of ports, such that PC =

⋃
C∈C PC ⊆ PA, and γ ⊆ 2PA is a data-agnostic

interaction model. We call ports in PA \ PC dangling ports of A.

Essentially, a BIP architecture is a structured way of combining an interaction
model γ with a set of distinguished components, whose only purpose is to control
which interactions in γ are applicable at which point in time (which depends on
the states of the coordinating components).

Definition 2.1.3 (BIP architecture application [ABB+14]). Let A = (C, PA, γ)
be a BIP architecture, and B a set of components, such that B ∪ C is finite
and disconnected, and that PA ⊆ PB ∪ PC . Write B ∪ C = {Bi | i ∈ I}, with
Bi = (Qi, q

0
i , Pi,→i). Then, the application A(B) of A to B is the BIP compo-

nent (
∏
i∈I Qi, (q

0
i )i∈I , PB ∪ PC ,→), where → is the smallest relation satisfying:

(qi)i∈I
N−→ (q′i)i∈I whenever

1. N = ∅, and there exists an i ∈ I such that qi
∅−→i q

′
i and q′j = qj for all

j ∈ I \ {i}; or
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Figure 2.1: BIP components (a); the coordinating component (b) of the BIP ar-
chitecture A12.

2. N ∩ PA ∈ γ, and for all i ∈ I we have N ∩ Pi 6= ∅ implies qi
N∩Pi−−−−→i q

′
i, and

N ∩ Pi = ∅ implies q′i = qi.

The application A(B), of a BIP architecture A to a set of BIP components B,
enforces coordination constraints specified by that architecture on those compo-
nents [ABB+14]. The interface PA of A contains all ports PC of the coordinating
components C and some additional ports, which must belong to the components
in B. In the application A(B), the ports belonging to PA can participate only in
interactions defined by the interaction model γ of A. Ports that do not belong to
PA are not restricted and can participate in any interaction.

Intuitively, an architecture can also be viewed as an incomplete system: the
application of an architecture consists in “attaching” its dangling ports to the
operand components. The operational semantics is that of composing all compo-
nents (operands and coordinators) with the interaction model as described in the
previous paragraph. The intuition behind transitions labelled by ∅ is that they
represent observable idling (as opposed to internal transitions). This allows us to
“desynchronize” combined architectures (see Definition 2.1.4) in a simple manner,
since coordinators of one architecture can idle, while those of another performs a
transition. Note that, if N = ∅, in item 2 of Definition 2.1.3, N ∩ Pi = ∅, hence
also, q′i = qi, for all i. Thus, intuitively, one can say that none of the components
moves. Item 1, however, does allow one component to make a real move labelled
by ∅, if such a move exists. Thus, the transitions labelled by ∅ interleave, reflecting
the idea that in BIP synchronization can happen only through ports.

Example 2.1.1 (Mutual exclusion [ABB+14]). Consider the components B1 and
B2 in Figure 2.1(a). In order to ensure mutual exclusion of their work states, we
apply the BIP architecture A12 = ({C12}, P12, γ12) with C12 from Figure 2.1(b),
P12 = {b1, b2, b12, f1, f2, f12} and γ12 =

{
∅, {b1, b12}, {b2, b12}, {f1, f12}, {f2, f12}

}
.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only
possible interactions are those that explicitly belong to γ12. Assuming that the
initial states of B1 and B2 are sleep, and that of C12 is free, neither of the
two states (free, work, work) and (taken, work, work) is reachable, i.e. the mutual
exclusion property (q1 6= work) ∨ (q2 6= work)—where q1 and q2 are state variables
of B1 and B2 respectively—holds in A12(B1, B2). ♦

Definition 2.1.4 (Composition of BIP architectures [ABB+14]). LetA1 = (C1, P1, γ1)
and A2 = (C2, P2, γ2) be two BIP architectures. Recall that PCi =

⋃
C∈Ci PC , for
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i = 1, 2. If PC1 ∩ PC2 = ∅, then A1 ⊕ A2 is given by (C1 ∪ C2, P1 ∪ P2, γ12), where
γ12 = {N ⊆ P1 ∪ P2 | N ∩ Pi ∈ γi, for i = 1, 2}. In other words, γ12 is the inter-
action model defined by the conjunction of the characteristic predicates of γ1 and
γ2.

Data-sensitive semantics Recently, the data-agnostic formalization of BIP in-
teraction models was extended with data transfer, using the notion of interaction
expressions [BSBJ14].

Let P be a global set of ports. For each port p ∈ P, let xp : Dp be a typed
variable used for the data exchange at that port. For a set of ports P ⊆ P, let
XP = (xp)p∈P . An interaction expression models the effect of an interaction among
ports in terms of the data exchanged through their corresponding variables.

Definition 2.1.5 (Interaction expression [BSBJ14]). An interaction expression is
an expression of the form

(P ← Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) // (XQ, XL) := dn(XP , XL)]

where P,Q ⊆ P are top and bottom sets of ports; L ⊆ P is a set of local variables;
g(XQ, XL) is the boolean guard; up(XQ, XL) and dn(XP , XL) are respectively the
up- and downward data transfer expressions.

For an interaction expression α as above, we define by top(α) = P , bot(α) = Q
and supp(α) = P ∪Q the sets of top, bottom and all ports in α, respectively. We
denote gα, upα and dnα the guard, upward and downward transfer corresponding
expressions in α.

The first part of an interaction expression, (P ← Q), describes the control flow
as a dependency relation between the bottom and the top ports. The expression in
the brackets describes the data flow, first “upward”—from bottom to top ports—
and then “downward”. The guard g(XQ, XL) relates these two parts: interaction is
enabled only when the values of the local variables together with those of variables
associated to the bottom ports satisfy a boolean condition. As a side effect, an
interaction expression may also modify local variables in XL. Intuitively, such an
interaction expression can fire only if its guard is true. When it fires, its upstream
transfer is computed first using the values offered by its participating BIP compo-
nents. Then, the downstream transfer modifies all of its port variables with updated
values. These upstream and downstream data transfers execute atomically, which
means that an interaction expression behaves as a stateless connector.

Definition 2.1.6 (BIP interaction models [BSBJ14]). A (data-sensitive) BIP in-
teraction model is a set Γ of simple BIP connectors α that are BIP interaction
expressions of the form

({w} ← A).[g(XA) : (xw, XL) := up(XA) //XA := dn(xw, XL)],

where w ∈ P is a single top port, A ⊆ P is a set of ports, such that w 6∈ A, and
neither up nor g involves local variables.
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Example 2.1.2 (Maximum). Let P = {a, b, w, l} be a set of ports of type integer,
i.e., xp :Dp = Z, for all p ∈ P, and consider the interaction expression (simple BIP
connector)

αmax = ({w} ← {a, b}).[tt : xl := max(xa, xb) // xa, xb := xl],

where tt is true. First, the connector takes the values presented at ports a and
b. Then, the simple BIP connector αmax computes atomically the maximum of xa
and xb and assigns it to its local variable xl. Finally, αmax assigns atomically the
value of xl to both xa and xb. ♦

BIP interaction expressions capture complete information about all aspects of
component interaction—i.e., synchronization and data transfer possibilities—in a
structured and concise manner. Thus, by examining interaction expressions, one
can easily understand, on the one hand, the interaction model used to compose
components and, on the other hand, how the valuations of data variables affect
the enabledness of the interactions and how these valuations are modified. Fur-
thermore, a formal definition of a composition operator on interaction expressions
is provided in [BSBJ14], which allows combining such expressions hierarchically
to manage the complexity of systems under design. Since any BIP system can be
flattened, this hierarchical composition of interaction expressions is not relevant
for the semantic comparison of BIP and Reo in this chapter. Nevertheless, the
possibility of concisely capturing all aspects of component interaction in one place
is rather convenient.

2.1.2 Reo

We briefly recall the basics of the Reo language and refer to [Arb04] and [Arb11] for
further details. Reo is a coordination language wherein graph like structures express
concurrency constraints (e.g., synchronization, exclusion, ordering, etc.) among
multiple components. A Reo program, called a connector, is a graph-like structure
whose edges consist of channels that enable synchronous and asynchronous data
flow and whose vertices consist of nodes that synchronously route data among
multiple channels.

A channel in Reo has exactly two ends, and each end either accepts data items,
if it is a source end, or offers data items, if it is a sink end. The type of a channel is a
formal constraint on the dataflow through its two ends that completely defines the
behavior of the channel. Beside the established channel types (Figure 2.2 contains
some of them) Reo allows arbitrary user-defined channel types.

Reo is agnostic regarding the semantics that expresses the behavior of its chan-
nel types, so long as the semantics preserves Reo’s compositional construction
principle (i.e., the behavior of a connector is computed by composing the behav-
iors of all channels and nodes). Jongmans [JA12] provides an overview of thirty
alternative semantics for Reo channels. Its abstract definition of channels and its
notion of channel types make Reo an extensible programming language.

Multiple ends may glue together into nodes with a fixed merge-replicate behav-
ior: a data item out of a single sink end coincident on a node, atomically propagates
to all source ends coincident on that node. This propagation happens only if all
their respective channels allow the data exchange. A node is called a source node
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Figure 2.2: Some primitives in the Reo language with CA semantics over a singleton
data domain D.

a1 a2 ak−1 ak
· · ·

· · ·
b1 b2 bk−1 bk• •

Figure 2.3: Construction of the Alternatork Reo connector, for k ≥ 2.

if it consists of source ends, a sink node if it consists of sink ends, and a mixed node
otherwise. Together, the source and sink nodes of a connector constitute its set of
boundary nodes.

Example 2.1.3 (Primitive channels). Figure 2.2 shows some typical primitive Reo
channels and an example of how these channels can compose at nodes.

A Sync channel accepts a datum from its source end A, when its simultaneous
offer of this datum at its sink end B succeeds.

A SyncDrain channel simultaneously accepts a datum from both its source ends
A and B and loses this datum.

An empty FIFO1 accepts data from its source end A and becomes a full FIFO1.
A full FIFO1 offers its stored data at its sink end B and, when its offer succeeds, it
becomes an empty FIFO1 again.

A Reo node accepts a datum from one of its coincident sink ends (B or B′),
when its simultaneous offer to dispense a copy of this datum through every one of
its coincident source ends (A and A′) succeeds. ♦

The key concept in Reo is composition, which allows a programmer to build
complex connectors out of simpler ones.

Example 2.1.4 (Alternator). Using the channels in Figure 2.2, we can construct
the Alternatork connector, for k ≥ 2, as shown in Figure 2.3. For k = 2, the
Alternator2 consists of four nodes (a1, a2, b1, and b2) and four channels, namely
a SyncDrain channel (between a1 and a2), two Sync channels (from a1 to b1, and
from a2 to b2), and a FIFO1 channel (from b2 to b1).

The behavior of the Alternator2 connector is as follows. Suppose that the en-
vironment is ready to offer a datum at each of the nodes a1 and a2, and ready
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to accept a datum from node b1. According to Example 2.1.3, nodes a1 and a2

both offer a copy of their received datum to the SyncDrain channel. The SyncDrain
channel ensures that nodes a1 and a2 accept data from the environment only si-
multaneously. The Sync channel from a1 to b1 ensures that node b1 simultaneously
obtains a copy of the datum offered at a1. By definition, node b1 either accepts
a datum from the connected Sync channel or it accepts a datum from the FIFO1

channel (but not from both simultaneously), and offers this datum immediately
to the environment. Because the FIFO1 is initially empty, b1 has no choice but to
accept and dispense the datum from a1. Simultaneously, the Sync channel from a2

to b2 ensures that the value offered at a2 is stored in the FIFO1 buffer. In the next
step, the environment at node b1 has no choice but to retrieve the datum in the
buffer, after which the behavior repeats. ♦

Example 2.1.5. Figure 2.4(a) shows a Reo connector that achieves mutual ex-
clusion of components B1 and B2, exactly as the BIP system shown in Figure 2.1
does. This connector consists of a composition of channels and nodes in Figure 2.2.
The Reo connector atomically accepts data from either b1 or b2 and puts it into
the FIFO1 channel, a buffer of size one. A full FIFO1 channel means that B1 or
B2 holds the lock. If one of the components writes to f1 or f2, the SyncDrain
channel flushes the buffer, and the lock is released, returning the connector to its
initial configuration, where B1 and B2 can again compete for exclusive access by
attempting to write to b1 or b2.

The connector in Figure 2.4(a) is not fool-proof. Even if B1 takes the lock, B2

may release it, and vice versa. Hence, exactly as the BIP architecture in Figure 2.1,
the Reo connector in Figure 2.4(a) relies on the conformance of the coordinated
components B1 and B2. The expected behavior of Bi, i = 1, 2, is that it alternates
writes on the bi and fi, and that every write on fi comes after a write on bi. Depend-
ing on such assumptions may not be ideal. The connector, shown in Figure 2.4(b),
makes this expected behavior explicit. By composing two such connectors with the
connector in Figure 2.4(a), we obtain a fool-proof mutual exclusion protocol, as
shown in Figure 2.4(c). Figure 2.6(c) shows the constraint automaton semantics
of the connector in Figure 2.4(c). Like the case of the connector in Figure 2.4(a)
or the BIP architecture in Figure 2.1, noncompliant writes to bi or fi nodes of the
connector in Figure 2.4(c) will block a renegade component Bi that attempts such
writes. However, contrary to the case of the connector in Figure 2.4(a) or the BIP
architecture in Figure 2.1, such a renegade component cannot break the mutual
exclusion protocol that the connector in Figure 2.4(c) implements, as it allows the
other component to run undisturbed. ♦

Formal semantics of Reo Reo has a variety of formal semantics [Arb11, JA12].
In this chapter we use its operational constraint automaton (CA) semantics [BSAR06].

Definition 2.1.7 (Constraint automata [BSAR06]). Let N be a set of ports and
D a set of data items. A data constraint is a first-order formula g with constants
v ∈ D and variables dp, for p ∈ N , that represent the datum observed at (i.e.,
exchanged through) port p. More formally, g is defined by the grammar

g ::= > | ¬g | g ∧ g | ∃dp(g) | dp = v, with p ∈ N , v ∈ D,
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f1 f2

B1 B2
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•

(a) BIP-like mutex

fi
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•

(b)

f1 f2

b1 b2

B1 B2

• • •

(c) Fool-proof mutex

Figure 2.4: Fool-proof (c) mutual exclusion protocol in Reo, composed from a
BIP-like (a) mutual exclusion connector and an alternator connector (b).

where>, ¬, ∧, ∃ and = are respectively tautology, negation, conjunction, existential
quantification and equality. Write DC(N ,D) for the set of all data constraints
over N , and let |= denote the usual satisfaction relation between data assignments
δ : N → D, with N ⊆ N , and data constraints g ∈ DC(N ,D). A constraint
automaton (over data domain D) is a tuple A = (Q,N ,→, q0) where Q is a set of
states, N is a finite set of ports, q0 ∈ Q is the initial state, and → ⊆ Q × 2N ×
DC(N ,D) ×Q is a transition relation, such that, for any transition q

N,g−−→ q′, we
have g ∈ DC(N,D).3

If a constraint automaton A has only one state, A is called stateless. If the
data domain D of A is a singleton, A is called a port automaton [KC09]. In that
case, we omit data constraints, because all satisfiable constraints reduce to >.

In this chapter, we consider only finite data domains, although most of our
results generalize to infinite data domains. Over a finite data domain, the data
constraint language DC(N ,D) is expressive enough to define any data assignment.
For notational convenience, we relax, in this chapter, the definition of data con-
straints and allow the use of set-membership and functions in the data constraints
(compare the definition of g(α) in Section 2.3.3). However, we preserve the inten-
tion that a data constraint describes a set of data assignments.

Example 2.1.6 (CA semantics of Reo primitives). Figure 2.2 shows the CA se-
mantics of some typical Reo primitives. Since constraint automata do not model
the direction of dataflow, the CA semantics of Sync and SyncDrain coincides. ♦

Example 2.1.7 (Exclusive router). The fixed merge-replicate behavior of a Reo
node propagates an input datum to all of its output ports (i.e., source ends coin-
cident on that node). An exclusive router is a connector that propagates an input
datum to one of its, non-deterministically selected, output ports. Figure 2.5(a)
shows the construction of a binary exclusive router from the primitive channels
Sync, SyncDrain, and LossySync. Figure 2.5(b) shows the construction of a ternary

3The original definition of constraint automata excludes internal transitions with ∅,> labels
[BSAR06]. If necessary, all internal transitions may be removed modulo (weak) language equiva-
lence of constraint automata by merging any state q with every state q′ that is reachable from q
by a sequence of internal transitions.
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(a) Binary exclusive router

A

B

B′

B′′

(b) Ternary exclusive router
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{A,B},>

{A,B′},>
(c) Semantics of (a)

q

{A,B′},>{A,B},>

{A,B′′},>
(d) Semantics of (b)

Figure 2.5: Construction of a binary exclusive router (a); construction of a ternary
exclusive router (b) from binary exclusive routers; and the CA semantics (c) and
(d) of the exclusive routers in (a) and (b), respectively.

exclusive router by composing two binary exclusive routers, where we abbreviate a
binary exclusive router as a crossed node. Figures 2.5(c) and 2.5(c) show the CA
semantics of the binary and ternary exclusive router, respectively. ♦

The CA semantics of every Reo connector can be derived as a composition
of the constraint automata of its primitives, using the CA product operation in
Definition 2.1.8.

The CA semantics for Reo connectors assigns a constraint automaton to every
Reo connector. In the other direction, Baier et al. have shown that it is possible to
translate every constraint automaton (over a finite data domain) back into a Reo
connector [BKK14]. For example, Figure 2.8(c) shows the Reo connector that is
generated from the constraint automaton reo1(A12) in Figure 2.8(b). We refer to
Example 2.2.1 for more details. Because of this correspondence, we consider Reo
and CA as equivalent and focus on constraint automata only.

Definition 2.1.8 (Product of CA [BSAR06]). Let Ai = (Qi,Ni,→i, q0,i) be a
constraint automaton, for i = 1, 2. Then the product A1 on A2 of these automata
is the automaton (Q1×Q2,N1∪N2,→, (q0,1, q0,2)), whose transition relation is the

smallest relation obtained by the rule: (q1, q2)
N1∪N2,g1∧g2−−−−−−−−−→ (q′1, q

′
2) whenever

1. q1
N1,g1−−−−→1 q

′
1, q2

N2,g2−−−−→2 q
′
2, and N1 ∩N2 = N2 ∩N1, or

2. qi
Ni,gi−−−→i q

′
i, Nj = ∅, gj = >, q′j = qj , and Ni ∩Nj = ∅ with j ∈ {1, 2} \ {i}.

It is not hard to see that constraint automata product operator is associative
and commutative modulo equivalence of state names and data constraints (e.g.,
dp = v ∧ dq = w is equivalent to dq = w ∧ dp = v, for p, q ∈ N and v, w ∈ D).
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Figure 2.6: CA semantics (a), (b), and (c) of Reo connectors in Figures 2.4(a),
2.4(b), and 2.4(c), respectively.

Definition 2.1.9 (Hiding in CA [BSAR06]). LetA = (Q,N ,→, q0) be a constraint
automaton, and P = {p1, . . . , pn} a set of ports. Then, hiding ports P of A
yields an automaton ∃P (A) = (Q,N \ P,→∃, q0), where →∃ is given by {(q,N \
P,∃dp1 · · · ∃dpn(g), q′) | (q,N, g, q′) ∈ →}.

In addition to removing ports in P from the transition labels, the original def-
inition of hiding merges any two states that become reachable by a sequence of
internal ∅-labelled transitions (Definition 4.3 in [BSAR06] and Footnote 3). Since
we allow these internal transitions, we do not bother to remove the internal transi-
tions produced by the hiding operation in Definition 2.1.9. A constraint automaton
obtained using our hiding operator is (weak) language equivalent to a constraint
automaton obtained using the original hiding operator of [BSAR06].

As hiding of non-shared ports distributes over product, hiding of non-shared
ports commutes with constraint automata product.

Example 2.1.8. Figures 2.6(a) and 2.6(b) show the constraint automaton seman-
tics A0 and Ai, for i ∈ {1, 2}, of the Reo connectors in Figures 2.4(a) and (two
copies of) 2.4(b). Example 2.1.5 indicates that the fool-proof mutual exclusion pro-
tocol in Figure 2.4(c) can be obtain by composing the Reo connectors in Figures
2.6(a) and 2.6(b). Indeed, the constraint automaton semantics of the fool-proof
mutual exclusion protocol in Figure 2.4(c) is given by A = A0 on A1 on A2. The
part of A that is reachable from initial state (0, 0, 0) is shown in Figure 2.6(c). ♦

2.2 Port automata and BIP architectures

To study the relation between BIP and Reo with respect to synchronization, we
start by defining a correspondence between them in the data-agnostic domain. This
correspondence consists of a pair of mappings between the sets containing seman-
tic models of BIP and Reo connectors. For the data independent semantic model
of Reo connectors we choose port automata: a restriction of constraint automata
over a singleton set as data domain. We model BIP connectors by BIP architec-
tures introduced in [ABB+14]. In order to compare the behavior of BIP and Reo
connectors we interpret them as labelled transition systems. We define a mapping
reo1 that transforms BIP architectures into port automata, and a mapping bip1
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Figure 2.7: Translations and interpretations in the data-agnostic domain.

that transforms port automata into BIP architectures. We then show that these
mappings preserve(1) properties closed under bisimulation, and (2) composition
structure modulo semantic equivalence.

2.2.1 Interpretation of BIP and Reo

To compare the behavior of BIP and Reo connectors, we interpret all connectors
as labelled transitions systems with one initial state and an alphabet 2P , for a set
of ports P . We write LTS for the class of all such labelled transition systems.

Figure 2.7 shows our translations and interpretations. The objects PA and Arch
are the classes of port automata and BIP architectures, respectively. The mappings
bip1, reo1, f1 and g1, respectively, translate Reo to BIP, BIP to Reo, Reo to LTS,
and BIP to LTS.

We first consider the semantics of connectors in Reo and BIP. Since BIP con-
nectors differ internally from Reo connectors, we restrict our interpretation to their
observable behavior. This means that we hide the ports of the coordinating compo-
nents in BIP architectures. For port automata this means that for our comparison,
we implicitly assume that all ports correspond to boundary nodes only.

Interpretation of PA We define the interpretation of a port automaton as

f1((Q,N ,→, q0)) = (Q, 2N ,→, q0). (2.1)

Hence f1 acts essentially as an identity function, justifying our choice of interpre-
tation.

Interpretation of Arch We define the interpretation of BIP architectures using
their operational semantics obtained by applying them on dummy components and
hiding all internal ports. Let A = (C, P, γ) be a BIP architecture with coordinating
components C = {C1, . . . , Cn}, n ≥ 0, and Ci = (Qi, q

0
i , Pi,→i). Recall that

PC =
⋃
i Pi is the set of internal ports in A. Define D = ({qD}, qD, P, {(qD, N, qD) |

∅ 6= N ⊆ P \ PC}) as a dummy component relative to the BIP architecture A.
Using Definition 2.1.3, we compute the BIP architecture application A({D}) =
((
∏n
i=1Qi)× {qD}, (q0, qD), P,→s) of A to its dummy component D. Then,

g1(A) = ((
∏n
i=1Qi)× {qD}, 2P\PC ,→, (q0, qD)) (2.2)

where → = {((q, qD), N \ PC , (q′, qD)) | (q, qD)
N−→s (q′, qD)}. In other words,

g1(A) equals A({D}) after hiding all internal ports PC .
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Note that we based our interpretation g1 on the operational semantics of BIP
architectures, i.e., BIP architecture application. This justifies the definition of
interpretation of architectures.

With a common semantics for BIP and Reo, we can define the notion of preser-
vation of properties expressible in this common semantics. Recall that a property of
labelled transition systems corresponds to the subset of labelled transition systems
satisfying that property.

Definition 2.2.1. Let P ⊆ LTS be a property. Then, bip1 preserves P iff f1(A) ∈
P ⇔ g1(bip1(A)) ∈ P for all A ∈ PA. Similarly, reo1 preserves P iff g1(A) ∈ P ⇔
f1(reo1(A)) ∈ P for all A ∈ Arch.

2.2.2 BIP to Reo

To translate BIP connectors to Reo connectors, we first determine what elements
of BIP architectures correspond to Reo connectors. Our interpretations of port
automata and BIP architectures show that dangling ports in BIP architectures
correspond to boundary port names in port automata. Furthermore, the mutual
exclusion of the interactions in an interaction model in a BIP architecture simu-
lates mutually exclusive firing of transitions in port automata. The definition of a
coordinating component in a BIP architecture is almost identical to that of a port
automaton, yielding an obvious translation.

Let A = (C, P, γ) be a BIP architecture, with C = {C1, . . . , Cn}. Each Ci
corresponds trivially to a port automaton C∗i . Let Aγ = ({q}, P,→, q) be the
stateless port automaton over P with transition relation → defined by {(q,N, q) |
N ∈ γ}. Then Aγ can be seen as the port automata encoding of the interaction
model γ. Recall that PC =

⋃
C∈C PC . The corresponding port automaton of A is

given by

reo1(A) = ∃PC(C∗1 on · · ·C∗n on Aγ). (2.3)

Example 2.2.1. We translate the BIP architecture A12 = ({C12}, P12, γ12) from
Example 2.1.1 using reo1 defined in Equation (2.3). First, we transform γ12 into
a port automaton Aγ12 , which is shown in Figure 2.8(a). Then, interpret the
coordinating component C12 as a port automaton C∗12. Finally, we compute the
product of Aγ12 with the coordinating component C∗12 and hide the ports {b12, f12}
of C12. Figure 2.8(b) shows the resulting port automaton.

As mentioned in Section 2.1.2, we can transform the port automaton in Fig-
ure 2.8(b) into a Reo connector, using the method described in [BKK14]. This
mechanical translation yields the Reo connector in Figure 2.8(c)4. Intuitively, each
state is represented by a FIFO buffer, and the current state is indicated by the pres-
ence of a token. A transition is represented by synchronous channels that move
the token from one buffer to another. The transition is selected by an ternary
exclusive router, represented as a crossed node (cf. Example 2.1.7). Note that the
port automaton semantics of the connector in Figure 2.4(a) (see Figure 2.6(a)) is
similar to the automaton in Figure 2.8(b), up to empty transitions. ♦

4For simplicity, we use two FIFO1 buffers instead of simultaneous FIFO1 buffers used in
[BKK14].
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Figure 2.8: Translation of the interaction model γ12 (a) and BIP architecture A12

(b) from Figure 2.1, and the Reo connector (c) generated from reo1(A12).

2.2.3 Reo to BIP

In BIP, interaction is memoryless. This means that a stateful channel in Reo must
translate to a coordinating component. In fact, we may encode an entire generic
Reo connector as one such component.

The most natural way to translate a port automaton A into a BIP architecture
A is by interpreting A as the coordinating component of A. However, BIP requires
atomic components to synchronize via interactions, rather than directly on shared
ports. Indeed, a BIP architecture excludes any two coordinating components to
share a port (see Definition 2.1.2).

Since we want a compositional translation of port automata to BIP architec-
tures, we need to interpret each port p ∈ N in the interface of A as a dangling
port of A (see Definition 2.1.2). To this end, we rename every port p ∈ N in the
interface of A to p′, and synchronize p and p′ by means of a BIP interaction.

Let A = (Q,N ,→, q0) be a port automaton. We construct a corresponding
BIP architecture for A. Duplicate all ports in N by defining N ′ = {n′ | n ∈ N}.
We do not use a port n′, for n ∈ N , for composition with other BIP architectures.
Therefore, the exact names of ports in an N ′ are not important, instead only
their relation to their dangling siblings n ∈ N matters. For every N ⊆ N , define
N ′ = {n′ ∈ N | n ∈ N}. Trivially, A = (Q, q0,N ′,→c), with →c = {(q,N ′, q′) |
(q,N, q′) ∈ →}, is a BIP component (cf. Definition 2.1.1). Essentially, A and A
are the same labelled transition system. Now we define bip1 as follows:

bip1(A) = ({A},N ∪N ′, {N ∪N ′ | N ⊆ N}). (2.4)

Thus, bip1 uses the port automaton as the coordinating component of the generated
BIP architecture.

Example 2.2.2. We determine bip1(A), where A is the port automaton in Fig-
ure 2.6(b) over the name set N = {bi, fi}. Obtain A by adding a prime to each
port in A. The interaction model of bip1(A) consists of {N ∪ N ′ | N ⊆ N} ={
∅, {bi, b′i}, {fi, f ′i}, {bi, b′i, fi, f ′i}

}
. Hence, bip1(A) is given by the BIP architecture

({A}, {bi, fi, b′i, f ′i},
{
∅, {bi, b′i}, {fi, f ′i}, {bi, b′i, fi, f ′i}

}
). ♦
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2.2.4 Preservation of properties

To show that translations reo1 and bip1 preserve properties, we need to show that
the diagram in Figure 2.7 commutes, i.e., f1(reo1(A)) is equivalent to g1(A) and
g1(bip1(A)) is equivalent to f1(A), for all A ∈ Arch and A ∈ PA.

The following examples show that this equivalence cannot be interpreted as
equality or (strong) bisimulation.

Example 2.2.3. Consider the port automaton A = ({q0}, {a}, {(q0, {a}, q0)}, q0).
The translation bip1(A) of A into a BIP architecture is ({A}, {a, a′}, {∅, {a, a′}}),
with coordinating component A = ({q0}, q0, {a′}, {(q0, {a′}, q0)}). Since the in-
teraction model of bip1(A) contains the empty set, we find that the semantics
g1(bip1(A)) of bip1(A) is given by ({q0}, 2{a}, {(q0, {a}, q0), (q0, ∅, q0)}, q0). On
the other hand, the semantics f1(A) of A does not admit an internal transition
(q0, ∅, q0), which shows that g1(bip1(A)) and f1(A) are not strongly bisimilar. ♦

Example 2.2.4. Consider the BIP architecture A = ({C1, C2}, ∅, ∅) with coor-
dinating components Ci = ({qi, q′i}, qi, ∅, {(qi, ∅, q′i)}), for i = 1, 2. Since the in-
teraction model of A is empty, its translation A∅ to a port automaton equals
({qI}, ∅, ∅, qI). In addition, P{C1,C2} = ∅, which shows that the translation of A to
a port automaton equals reo1(A) = ∃P{C1,C2}(C

∗
1 on C∗2 on A∅) = C∗1 on C∗2 . Def-

inition 2.1.8 shows that the semantics f1(reo1(A)) of reo1(A) contains a transition
((q1, q2, qI), ∅, (q′1, q′2, qI)).

Let D = ({qD}, qD, ∅, ∅) be a dummy component relative to the BIP archi-
tecture A. Since BIP architecture application in Definition 2.1.3 requires state-
changing internal (i.e., ∅-labelled) transitions to execute in isolation, we conclude
that A({D}) does not admit a transition ((q1, q2, qD), ∅, (q′1, q′2, qD)). This shows
that the semantics g1(A) of A and f1(reo1(A)) are not strongly bisimilar. ♦

Since equality or (strong) bisimulation is a too strong semantic equivalence, we
use the slightly weaker notion of equivalence called weak bisimulation [Mil89].

Definition 2.2.2 (Weak bisimulation [Mil89]). If Li = (Qi, 2
Pi ,→i, q

0
i ) ∈ LTS,

i = 1, 2, then L1 and L2 are weakly bisimilar (L1
∼= L2) iff P1 = P2 and there exists

R ⊆ Q1 ×Q2 such that (q0
1 , q

0
2) ∈ R and(q1, q2) ∈ R implies for all N ∈ 2P0 = 2P1

and all i, j ∈ {1, 2} with i 6= j, that

1. if qi
∅−→i q

′
i, then qj (

∅−→j)
∗ q′j and (q′1, q

′
2) ∈ R, for some q′j ; and

2. if qi
N−→i q

′
i and N 6= ∅, then qj (

∅−→j)
∗ N−→j (

∅−→j)
∗ q′j and (q′1, q

′
2) ∈ R, for

some q′j .

Definition 2.2.3 (Semantic equivalence). Port automataA and B are semantically
equivalent (A ∼ B) iff f1(A) ∼= f1(B). BIP architectures A and B are semantically
equivalent (A ∼ B) iff g1(A) ∼= g1(B).

Lemma 2.2.1. Semantic equivalence of port automata satisfies the following prop-
erties: for all A0,A1,A2 ∈ PA we have

1. associativity: A0 on (A1 on A2) ∼ (A0 on A1) on A2

2. commutativity: A0 on A1 ∼ A1 on A0
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3. congruence: A0 ∼ A1 implies A0 on A2 ∼ A1 on A2.

Proof. Consider (strong) bisimulation of port automata(i.e., constraint automata
all of whose data constraints are >) as defined in [BSAR06]. Composition of port
automata is commutative and associative up to bisimulation [BSAR06]. Since f1

acts like the identity and every (strong) bisimulation is also a weak bisimulation,
we conclude that composition of port automata is commutative and associative
modulo semantic equivalence.

Since f1 acts as the identity and every (strong) bisimulation is also a weak
bisimulation, we conclude that semantic equivalence of port automata corresponds
to weak bisimulation of port automata. Let Q0, Q1 and Q2 be the state spaces of
A0, A1 and A2, respectively. Suppose that R ⊆ Q0 × Q1 is a weak bisimulation
between A0 and A1. Using Definition 2.1.8, it follows that R′ = {((q0, q2), (q1, q

′
2)) |

(q0, q1) ∈ R and q2 = q′2} ⊆ (Q0×Q2)× (Q1×Q2) is a weak bisimulation between
A0 on A2 and A1 on A2.

Theorem 2.2.2. For all A ∈ PA and A ∈ Arch we have g1(bip1(A)) ∼= f1(A) and
f1(reo1(A)) ∼= g1(A).

Proof. First, we show that g1(bip1(A)) ∼= f1(A) for all port automataA = (Q,N ,→
, q0) ∈ PA. The state space of g1(bip1(A)) is Q × {qD}, where qD is the state of
the dummy component, and the state space of f1(A) is Q. We show that ∼ given
by (q, qD) ∼ q for all q ∈ Q is a weak bisimulation.

Trivially, (q0, qD) ∼ q0. Suppose that ((q, qD), N, (q′, qD)) is a transition in
g1(bip1(A)). We show that either N = ∅ and q′ = q, or there exists a transition
(q,N, q′) in f1(A) with (q′, qD) ∼ q′. Using the shape of the interaction model γ,
we obtain a transition ((q, qD), N ∪N ′, (q′, qD)) in bip1(A)({D}), with N ′ = {n′ |
n ∈ N}. Definition 2.1.3, with C = {A} and B = {D}, shows that either

1a) N ∪N ′ = ∅, (q, ∅, q′) is a transition in A, and qD = qD; or

1b) N ∪N ′ = ∅, (qD, ∅, qD) is a transition in D, and q′ = q; or

2) N ∪ N ′ ∈ γbip1(A), and if N ′ 6= ∅ then (q,N ′, q′) is a transition in A, and if
N ′ = ∅ then q′ = q, and if N 6= ∅ then (qD, N, qD) is a transition in D, and
if N = ∅ then qD = qD.

If (1a) holds, then N = ∅, and by the definition of f1 we find a transition (q,N, q′)
in f1(A). Trivially, (q′, qD) ∼ q′. Case (1b) is impossible, since dummy component
D does not have an empty transition. Suppose that (2) holds. If N = ∅, then we
have q′ = q. If N 6= ∅, then the definition of f1 gives a (q,N, q′) in f1(A), and
trivially we have (q′, qD) ∼ q′. Thus, in each case, either N = ∅ and q′ = q, or
there exists a transition (q,N, q′) in f1(A) with (q′, qD) ∼ q′.

On the other hand, let (q,N, q′) be a transition in f1(A). We show that there
exists a transition ((q, qD), N, (q′, qD)) in g1(bip1(A)). Using the definition of f1,
we find that (q,N ′, q′) is a transition in A, with N ′ = {n′ | n ∈ N}. If N = ∅,
then the first rule of Definition 2.1.3 implies that ((q, qD), N ∪ N ′, (q′, qD)) is a
transition in bip1(A)({D}). If N 6= ∅, then we have that (qD, N, qD) is a transition
in the dummy component D of the BIP architecture application bip1(A)({D}). The
second rule of Definition 2.1.3 implies that ((q, qD), N ∪N ′, (q′, qD)) is a transition
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in bip1(A)({D}). In either case, we find that ((q, qD), N, (q′, qD)) is a transition
in g1(bip1(A)) and trivially that (q′, qD) ∼ q′. Thus, ∼ is a weak bisimulation
between g1(bip1(A)) and f1(A).

Second, We show that f1(reo1(A)) ∼= g1(A) for any BIP architecture A =
({Ci}i∈I , P, γ) with components given by Ci = (Qi, q

0
i , Pi,→i), for all i ∈ I. The

state space of f1(reo1(A)) is (
∏
i∈I Qi)×{qI}, where qI is the state of the port au-

tomaton of the interaction model of A. The state space of g1(A) is (
∏
i∈I Qi)×{qD},

where qD is the state of the dummy component. We show that ∼ given by
(q, qI) ∼ (q, qD) for all q = (qi)i∈I ∈

∏
i∈I Qi, is a weak bisimulation.

Trivially, (q0, qI) ∼ (q0, qD). Let ((q, qD), N, (q′, qD)) be a transition in g1(A),
for someN ⊆ P\PC . We show that ((q, qI), N, (q

′, qI)) is a transition in f1(reo1(A)).
The definition of g1 shows that there exists some M ⊆ P , with M \ PC = N , such
that ((q, qD),M, (q′, qD)) is a transition in A({D}), where D is the dummy com-
ponent of A. Definition 2.1.3 implies that either

1a) M = ∅, (qi, ∅, q′i) ∈ →i and q′j = qj , for some i ∈ I and all j ∈ I \ {i}; or

1b) M = ∅, (qD, ∅, qD) is a transition in D, and q′j = qj for all j ∈ I; or

2) M ∈ γ, and if M ∩Pi 6= ∅ then (qi,M ∩Pi, q′i) ∈ →i, and if M ∩Pi = ∅ then
q′i = qi, for all i ∈ I.

If (1a), then (qi, ∅, q′i) is a transition in C∗i . Hence, the second item in Defini-
tion 2.1.8 gives a transition ((q, qI), N, (q

′, qI)) in f1(reo1(A)), with N ⊆ M = ∅.
Case (1b) is impossible, since dummy component D does not have an empty tran-
sition. If (2), then M ∈ γ implies (qI ,M, qI) ∈ Aγ . Using Definition 2.1.8 and
M \ PC = N , we find a transition ((q, qI), N, (q

′, qI)) in f1(reo1(A)).
Let ((q, qI), N, (q

′, qI)) be a transition in f1(reo1(A)), for some N ⊆ P \PC . We

show that there exist a sequence of transitions (q, qI) (
∅−→)∗

N−→ (q′, qI) in g1(A).
The definition of reo1 shows that there exists some M ⊆ P such that M \ PC =
N and ((q, qI),M, (q′, qI)) is a transition in C∗1 on · · ·C∗n on Aγ . According to
Definition 2.1.8, we find that either

1) (q,M,q′) and (qI ,M, qI) are transitions in C∗1 on · · · on C∗n resp. Aγ ; or

2a) (q,M,q′) is a transition in C∗1 on · · · on C∗n and M ∩ P = ∅; or

2b) (qI ,M, qI) is a transition in Aγ , M ∩ PC = ∅ and q′ = q.

If (1) holds, then M ∈ γ, and, for each i ∈ I, we have either M ∩Pi = ∅ and q′i = qi
or we find a transition (qi,M ∩ Pi, q′i) in C∗i . Definition 2.1.3 requires a transition
(qi,M ∩ Pi, q′i) in C∗i that satisfies both M ∩ Pi = ∅ and q′i 6= qi to execute in

isolation. Therefore, Definition 2.1.3 yields a sequence of transitions (q, qI) (
∅−→

)∗ (q, qI)
N−→ (q′, qI) in g1(A), where qi = q′i, if M ∩Pi = ∅ and q′i 6= qi, and qi = qi

otherwise. If (2a) holds, then N ⊆ M = M ∩ P = ∅ and, by Definition 2.1.8,
we have for some i ∈ I that (qi, ∅, q′i) is a transition in C∗i . Similar to case(1),

we obtain a non-empty sequence of transitions (q, qI) (
∅−→)+ (q′, qI) in g1(A). If

(2b) holds, then we have N = M ∈ γ, and Definition 2.1.3 shows that there exist

a transition (q, qI)
N−→ (q′, qI) in g1(A). In each case, we found a sequence of
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transitions (q, qI) (
∅−→)∗

N−→ (q′, qI) in g1(A), and (q′, qI) ∼ (q′, qD). Thus, ∼ is a
weak bisimulation between f1(reo1(A)) and g1(A).

Corollary. bip1 and reo1 preserve all properties closed under weak bisimulation,
i.e., for all P ⊆ LTS, A ∈ PA and A ∈ Arch we have f1(A) ∈ P ⇔ g1(bip1(A)) ∈ P
and g1(A) ∈ P ⇔ f1(reo1(A)) ∈ P , whenever L ∈ P and L′ ∼= L implies L′ ∈ P ,
for all L,L′ ∈ LTS.

Section 2.2.4 allows model checking of BIP architectures with Reo model check-
ers, and vice versa. This is particularly interesting, since tools for BIP and Reo
employ different model checking techniques. For example, the D-Finder tool allows
for compositional deadlock detection and verification of BIP systems [bip16], while
Vereofy allows for linear and branching time model checking of Reo systems [reo16].

Example 2.2.5. Consider the following safety property ϕ satisfied by the Reo
connector in Figure 2.4(c): “if b1 fires, then b2 fires only after f1 fires”. The
automaton A in Figure 2.6(c) clearly satisfies this property. Using Section 2.2.4,
we conclude that the BIP architecture bip1(A) satisfies ϕ also. ♦

2.2.5 Compatibility with composition

BIP architectures and port automata have their own notions of composition. We
show that, under some mild conditions, our translations preserve composition mod-
ulo semantic equivalence.

Recall the port automaton representation of the interaction model from Sec-
tion 2.2.2. The following lemma provides a decomposition of the port automaton
representation of the interaction model of a composed BIP architecture.

Lemma 2.2.3. Let Ai = (Ci, Pi, γi) ∈ Arch, i = 1, 2, with PC1 ∩ PC2 = ∅ and
∅ ∈ γ1 ∩ γ2. Then, we have that Aγ12 ∼ Aγ1 on Aγ2 , where γ12 is the interaction
model of A1 ⊕A2.

Proof. Let (q,N, q) be a transition in Aγ12 . By definition, N ∈ γ12, and from
Definition 2.1.4 we deduce N ∩ Pi ∈ γi, i = 1, 2. Therefore (q,N ∩ Pi, q) is a
transition in Aγi . Then, Definition 2.1.8, implies that ((q, q), N, (q, q)) in Aγ1 on
Aγ2 . On the other hand, suppose that ((q, q), N, (q, q)) is a transition in Aγ1 on Aγ2 .
Then, Definition 2.1.8 gives either that (1) for i = 1, 2, (q,N ∩Pi, q) is a transition
in Aγi , or (2) for i, j ∈ {1, 2}, i 6= j, (q,N ∩ Pi, q) is a transition in Aγi and
N ∩ Pj = ∅. In the first case, we conclude that N ∩ Pi ∈ γi, for i = 1, 2. Hence,
Definition 2.1.4 implies N ∈ γ12. In the second case, we see that N ∩ Pi ∈ γi and
N ∩Pj = ∅ ∈ γj , since ∅ ∈ γ1 ∩γ2. Thus, Definition 2.1.4 implies N ∈ γ12. In both
cases we find N ∈ γ12, and we conclude that (q,N, q) is a transition of Aγ12 .

For any two BIP architectures A1, A2 ∈ Arch, consider the equation

reo1(A1 ⊕A2) ∼ reo1(A1) on reo1(A2), (2.5)

Recall that reo1 hides all internal ports PC1∪C2 of A1⊕A2, where, for i ∈ {1, 2}, Ci
is the set of coordinating components of Ai. This means that internal ports PC1∪C2
in A1 ⊕ A2 cannot be used for composition in the right hand side of equation
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Equation (2.5). In particular, the BIP architectures cannot share any internal port
in PC1∪C2 = PC1 ∪PC2 . Therefore, we need to assume that PC1 ∩P2 = PC2 ∩P1 = ∅,
where, for i ∈ {1, 2}, Pi is the interface of Ai.

Note that shared internal ports can be transformed into shared dangling ports.
Let p ∈ PC1 ∩ P2 be a dangling port of P2 that is connected to a component in
A1. Change A1 to A′1 by adding a (dangling) port x to A1 and synchronizing p
with x by changing the BIP interaction model γ1 of A1 to γ′1 = {N ∪ {x} | p ∈
N ∈ γ1} ∪ {N | p /∈ N ∈ γ1}. Change A2 to A′2 by renaming p to x in A2. The
resulting architectures A′1 and A′2 satisfy the assumption. This construction shows
that PC1 ∩ P2 = PC2 ∩ P1 = ∅ is only a mild assumption.

Theorem 2.2.4. reo1(A1 ⊕ A2) ∼ reo1(A1) on reo1(A2) for all Ai = (Ci, Pi, γi) ∈
Arch, with PC1 ∩ P2 = PC2 ∩ P1 = ∅ and ∅ ∈ γ1 ∩ γ2.

Proof. Let C1 ∪ C2 = {C1, . . . , Cn, . . . , Cm}, with Ci ∈ C1 iff i ≤ n, be the set of
coordinating components of A1 and A2. By definition, we have reo1(A1 ⊕A2) =
∃PC1∪C2(C∗1 on · · ·C∗n on C∗n+1 on · · ·C∗m on Aγ12). Using Lemmas 2.2.1 and 2.2.3,
we obtain reo1(A1⊕A2) ∼ ∃PC1∃PC2(C∗1 on · · ·C∗n on Aγ1 on C∗n+1 on · · ·C∗m on Aγ2).
From PC1 ∩ P2 = PC2 ∩ P1 = ∅, we conclude that the port automata C∗1 , . . . , C

∗
n

and Aγ1 do not use ports from PC2 . Since hiding of non-shared ports distributes
over composition of port automata, we find that

reo1(A1 ⊕A2) ∼ ∃PC1(C∗1 on · · ·C∗n on Aγ1) on ∃PC2(C∗n+1 on · · ·C∗m on Aγ2).

Hence, we conclude that reo1(A1 ⊕A2) ∼ reo1(A1) on reo1(A2).

Theorem 2.2.5. bip1(A1 on A2) ∼ bip1(A1)⊕ bip1(A2) for all Ai ∈ PA.

Proof. Applying Theorem 2.2.4, with A1 = bip1(A1) and A2 = bip1(A2), gives
that reo1(bip1(A1) ⊕ bip1(A2)) ∼ reo1(bip1(A1)) on reo1(bip1(A2)). Using Theo-
rem 2.2.2, we find, for any B ∈ PA, that f1(reo1(bip1(B))) ∼= g1(bip1(B)) ∼= f1(B)
and reo1(bip1(B)) ∼ B. Since semantic equivalence is a congruence by Lemma 2.2.1,
we find that reo1(bip1(A1) ⊕ bip1(A2)) ∼ A1 on A2 ∼ reo1(bip1(A1 on A2)). By
Theorem 2.2.2, we conclude that bip1(A1)⊕ bip1(A2) ∼ bip1(A1 on A2)

Example 2.2.6. For any two ports x and y, let A{x,y} be the port automaton
of a synchronous channel (cf. Figure 2.2), and let C{x,y} be its corresponding BIP
component. Suppose we need to translate A{a,b} on A{b,c} to a BIP architecture.
Then, we compute bip1(A{a,b}) = ({C{a′,b′}}, {a, a′, b, b′}, γ{a,b}), with

γ{a,b} = {∅, {a, a′}, {b, b′}, {a, a′, b, b′}}.

Next, we compute bip1(A{b,c}) = ({C{b′′,c′′}}, {b, b′′, c, c′′}, γ{b,c}), with

γ{b,c} = {∅, {b, b′′}, {c, c′′}, {b, b′′, c, c′′}}.

Note that we need to use double primes now, because otherwise b′ would be a shared
port of C{a′,b′} and C{b′′,c′′}. Using Theorem 2.2.5, we find that bip1(A{a,b} on
A{b,c}) = bip1(A{a,b})⊕ bip1(A{b,c}). Therefore, A{a,b} on A{b,c} translates to

({C{a′,b′}, C{b′′,c′′}}, {a, a′, b, b′, b′′, c, c′′}, γ{a,b,c}),

where γ{a,b,c} is the composition of γ{a,b} and γ{b,c}. ♦
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Example 2.2.7. Consider the port automaton A from Figure 2.6(c). If we trans-
late A to BIP, we obtain a BIP architecture B1 = bip1(A), which has only a single
coordinating component. From Example 2.1.8, we see that A ∼= A0 on A1 on A2,
where A0 is the port automaton in Figure 2.6(a), and Ai is the port automaton
in Figure 2.6(b), for i = 1, 2. Now consider B3 = bip1(A0)⊕ bip1(A1)⊕ bip1(A2).
Using Definition 2.1.4, we see that B3 has three coordinating components. Never-
theless, Theorem 2.2.5 shows that B3 is semantically equivalent to B. Therefore,
Theorem 2.2.5 allows to compute translations compositionally. ♦

2.3 Stateless CA’s and interaction models

In Section 2.2, we established a correspondence between port automata and BIP
architectures. Here, we offer translations between data-sensitive connector models
in BIP and Reo.

For BIP connectors we use BIP interaction models, which are tuples consisting
of an interface P and a set Γ of interaction expressions α that have:

1. a single top port that is not a bottom port,

2. bottom ports included in their interface P , and

3. guard and up functions that are independent of local variables (Definition 2.1.5).

We assume that every top port occurs only in one interaction expression per BIP
interaction model. We denote the class of such BIP interaction models by IM.

For the semantics of Reo connectors, we take a pair consisting of a constraint
automaton and a partition of its interface into input ports Nin and output ports
Nout5. We call such pairs constraint automata with polarity. The reason we ex-
plicitly distinguish CA port types in this semantics is to give direction to dataflow,
similar to BIP connectors. Usually such port type distinctions are implicit within
the semantics of Reo connectors, but for preciseness we encode them here as a
partition.

A full correspondence of BIP interaction models and constraint automata with
polarity in Reo is not possible. Firstly, BIP interaction models are stateless, we
need to restrict ourselves here to only stateless constraint automata with polarity
[ABB+14, BSBJ14]. Secondly, ports of a BIP interaction expression are bidirec-
tional in the sense that input and output through a port happen simultaneously
in a single execution step. Ports in a Reo connector are unidirectional in the sense
that each port is either an input port or an output port. To accommodate this
distinction, we split every bidirectional port p in a BIP interaction expression into
an input port p!, providing write operations to the user of the connector, and an
output port p?, providing read operations to the user of the connector. Therefore,
we consider the class CA± of all stateless constraint automata with polarity, such
that, for some set of BIP ports P , we have the set of Reo ports Nin = {p! | p ∈ P},
Nout = {p? | p ∈ P}, and, for every p ∈ P , ports p! and p? synchronize (i.e., p! ∈ N
if and only if p? ∈ N for every transition (q,N, g, q′) ∈ →).

5To simplify notation, we deviate from [DJAB15] by excluding internal ports.
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Reo BIP

CA± IM

LTS
f2

bip2

g2

reo2

[BSAR06][BKK14] [BSBJ14]

Figure 2.9: Translations and interpretations in the data-sensitive domain.

a b c

α = (∅ ← {a, b, c}).[g : up // down]

a! a? b! b? c! c?
R

Figure 2.10: Simulating bidirectional ports in BIP with unidirectional ports in Reo.

As in Section 2.2, we interpret all connectors as labelled transition systems.
Then, we define translations between Reo connectors (CA±) and BIP connectors
(IM), and show that they preserve properties.

2.3.1 Interpretation of BIP and Reo

Consider the diagram in Figure 2.9. Classes CA± and IM consist of constraint
automata with polarity and BIP interaction models. Morphisms bip2 and reo2 are
translations of those classes and f2 and g2 are interpretations in a common LTS
semantics. We do not intend to redefine the semantics of constraint automata with
polarity and of BIP interaction models in this section. Hence, we interpret them
using their definitions from [BSAR06, BSBJ14].

The class LTS in Figure 2.9 is the class of all labelled transition systems over an
alphabet (D+1)2P , where D is a set of data items; 1 = {0}, where 0 represents the
absence of data (similar to void or null); and 2P = {p!, p? | p ∈ P} is the duplicated
(unidirectional) port set of a set of (bidirectional) ports P . If the environment
writes a datum d to bidirectional port p of a connector, then we represent this
by an assignment of d to the unidirectional port p!. If the environment reads a
datum d from a bidirectional port p of a connector, then we represent this by an
assignment of d to the unidirectional port p?.

Example 2.3.1. Figure 2.10 shows an example of this port duplication. First, the
upward data transfer expression in α takes data from the bottom ports a, b and c.
In the Reo connector R, this corresponds to taking data from ports a!, b! and c!.
Finally, the downward data transfer expression in the BIP interaction expression α
offers data to the bottom ports, which corresponds in Reo connector R to offering
data to ports a?, b? and c?. ♦

Interpretation of IM We first define the interpretation g2(Γ) ∈ LTS of a BIP
interaction model Γ. We define the interface of g2(Γ) to be 2P = {p!, p? | p ∈ P},
where P is the interface of Γ. We define the data domain of g2(Γ) to be D =⋃
p∈P Dp, where Dp is the data type of port p (cf. Section 2.1.1). We associate to
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every interaction expression α ∈ Γ a set ∆(α) ⊆ (D + 1)2P of data assignments
δ : 2P → D+ 1, and we add, for every α ∈ Γ and δ ∈ ∆(α), a transition (q, δ, q) to
the stateless labelled transition system g2(Γ).

We introduce some notation to define the set of data assignments ∆(α). For
every BIP interaction expression α, we write Pα for its bottom ports, gα for its
guard, upαw and upαL for the restriction of the up function to its top port and its
local variables, respectively, and dnαbot for the restriction of the down function to its
bottom ports. For every data assignment δ : 2P → D+ 1, we define δup(p) = δ(p!)
and δdn(p) = δ(p?), for all p ∈ Pα.

In this notation, we define

g2(Γ) = ({q}, (D + 1)2P , {(q, δ, q) | α ∈ Γ, δ ∈ ∆(α)}), (2.6)

where δ ∈ ∆(α) iff δ(2P \ 2Pα) = {0}, δdn = dnαbot(up
α
w(δup), up

α
L(δup)), and

gα(δup) = tt. Note that we use the value of upαw(δup) as a local variable, since we
consider only non-hierarchical BIP interaction models.

In [BSBJ14], Bliudze et al. encode BIP interaction models in Top/Bottom
(T/B) components, i.e., an automaton over interaction expressions together with
local variables. Furthermore, they define a semantics for T/B components, which
indirectly defines an interpretation of interaction models. Equation (2.6) imitates
this interpretation without using T/B components explicitly.

Interpretation of CA± We now define the interpretation of a stateless con-
straint automaton with polarity A = ({q},Nin,Nout,→, q) ∈ CA± over a data
domain D. By definition, we find a set of unidirectional ports P , such that
Nin = {p! | p ∈ P}, Nout = {p? | p ∈ P}, and, for every p ∈ P , ports p! and
p? synchronize. We use 2P as the port names of f2(A). We obtain the transitions
of f2(A) by replacing every transition labelled with N, g in A with a set of tran-
sitions labelled with δ ∈ ∆(N, g) = {δ : 2P → D + 1 | δ(2P \ N) = {0}, δ |= g},
where ∆(N, g) contains all data assignments δ : 2P → D + 1 that satisfy the
synchronization constraint N and data constraint g. Now, define

f2(A) = ({q}, (D + 1)2P , {(q, δ, q) | q N,g−−→ q, δ ∈ ∆(N, g)}). (2.7)

2.3.2 Reo to BIP

Since BIP interaction models are stateless, we cannot translate an arbitrary con-
straint automaton (i.e., Reo connector) into BIP. Interaction models in BIP pre-
clude keeping track of the state of a Reo connector. Hence, the translation of the
interaction model of a BIP architecture into a port automaton in Section 2.2.2
inspires us for our translation bip2.

First, we describe intuitively how we translate a stateless constraint automaton
A over a data domain D to a BIP interaction model. We transform every transition
in A with label N, g into a simple BIP connector with N as its bottom ports,
together with a guard, an up and a down function that mimic the data constraint
g. We define the corresponding set bip2(A) of BIP interaction expressions by the
set of all transformed transitions from A.
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We now construct an interaction expression for any transition labelled N, g in
automaton A as follows:

α(N, g) = ({wN,g} ← PN ).[gin(XPN
) : YPN

:= solve(g,XPN
) //XPN

:= YPN
],

where PN satisfies 2PN = {p!, p? | p ∈ PN} = N ; the variables XPN
= {xp |

p ∈ PN} model the values assigned to bottom ports; the variables YPN
= {yp |

p ∈ PN} model some fresh local variables; the guard gin is any quantifier free
formula equivalent to ∃ON : g(IN , ON ), with input variables IN = {dp! | p! ∈ N}
and output variables ON = {dp? | p? ∈ N}; and function solve(g,XPN

) returns
any vector YPN

satisfying g(XPN
, YPN

). All variables have data type D (the data
domain of A), i.e., xp :D for all p ∈ N .

Let P be the interface of A. Define bip2 as follows:

bip2(A) = (P, {α(N, g) | (q,N, g, q) ∈ →}). (2.8)

Intuitively, the solve function in α(N, g) computes a solution of the guard g,
given all input values dp!, with p! ∈ N . Note that the solve function in α(N, g) is
not deterministic. However, comparing the solve function to the random function
in Figure 4 in [BSBJ14], we see that this generality is justified.

Example 2.3.2. Consider a Sync channel from port a to b. To model this chan-
nel as a constraint automaton A ∈ CA±, we duplicate the ports and obtain the
interface P = {a!, a?, b!, b?}. In view of Figure 2.2, we model a Sync channel as
A = ({q}, P, {(q, P, g, q)}, q), with g ≡ da! = db?. The translation of A to a BIP
interaction model consist of a single BIP interaction expression

α(P, g) = ({w} ← {a, b}).[tt : (ya, yb) := (xa, xb) // (xa, xb) := (ya, yb)],

because tt ≡ ∃da?∃db?(da! = db?), for any given da!, db! ∈ D, and the solve function
solve(g, xa, xb) = (xa, xb) acts as the identity. ♦

2.3.3 BIP to Reo

The correspondence between BIP interaction expressions and automata transitions
from Section 2.3.2, provides the main idea for the translation of interaction models
into stateless constraint automata. If Γ is a set of simple BIP connectors, we assign
to every α ∈ Γ a transition τα labelled with N(α), g(α), and subsequently construct
the stateless constraint automaton consisting of all such τα transitions.

Let α be a simple BIP interaction expression. Define N(α) = 2Pα = {p?, p! |
p ∈ Pα}. Furthermore, let D? = (dp?)p∈P , D! = (dp!)p∈P , and define

g(α) =
∧
p∈P dp!, dp? ∈ Dp ∧ gα(D!) ∧ D? = dnαbot(up

α
w(D!), upαL(D!)),

where we use our relaxation on the data constraint language from Section 2.1.2 and
our notation regarding a BIP interaction expression α from Section 2.3.1. Note that
g(α) is independent of the top port w, because we consider only non-hierarchical
connectors.

Let Γ be a set of simple BIP connectors with interface P . Recall that D =⋃
p∈P Dp. Define the constraint automaton reo2(Γ) over D by

reo2(Γ) = ({q}, P ! ∪ P?, {(q,N(α), g(α), q) | α ∈ Γ}, q). (2.9)
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Example 2.3.3. Consider the interaction expression αmax from Example 2.1.2,
with data domain restricted to D = {0, . . . , 232 − 1}. We translate the interaction
model Γ = {αmax} using Equation (2.9), i.e., we compute A = reo2(Γ). Trivially,
A is stateless. Its set of input ports equals P ! = {a!, b!}, and its set of output
ports equals P? = {a?, b?}. A has a single transition (q,N, g, q), with guard g ≡∨
x,y,z∈D : z=max(x,y)(da! = x ∧ db! = y ∧ da? = z ∧ db? = z) and synchronization

constraint N = {a!, b!, a?, b?}. ♦

2.3.4 Preservation of properties

To show the faithfulness of translations bip2 and reo2, we show that interpretations
f2 and g2 commute with translations bip2 and reo2 in Figure 2.9.

Theorem 2.3.1. For all A ∈ CA± and all Γ ∈ IM we have g2(bip2(A)) = f2(A)
and f2(reo2(Γ)) = g2(Γ).

Proof. (Sketch) Let A ∈ CA± be a constraint automaton with polarity with in-
terface P , let (q,N, g, q) be a transition in A, and let δ : 2P → D + 1 be a data
assignment. By definition, we have δ ∈ ∆(α(N, g)) if and only if δ(2P \2Pα) = {0},
δdn = dnαbot(up

α
w(δup), up

α
L(δup)), and gα(δup) = tt, where α = α(N, g). Using the

definition of α(N, g), it follows that δ ∈ ∆(α(N, g)) if and only if δ(2P \N) = {0}
and δ satisfies g. Thus, δ ∈ ∆(α(N, g)) if and only if δ ∈ ∆(N, g). Using the
definitions of f2 and g2, we find that g2(bip2(A))) = f2(A).

Let Γ ∈ IM be a BIP interaction model with interface P , let α ∈ Γ be a BIP
interaction expression, and let δ : 2P → D+1 be a data assignment. By definition,
we have δ ∈ ∆(N(α), g(α)) if and only if δ(2P \N(α)) = {0} and δ satisfies g(α).
Using the definition of N(α) = 2Pα and g(α), it follows δ ∈ ∆(N(α), g(α)) if and
only if δ(2P \ 2Pα) = {0} and δdn = dnαbot(up

α
w(δup), up

α
L(δup)), and gα(δup) = tt.

Thus, δ ∈ ∆(N(α), g(α)) if and only if ∆(α). Using the definitions of f2 and g2,
we find that f2(reo2(Γ)) = g2(Γ).

Corollary. The translations bip2 and reo2 preserve all properties expressible in
LTS, i.e., f2(A) ∈ P ⇔ g2(bip2(A)) ∈ P and g2(Γ) ∈ P ⇔ f2(reo2(Γ)) ∈ P for all
P ⊆ LTS, A ∈ CA± and Γ ∈ IM.

Example 2.3.4. Consider the following safety property ϕ for the interaction ex-
pression αmax from Example 2.1.2: “the value retrieved from port a equals zero”.
Clearly, this safety property does not hold, whenever a or b offers a non-zero in-
teger. Note that ϕ depends solely on the interpretation of the interaction model
Γ = {αmax} in LTS, and hence ϕ is expressible in LTS. Using Section 2.3.4 we
conclude that ϕ is false also for Amax = reo2({αmax}). Thus, we know any exe-
cutable code generated from the constraint automaton Amax does not satisfy ϕ.
More generally, Section 2.3.4 allows us to use the Reo compiler to generate correct
code for a BIP interaction model. ♦
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2.4 Data-sensitive BIP architectures

Due to the absence6 of a data-sensitive equivalent of a BIP architecture, our data-
sensitive translation presented in Section 2.2 appears restricted in comparison with
our data-agnostic translation in Section 2.3. It seems straightforward to extend BIP
architectures to the data-sensitive domain by adding coordinating components and
replacing the interaction model with a data-sensitive interaction model. However,
this extension requires also a composition operator for interaction models, which
is not present in the current literature [BSBJ14]. In this section, we propose a
data-sensitive extension to BIP architectures and their composition, and we show
how this extension relates to Reo connectors.

2.4.1 Composition of BIP interaction expressions

BIP architecture composition in Definition 2.1.4 consists of two parts: it merges
the coordinating components into a single set of coordinators, and it composes
the BIP interaction models by gluing interactions together. This gluing has not
yet been defined for data-sensitive BIP interaction expressions [BSBJ14]. We now
propose a possible definition for this gluing of data-sensitive BIP interactions.

Let α1 and α2 be two BIP interaction expressions. Intuitively, their compo-
sition α1 ∗ α2 synchronizes α1 and α2. That is, both interactions fire in a single
atomic step. This means that the composition should evaluate both guards and
synchronously execute the upward and downward dataflow of both interaction ex-
pressions whenever both guards are satisfied.

Suppose α1 and α2 do not share local variables. In that case, we can simulate
synchronous execution of the upward data transfer expressions of α1 and α2 by
sequentially executing both expressions. However, since α1 and α2 may share
bottom ports, the downward data transfer expressions may write different values
to the shared bottom ports. Hence, we cannot simply execute both downward data
transfer expressions sequentially.

Generally, the downward data transfer expression of a BIP interaction expres-
sion α may depend on the top ports of α. When this is the case, the value produced
by the downward data expression becomes known only after hierarchical composi-
tion. Thus, at design time we can neither check nor avoid that the downward data
transfer expressions of α1 and α2 disagree on their shared bottom ports.

Example 2.4.1. Consider the BIP interaction expression

α′max = ({w} ← {a, b}).[tt : xw := max(xa, xb) // xa, xb := xw],

where each port in P = {a, b, w, l} is of type integer, i.e., xp : Dp = Z, for all
p ∈ P, and tt is true. The value of the downward data transfer expression in α′max

depends on the value xw of its top port w. ♦

When two BIP interaction expressions α1 and α2 do not depend on their top
ports, we can determine whether α1 and α2 agree on shared bottom ports. Indeed,
we know the relationship between the values presented to the upward data transfer
expression and the values computed by the downward data transfer expression.

6This text was written before [BHM19]
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This allows us to force agreement already in the guard of the composed BIP inter-
action expression α1 ∗ α2. In this way, we can safely execute both downward data
transfer expressions sequentially.

Definition 2.4.1 (Composition of interaction expressions). Let α1 and α2 be two
interaction expressions without shared local variables and for which the downward
data transfer expression does not depend on top ports. We define the composition
α1 ∗α2 of α1 and α2 as follows: top(α1 ∗α2) = ∅, bot(α1 ∗α2) = bot(α1)∪bot(α2),
upα1∗α2 = (upα1 , upα2), dnα1∗α2 = (dnα1 , dnα2),

gα1∗α2
= gα1

∧ gα2
∧
[
dnα1

|S(upα1
(X1

Q, X
1
L)) = dnα2

|S(upα2
(X2

Q, X
2
L))
]
,

where dnαi |S is the restriction of dnαi to the shared variablesXS over S = bot(α1)∩
bot(α2), Xi

Q are the variables over bot(αi), and Xi
L are the local variables of αi.

The local variables of α1 ∗ α2 are X1
L ∪X2

L.

Example 2.4.2. Consider the following BIP interaction expressions α1 = (∅ ←
{a, b}).[tt : xk := xa // xb := xk], and α2 = (∅ ← {b, c}).[tt : xl := xb // xc := xl],
which simulate two Sync channels over a, b and b, c respectively (See Figure 2.2).
Then, their composition α1 ∗ α2 is given by (∅ ← {a, b, c}).[tt : xk := xa;xl :=
xb // xb := xk;xc := xl).

This composition merely synchronizes ports a and c, while there is no data
exchange between them. On the other hand, the composition of the two Sync
channels does transfer data from source a to sink c. Hence, composition of interac-
tion expressions does not correspond directly to composition of Reo channels. ♦

Example 2.4.3. Consider the following BIP interaction expressions α1 = (∅ ←
{a, b}).[tt : xk := max(xa, xb) // xa, xb := xk], and α2 = (∅ ← {b, c}).[tt : xl :=
max(xb, xc) // xb, xc := xl], which are similar to the BIP interaction expression
αmax from Example 2.1.2 (except that we omitted the top port). Intuitively, per-
haps, combining max(xa, xb) and max(xb, xc) yields max(xa, xb, xc). However, the
restriction that downward data transfer expressions of α1 and α2 must agree on
their shared bottom port b, implies that the composition α1∗α2 takes the following
form:

α1 ∗ α2 = (∅ ← {a, b, c}).[max(xa, xb) = max(xb, xc) :

xk := max(xa, xb);xl := max(xb, xc) // xa, xb := xk;xc := xl].

The upward and downward data transfer expressions are composed sequentially.
Note that since the downward data transfer does not depend on top ports, the
sequential order in this composition is irrelevant. The guard consists of the con-
junction of the guards of α1 and α2, together with the statement that the downward
data transfer expressions agree on the value of xb. ♦

2.4.2 Abstraction on BIP interaction expressions

Example 2.4.2 shows that the composition of interaction expressions does not cor-
respond directly to composition of Reo connectors. We now investigate the reason
for this incompatibility and show that it is possible to simulate composition of Reo
connectors by means of an abstraction operator on BIP interaction expressions.
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R

(b) Abstraction

Figure 2.11: Composition (a) and abstraction (b) for interaction expressions.

Consider a Sync channel R1 over a and b and a Sync channel R2 over b and c
(cf. Figure 2.2). In order to comply with the notation from Section 2.3, we rename
every channel end p to p!, if it is a source end, or p?, if it is a sink end. In this way,
we obtain two Reo connectors R′1 and R′2 that are Sync channels over a!, b? and
b!, c? respectively.

This renaming splits node b into an output port b? and an input port b!. To
preserve the intention of composition in Reo, we need to add a Sync channel from
p? to p!, for every internal port p of the connector. For boundary nodes, there is
no need to add a Sync channel.

Using the translation discussed in Section 2.3.2, we obtain from R′1 a BIP
interaction expression α1 over a and b. Similarly, we find fromR′2 a BIP interaction
expression α2 over b and c. The composition α1 ∗ α2 of α1 and α2 yields a BIP
interaction expression over a, b and c.

The composition of BIP interaction expressions may also be described in terms
of the Reo connectors R′1 and R′2. Figure 2.11(a) shows the construction that
simulates this composition. First, we split R1 and R2 by renaming their shared
ports b! and b? to b1!, b2! and b1?, b2? respectively, and we add two fresh ports
b! and b?. We replicate the data that we observe at b! to both b1! and b2!. We
check the data retrieved from b1? and b2? for equality and pass it to b?. The node
with the equality sign is responsible for this equality check. This node is a Reo
component that takes two identical data items from its input and synchronously
transfers one of these items to its output. Finally, we synchronize R1 and R2 by
adding a SyncDrain between b! and b? (cf. Figure 2.2).

As in Example 2.4.2, we see that the BIP interaction expression composition
R of R′1 and R′2 yields no dataflow from a to c. Indeed, the depicted composition
merely synchronizes b? and b! using a SyncDrain channel. However, the renaming
of R1 and R2 to R′1 and R′2 required an additional Sync channel from b? to b!.
Hence, in order to simulate composition of Reo connectors, we need to add this
Sync channel. We model this addition of the Sync channel by an operation called
abstraction. Figure 2.11(b) shows the effect of abstraction on the composed Reo
connector R.

In terms of Reo connectors, the effect of abstraction is clear. Now, we formu-
late this abstraction operator in terms of interaction expressions. Consider the
interaction expression in Figure 2.11(b). The addition of the Sync channel imposes
a restriction on the observed dataflow at b: the data presented as input for the
upward data transfer equals the output retrieved from the downward data transfer
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expression. This means that the abstraction of b requires us to find a fixed point of
the composition of the upward and downward data transfer expressions. Moreover,
this fixed point needs to satisfy the guard of the interaction expression. Once we
have computed this fixed point, we just use it as input to the interaction.

Since we use our own input at b instead of input obtained from a BIP compo-
nent, we must hide b from the interface of the interaction. This explains why we
call this operation abstraction.

Definition 2.4.2 (Abstraction on interaction models). Let α be the BIP inter-
action expression (∅ ← Q).[g : XL := up(XQ) //XQ := dn(XL)], and let p ∈ Q
be a bottom port of α. Let udp(XQ) = dn(up(XQ))|xp

be the restriction to xp
of the composition of up and dn. Denote the set of fixed points of the function
xp 7→ udp(xp, XQ\{p}) by F . Let fp(XQ\{p}) ∈ F be any partial function that
returns, when possible, any fixed point from F such that g(xp, XQ\{p}). We call
fp a fixed point function of α with respect to p. Then, we define the abstraction
α \ p of α with respect to p as

(∅ ← Q \ {p}).[∃xp ∈ F. g : XL := up(XQ\{p}, fp(XQ\{p})) //XQ\{p} := dn(XL)] .

For convenience, we assume that a fixed point function is a random function.
However, in practice we care only about the fact that this function returns a fixed
point from F that satisfies the guard.

Example 2.4.4. Consider the BIP interaction expressions α1 and α2 from Ex-
ample 2.4.2, and their shared bottom port b. We compute the abstraction α =
(α1 ∗ α2) \ b. The mapping udb : xb 7→ xa gives the restriction to xb of the com-
position of the upward and downward data transfer expressions. The set of fixed
points of udb consists of F = {xa}. Trivially, the guard of α equals gα = tt. Hence,
the fixed point function of α is given by fp(xa, xc) = xa. Therefore, we find that
α = (∅ ← {a, c}).[tt : xk := xa;xl := xa // xc := xl].

We see that the value of xa flows via xb to xc, which simulates the dataflow in
the composition of the two Sync channels in Example 2.4.2. ♦

Example 2.4.5. Consider the composed BIP interaction expression α1 ∗ α2 from
Example 2.4.3 and its bottom port b. We compute the abstraction α = (α1∗α2)\b.
The restriction to xb of the composition of the upward and downward data transfer
expressions is given by the mapping udb : xb 7→ max(xa, xb). The set of fixed points
of udb is given by F = {v | v ≥ xa}. Since any xb ≥ xa, xc can serve as a witness,
the guard of α simplifies to gα ≡ ∃xb ≥ xa.(xb ≥ xc) ∨ (xc ≥ xb ∧ xb = xc) ≡ tt.
Thus, the fixed point function fp(xa, xc) = rnd({y | y ≥ xa, xc}) may return any
value greater than or equal to both xa and xc. Finally, we get that (α1 ∗ α2) \ b is
given by

(∅ ← {a, c}).[tt : xk := max(xa, r); xl := max(r, xc) // xa := xk;xc := xl],

where r = rnd({v | v ≥ xa, xc}). Hence, since r is random, (α1 ∗α2) \ b returns the
value max(xa, xc) + C, where C ≥ 0 is an arbitrary positive number. ♦
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2.4.3 Data-sensitive BIP architectures

The extension of BIP architectures to the data-sensitive domain requires us to
combine data-agnostic BIP architectures with interaction expressions that are data-
sensitive [ABB+14, BSBJ14].

First, we need to generalize the coordinating components in a BIP architecture.
For this, we use a restricted type of constraint automata with polarity.

Definition 2.4.3 (Atomic BIP components). An atomic BIP component is a con-
straint automaton A such that every transition (q,N, g, q′) ∈ → synchronizes at
most one bidirectional port, i.e., N ∈ {∅, {p!, p?}}, for some bidirectional port p.

Coordinating components in data-agnostic BIP architectures are disconnected
(cf. Definition 2.1.1). This notion lifts trivially to sets of atomic BIP components.

Next, we generalize the data-agnostic interaction model γ to a data-sensitive
interaction model Γ. Every data-sensitive BIP interaction expression α ∈ Γ reduces
to a data-agnostic interaction N = bot(α) ∈ γ.

Definition 2.4.4. A data-sensitive BIP architecture is a triple A = (C, P,Γ) con-
sisting of a finite disconnected set C of atomic BIP components, a finite set P of
ports, and an interaction model Γ over P (cf. Definition 2.1.1 and 2.1.6).

Using the operational semantics of atomic components, provided in [BSBJ14,
Definition 3.2], and the interpretation g2 of a data-sensitive interaction model,
defined in Section 2.3.1, we define the following semantics for data-sensitive BIP
architectures:

Definition 2.4.5 (Semantics of data-sensitive BIP architecture). Consider a data-
sensitive BIP architecture A = ({C1, . . . , Cn}, P,Γ). The semantics g3(A) of A is
given by the labelled transition system (

∏n
i=1Qi, (D + 1)2P ,→), where Qi is the

state space of atomic component Ci, and → is the smallest relation that satisfies
the following rule: if δ : 2P → D + 1 is a data assignment such that (q, δ, q) is a
transition in g2(Γ), and for all components Ci we have either

1. q′i = qi and dom(δ) ∩ Pi = ∅; or

2. (qi, N, g, q
′
i) is a transition in Ci, dom(δ) ∩ Pi = N , and δ |= g,

then (qi)
n
i=1

δ−→ (q′i)
n
i=1.

2.4.4 Composition of data-sensitive BIP architectures

Using the concepts introduced in Sections 2.4.1 and 2.4.2, we lift the composition
operator of data-agnostic BIP architectures to data-sensitive BIP architectures.

Because the composition of coordinating components consists of set-union, its
extension to data-sensitive BIP architectures is trivial. The composition of data-
sensitive interaction models is less straightforward. Given two data-sensitive BIP
interaction models Γ1 and Γ2, the composed data-sensitive interaction model Γ
should intuitively consists of composed BIP interaction expressions α1 ∗ α2, with
αi ∈ Γi for both i. However, we cannot allow every combination of α1 and α2,
because they may synchronize on different shared ports.
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Every BIP interaction expression α in the data-sensitive domain, reduces to a
BIP interaction bot(α) in the data-agnostic domain, where bot(α) are the bottom
ports of α. In this way, a BIP interaction model Γ reduces to a data-agnostic
interaction model γ = {bot(α) | α ∈ Γ}.

Let γ1 and γ2 be the reduced BIP interaction models derived from Γ1 and
Γ2, and consider the BIP interactions bot(α1) and bot(α2) in γ1 and γ2. Let γ
be the composition of γ1 and γ2. According to Definition 2.1.4, we have that
N = bot(α1 ∗ α2) ∈ γ if and only if N ∩ P1 ∈ γ1 and N ∩ P2 ∈ γ2. It is not hard
to see that, in order to ensure that bot(α1 ∗ α2) ∈ γ, it suffices to assume that
bot(α1) ∩ P2 = bot(α2) ∩ P1.

Definition 2.4.6 (Composition of data-sensitive BIP interaction models). Let Γ1

and Γ2 be two interaction models with interfaces P1 and P2, respectively, such that
no BIP interaction expression has top ports and no local variable is shared. We
define the composition of Γ1 and Γ2 as Γ1 ∗Γ2 = {α1 ∗α2 | αi ∈ Γi,bot(α1)∩P2 =
bot(α2) ∩ P1}.

Notice that the restriction to interaction expressions that do not have top ports
implies that the condition in Definition 2.4.1, which requires that the downward
data transfer do not depend on top ports, is trivially satisfied. Hence, the compo-
sition operator on data-sensitive BIP interaction models is well-defined.

Moreover, notice that it does not make sense to weaken the condition bot(α1)∩
P2 = bot(α2) ∩ P1 any further. Suppose that α1 and α2 satisfy only bot(α1 ∗
α2) ∩ Pi ∈ γi, for i = 1, 2. Then we find α′1 ∈ Γ1 and α′2 ∈ Γ2 such that bot(α′1 ∗
α′2) = bot(α1 ∗ α2). Although, α′1 ∗ α′2 and α1 ∗ α2 extend the same data-agnostic
interaction, they may behave very differently with respect to data.

Now, Definition 2.4.6 allows us to define our desired composition operator for
data-sensitive BIP architectures.

Definition 2.4.7 (Composition of data-sensitive BIP architectures). Let A1 =
(C1, P1,Γ1) and A2 = (C2, P2,Γ2) be two data sensitive BIP architectures such
that C1 ∪ C2 is disconnected and no BIP interaction expression has top ports and
A1 and A2 share no local variables. Then, we define the composition A1 ⊕ A2 as
(C1 ∪ C2, P1 ∪ P2,Γ1 ∗ Γ2).

The composition of data-sensitive BIP interaction models in Definition 2.4.6
can cause an interaction-space explosion. Such an explosion can never occur us-
ing hierarchical composition only [BSBJ14]. This makes the data-sensitive BIP
architecture composition more expressive than hierarchical composition.

Example 2.4.6. Consider a Reo connector that consist of N parallel Sync chan-
nels, i.e., we have a Sync channel Rai,bi from ai to bi, for each i ∈ {1, . . . , N}.
Since any combination of Sync channels can fire, the associated constraint automa-
ton exhibits 2N transitions. The direct translation from Section 2.3 requires us to
translate every transition into a corresponding BIP interaction expression.

Using BIP architecture composition from Definition 2.4.7, it suffices to translate
each Sync channel Rai,bi into a BIP architecture Aai,bi = (∅, {ai, bi}, {αai→bi , α∅}),
where αai→bi = (∅ ← {ai, bi}).[tt : xl := xai // xbi := xl] models the Sync chan-
nel and α∅ = (∅ ← ∅).[tt : − //−] models the empty transition. This empty
interaction allows the other BIP architectures to proceed independently of this
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Figure 2.12: Translation of Reo channels and nodes to data-sensitive BIP architec-
tures. The BIP interaction expressions are given by αa→b,c = (∅ ← {a, b, c}).[tt :
xl := xa // xb, xc := xl], αa→b = αa→b,b, and αa↓b = (∅ ← {a, b}).[tt : − //−].
The atomic BIP component C models the behavior of the FIFO1 channel.

BIP architecture. Hence, Definition 2.4.7 enables us to translate only N channels
instead of 2N transitions. ♦

Definition 2.4.8 (Abstraction of data-sensitive BIP architectures). Let A =
(C, P,Γ) be a data-sensitive BIP architecture, and p ∈ P a dangling port (i.e.,
p /∈ PC , for all C ∈ C). Then, we define the abstraction A \ p as (C, P \ {p}, {α \ p |
α ∈ Γ}).

2.4.5 Incremental translation

The proposed composition operator from Definition 2.4.7 together with the abstrac-
tion operator from Definition 2.4.2 allow us to incrementally translate constraint
automata to data-sensitive BIP architectures and vice versa. We formalize this
by defining two translations, and show that they both preserve the semantics of
translated entities.

Reo to BIP Consider a Reo circuit R, and associate to each channel and node
in R its constraint automaton (see Figure 2.2). Rename every input port p of any
channel or node in R to p!, and every output port of any channel or node in R
to p?. This procedure splits every shared port p into two ports p! and p?, which
essentially disconnects all channels and nodes. Write X = {A1, . . . ,Am} for the
obtained set of constraint automata with polarity. Our goal is to translate each
Ai ∈ X individually to a data-sensitive BIP architecture, and then compose them
using Definitions 2.4.2 and 2.4.7. To this end, we define the translation bip3(A) of
a BIP-friendly constraint automaton with polarity A.

Let A be a constraint automaton with polarity over P , which means that A uses
names from 2P = {p!, p? | p ∈ P}. Since atomic components are not allowed to
synchronize their ports and since interaction in BIP is stateless, we need to assume
thatA is BIP-friendly: A is either stateless (i.e., QA = {q}) or does not synchronize
any of its ports (i.e., for every transition (q,N, g, q′) we have N = {p!, p?} for some
p ∈ P ). Figure 2.2 shows some examples of BIP-friendly automata.

When A is stateless, we can translate A into an interaction model bip2(A). We
now simply define bip3(A) = (∅, P, bip2(A)). See Figure 2.12 for an example. When
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A does not synchronize any of its ports, we can interpret A as an atomic component
A′, where we rename every port p ∈ P to a port p′ ∈ P ′. The prime is used only
to construct a fresh port name. Now, we interpret every p ∈ P as a dangling port
of the translated data-sensitive BIP architecture and connect p with p′ using the
interaction αp,p′ = (∅ ← {p, p′}).[tt : xk := xp;xl := xp′ // xp := xl;xp′ := xk].
Thus, we define

bip3(A) =

{
(∅, P, bip2(A)) if A is stateless

({A′}, P ∪ P ′, {αp,p′ | p ∈ P}) if A is non-synchronizing
(2.10)

The restriction that the automatonA should be either stateless or non-synchronizing
is not problematic. Every synchronizing stateful automaton A can be decomposed
into a set {A1, . . . ,Am} of stateless and non-synchronizing automata [BKK14]. In-
deed, each automaton in the decomposition is the CA representation of a stateless
Reo channel or a FIFO1 buffer.

Using the translation bip3, we can now translate the Reo circuitR incrementally.
Let {A1, . . . ,Am} be a set of BIP-friendly constraint automata with polarity and
S = {p | {p!, p?}∩NAi

∩NAj
6= ∅ for some distinct i, j} be the set of shared/inter-

nal ports of this system of automata. The following diagram illustrates the working
of the incremental translation from Reo to BIP:

{A1, . . . ,Am} {bip3(A1), . . . , bip3(Am)}

∃2S(A1 on · · · Am on G) L (bip3(A1)⊕ · · · ⊕ bip3(Am)) \ S
g3f3

bip3

(2.11)

Here, f3 is the canonical extension of f2 defined in equation Equation (2.7), − \ S
is the abstraction operator defined in Definition 2.4.8, and G is a stateless gluing
automaton that for every subset P ⊆ S of internal ports, has a transition with syn-
chronization constraint N = {p!, p? | p ∈ P} and data constraint g ≡ ∧p∈P dp! =
dp?. Observe that G essentially models all Sync channels from p? to p! for every
p ∈ S. In this way, we reconnect the nodes that were split by our encoding of
polarity.

Example 2.4.7. Let R be the sequential composition of two Sync channels, i.e.,
R = Ra,b on Rb,c where Rx,y is a Sync channel from x to y. First, we associate to
Rx,y its constraint automaton with polarity

Ax,y = ({q}, {x!, x?, y!, y?}, {(q, {x!, x?, y!, y?}, dx! = dy?, q)}, q).

Thus, we represent R by {Aa,b,Ab,c}. To reconnect the channel ends b! and b?,
we add a stateless gluing automaton G with a single transition that has a synchro-
nization constraint N = {b?, b!} and data-constraint g ≡ db? = db!. So now, the
semantics of R is given by f3(∃b!∃b?(Aa,b on Ab,c on G)) and consists of a stateless
labelled transition system that encodes that for every observed δ : 2{a, c} → D, we
have δ(a!) = δ(c?).

Using the incremental translation from Diagram 2.11 and α1 and α2 from Ex-
ample 2.4.2, we obtain data-sensitive BIP architectures bip3(Aa,b) and bip3(Ab,c)
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given by (∅, {a, b}, {α1}) and (∅, {b, c}, {α2}), respectively. Note that b is the only
internal node in R, hence S = {b}. Now, Example 2.4.4 shows that the sys-
tem {bip3(Aa,b), bip3(Ab,c)} composes into a single BIP architecture A given by
(∅, {a, c}, {(α1 ∗ α2) \ b}). It is now easy to see that f3(∃b!∃b?(Aa,b on Ab,c on G))
and g3(A) are bisimilar. ♦

In the previous example, we stated that the incremental translation from Di-
agram 2.11 preserves bisimilarity, but in fact, it preserves even a stronger equiva-
lence: isomorphism. Informally, labelled transition systems are isomorphic if their
transition relations are identical modulo state renaming. Consequently, isomor-
phism implies bisimilarity.

Definition 2.4.9 (Isomorphism). If Li = (Qi, (D + 1)2Pi ,→i, q
0
i ) ∈ LTS, i = 1, 2,

then L1 and L2 are isomorphic iff P1 = P2 and there exists a bijective function

f mapping states from Q0 to Q1 such that f(q0
0) = q0

1 and q0
δ−→0 q′0, for some

q0, q
′
0 ∈ Q0, if and only if f(q0)

δ−→1 f(q′0).

Theorem 2.4.1. Translation bip3 is correct and compositional, i.e., Diagram 2.11
commutes modulo isomorphism of labelled transition systems.

Proof. Let Ai = (Qi,Ni,→i, q0i), for i ∈ {1, . . . ,m}, be BIP-friendly constraint
automata with polarity, and let S = {p | {p!, p?} ∩ Ni ∩ Nj 6= ∅, with i 6= j} be
the set of shared ports. The state space of f3(∃2S(A1 on · · · on Am on G)) equals
Q1×· · ·×Qm×{qG}, and the state space of g3((bip3(A1)⊕. . .⊕bip3(Am))\S) equals∏
j∈J Qj , where J ⊆ {1, . . . ,m} is the set of indices of the BIP-friendly components

that are non-synchronizing. We show that the mapping (q1, . . . , qm, qG) 7→ (qi)i∈J
constitutes an isomorphism between K = f3(∃2S(A1 on · · · on Am on G)) and
L = g3((bip3(A1)⊕ . . .⊕ bip3(Am)) \ S).

Let τ = ((q1, . . . , qm, qG), δ, (q′1, . . . , q
′
m, qG)) be a transition in K. Using Def-

inition 2.1.9, if follows that τ is in K if and only if there exists an extension
δ′ :

⋃
i 2Ni → D + 1 of δ with δ′(p) = δ(p) for all p ∈ (

⋃
i 2Ni) \ 2S such that

((q1, . . . , qm, qG), δ′, (q′1, . . . , q
′
m, qG)) is a transition in f3(A1 on · · · on Am on G).

Write δ′|2Ni for the restriction of δ′ to 2Ni. Using Definition 2.1.8, it follows that τ
is in K if and only if τi = (qi, δ

′|2Ni
, q′i) is a transition in f3(Ai) or dom(δ′)∩2Ni = ∅

and q′i = qi, for all i ∈ {1, . . . ,m}, and δ′(p!) = δ′(p?), for all p ∈ S, due to the
gluing automaton G. Using equations Equation (2.10) and Equation (2.8), we have
that τ is in K if and only if g3(bip3(Ai)) has a transition τi or dom(δ′) ∩ Ni = ∅
and q′i = qi, for all i ∈ {1, . . . ,m}, and δ′(p!) = δ′(p?), for all p ∈ S. By the
definition of the composition operator on data-sensitive BIP architectures in Defi-
nition 2.4.7 and the definition of g3 in Definition 2.4.5, it follows that τ is in K if
and only if ((qi)i∈J , δ′, (q′i)i∈J) is a transition in g3(bip3(A1)⊕ . . .⊕ bip3(Am)) and
δ′(p!) = δ′(p?), for all p ∈ S. Using the abstraction operator in Definition 2.4.2, it
follows that τ is in K if and only if ((qi)i∈J , δ, (q′i)i∈J) is a transition in L. Since
7→ trivially preserves initial states, we conclude that 7→ is an isomorphism which
proves the theorem.

Applying Theorem 2.4.1 for m = 1, we obtain, since S = ∅, correctness of bip3.

Corollary. g3(bip3(A)) ∼= f3(A), for all CA with polarity A.
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BIP to Reo Let {A1, . . . , An} be a set of data-sensitive BIP architectures, and
assume no two atomic components share a port. Our goal is to translate the
composition A1 ⊕ · · · ⊕An to a constraint automaton with polarity by translating
each BIP architecture Ai individually. To this end, we extend the translation reo2

to data-sensitive BIP architectures.
Let A = ({C1, . . . , Cn}, P,Γ) be a data-sensitive BIP architecture. Trivially,

every atomic component Ci constitutes a constraint automaton with polarity. By
reusing our translation reo2, we define

reo3(A) = reo2(Γ) on
n∏
i=1

Ci. (2.12)

Let {A1, . . . , An} be a set of data-sensitive BIP architectures, and assume no
two atomic components share a port. The following diagram illustrates the working
of the incremental translation from BIP to Reo:

{A1, . . . , An} {reo3(A1), . . . , reo3(An)}

A1 ⊕ · · · ⊕An L reo3(A1) on · · · on reo3(An)

reo3

g3 f3

(2.13)

Example 2.4.8. Consider the atomic component C42 = ({q}, {b!, b?},→, q), with
→ = {(q, {b!, b?}, db! = 42, q)}, and let α1 and α2 be the BIP interaction ex-
pressions from Example 2.4.3. Now, consider the data-sensitive BIP architec-
tures A1 = ({C42}, {a, b}, {α1}) and A2 = (∅, {b, c}, {α2}) over the data domain
D = {0, . . . , 232 − 1}. Then, g3(A1 ⊕ A2) is given by a stateless labelled tran-
sition system that encodes that for every observed δ : 2{a, b, c} → D we have
δ(a?) = max(δ(a!), δ(b!)), δ(c?) = max(δ(b!), δ(c!)), δ(a?) = δ(b?) = δ(c?), and
δ(b!) = 42. Using Example 2.3.3, it follows that f3(reo3(A1) on reo3(A2)), which
is equal to f3(reo2({α1}) on C42 on reo2({α2})), amounts to a labelled transition
system that is bisimilar to g3(A1 ⊕A2). ♦

Theorem 2.4.2. Translation reo3 is correct and compositional, i.e., Diagram 2.13
commutes modulo isomorphism of labelled transition systems.

Proof. Let {A1, . . . , An} be a set of data-sensitive BIP architectures such that no
two atomic components share a port. The state space of g3(A1 ⊕ · · · ⊕An) equals∏
C∈C QC , where C =

⋃
i CAi

are the atomic components of A1 ⊕ · · · ⊕ An. The
state space of f3(reo3(A1) on . . . on reo3(An)) equals {q}×∏n

i=1

∏
C∈CAi

QC , where

CAi
is the set of atomic components of Ai. We show that the mapping (qC)C∈C 7→

(q, (qC)C∈CAi
)ni=1 constitutes an isomorphism between K = g3(A1 ⊕ · · · ⊕An) and

L = f3(reo3(A1) on . . . on reo3(An)).
Let τ = ((qC)C∈C , δ, (q′C)C∈C) be a transition in K. By definition of g3 in

Definition 2.4.5, it follows that τ is in K if and only if δ is accepted by the composed
BIP interaction model Γ and (qC , δ|PC

, q′C) in f3(C) or dom(δ) ∩ PC = ∅ and
qC = q′C for all atomic components C ∈ C. By definition of the composition
operator on data-sensitive BIP architectures in Definition 2.4.7, it follows that τ
is in K if and only if, for all i ∈ {1, . . . , n}, the following conditions are satisfied:
(q, δ|PAi

, q) is a transition in g2(Γi), with Γi the BIP interaction model of Ai,
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and (qC , δ|PC
, q′C) in f3(C) or dom(δ) ∩ PC = ∅ and qC = q′C , for all atomic

components C ∈ CAi
. Since g2(Γi) ∼= f2(reo2(Γi)) by Theorem 2.3.1, we conclude

that τ is in K if and only if ((q, (qC)C∈CAi
), δ|PAi

, (q, (q′C)C∈CAi
)) is a transition

in f3(reo3(Ai)). Using Definition 2.1.8, it follows that that τ is in K if and only
if ((q, (qC)C∈CAi

)ni=1, δ, (q, (q
′
C)C∈CAi

)ni=1) is a transition in L. Since 7→ trivially
preserves initial states, we conclude that 7→ is an isomorphism, which proves the
theorem.

By applying Theorem 2.4.2 for n = 1, we obtain correctness of reo3.

Corollary. f3(reo3(A)) ∼= g3(A), for all data-sensitive BIP architectures A.

Thus, Theorems 2.4.1 and 2.4.2 show how our proposed composition operator
of Definition 2.4.7 enables us to translate between Reo connectors, modeled by
constraint automata with polarity, and data-sensitive BIP architectures.

2.5 Related work

Instead of using labelled transition systems as common semantics (Figures 2.7 and
2.9), we may also choose another model for concurrent systems. The Tile Model
offers such an alternative semantics for concurrent systems [GM00]. The basic idea
is to associate an m-tuple of terms in n variables (si(x1, . . . , xn))mi=1 over the term
algebra with signature Σ to an arrow s : n → m in the graph with nodes from N.
Every function symbol s ∈ Σ with arity n is interpreted as an arrow s : n → 1.
As Plotkin’s structural operational semantics uses terms in an algebra to represent
the state of a system, the Tile Model uses the arrows s : n → m to describe the
configuration of a concurrent system. Transitions from one configuration to another
are formulated by means of tiles. A tile α (denoted by α : s

a−→
b
t) is a diagram

n m

α
p q
a

s

t

b (2.14)

that represents a rewriting rule that states that trigger a can transform initial
configuration s into the final configuration t and produce effect b. The trigger a
and effect b are called the observations of α. Tiles may be composed horizontally,
vertically, and in parallel, using the monoidal operator ⊗ on N given by n ⊗m =
n+m.

A configuration can be seen as a connector. In this view, the source n and
target m of a configuration s : n→ m correspond to the interface of the connector.
Since the interfaces p and q in diagram Equation (2.14) may differ from n and m,
the Tile Model provides a natural semantics for dynamic reconfiguration in Reo
[ABC+08].

Bruni et al. show that Petri nets with boundaries are equally expressive as
BIP without priorities [BMM11]. They showed that this formal correspondence
indirectly relates BIP to the Tile Model, which resulted in the definition of the
Petri calculus. Since boundaries are mainly used for composition, the monolithic
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translation by Bruni et al. encodes BIP without priorities into Petri nets without
boundaries. A similar encoding exists for Reo, which translates port automata into
Petri nets [Kra09].

An indirect comparison of BIP and Reo, in the data-agnostic domain, through
their respective comparisons with other models, e.g., Petri nets, is certainly pos-
sible. Nevertheless, the direct and formal translations we present in this chapter
allow direct translation tools between BIP and Reo, that are otherwise difficult, if
not impossible, to construct based on such indirect comparisons.

Beside BIP and Reo, there are many other examples of coordination languages
[PA98]. Their relations with BIP and Reo have been studied by others. For in-
stance, Proença and Clarke provide a detailed comparison between Orc and Reo
[PC08], Chkouri et al. present a translation of AADL into BIP [CRBS08], and Tal-
cott et al. connect both ARC and PBRD to Reo by providing mappings between
their semantic models [TSR11].

2.6 Discussion

In the data-agnostic domain, we showed that BIP architectures and port automata
coincide modulo internal transitions, witnessed by the weak simulation in The-
orem 2.2.2, and independent progress, witnessed by the condition ∅ ∈ γ1 ∪ γ2 in
Theorem 2.2.4. In the data-sensitive domain, we showed by Theorem 2.3.1 that the
observable behavior of BIP interaction models and stateless constraint automata
is identical. We extended the notion of a data-agnostic BIP architecture to the
data-sensitive domain (Definition 2.4.4), and showed that these data-sensitive BIP
architectures correspond to constraint automata with polarity (Corollaries 2.4.5
and 2.4.5).

Our formal correspondences between BIP and Reo reveal differences and sim-
ilarities of their fundamental design principles. One similarity is that both BIP
and Reo provide constructs that allow high-level specification of multiparty syn-
chronization, such as a barrier synchronization. Although multiparty synchroniza-
tion is used in several approaches, such as the bulk-synchronous parallel (BSP)
model [Val90] or the Parameterized Networks of Synchronized Automata (pNets)
[BAC+09], most of the process algebras lack this feature, expressing multiparty
synchronization by a cluttered composition of binary synchronizations. Exceptions
include Winskel’s synchronization algebra [WN95] and Bergstra & Klop’s algebra
of communicating processes (ACP) [BK85]. Controlling and constraining multi-
party synchronization is, however, more complex in ACP than it is in BIP and Reo
(because additional operators, communication and block, need to be used beside
parallel composition to specify admissible synchronizations). This is illustrated in
work by Krause et al. [KKdV12], who encoded Reo’s semantics (i.e., Reo’s com-
position operator and a number of primitives) in mCRL2 [CGK+13], a modern
process specification language based on ACP.

The focus of this chapter is on formal relations between BIP and Reo. As such,
detailed comparison of BIP or Reo with process algebras or other models that
support multi-party synchronization is beyond our scope. However, support for
multiparty synchronization in some other models, and the consensus in BIP and
Reo to support this notion through first-order constructs confirms the practical
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significance of this concept.
On the other hand, BIP and Reo treat the separation between computation

and coordination differently. The BIP framework concretely defines what sepa-
rates computation (BIP behavior) from coordination (BIP interaction), while Reo
merely separates computation (Reo components) and coordination (Reo connector)
structurally. Indeed, Reo does not force a fixed universal definition for computation
and coordination in all applications. Without giving a fixed definition of separa-
tion criterion, Reo’s structural separation of computation from coordination (i.e.,
component versus connector) simply means that, while this separation is always
important, the distinction between the two is in the eye of the beholder: in different
applications, different, or even the same people, may find it convenient to draw the
line that separates computation and coordination at different places to suit their
needs. For example, the stateful behavior of a FIFO with capacity of 1 strictly
places what this entity does in the behavior layer of BIP, as a (computation) com-
ponent. In Reo, such stateful components can, of course, be regarded and used as
computation as well. However, when deemed appropriate, one can use the same
component (i.e., a FIFO1 channel) in the construction of a Reo connector as well,
e.g., to express the stateful, turn-taking interaction between two components, as
in Figure 2.4.

The property-preserving translations presented in this chapter enable us to
lift the composition operator for data-sensitive Reo circuits to BIP architectures.
Besides lifting theoretical results, it seems natural to investigate whether it is pos-
sible to transfer also other techniques, such as those used in compilation and model
checking. For example, Reo’s compositional approach to code generation [Jon16]
may yield a very different distributed implementation of a BIP system. Comparing
the performance of such a postulated implementation of BIP, can reveal valuable
insights for compilation.

The results in this chapter show that both BIP and Reo can be interpreted as
a variant of labeled transitions sytems (LTS). In the sequel of this thesis, we work
for the large part with the semantics of coordination languages. In fact, one of our
main contributions consists in developing coordination language semantics that
improve expressiveness (Chapters 3 and 7) and tooling (Chapters 5 and 6). The
only exception is Chapter 4, where we develop a syntax to build actual systems
with these new semantics. Here, we adopt Reo’s compositionally principle as a
basis of our syntax.


