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Chapter 1

Introduction

1.1 Context

A schedule is a ternary relation amongst time, resources, and tasks. That is,
a schedule is an allocation of time and resources to tasks. We represent time
as all non-negative, real-valued timestamps. The collection of all related tasks
forms an application. An application can run indefinitely, which may happen due
to repetitive tasks. We implicitly allow tasks to admit subtasks, although this
hierarchical structure is irrelevant for the work presented in this thesis. The number
of resources is generally finite, which introduces scarcity.

A protocol is a constraint on schedules that determines a set of valid schedules.
For example, a protocol may demand that each resource is allocated to at most
one task at any given time. A protocol may also constrain the execution times
of tasks to follow a particular partial order. An application is sequential if its
timing constraint forms a total order, and the application is concurrent, otherwise.
Typically, timing constraints of an application specify only the relative order of
the start and completion times of its tasks. Real-time applications involve stricter
timing constraints that may specify exact (i.e., absolute) start times, completion
times, and/or durations for its tasks. Typically, the timing constraints of tasks are
not specified explicitly; instead, they are implied by the ordering of actions of a
task and their durations.

Scheduling is the activity of selecting a valid schedule (i.e., that respects the
constraints of the protocol of the application) that optimizes some given criterion
such as total execution time, throughput, latency, or resource utilization. The
selected schedule can have a significant impact on the quality of the application.
For example, in mission critical applications like a pacemaker or a flight controller
it is imperative to avoid catastrophic failure by producing reliable, predictable
output.

Applications can exhibit two types of non-deterministic behavior. Internal non-
determinism is under our control and is resolved by scheduling. External non-
determinism (such as user input) is uncontrolled and requires flexible schedules.
However, the ternary relations defined above are deterministic and leave no room
for uncertainty. Therefore, a scheduler generally determines a scheduling strategy,

7



1.2. PROBLEM 8

which is a collection of schedules. At run time, a scheduler can follow any such
schedule that is consistent with the given external non-determinism.

The simple and intuitive definitions of schedules and protocols above have sig-
nificant consequences that we exploit in the work presented in this thesis. The
above definitions show that scheduling strategies and protocols are essentially the
same (both being sets of schedules), and that as such, protocols and scheduling
strategies are convertible into each other. We exploit this convertibility property
in Chapter 8 to improve the performance of the operating system scheduler for a
cyclo-static dataflow program.

Although both protocols and scheduling strategies are essentially identical, they
serve different purposes. Roughly speaking, a protocol primarily expresses the
correctness constraints of a concurrent application, whereas a scheduling strategy
primarily expresses the efficiency constraints under which an application or a set
of applications execute efficiently, as determined by some objective function that
optimizes various concerns such as execution time, throughput, resource utilization,
etc. Just as the boundary between functional versus quality of service properties
of an application is not always sharply defined, the distinction between correctness
constraints (i.e., protocols) from efficiency constraints (i.e., scheduling strategies)
is not always crisp, either. Importantly, protocols often contain a wealth of useful
information, essential for optimal scheduling. We consider protocols in Part I and
scheduling strategies in Part III.

Although we define protocols as constraints on schedules, in practice, protocols
are never literally specified as constraints on schedules (i.e., constraints on ternary
relations). Instead, traditional models of concurrency and concurrent programming
constructs specify a protocol only as a derived by-product of the timing constraints
of the tasks that comprise a software. In contrast to traditional models of concur-
rency, exogenous coordination1 languages, such as Reo [Arb04], offer first-class
constructs for expressing concurrency/coordination protocols as concrete, identifi-
able, reusable software modules, independent of the computation carried out by an
application [Arb11, Arb16].

1.2 Problem

1.2.1 Resource virtualization

Scheduling is generally easy in case of non-interference, that is, no two tasks require
a shared resource at the same time. Indeed, non-interference assures that we can
allocate resources on demand. A trivial example of non-interference is a set of
tasks that do not share any resources. However, such task sets are uncommon,
because cooperative tasks require shared resources for communication. A more
common example of non-interference is a set of tasks that consists of coroutines.
Only one of the tasks is active at any given time, which implies non-interference of
processors. Other examples of non-interference are a read-only shared variable, or
an antenna that can broadcast at different frequencies simultaneously.

1Coordination models and languages offer higher-level constructs for specification of protocols
that coordinate the tasks that comprise a concurrent application [Arb98].



9 CHAPTER 1. INTRODUCTION

Non-interference allows for resource virtualization, which duplicates a physical
resource into multiple virtual resources that can be used by multiple independent
applications. Virtualization minimizes the number of otherwise-necessary physical
resources, which reduces cost. For example, coroutines can run on dedicated pro-
cessors. However, since only one of these processors is active at any given time,
these dedicated processors can be virtual processors that map to a single physical
processor. Similarly, tasks that require antennas to broadcast on different frequency
bandwidths can of course use a dedicated physical antenna, each. Non-interference
of their bandwidths, however, allows a virtualization that maps all dedicated an-
tennas of these tasks as virtual antennas onto a single physical antenna. Another
example of virtualization is virtual memory, which divides memory into pages.
Since tasks often work on a single page at time, these memory pages can be virtual
memory pages that map to a single physical memory page. Of course, we need
additional cheap memory to store unused pages.

In general, resource virtualization requires interference resolution. For example,
we can virtualize a printer by means of a queue that ensures non-interference.
The queue plays a dual role. On the one hand, the queue implements a mutual
exclusion protocol that regulates access to the printer. On the other hand, the
queue implements the first-come-first-served scheduling strategy. Hence, we observe
a first glimpse of a duality between protocols and schedules. Later on, we exploit
this duality by transforming a schedule into a protocol.

Software developers generally outsource part of the scheduling by virtualization
of frequently used resources. The prime example is the virtualization of processors
by the operating system, which creates virtual duplicates of the physical processors
in the form of processes and threads. The operating system allows for context-
switching by reserving some memory to save the state of each virtual processor.
By assigning to each task a dedicated virtual processor, the scheduling problem
becomes trivial from the perspective of the software developer.

1.2.2 Conflicting objectives

Resource virtualization usually resolves interference via a generic scheduling strat-
egy that aims at a fair distribution of the physical resource over the virtual ones.
Hence, the objective of generic schedulers generally differs from the objectives of
applications that use these resources. For example, an operating system sched-
uler implements a variant of round-robin scheduling that allocates processing time
to non-blocked virtual processors. Virtual processors are blocked whenever their
associated task accesses another resource (like an I/O device) that is already in
use.

However, fair distribution of the physical resources over the virtual ones does
not necessarily optimize the desired scheduling objective. For example, consider
two tasks that produce ice creams and a single consuming task. Assume that
production requires the same amount of work as consumption. Fair distribution
of resources yields a production rate that is twice the consumption rate. As a
result, most ice creams melt before being consumed. Ideally, the production and
consumption rates should be equal to yield maximal throughput.

To optimize the schedule of an application, we must inform the default scheduler
in virtual resources about relevant application-specific scheduling information. This
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brings us to the main question of this thesis:

How to optimize scheduling in the presence of virtual resources?

There are two ways to inform the generic scheduler in a virtual resource. The
first and most straightforward approach is to hard-code this information by re-
placing the scheduler in the virtual resource with an application-specific scheduler.
However, an application-specific scheduler is often unacceptable, as one of the goals
of virtualization is to provide seamless resource sharing by multiple independent
applications. Hence, the application-specific scheduler is possible only for systems
dedicated to a single application, such as embedded devices with a real-time oper-
ating system.

The second and less intrusive approach is to change the application (and its
constituent tasks), so that the generic default scheduler behaves optimally (or as
close to it as possible). This approach is obviously more complex than changing
the mapping of virtual resources. In Part III, we develop a technique that alters
the application to optimize the scheduling. Our approach is based on the duality
between scheduling strategies and protocols mentioned in Section 1.1.

1.3 Related work

The literature on scheduling offers partial solutions to our main question, and we
broadly classify them in three categories, namely online scheduling, low-level offline
scheduling and high-level offline scheduling.

Online scheduling The OS scheduler uses a variant of generic round-robin
scheduling strategy, which schedules fairly by assigning a fixed amount of time
(a time quantum) per task, and cycles through the tasks. If a tasks performs a
blocking operation, such as read from/write to memory or acquisition of a lock,
then the task enters a waiting state. The OS detects when a process is waiting,
and does not assign time quanta to that process.

Round-robin scheduling does not require any a priori knowledge of the running
task. The OS scheduler cannot predict which tasks it will encounter in the future.
Consequently, its performance is suboptimal. One can still provide guarantees on
the quality of a given scheduling algorithm, A, by considering its competitive ratio,
which is defined as the smallest2 factor C such that

costA(x) ≤ C · costoptimal(x), for every input x

where costA(x) is the cost of the given online scheduler A that cannot predict the
future, and costoptimal(x) is the cost of a clairvoyant scheduler that knows all future
tasks. For example, if we consider the cost of the schedule length (or makespan),
then list scheduling has a competitive ratio of 2 − 1/n, with n ≥ 1 the number of
machines [Gra66]. Of course, any competitive ratio is at least 1, which corresponds
to the ideal situation wherein the scheduler has perfect information on the behavior
of the application.

2Or the greatest lower bound if no smallest C exists.
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Low-Level offline scheduling Round-robin scheduling leaves plenty of room
for optimization. To squeeze even more performance out of a given software, we
turn our attention to application-specific scheduling.

One generic approach in improving the performance of software is to perform
instruction scheduling. The GNU Compiler Collection is a C compiler that per-
forms instruction scheduling when using the -march or -mtune flags. Instruction
scheduling is a compiler optimization that reorders independent statements in a
basic block to optimize the total execution time. A basic block is a sequence of
instructions without branching, which constitutes a single node in the control flow
graph of the application. Two instructions are independent and can be reordered,
when neither instruction writes to a memory location that is accessed by the other.
For example, two instructions that do not access the same memory location are
independent, and two instructions that both read from the same memory location
are independent.

Since all instructions and their dependencies are known, it is possible to produce
an optimal instruction order. However, finding the optimal schedule is computa-
tionally intensive. Therefore, one often pretends that instruction scheduling is an
online scheduling problem, and uses the list scheduling that we discussed above.
The resulting execution time at most doubles, because the competitive ratio of list
scheduling is 2− 1/n, for n machines.

High-Level offline scheduling Instruction scheduling improves the software
execution by considering very low-level information on the software. As a result,
instruction scheduling alone is generally insufficient, as it does not consider high-
level information, like the way different parts of the software interact.

For specific application domains, such as digital signal processing (DSP), this
extra performance gain is necessary. To this end, one develops an application in
a domain specific language (DSL) that is amenable to the extraction of relevant
scheduling information. Examples of such DSLs include CSDF graphs and Kahn
process networks.

However, most software is written in a general-purpose language, such as Python,
C, or Java3. Scheduling techniques developed for software written in DSLs for spe-
cific application domains do not readily apply to software written in these general-
purpose languages, because the extraction of relevant scheduling information is
much more difficult for software written in general-purpose languages than for
software written in these DSLs. The primary reason is that the protocol of soft-
ware written in languages that use traditional models of concurrency is implicit,
nebulous, and diffused among the large number of lines of code that comprise the
software [Arb11]. Without an explicit protocol, we cannot know in advance which
schedules will be valid at run time.

1.4 Contributions

This thesis is structured into three parts, namely coordination, compilation, and
scheduling.

3https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
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1.4.1 Coordination

Scheduling requires detailed information on the protocol of an application. For soft-
ware written in general-purpose programming languages, such information is gen-
erally not available. Therefore, we turn in Part I our attention to coordination lan-
guages, which simplify design and development of concurrent systems. Particularly,
exogenous coordination languages, like BIP [BBS06, BS07] and Reo [Arb04, Arb11],
enable system designers to express the interactions among components in a system
explicitly. A formal relation between exogenous coordination languages comprises
the basis for a solid comparison and consolidation of their fundamental concepts.

In Chapter 2, we establish a formal relation between BI(P) (i.e., BIP without
the priority layer) and Reo, by defining transformations between their semantic
models. We show that these transformations preserve all properties expressible in
a common semantics. We use these transformations to define data-sensitive BIP
architectures and their composition.

In Chapter 3, we address the discrepancy between Reo and BIP regarding prior-
ity by revising soft constraint automata, wherein transitions are weighted and each
action has an associated preference value [AS12, KAT16, KAT17]. Soft constraint
automata can be used as a semantics for Reo connectors. These preferences can be
used to guide the selection of an interaction that is enabled by an (unpredictable)
environment.

We revise soft constraint automata in three ways. First, we relax the under-
lying algebraic structure to allow bipolar preferences, which allow one to express
positive preferences (I like X) as well as negative preferences (I do not like X).
Next, we equip automata with memory locations, that is, with an internal state to
remember and update information from transition to transition. Finally, we revise
automata operators, such as composition and hiding, providing examples on how
such memory locations interact with preferences.

We show the utility of our revised soft constraint automata by encoding context-
sensitive behavior in terms of these soft constraint automata.

1.4.2 Compilation

The exogenous coordination languages from Part I offer an explicit protocol spec-
ification that governs the interactions amongst a set of tasks. However, such a
protocol specification does not contain all information necessary for our scheduling
purposes. The main shortcoming is that the protocol specifications from Part I
do not specify the workload of each task, which is the amount of processing time
required by that task. Furthermore, the implementation of a protocol specification
may require one or more auxiliary (protocol) tasks.

In Part II, we provide all necessary ingredients for a complete protocol speci-
fication by developing a compiler that translates these protocol specifications into
executable code. The original tasks, together with the auxiliary tasks, completely
define the scheduling problem. Although it is certainly possible to derive or approx-
imate the workload of each task by analyzing the code generated by our compiler
(including the target architecture), we leave this as future work.

Recent benchmarks show that compiling high-level Reo specifications produces
executable code that can compete with or even beat the performance of hand-
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crafted programs written in languages such as C or Java using conventional con-
currency constructs [JHA14, JA15, JA16b, JA16a, JA18].

The original declarative graphical syntax of Reo does not support intuitive
constructs for parameter passing, iteration, recursion, or conditional specification
[ECT]. This shortcoming hinders Reo’s uptake in large-scale practical applications.
Therefore, a number of Reo-inspired syntax alternatives have appeared in the past,
such as RSL [Klü12] and FOCAML [Jon16]. However, none of them follow the pri-
mary design principles of Reo: a) declarative specification; b) user-defined channels
and channel types; and c) channels compose via shared nodes.

In Chapter 4, we offer a textual syntax for Reo (called Treo) that respects
these principles and supports flexible parameter passing, iteration, recursion, and
conditional specification. The Treo language is extensible and allows the creation
of new semantics for components, such as the soft constraint automaton semantics
from Chapter 3. In on-going work, we use this textual syntax to compile Reo into
target languages such as Java, Promela, and Maude.

The state-of-the-art Reo compiler (Lykos) by Jongmans represents protocols as
constraint automata [Jon16], which specify protocols as labeled transition systems
that preserve synchronization under composition. Besides compilers, constraint
automata have been used as a basis for other tools like model checkers [Klü12].
Unfortunately, composition of transition systems suffers from state space and tran-
sition space explosions, which limits scalability of the tools based on constraint
automata.

Clarke et al. avoid these problems by representing protocols as constraints
[CPLA11]. These constraints determine, at every point in time, which combination
of actions constitute an interaction. Constraints are composed via conjunction,
which means that the size of the representation is potentially linear in the number
of components. However, the approach by Clarke et al. relies on a constraint
solver, which incurs a significant overhead in the run time.

In Chapter 5, we avoid the overhead of the constraint solver by transforming
constraints directly into executable code, without relying on a constraint solver.
More precisely, we apply a commandification technique developed by Jongmans
that generates low-level executable code for a constraint that does not contain any
disjunction [JA15]. We extend this commandification to arbitrary constraints by
rewriting them into a rule-based form. We provide sufficient conditions under which
our approach avoids transition space explosions. As a result, we can now compile
protocols that could not be compiled by Lykos.

Constraint-based representations of a Reo protocol are inherently sequential.
Therefore, straightforward compilation of constraints produces sequential code that
does not utilize all available computational resources.

In Chapter 6, we make concurrency explicit by reformulating our ideas for
constraints in terms of (multilabeled) Petri nets. Similar to the constraint-based
approach, our novel composition of Petri nets avoids a state space explosion, which
makes them an adequate intermediate representation for code generation. More-
over, these Petri nets can be viewed as an inherently parallel generalization of
constraint automata, which makes it possible to generate concurrent code. This
approach is a refinement of the so called synchronous region decomposition of Reo
connectors [JCP16].

Moreover, we also present an abstraction operator for multilabeled nets that
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eliminates internal transitions, which optimizes the execution of multilabeled nets.

1.4.3 Scheduling

The Reo compiler developed in Part II produces code that relies on the operating
system (OS) scheduler to assign computational resources to its tasks. The OS
scheduler aims at fair distribution of processing time amongst its given tasks. As
mentioned earlier (Section 1.2.2), this objective usually conflicts with the scheduling
objective of any given application. In Part III, we address the main question in
Section 1.2.2 by computing an optimal scheduling strategy for a given Reo protocol,
and guiding the OS scheduler to follow this optimal strategy.

In Chapter 7, we introduce work automata to express all relevant schedul-
ing information of a given Reo protocol. The work automaton semantics of Reo
addresses an important shortcoming of the protocol specifications in Part I by
explicitly specifying the workload of each task. The modular structure of the
Treo language allows us to add syntax to express primitive work automata. Our
generic (semantics-agnostic) Reo compiler composes these primitive work automata
to produce the work automaton for the complete application. We potentially4

benefit from all semantics-independent compiler optimizations, such as the queue-
optimization [JHA14] and protocol splitting [JCP16].

Work automata specify behavior and workloads. The specification of behavior
is fully controlled by the developer of the application. The workloads, however, are
not directly under the control of the application developer, and these workloads
can be determined only after compilation. In the current work, we assume that
the work automata (including workloads) are given, and we leave the derivation or
approximation of workloads as future work.

We provide a formal semantics for work automata, based on which we introduce
equivalences such as weak simulation and weak language inclusion. Subsequently,
we define operations on work automata that simplify them while preserving these
equivalences. Where applicable, these operations simplify a work automaton by
merging its different states into a state with a ‘more inclusive’ state-invariant. The
resulting state-invariant defines a region in a multidimensional real vector space
that potentially contains holes, which in turn expose mutual exclusion among pro-
cesses. Such exposed dependencies provide additional insight into the behavior of
an application, which can enhance scheduling. Our operations, therefore, poten-
tially expose implicit dependencies among processes that otherwise may not be
evident to exploit.

In Chapter 8, we use the scheduling information of a Reo protocol (presented
as a work automaton) to compute an optimal scheduling strategy for that applica-
tion. To be precise, we use a generic, game-theoretic scheduling framework to find
optimal non-preemptive schedules for an application.

A straightforward approach to implement the resulting schedule is to replace
the OS scheduler with a custom scheduling strategy. However, as mentioned earlier,
such replacement is highly non-trivial and defeats the purpose of the OS as it turns
it into a platform optimized to run only one application.

4Our current compiler does not yet implement the queue-optimization or protocol splitting.
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Therefore, our answer to the main question in Section 1.2.2 is to alter the ap-
plication so that its scheduling problem becomes trivial. Our main idea is to use
the duality from Section 1.1 to convert the ideal scheduling strategy into a schedul-
ing protocol. Our compositional framework allows us to compose this scheduling
protocol with the original application protocol. This composition can be viewed
as a source-to-source Reo transpiler that addresses scheduling concerns. The re-
sulting new protocol of the application has only one valid schedule, which is the
optimal schedule of the original application. As a result, we can safely outsource
the scheduling to the operating system, as the operating system scheduler is forced
to(closely) follow this optimal schedule.

We evaluate our work by comparing the throughput of two versions of a cyclo-
static dataflow network: one version with the usual protocol, and the other version
with a restricted protocol.

In Chapter 9, we present our conclusions and future work.
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Chapter 2

Coordination Languages

Software scheduling requires detailed information on the interaction and workload
of the tasks in the given application1. For software written in general-purpose pro-
gramming languages, such information is generally not available, because the in-
teraction protocol is implemented with basic primitives such as locks, semaphores,
and (a)synchronous message passing. With such primitives, the code of the in-
teraction protocol gets easily mixed with the application code, which renders the
analysis, optimization and reusability of the implemented protocol impossible.

Exogenous coordination languages, like BIP [BBS06, BS07] and Reo [Arb04,
Arb11], make the interaction protocol explicit by separating coordination of inter-
actions from computation in processes [PA01]. This enables designers to control
interaction using language constructs, making coordination visible to tools like
model checkers, compilers and schedulers.

In BIP, a concurrent system consists of a superposition of three layers: behavior,
interaction and priorities. The behavior layer contains the processes that need to
be coordinated. The interaction layer explicitly specifies which interactions are
possible, which gives full control over the interactions in the system. Mutually
exclusive execution of these interactions ensures that overlapping interactions do
not cause a conflict. If multiple interactions are possible, then the priority layer
selects a preferred one.

In Reo, processes interact by means of a coordination protocol. A protocol con-
sists of a graph-like structure, called a connector, that models the synchronization
and dataflow among the processes. Reo connectors may compose together to form
more complex connectors, allowing reusability and compositional construction of
coordination protocols.

Although BIP and Reo address the same coordination problem, their underlying
design principles and toolchains (containing tools for editing, code generation and
model checking [bip16, reo16, Arb11]) differ significantly. By combining their prin-
ciples and tools, we would conquer new terrain in the field of concurrent languages.
However, some principles(visible in the formal definitions of each language) may
be conflicting, and prevent such a complete unification. A formal relation between
BIP and Reo is necessary to identify these conflicts.

1The work in this chapter is based on [DJAB17, DJAB15]
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In this chapter, we provide such a formal relation between BIP and Reo by
relating their semantic models. We consider two kinds of semantic models for
BIP and Reo: data-agnostic and data-sensitive. In the data-agnostic domain, we
relate port automata as semantics of Reo and BIP architectures [JA12, ABB+14].
We show that connectors in BIP and Reo coincide modulo internal transitions
and independent progress of transitions. In the data-sensitive domain, we relate
stateless constraint automata as semantics of Reo with BIP interaction models
[JA12, BSBJ14]. The restriction to stateless constraint automata arises from the
fact that BIP interaction models are stateless. We show that stateless constraint
automata and BIP interaction models have the same observable behavior.

Stateful data-sensitive Reo connectors require stateful constraint automata for
their semantics, which informally correspond to data-sensitive BIP architectures.
A data-sensitive BIP architecture consists of a (data-sensitive) BIP interaction
model together with a set of coordinating components. However, current literature
on BIP does not provide definitions that allow composition of data-sensitive BIP
architectures. Indeed, only hierarchical composition of interaction models is defined
in [BSBJ14], which is insufficient to define a full composition of data-sensitive BIP
architectures.

We address this problem by using our formal translations to propose a compo-
sition operator for data-sensitive BIP architectures. In addition, we show that it is
possible to relate (stateful) constraint automata and data-sensitive BIP architec-
tures.

Although BIP’s notion of priority is equally applicable to the constraint au-
tomata semantics of Reo, Reo provides no syntax to specify such global priority
preferences.2 Therefore, in this chapter, “BIP” generally refers to “BI(P)”, a name
that others have already used to designate BIP without its priority layer.

The rest of this chapter is organized as follows: In Section 2.1, we recall the
semantic models of BI(P) and Reo. In Section 2.2, we relate port automata in
Reo and BIP architectures. In Section 2.3, we relate BIP interaction models with
stateless constraint automata in Reo. In Section 2.4, we propose an extension of
data-agnostic BIP architectures to the data-sensitive domain, and show how this
enables incremental translation from stateful constraint automata to data-sensitive
BIP architectures. In Section 2.5, we discuss related work. In Section 2.6, we
conclude and point out future work.

2.1 Overview of BIP and Reo

2.1.1 BIP

A BIP system consists of a superposition of three layers: Behavior, Interaction,
and Priority. The behavior layer encapsulates all computation, consisting of atomic
components processing sequential code. Ports form the interface of a component
through which it interacts with other components. BIP represents these atomic

2 Reo does have a weaker priority mechanism to specify local preferences, called context-
sensitivity. A premier example in the Reo literature is the context-sensitive channel LossySync,
which prefers locally maximal dataflow. Clarke et al. first studied context-sensitivity through a
special context-sensitive semantic model for Reo [CCA07]; later, Jongmans et al. showed how to
encode context-sensitivity in non-context-sensitive models [JKA11].
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components as Labelled Transition Systems (LTS) having transitions labelled with
ports and extended with data stored in local variables. The second layer defines
component coordination by means of BIP interaction models [BSBJ14]. For each
interaction among components in a BIP system, the interaction model of that
system specifies the set of ports synchronized by that interaction and the way
data is retrieved, filtered and updated in each of the participating components. In
the third layer, priorities impose scheduling constraints to resolve conflicts in case
alternative interactions are possible.

In the rest of this chapter, we disregard priorities and focus mainly on interac-
tion models (cf. footnote 2).

Data-agnostic semantics We first introduce a data-agnostic semantics for BIP.

Definition 2.1.1 (BIP component [ABB+14]). A BIP component C over a set of
ports PC is a labelled transition system (Q, q0, PC ,→) over the alphabet 2PC . If
C is a set of components, we say that C is disconnected iff PC ∩ PC′ = ∅ for all
distinct C,C ′ ∈ C. Furthermore, we define PC =

⋃
C∈C PC .

Then, BIP defines an interaction model over a set of ports P to be a set of
subsets of P . Interaction models are used to define synchronizations among com-
ponents, which can be intuitively described as follows. Given a disconnected set
of BIP components C and an interaction model γ over PC , the state space of the
corresponding composite component γ(C) is the cross product of the state spaces
of the components in C; γ(C) can make a transition labelled by an interaction
N ∈ γ iff all the involved components (those that have ports in N) can make the
corresponding transitions. A straightforward formal presentation can be found in
[BS07] (cf. Definition 2.1.3 below). Thus, BIP interaction models are stateless: ev-
ery interaction in γ is always allowed; it is enabled if all ports in the interaction are
ready. However, [ABB+14] shows the need for stateful interaction, which motivates
BIP architectures.

Definition 2.1.2 (BIP architecture [ABB+14]). A BIP architecture is a tuple
A = (C, PA, γ), where C is a finite disconnected set of coordinating BIP components,
PA is a set of ports, such that PC =

⋃
C∈C PC ⊆ PA, and γ ⊆ 2PA is a data-agnostic

interaction model. We call ports in PA \ PC dangling ports of A.

Essentially, a BIP architecture is a structured way of combining an interaction
model γ with a set of distinguished components, whose only purpose is to control
which interactions in γ are applicable at which point in time (which depends on
the states of the coordinating components).

Definition 2.1.3 (BIP architecture application [ABB+14]). Let A = (C, PA, γ)
be a BIP architecture, and B a set of components, such that B ∪ C is finite
and disconnected, and that PA ⊆ PB ∪ PC . Write B ∪ C = {Bi | i ∈ I}, with
Bi = (Qi, q

0
i , Pi,→i). Then, the application A(B) of A to B is the BIP compo-

nent (
∏
i∈I Qi, (q

0
i )i∈I , PB ∪ PC ,→), where → is the smallest relation satisfying:

(qi)i∈I
N−→ (q′i)i∈I whenever

1. N = ∅, and there exists an i ∈ I such that qi
∅−→i q

′
i and q′j = qj for all

j ∈ I \ {i}; or
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Figure 2.1: BIP components (a); the coordinating component (b) of the BIP ar-
chitecture A12.

2. N ∩ PA ∈ γ, and for all i ∈ I we have N ∩ Pi 6= ∅ implies qi
N∩Pi−−−−→i q

′
i, and

N ∩ Pi = ∅ implies q′i = qi.

The application A(B), of a BIP architecture A to a set of BIP components B,
enforces coordination constraints specified by that architecture on those compo-
nents [ABB+14]. The interface PA of A contains all ports PC of the coordinating
components C and some additional ports, which must belong to the components
in B. In the application A(B), the ports belonging to PA can participate only in
interactions defined by the interaction model γ of A. Ports that do not belong to
PA are not restricted and can participate in any interaction.

Intuitively, an architecture can also be viewed as an incomplete system: the
application of an architecture consists in “attaching” its dangling ports to the
operand components. The operational semantics is that of composing all compo-
nents (operands and coordinators) with the interaction model as described in the
previous paragraph. The intuition behind transitions labelled by ∅ is that they
represent observable idling (as opposed to internal transitions). This allows us to
“desynchronize” combined architectures (see Definition 2.1.4) in a simple manner,
since coordinators of one architecture can idle, while those of another performs a
transition. Note that, if N = ∅, in item 2 of Definition 2.1.3, N ∩ Pi = ∅, hence
also, q′i = qi, for all i. Thus, intuitively, one can say that none of the components
moves. Item 1, however, does allow one component to make a real move labelled
by ∅, if such a move exists. Thus, the transitions labelled by ∅ interleave, reflecting
the idea that in BIP synchronization can happen only through ports.

Example 2.1.1 (Mutual exclusion [ABB+14]). Consider the components B1 and
B2 in Figure 2.1(a). In order to ensure mutual exclusion of their work states, we
apply the BIP architecture A12 = ({C12}, P12, γ12) with C12 from Figure 2.1(b),
P12 = {b1, b2, b12, f1, f2, f12} and γ12 =

{
∅, {b1, b12}, {b2, b12}, {f1, f12}, {f2, f12}

}
.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only
possible interactions are those that explicitly belong to γ12. Assuming that the
initial states of B1 and B2 are sleep, and that of C12 is free, neither of the
two states (free, work, work) and (taken, work, work) is reachable, i.e. the mutual
exclusion property (q1 6= work) ∨ (q2 6= work)—where q1 and q2 are state variables
of B1 and B2 respectively—holds in A12(B1, B2). ♦

Definition 2.1.4 (Composition of BIP architectures [ABB+14]). LetA1 = (C1, P1, γ1)
and A2 = (C2, P2, γ2) be two BIP architectures. Recall that PCi =

⋃
C∈Ci PC , for
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i = 1, 2. If PC1 ∩ PC2 = ∅, then A1 ⊕ A2 is given by (C1 ∪ C2, P1 ∪ P2, γ12), where
γ12 = {N ⊆ P1 ∪ P2 | N ∩ Pi ∈ γi, for i = 1, 2}. In other words, γ12 is the inter-
action model defined by the conjunction of the characteristic predicates of γ1 and
γ2.

Data-sensitive semantics Recently, the data-agnostic formalization of BIP in-
teraction models was extended with data transfer, using the notion of interaction
expressions [BSBJ14].

Let P be a global set of ports. For each port p ∈ P, let xp : Dp be a typed
variable used for the data exchange at that port. For a set of ports P ⊆ P, let
XP = (xp)p∈P . An interaction expression models the effect of an interaction among
ports in terms of the data exchanged through their corresponding variables.

Definition 2.1.5 (Interaction expression [BSBJ14]). An interaction expression is
an expression of the form

(P ← Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) // (XQ, XL) := dn(XP , XL)]

where P,Q ⊆ P are top and bottom sets of ports; L ⊆ P is a set of local variables;
g(XQ, XL) is the boolean guard; up(XQ, XL) and dn(XP , XL) are respectively the
up- and downward data transfer expressions.

For an interaction expression α as above, we define by top(α) = P , bot(α) = Q
and supp(α) = P ∪Q the sets of top, bottom and all ports in α, respectively. We
denote gα, upα and dnα the guard, upward and downward transfer corresponding
expressions in α.

The first part of an interaction expression, (P ← Q), describes the control flow
as a dependency relation between the bottom and the top ports. The expression in
the brackets describes the data flow, first “upward”—from bottom to top ports—
and then “downward”. The guard g(XQ, XL) relates these two parts: interaction is
enabled only when the values of the local variables together with those of variables
associated to the bottom ports satisfy a boolean condition. As a side effect, an
interaction expression may also modify local variables in XL. Intuitively, such an
interaction expression can fire only if its guard is true. When it fires, its upstream
transfer is computed first using the values offered by its participating BIP compo-
nents. Then, the downstream transfer modifies all of its port variables with updated
values. These upstream and downstream data transfers execute atomically, which
means that an interaction expression behaves as a stateless connector.

Definition 2.1.6 (BIP interaction models [BSBJ14]). A (data-sensitive) BIP in-
teraction model is a set Γ of simple BIP connectors α that are BIP interaction
expressions of the form

({w} ← A).[g(XA) : (xw, XL) := up(XA) //XA := dn(xw, XL)],

where w ∈ P is a single top port, A ⊆ P is a set of ports, such that w 6∈ A, and
neither up nor g involves local variables.
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Example 2.1.2 (Maximum). Let P = {a, b, w, l} be a set of ports of type integer,
i.e., xp :Dp = Z, for all p ∈ P, and consider the interaction expression (simple BIP
connector)

αmax = ({w} ← {a, b}).[tt : xl := max(xa, xb) // xa, xb := xl],

where tt is true. First, the connector takes the values presented at ports a and
b. Then, the simple BIP connector αmax computes atomically the maximum of xa
and xb and assigns it to its local variable xl. Finally, αmax assigns atomically the
value of xl to both xa and xb. ♦

BIP interaction expressions capture complete information about all aspects of
component interaction—i.e., synchronization and data transfer possibilities—in a
structured and concise manner. Thus, by examining interaction expressions, one
can easily understand, on the one hand, the interaction model used to compose
components and, on the other hand, how the valuations of data variables affect
the enabledness of the interactions and how these valuations are modified. Fur-
thermore, a formal definition of a composition operator on interaction expressions
is provided in [BSBJ14], which allows combining such expressions hierarchically
to manage the complexity of systems under design. Since any BIP system can be
flattened, this hierarchical composition of interaction expressions is not relevant
for the semantic comparison of BIP and Reo in this chapter. Nevertheless, the
possibility of concisely capturing all aspects of component interaction in one place
is rather convenient.

2.1.2 Reo

We briefly recall the basics of the Reo language and refer to [Arb04] and [Arb11] for
further details. Reo is a coordination language wherein graph like structures express
concurrency constraints (e.g., synchronization, exclusion, ordering, etc.) among
multiple components. A Reo program, called a connector, is a graph-like structure
whose edges consist of channels that enable synchronous and asynchronous data
flow and whose vertices consist of nodes that synchronously route data among
multiple channels.

A channel in Reo has exactly two ends, and each end either accepts data items,
if it is a source end, or offers data items, if it is a sink end. The type of a channel is a
formal constraint on the dataflow through its two ends that completely defines the
behavior of the channel. Beside the established channel types (Figure 2.2 contains
some of them) Reo allows arbitrary user-defined channel types.

Reo is agnostic regarding the semantics that expresses the behavior of its chan-
nel types, so long as the semantics preserves Reo’s compositional construction
principle (i.e., the behavior of a connector is computed by composing the behav-
iors of all channels and nodes). Jongmans [JA12] provides an overview of thirty
alternative semantics for Reo channels. Its abstract definition of channels and its
notion of channel types make Reo an extensible programming language.

Multiple ends may glue together into nodes with a fixed merge-replicate behav-
ior: a data item out of a single sink end coincident on a node, atomically propagates
to all source ends coincident on that node. This propagation happens only if all
their respective channels allow the data exchange. A node is called a source node
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Figure 2.2: Some primitives in the Reo language with CA semantics over a singleton
data domain D.
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Figure 2.3: Construction of the Alternatork Reo connector, for k ≥ 2.

if it consists of source ends, a sink node if it consists of sink ends, and a mixed node
otherwise. Together, the source and sink nodes of a connector constitute its set of
boundary nodes.

Example 2.1.3 (Primitive channels). Figure 2.2 shows some typical primitive Reo
channels and an example of how these channels can compose at nodes.

A Sync channel accepts a datum from its source end A, when its simultaneous
offer of this datum at its sink end B succeeds.

A SyncDrain channel simultaneously accepts a datum from both its source ends
A and B and loses this datum.

An empty FIFO1 accepts data from its source end A and becomes a full FIFO1.
A full FIFO1 offers its stored data at its sink end B and, when its offer succeeds, it
becomes an empty FIFO1 again.

A Reo node accepts a datum from one of its coincident sink ends (B or B′),
when its simultaneous offer to dispense a copy of this datum through every one of
its coincident source ends (A and A′) succeeds. ♦

The key concept in Reo is composition, which allows a programmer to build
complex connectors out of simpler ones.

Example 2.1.4 (Alternator). Using the channels in Figure 2.2, we can construct
the Alternatork connector, for k ≥ 2, as shown in Figure 2.3. For k = 2, the
Alternator2 consists of four nodes (a1, a2, b1, and b2) and four channels, namely
a SyncDrain channel (between a1 and a2), two Sync channels (from a1 to b1, and
from a2 to b2), and a FIFO1 channel (from b2 to b1).

The behavior of the Alternator2 connector is as follows. Suppose that the en-
vironment is ready to offer a datum at each of the nodes a1 and a2, and ready
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to accept a datum from node b1. According to Example 2.1.3, nodes a1 and a2

both offer a copy of their received datum to the SyncDrain channel. The SyncDrain
channel ensures that nodes a1 and a2 accept data from the environment only si-
multaneously. The Sync channel from a1 to b1 ensures that node b1 simultaneously
obtains a copy of the datum offered at a1. By definition, node b1 either accepts
a datum from the connected Sync channel or it accepts a datum from the FIFO1

channel (but not from both simultaneously), and offers this datum immediately
to the environment. Because the FIFO1 is initially empty, b1 has no choice but to
accept and dispense the datum from a1. Simultaneously, the Sync channel from a2

to b2 ensures that the value offered at a2 is stored in the FIFO1 buffer. In the next
step, the environment at node b1 has no choice but to retrieve the datum in the
buffer, after which the behavior repeats. ♦

Example 2.1.5. Figure 2.4(a) shows a Reo connector that achieves mutual ex-
clusion of components B1 and B2, exactly as the BIP system shown in Figure 2.1
does. This connector consists of a composition of channels and nodes in Figure 2.2.
The Reo connector atomically accepts data from either b1 or b2 and puts it into
the FIFO1 channel, a buffer of size one. A full FIFO1 channel means that B1 or
B2 holds the lock. If one of the components writes to f1 or f2, the SyncDrain
channel flushes the buffer, and the lock is released, returning the connector to its
initial configuration, where B1 and B2 can again compete for exclusive access by
attempting to write to b1 or b2.

The connector in Figure 2.4(a) is not fool-proof. Even if B1 takes the lock, B2

may release it, and vice versa. Hence, exactly as the BIP architecture in Figure 2.1,
the Reo connector in Figure 2.4(a) relies on the conformance of the coordinated
components B1 and B2. The expected behavior of Bi, i = 1, 2, is that it alternates
writes on the bi and fi, and that every write on fi comes after a write on bi. Depend-
ing on such assumptions may not be ideal. The connector, shown in Figure 2.4(b),
makes this expected behavior explicit. By composing two such connectors with the
connector in Figure 2.4(a), we obtain a fool-proof mutual exclusion protocol, as
shown in Figure 2.4(c). Figure 2.6(c) shows the constraint automaton semantics
of the connector in Figure 2.4(c). Like the case of the connector in Figure 2.4(a)
or the BIP architecture in Figure 2.1, noncompliant writes to bi or fi nodes of the
connector in Figure 2.4(c) will block a renegade component Bi that attempts such
writes. However, contrary to the case of the connector in Figure 2.4(a) or the BIP
architecture in Figure 2.1, such a renegade component cannot break the mutual
exclusion protocol that the connector in Figure 2.4(c) implements, as it allows the
other component to run undisturbed. ♦

Formal semantics of Reo Reo has a variety of formal semantics [Arb11, JA12].
In this chapter we use its operational constraint automaton (CA) semantics [BSAR06].

Definition 2.1.7 (Constraint automata [BSAR06]). Let N be a set of ports and
D a set of data items. A data constraint is a first-order formula g with constants
v ∈ D and variables dp, for p ∈ N , that represent the datum observed at (i.e.,
exchanged through) port p. More formally, g is defined by the grammar

g ::= > | ¬g | g ∧ g | ∃dp(g) | dp = v, with p ∈ N , v ∈ D,
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Figure 2.4: Fool-proof (c) mutual exclusion protocol in Reo, composed from a
BIP-like (a) mutual exclusion connector and an alternator connector (b).

where>, ¬, ∧, ∃ and = are respectively tautology, negation, conjunction, existential
quantification and equality. Write DC(N ,D) for the set of all data constraints
over N , and let |= denote the usual satisfaction relation between data assignments
δ : N → D, with N ⊆ N , and data constraints g ∈ DC(N ,D). A constraint
automaton (over data domain D) is a tuple A = (Q,N ,→, q0) where Q is a set of
states, N is a finite set of ports, q0 ∈ Q is the initial state, and → ⊆ Q × 2N ×
DC(N ,D) ×Q is a transition relation, such that, for any transition q

N,g−−→ q′, we
have g ∈ DC(N,D).3

If a constraint automaton A has only one state, A is called stateless. If the
data domain D of A is a singleton, A is called a port automaton [KC09]. In that
case, we omit data constraints, because all satisfiable constraints reduce to >.

In this chapter, we consider only finite data domains, although most of our
results generalize to infinite data domains. Over a finite data domain, the data
constraint language DC(N ,D) is expressive enough to define any data assignment.
For notational convenience, we relax, in this chapter, the definition of data con-
straints and allow the use of set-membership and functions in the data constraints
(compare the definition of g(α) in Section 2.3.3). However, we preserve the inten-
tion that a data constraint describes a set of data assignments.

Example 2.1.6 (CA semantics of Reo primitives). Figure 2.2 shows the CA se-
mantics of some typical Reo primitives. Since constraint automata do not model
the direction of dataflow, the CA semantics of Sync and SyncDrain coincides. ♦

Example 2.1.7 (Exclusive router). The fixed merge-replicate behavior of a Reo
node propagates an input datum to all of its output ports (i.e., source ends coin-
cident on that node). An exclusive router is a connector that propagates an input
datum to one of its, non-deterministically selected, output ports. Figure 2.5(a)
shows the construction of a binary exclusive router from the primitive channels
Sync, SyncDrain, and LossySync. Figure 2.5(b) shows the construction of a ternary

3The original definition of constraint automata excludes internal transitions with ∅,> labels
[BSAR06]. If necessary, all internal transitions may be removed modulo (weak) language equiva-
lence of constraint automata by merging any state q with every state q′ that is reachable from q
by a sequence of internal transitions.
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Figure 2.5: Construction of a binary exclusive router (a); construction of a ternary
exclusive router (b) from binary exclusive routers; and the CA semantics (c) and
(d) of the exclusive routers in (a) and (b), respectively.

exclusive router by composing two binary exclusive routers, where we abbreviate a
binary exclusive router as a crossed node. Figures 2.5(c) and 2.5(c) show the CA
semantics of the binary and ternary exclusive router, respectively. ♦

The CA semantics of every Reo connector can be derived as a composition
of the constraint automata of its primitives, using the CA product operation in
Definition 2.1.8.

The CA semantics for Reo connectors assigns a constraint automaton to every
Reo connector. In the other direction, Baier et al. have shown that it is possible to
translate every constraint automaton (over a finite data domain) back into a Reo
connector [BKK14]. For example, Figure 2.8(c) shows the Reo connector that is
generated from the constraint automaton reo1(A12) in Figure 2.8(b). We refer to
Example 2.2.1 for more details. Because of this correspondence, we consider Reo
and CA as equivalent and focus on constraint automata only.

Definition 2.1.8 (Product of CA [BSAR06]). Let Ai = (Qi,Ni,→i, q0,i) be a
constraint automaton, for i = 1, 2. Then the product A1 on A2 of these automata
is the automaton (Q1×Q2,N1∪N2,→, (q0,1, q0,2)), whose transition relation is the

smallest relation obtained by the rule: (q1, q2)
N1∪N2,g1∧g2−−−−−−−−−→ (q′1, q

′
2) whenever

1. q1
N1,g1−−−−→1 q

′
1, q2

N2,g2−−−−→2 q
′
2, and N1 ∩N2 = N2 ∩N1, or

2. qi
Ni,gi−−−→i q

′
i, Nj = ∅, gj = >, q′j = qj , and Ni ∩Nj = ∅ with j ∈ {1, 2} \ {i}.

It is not hard to see that constraint automata product operator is associative
and commutative modulo equivalence of state names and data constraints (e.g.,
dp = v ∧ dq = w is equivalent to dq = w ∧ dp = v, for p, q ∈ N and v, w ∈ D).
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Figure 2.6: CA semantics (a), (b), and (c) of Reo connectors in Figures 2.4(a),
2.4(b), and 2.4(c), respectively.

Definition 2.1.9 (Hiding in CA [BSAR06]). LetA = (Q,N ,→, q0) be a constraint
automaton, and P = {p1, . . . , pn} a set of ports. Then, hiding ports P of A
yields an automaton ∃P (A) = (Q,N \ P,→∃, q0), where →∃ is given by {(q,N \
P,∃dp1 · · · ∃dpn(g), q′) | (q,N, g, q′) ∈ →}.

In addition to removing ports in P from the transition labels, the original def-
inition of hiding merges any two states that become reachable by a sequence of
internal ∅-labelled transitions (Definition 4.3 in [BSAR06] and Footnote 3). Since
we allow these internal transitions, we do not bother to remove the internal transi-
tions produced by the hiding operation in Definition 2.1.9. A constraint automaton
obtained using our hiding operator is (weak) language equivalent to a constraint
automaton obtained using the original hiding operator of [BSAR06].

As hiding of non-shared ports distributes over product, hiding of non-shared
ports commutes with constraint automata product.

Example 2.1.8. Figures 2.6(a) and 2.6(b) show the constraint automaton seman-
tics A0 and Ai, for i ∈ {1, 2}, of the Reo connectors in Figures 2.4(a) and (two
copies of) 2.4(b). Example 2.1.5 indicates that the fool-proof mutual exclusion pro-
tocol in Figure 2.4(c) can be obtain by composing the Reo connectors in Figures
2.6(a) and 2.6(b). Indeed, the constraint automaton semantics of the fool-proof
mutual exclusion protocol in Figure 2.4(c) is given by A = A0 on A1 on A2. The
part of A that is reachable from initial state (0, 0, 0) is shown in Figure 2.6(c). ♦

2.2 Port automata and BIP architectures

To study the relation between BIP and Reo with respect to synchronization, we
start by defining a correspondence between them in the data-agnostic domain. This
correspondence consists of a pair of mappings between the sets containing seman-
tic models of BIP and Reo connectors. For the data independent semantic model
of Reo connectors we choose port automata: a restriction of constraint automata
over a singleton set as data domain. We model BIP connectors by BIP architec-
tures introduced in [ABB+14]. In order to compare the behavior of BIP and Reo
connectors we interpret them as labelled transition systems. We define a mapping
reo1 that transforms BIP architectures into port automata, and a mapping bip1
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Figure 2.7: Translations and interpretations in the data-agnostic domain.

that transforms port automata into BIP architectures. We then show that these
mappings preserve(1) properties closed under bisimulation, and (2) composition
structure modulo semantic equivalence.

2.2.1 Interpretation of BIP and Reo

To compare the behavior of BIP and Reo connectors, we interpret all connectors
as labelled transitions systems with one initial state and an alphabet 2P , for a set
of ports P . We write LTS for the class of all such labelled transition systems.

Figure 2.7 shows our translations and interpretations. The objects PA and Arch
are the classes of port automata and BIP architectures, respectively. The mappings
bip1, reo1, f1 and g1, respectively, translate Reo to BIP, BIP to Reo, Reo to LTS,
and BIP to LTS.

We first consider the semantics of connectors in Reo and BIP. Since BIP con-
nectors differ internally from Reo connectors, we restrict our interpretation to their
observable behavior. This means that we hide the ports of the coordinating compo-
nents in BIP architectures. For port automata this means that for our comparison,
we implicitly assume that all ports correspond to boundary nodes only.

Interpretation of PA We define the interpretation of a port automaton as

f1((Q,N ,→, q0)) = (Q, 2N ,→, q0). (2.1)

Hence f1 acts essentially as an identity function, justifying our choice of interpre-
tation.

Interpretation of Arch We define the interpretation of BIP architectures using
their operational semantics obtained by applying them on dummy components and
hiding all internal ports. Let A = (C, P, γ) be a BIP architecture with coordinating
components C = {C1, . . . , Cn}, n ≥ 0, and Ci = (Qi, q

0
i , Pi,→i). Recall that

PC =
⋃
i Pi is the set of internal ports in A. Define D = ({qD}, qD, P, {(qD, N, qD) |

∅ 6= N ⊆ P \ PC}) as a dummy component relative to the BIP architecture A.
Using Definition 2.1.3, we compute the BIP architecture application A({D}) =
((
∏n
i=1Qi)× {qD}, (q0, qD), P,→s) of A to its dummy component D. Then,

g1(A) = ((
∏n
i=1Qi)× {qD}, 2P\PC ,→, (q0, qD)) (2.2)

where → = {((q, qD), N \ PC , (q′, qD)) | (q, qD)
N−→s (q′, qD)}. In other words,

g1(A) equals A({D}) after hiding all internal ports PC .
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Note that we based our interpretation g1 on the operational semantics of BIP
architectures, i.e., BIP architecture application. This justifies the definition of
interpretation of architectures.

With a common semantics for BIP and Reo, we can define the notion of preser-
vation of properties expressible in this common semantics. Recall that a property of
labelled transition systems corresponds to the subset of labelled transition systems
satisfying that property.

Definition 2.2.1. Let P ⊆ LTS be a property. Then, bip1 preserves P iff f1(A) ∈
P ⇔ g1(bip1(A)) ∈ P for all A ∈ PA. Similarly, reo1 preserves P iff g1(A) ∈ P ⇔
f1(reo1(A)) ∈ P for all A ∈ Arch.

2.2.2 BIP to Reo

To translate BIP connectors to Reo connectors, we first determine what elements
of BIP architectures correspond to Reo connectors. Our interpretations of port
automata and BIP architectures show that dangling ports in BIP architectures
correspond to boundary port names in port automata. Furthermore, the mutual
exclusion of the interactions in an interaction model in a BIP architecture simu-
lates mutually exclusive firing of transitions in port automata. The definition of a
coordinating component in a BIP architecture is almost identical to that of a port
automaton, yielding an obvious translation.

Let A = (C, P, γ) be a BIP architecture, with C = {C1, . . . , Cn}. Each Ci
corresponds trivially to a port automaton C∗i . Let Aγ = ({q}, P,→, q) be the
stateless port automaton over P with transition relation → defined by {(q,N, q) |
N ∈ γ}. Then Aγ can be seen as the port automata encoding of the interaction
model γ. Recall that PC =

⋃
C∈C PC . The corresponding port automaton of A is

given by

reo1(A) = ∃PC(C∗1 on · · ·C∗n on Aγ). (2.3)

Example 2.2.1. We translate the BIP architecture A12 = ({C12}, P12, γ12) from
Example 2.1.1 using reo1 defined in Equation (2.3). First, we transform γ12 into
a port automaton Aγ12 , which is shown in Figure 2.8(a). Then, interpret the
coordinating component C12 as a port automaton C∗12. Finally, we compute the
product of Aγ12 with the coordinating component C∗12 and hide the ports {b12, f12}
of C12. Figure 2.8(b) shows the resulting port automaton.

As mentioned in Section 2.1.2, we can transform the port automaton in Fig-
ure 2.8(b) into a Reo connector, using the method described in [BKK14]. This
mechanical translation yields the Reo connector in Figure 2.8(c)4. Intuitively, each
state is represented by a FIFO buffer, and the current state is indicated by the pres-
ence of a token. A transition is represented by synchronous channels that move
the token from one buffer to another. The transition is selected by an ternary
exclusive router, represented as a crossed node (cf. Example 2.1.7). Note that the
port automaton semantics of the connector in Figure 2.4(a) (see Figure 2.6(a)) is
similar to the automaton in Figure 2.8(b), up to empty transitions. ♦

4For simplicity, we use two FIFO1 buffers instead of simultaneous FIFO1 buffers used in
[BKK14].
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Figure 2.8: Translation of the interaction model γ12 (a) and BIP architecture A12

(b) from Figure 2.1, and the Reo connector (c) generated from reo1(A12).

2.2.3 Reo to BIP

In BIP, interaction is memoryless. This means that a stateful channel in Reo must
translate to a coordinating component. In fact, we may encode an entire generic
Reo connector as one such component.

The most natural way to translate a port automaton A into a BIP architecture
A is by interpreting A as the coordinating component of A. However, BIP requires
atomic components to synchronize via interactions, rather than directly on shared
ports. Indeed, a BIP architecture excludes any two coordinating components to
share a port (see Definition 2.1.2).

Since we want a compositional translation of port automata to BIP architec-
tures, we need to interpret each port p ∈ N in the interface of A as a dangling
port of A (see Definition 2.1.2). To this end, we rename every port p ∈ N in the
interface of A to p′, and synchronize p and p′ by means of a BIP interaction.

Let A = (Q,N ,→, q0) be a port automaton. We construct a corresponding
BIP architecture for A. Duplicate all ports in N by defining N ′ = {n′ | n ∈ N}.
We do not use a port n′, for n ∈ N , for composition with other BIP architectures.
Therefore, the exact names of ports in an N ′ are not important, instead only
their relation to their dangling siblings n ∈ N matters. For every N ⊆ N , define
N ′ = {n′ ∈ N | n ∈ N}. Trivially, A = (Q, q0,N ′,→c), with →c = {(q,N ′, q′) |
(q,N, q′) ∈ →}, is a BIP component (cf. Definition 2.1.1). Essentially, A and A
are the same labelled transition system. Now we define bip1 as follows:

bip1(A) = ({A},N ∪N ′, {N ∪N ′ | N ⊆ N}). (2.4)

Thus, bip1 uses the port automaton as the coordinating component of the generated
BIP architecture.

Example 2.2.2. We determine bip1(A), where A is the port automaton in Fig-
ure 2.6(b) over the name set N = {bi, fi}. Obtain A by adding a prime to each
port in A. The interaction model of bip1(A) consists of {N ∪ N ′ | N ⊆ N} ={
∅, {bi, b′i}, {fi, f ′i}, {bi, b′i, fi, f ′i}

}
. Hence, bip1(A) is given by the BIP architecture

({A}, {bi, fi, b′i, f ′i},
{
∅, {bi, b′i}, {fi, f ′i}, {bi, b′i, fi, f ′i}

}
). ♦
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2.2.4 Preservation of properties

To show that translations reo1 and bip1 preserve properties, we need to show that
the diagram in Figure 2.7 commutes, i.e., f1(reo1(A)) is equivalent to g1(A) and
g1(bip1(A)) is equivalent to f1(A), for all A ∈ Arch and A ∈ PA.

The following examples show that this equivalence cannot be interpreted as
equality or (strong) bisimulation.

Example 2.2.3. Consider the port automaton A = ({q0}, {a}, {(q0, {a}, q0)}, q0).
The translation bip1(A) of A into a BIP architecture is ({A}, {a, a′}, {∅, {a, a′}}),
with coordinating component A = ({q0}, q0, {a′}, {(q0, {a′}, q0)}). Since the in-
teraction model of bip1(A) contains the empty set, we find that the semantics
g1(bip1(A)) of bip1(A) is given by ({q0}, 2{a}, {(q0, {a}, q0), (q0, ∅, q0)}, q0). On
the other hand, the semantics f1(A) of A does not admit an internal transition
(q0, ∅, q0), which shows that g1(bip1(A)) and f1(A) are not strongly bisimilar. ♦

Example 2.2.4. Consider the BIP architecture A = ({C1, C2}, ∅, ∅) with coor-
dinating components Ci = ({qi, q′i}, qi, ∅, {(qi, ∅, q′i)}), for i = 1, 2. Since the in-
teraction model of A is empty, its translation A∅ to a port automaton equals
({qI}, ∅, ∅, qI). In addition, P{C1,C2} = ∅, which shows that the translation of A to
a port automaton equals reo1(A) = ∃P{C1,C2}(C

∗
1 on C∗2 on A∅) = C∗1 on C∗2 . Def-

inition 2.1.8 shows that the semantics f1(reo1(A)) of reo1(A) contains a transition
((q1, q2, qI), ∅, (q′1, q′2, qI)).

Let D = ({qD}, qD, ∅, ∅) be a dummy component relative to the BIP archi-
tecture A. Since BIP architecture application in Definition 2.1.3 requires state-
changing internal (i.e., ∅-labelled) transitions to execute in isolation, we conclude
that A({D}) does not admit a transition ((q1, q2, qD), ∅, (q′1, q′2, qD)). This shows
that the semantics g1(A) of A and f1(reo1(A)) are not strongly bisimilar. ♦

Since equality or (strong) bisimulation is a too strong semantic equivalence, we
use the slightly weaker notion of equivalence called weak bisimulation [Mil89].

Definition 2.2.2 (Weak bisimulation [Mil89]). If Li = (Qi, 2
Pi ,→i, q

0
i ) ∈ LTS,

i = 1, 2, then L1 and L2 are weakly bisimilar (L1
∼= L2) iff P1 = P2 and there exists

R ⊆ Q1 ×Q2 such that (q0
1 , q

0
2) ∈ R and(q1, q2) ∈ R implies for all N ∈ 2P0 = 2P1

and all i, j ∈ {1, 2} with i 6= j, that

1. if qi
∅−→i q

′
i, then qj (

∅−→j)
∗ q′j and (q′1, q

′
2) ∈ R, for some q′j ; and

2. if qi
N−→i q

′
i and N 6= ∅, then qj (

∅−→j)
∗ N−→j (

∅−→j)
∗ q′j and (q′1, q

′
2) ∈ R, for

some q′j .

Definition 2.2.3 (Semantic equivalence). Port automataA and B are semantically
equivalent (A ∼ B) iff f1(A) ∼= f1(B). BIP architectures A and B are semantically
equivalent (A ∼ B) iff g1(A) ∼= g1(B).

Lemma 2.2.1. Semantic equivalence of port automata satisfies the following prop-
erties: for all A0,A1,A2 ∈ PA we have

1. associativity: A0 on (A1 on A2) ∼ (A0 on A1) on A2

2. commutativity: A0 on A1 ∼ A1 on A0
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3. congruence: A0 ∼ A1 implies A0 on A2 ∼ A1 on A2.

Proof. Consider (strong) bisimulation of port automata(i.e., constraint automata
all of whose data constraints are >) as defined in [BSAR06]. Composition of port
automata is commutative and associative up to bisimulation [BSAR06]. Since f1

acts like the identity and every (strong) bisimulation is also a weak bisimulation,
we conclude that composition of port automata is commutative and associative
modulo semantic equivalence.

Since f1 acts as the identity and every (strong) bisimulation is also a weak
bisimulation, we conclude that semantic equivalence of port automata corresponds
to weak bisimulation of port automata. Let Q0, Q1 and Q2 be the state spaces of
A0, A1 and A2, respectively. Suppose that R ⊆ Q0 × Q1 is a weak bisimulation
between A0 and A1. Using Definition 2.1.8, it follows that R′ = {((q0, q2), (q1, q

′
2)) |

(q0, q1) ∈ R and q2 = q′2} ⊆ (Q0×Q2)× (Q1×Q2) is a weak bisimulation between
A0 on A2 and A1 on A2.

Theorem 2.2.2. For all A ∈ PA and A ∈ Arch we have g1(bip1(A)) ∼= f1(A) and
f1(reo1(A)) ∼= g1(A).

Proof. First, we show that g1(bip1(A)) ∼= f1(A) for all port automataA = (Q,N ,→
, q0) ∈ PA. The state space of g1(bip1(A)) is Q × {qD}, where qD is the state of
the dummy component, and the state space of f1(A) is Q. We show that ∼ given
by (q, qD) ∼ q for all q ∈ Q is a weak bisimulation.

Trivially, (q0, qD) ∼ q0. Suppose that ((q, qD), N, (q′, qD)) is a transition in
g1(bip1(A)). We show that either N = ∅ and q′ = q, or there exists a transition
(q,N, q′) in f1(A) with (q′, qD) ∼ q′. Using the shape of the interaction model γ,
we obtain a transition ((q, qD), N ∪N ′, (q′, qD)) in bip1(A)({D}), with N ′ = {n′ |
n ∈ N}. Definition 2.1.3, with C = {A} and B = {D}, shows that either

1a) N ∪N ′ = ∅, (q, ∅, q′) is a transition in A, and qD = qD; or

1b) N ∪N ′ = ∅, (qD, ∅, qD) is a transition in D, and q′ = q; or

2) N ∪ N ′ ∈ γbip1(A), and if N ′ 6= ∅ then (q,N ′, q′) is a transition in A, and if
N ′ = ∅ then q′ = q, and if N 6= ∅ then (qD, N, qD) is a transition in D, and
if N = ∅ then qD = qD.

If (1a) holds, then N = ∅, and by the definition of f1 we find a transition (q,N, q′)
in f1(A). Trivially, (q′, qD) ∼ q′. Case (1b) is impossible, since dummy component
D does not have an empty transition. Suppose that (2) holds. If N = ∅, then we
have q′ = q. If N 6= ∅, then the definition of f1 gives a (q,N, q′) in f1(A), and
trivially we have (q′, qD) ∼ q′. Thus, in each case, either N = ∅ and q′ = q, or
there exists a transition (q,N, q′) in f1(A) with (q′, qD) ∼ q′.

On the other hand, let (q,N, q′) be a transition in f1(A). We show that there
exists a transition ((q, qD), N, (q′, qD)) in g1(bip1(A)). Using the definition of f1,
we find that (q,N ′, q′) is a transition in A, with N ′ = {n′ | n ∈ N}. If N = ∅,
then the first rule of Definition 2.1.3 implies that ((q, qD), N ∪ N ′, (q′, qD)) is a
transition in bip1(A)({D}). If N 6= ∅, then we have that (qD, N, qD) is a transition
in the dummy component D of the BIP architecture application bip1(A)({D}). The
second rule of Definition 2.1.3 implies that ((q, qD), N ∪N ′, (q′, qD)) is a transition
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in bip1(A)({D}). In either case, we find that ((q, qD), N, (q′, qD)) is a transition
in g1(bip1(A)) and trivially that (q′, qD) ∼ q′. Thus, ∼ is a weak bisimulation
between g1(bip1(A)) and f1(A).

Second, We show that f1(reo1(A)) ∼= g1(A) for any BIP architecture A =
({Ci}i∈I , P, γ) with components given by Ci = (Qi, q

0
i , Pi,→i), for all i ∈ I. The

state space of f1(reo1(A)) is (
∏
i∈I Qi)×{qI}, where qI is the state of the port au-

tomaton of the interaction model of A. The state space of g1(A) is (
∏
i∈I Qi)×{qD},

where qD is the state of the dummy component. We show that ∼ given by
(q, qI) ∼ (q, qD) for all q = (qi)i∈I ∈

∏
i∈I Qi, is a weak bisimulation.

Trivially, (q0, qI) ∼ (q0, qD). Let ((q, qD), N, (q′, qD)) be a transition in g1(A),
for someN ⊆ P\PC . We show that ((q, qI), N, (q

′, qI)) is a transition in f1(reo1(A)).
The definition of g1 shows that there exists some M ⊆ P , with M \ PC = N , such
that ((q, qD),M, (q′, qD)) is a transition in A({D}), where D is the dummy com-
ponent of A. Definition 2.1.3 implies that either

1a) M = ∅, (qi, ∅, q′i) ∈ →i and q′j = qj , for some i ∈ I and all j ∈ I \ {i}; or

1b) M = ∅, (qD, ∅, qD) is a transition in D, and q′j = qj for all j ∈ I; or

2) M ∈ γ, and if M ∩Pi 6= ∅ then (qi,M ∩Pi, q′i) ∈ →i, and if M ∩Pi = ∅ then
q′i = qi, for all i ∈ I.

If (1a), then (qi, ∅, q′i) is a transition in C∗i . Hence, the second item in Defini-
tion 2.1.8 gives a transition ((q, qI), N, (q

′, qI)) in f1(reo1(A)), with N ⊆ M = ∅.
Case (1b) is impossible, since dummy component D does not have an empty tran-
sition. If (2), then M ∈ γ implies (qI ,M, qI) ∈ Aγ . Using Definition 2.1.8 and
M \ PC = N , we find a transition ((q, qI), N, (q

′, qI)) in f1(reo1(A)).
Let ((q, qI), N, (q

′, qI)) be a transition in f1(reo1(A)), for some N ⊆ P \PC . We

show that there exist a sequence of transitions (q, qI) (
∅−→)∗

N−→ (q′, qI) in g1(A).
The definition of reo1 shows that there exists some M ⊆ P such that M \ PC =
N and ((q, qI),M, (q′, qI)) is a transition in C∗1 on · · ·C∗n on Aγ . According to
Definition 2.1.8, we find that either

1) (q,M,q′) and (qI ,M, qI) are transitions in C∗1 on · · · on C∗n resp. Aγ ; or

2a) (q,M,q′) is a transition in C∗1 on · · · on C∗n and M ∩ P = ∅; or

2b) (qI ,M, qI) is a transition in Aγ , M ∩ PC = ∅ and q′ = q.

If (1) holds, then M ∈ γ, and, for each i ∈ I, we have either M ∩Pi = ∅ and q′i = qi
or we find a transition (qi,M ∩ Pi, q′i) in C∗i . Definition 2.1.3 requires a transition
(qi,M ∩ Pi, q′i) in C∗i that satisfies both M ∩ Pi = ∅ and q′i 6= qi to execute in

isolation. Therefore, Definition 2.1.3 yields a sequence of transitions (q, qI) (
∅−→

)∗ (q, qI)
N−→ (q′, qI) in g1(A), where qi = q′i, if M ∩Pi = ∅ and q′i 6= qi, and qi = qi

otherwise. If (2a) holds, then N ⊆ M = M ∩ P = ∅ and, by Definition 2.1.8,
we have for some i ∈ I that (qi, ∅, q′i) is a transition in C∗i . Similar to case(1),

we obtain a non-empty sequence of transitions (q, qI) (
∅−→)+ (q′, qI) in g1(A). If

(2b) holds, then we have N = M ∈ γ, and Definition 2.1.3 shows that there exist

a transition (q, qI)
N−→ (q′, qI) in g1(A). In each case, we found a sequence of
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transitions (q, qI) (
∅−→)∗

N−→ (q′, qI) in g1(A), and (q′, qI) ∼ (q′, qD). Thus, ∼ is a
weak bisimulation between f1(reo1(A)) and g1(A).

Corollary. bip1 and reo1 preserve all properties closed under weak bisimulation,
i.e., for all P ⊆ LTS, A ∈ PA and A ∈ Arch we have f1(A) ∈ P ⇔ g1(bip1(A)) ∈ P
and g1(A) ∈ P ⇔ f1(reo1(A)) ∈ P , whenever L ∈ P and L′ ∼= L implies L′ ∈ P ,
for all L,L′ ∈ LTS.

Section 2.2.4 allows model checking of BIP architectures with Reo model check-
ers, and vice versa. This is particularly interesting, since tools for BIP and Reo
employ different model checking techniques. For example, the D-Finder tool allows
for compositional deadlock detection and verification of BIP systems [bip16], while
Vereofy allows for linear and branching time model checking of Reo systems [reo16].

Example 2.2.5. Consider the following safety property ϕ satisfied by the Reo
connector in Figure 2.4(c): “if b1 fires, then b2 fires only after f1 fires”. The
automaton A in Figure 2.6(c) clearly satisfies this property. Using Section 2.2.4,
we conclude that the BIP architecture bip1(A) satisfies ϕ also. ♦

2.2.5 Compatibility with composition

BIP architectures and port automata have their own notions of composition. We
show that, under some mild conditions, our translations preserve composition mod-
ulo semantic equivalence.

Recall the port automaton representation of the interaction model from Sec-
tion 2.2.2. The following lemma provides a decomposition of the port automaton
representation of the interaction model of a composed BIP architecture.

Lemma 2.2.3. Let Ai = (Ci, Pi, γi) ∈ Arch, i = 1, 2, with PC1 ∩ PC2 = ∅ and
∅ ∈ γ1 ∩ γ2. Then, we have that Aγ12 ∼ Aγ1 on Aγ2 , where γ12 is the interaction
model of A1 ⊕A2.

Proof. Let (q,N, q) be a transition in Aγ12 . By definition, N ∈ γ12, and from
Definition 2.1.4 we deduce N ∩ Pi ∈ γi, i = 1, 2. Therefore (q,N ∩ Pi, q) is a
transition in Aγi . Then, Definition 2.1.8, implies that ((q, q), N, (q, q)) in Aγ1 on
Aγ2 . On the other hand, suppose that ((q, q), N, (q, q)) is a transition in Aγ1 on Aγ2 .
Then, Definition 2.1.8 gives either that (1) for i = 1, 2, (q,N ∩Pi, q) is a transition
in Aγi , or (2) for i, j ∈ {1, 2}, i 6= j, (q,N ∩ Pi, q) is a transition in Aγi and
N ∩ Pj = ∅. In the first case, we conclude that N ∩ Pi ∈ γi, for i = 1, 2. Hence,
Definition 2.1.4 implies N ∈ γ12. In the second case, we see that N ∩ Pi ∈ γi and
N ∩Pj = ∅ ∈ γj , since ∅ ∈ γ1 ∩γ2. Thus, Definition 2.1.4 implies N ∈ γ12. In both
cases we find N ∈ γ12, and we conclude that (q,N, q) is a transition of Aγ12 .

For any two BIP architectures A1, A2 ∈ Arch, consider the equation

reo1(A1 ⊕A2) ∼ reo1(A1) on reo1(A2), (2.5)

Recall that reo1 hides all internal ports PC1∪C2 of A1⊕A2, where, for i ∈ {1, 2}, Ci
is the set of coordinating components of Ai. This means that internal ports PC1∪C2
in A1 ⊕ A2 cannot be used for composition in the right hand side of equation
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Equation (2.5). In particular, the BIP architectures cannot share any internal port
in PC1∪C2 = PC1 ∪PC2 . Therefore, we need to assume that PC1 ∩P2 = PC2 ∩P1 = ∅,
where, for i ∈ {1, 2}, Pi is the interface of Ai.

Note that shared internal ports can be transformed into shared dangling ports.
Let p ∈ PC1 ∩ P2 be a dangling port of P2 that is connected to a component in
A1. Change A1 to A′1 by adding a (dangling) port x to A1 and synchronizing p
with x by changing the BIP interaction model γ1 of A1 to γ′1 = {N ∪ {x} | p ∈
N ∈ γ1} ∪ {N | p /∈ N ∈ γ1}. Change A2 to A′2 by renaming p to x in A2. The
resulting architectures A′1 and A′2 satisfy the assumption. This construction shows
that PC1 ∩ P2 = PC2 ∩ P1 = ∅ is only a mild assumption.

Theorem 2.2.4. reo1(A1 ⊕ A2) ∼ reo1(A1) on reo1(A2) for all Ai = (Ci, Pi, γi) ∈
Arch, with PC1 ∩ P2 = PC2 ∩ P1 = ∅ and ∅ ∈ γ1 ∩ γ2.

Proof. Let C1 ∪ C2 = {C1, . . . , Cn, . . . , Cm}, with Ci ∈ C1 iff i ≤ n, be the set of
coordinating components of A1 and A2. By definition, we have reo1(A1 ⊕A2) =
∃PC1∪C2(C∗1 on · · ·C∗n on C∗n+1 on · · ·C∗m on Aγ12). Using Lemmas 2.2.1 and 2.2.3,
we obtain reo1(A1⊕A2) ∼ ∃PC1∃PC2(C∗1 on · · ·C∗n on Aγ1 on C∗n+1 on · · ·C∗m on Aγ2).
From PC1 ∩ P2 = PC2 ∩ P1 = ∅, we conclude that the port automata C∗1 , . . . , C

∗
n

and Aγ1 do not use ports from PC2 . Since hiding of non-shared ports distributes
over composition of port automata, we find that

reo1(A1 ⊕A2) ∼ ∃PC1(C∗1 on · · ·C∗n on Aγ1) on ∃PC2(C∗n+1 on · · ·C∗m on Aγ2).

Hence, we conclude that reo1(A1 ⊕A2) ∼ reo1(A1) on reo1(A2).

Theorem 2.2.5. bip1(A1 on A2) ∼ bip1(A1)⊕ bip1(A2) for all Ai ∈ PA.

Proof. Applying Theorem 2.2.4, with A1 = bip1(A1) and A2 = bip1(A2), gives
that reo1(bip1(A1) ⊕ bip1(A2)) ∼ reo1(bip1(A1)) on reo1(bip1(A2)). Using Theo-
rem 2.2.2, we find, for any B ∈ PA, that f1(reo1(bip1(B))) ∼= g1(bip1(B)) ∼= f1(B)
and reo1(bip1(B)) ∼ B. Since semantic equivalence is a congruence by Lemma 2.2.1,
we find that reo1(bip1(A1) ⊕ bip1(A2)) ∼ A1 on A2 ∼ reo1(bip1(A1 on A2)). By
Theorem 2.2.2, we conclude that bip1(A1)⊕ bip1(A2) ∼ bip1(A1 on A2)

Example 2.2.6. For any two ports x and y, let A{x,y} be the port automaton
of a synchronous channel (cf. Figure 2.2), and let C{x,y} be its corresponding BIP
component. Suppose we need to translate A{a,b} on A{b,c} to a BIP architecture.
Then, we compute bip1(A{a,b}) = ({C{a′,b′}}, {a, a′, b, b′}, γ{a,b}), with

γ{a,b} = {∅, {a, a′}, {b, b′}, {a, a′, b, b′}}.

Next, we compute bip1(A{b,c}) = ({C{b′′,c′′}}, {b, b′′, c, c′′}, γ{b,c}), with

γ{b,c} = {∅, {b, b′′}, {c, c′′}, {b, b′′, c, c′′}}.

Note that we need to use double primes now, because otherwise b′ would be a shared
port of C{a′,b′} and C{b′′,c′′}. Using Theorem 2.2.5, we find that bip1(A{a,b} on
A{b,c}) = bip1(A{a,b})⊕ bip1(A{b,c}). Therefore, A{a,b} on A{b,c} translates to

({C{a′,b′}, C{b′′,c′′}}, {a, a′, b, b′, b′′, c, c′′}, γ{a,b,c}),

where γ{a,b,c} is the composition of γ{a,b} and γ{b,c}. ♦
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Example 2.2.7. Consider the port automaton A from Figure 2.6(c). If we trans-
late A to BIP, we obtain a BIP architecture B1 = bip1(A), which has only a single
coordinating component. From Example 2.1.8, we see that A ∼= A0 on A1 on A2,
where A0 is the port automaton in Figure 2.6(a), and Ai is the port automaton
in Figure 2.6(b), for i = 1, 2. Now consider B3 = bip1(A0)⊕ bip1(A1)⊕ bip1(A2).
Using Definition 2.1.4, we see that B3 has three coordinating components. Never-
theless, Theorem 2.2.5 shows that B3 is semantically equivalent to B. Therefore,
Theorem 2.2.5 allows to compute translations compositionally. ♦

2.3 Stateless CA’s and interaction models

In Section 2.2, we established a correspondence between port automata and BIP
architectures. Here, we offer translations between data-sensitive connector models
in BIP and Reo.

For BIP connectors we use BIP interaction models, which are tuples consisting
of an interface P and a set Γ of interaction expressions α that have:

1. a single top port that is not a bottom port,

2. bottom ports included in their interface P , and

3. guard and up functions that are independent of local variables (Definition 2.1.5).

We assume that every top port occurs only in one interaction expression per BIP
interaction model. We denote the class of such BIP interaction models by IM.

For the semantics of Reo connectors, we take a pair consisting of a constraint
automaton and a partition of its interface into input ports Nin and output ports
Nout5. We call such pairs constraint automata with polarity. The reason we ex-
plicitly distinguish CA port types in this semantics is to give direction to dataflow,
similar to BIP connectors. Usually such port type distinctions are implicit within
the semantics of Reo connectors, but for preciseness we encode them here as a
partition.

A full correspondence of BIP interaction models and constraint automata with
polarity in Reo is not possible. Firstly, BIP interaction models are stateless, we
need to restrict ourselves here to only stateless constraint automata with polarity
[ABB+14, BSBJ14]. Secondly, ports of a BIP interaction expression are bidirec-
tional in the sense that input and output through a port happen simultaneously
in a single execution step. Ports in a Reo connector are unidirectional in the sense
that each port is either an input port or an output port. To accommodate this
distinction, we split every bidirectional port p in a BIP interaction expression into
an input port p!, providing write operations to the user of the connector, and an
output port p?, providing read operations to the user of the connector. Therefore,
we consider the class CA± of all stateless constraint automata with polarity, such
that, for some set of BIP ports P , we have the set of Reo ports Nin = {p! | p ∈ P},
Nout = {p? | p ∈ P}, and, for every p ∈ P , ports p! and p? synchronize (i.e., p! ∈ N
if and only if p? ∈ N for every transition (q,N, g, q′) ∈ →).

5To simplify notation, we deviate from [DJAB15] by excluding internal ports.
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Reo BIP

CA± IM

LTS
f2

bip2

g2
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[BSAR06][BKK14] [BSBJ14]

Figure 2.9: Translations and interpretations in the data-sensitive domain.

a b c

α = (∅ ← {a, b, c}).[g : up // down]

a! a? b! b? c! c?
R

Figure 2.10: Simulating bidirectional ports in BIP with unidirectional ports in Reo.

As in Section 2.2, we interpret all connectors as labelled transition systems.
Then, we define translations between Reo connectors (CA±) and BIP connectors
(IM), and show that they preserve properties.

2.3.1 Interpretation of BIP and Reo

Consider the diagram in Figure 2.9. Classes CA± and IM consist of constraint
automata with polarity and BIP interaction models. Morphisms bip2 and reo2 are
translations of those classes and f2 and g2 are interpretations in a common LTS
semantics. We do not intend to redefine the semantics of constraint automata with
polarity and of BIP interaction models in this section. Hence, we interpret them
using their definitions from [BSAR06, BSBJ14].

The class LTS in Figure 2.9 is the class of all labelled transition systems over an
alphabet (D+1)2P , where D is a set of data items; 1 = {0}, where 0 represents the
absence of data (similar to void or null); and 2P = {p!, p? | p ∈ P} is the duplicated
(unidirectional) port set of a set of (bidirectional) ports P . If the environment
writes a datum d to bidirectional port p of a connector, then we represent this
by an assignment of d to the unidirectional port p!. If the environment reads a
datum d from a bidirectional port p of a connector, then we represent this by an
assignment of d to the unidirectional port p?.

Example 2.3.1. Figure 2.10 shows an example of this port duplication. First, the
upward data transfer expression in α takes data from the bottom ports a, b and c.
In the Reo connector R, this corresponds to taking data from ports a!, b! and c!.
Finally, the downward data transfer expression in the BIP interaction expression α
offers data to the bottom ports, which corresponds in Reo connector R to offering
data to ports a?, b? and c?. ♦

Interpretation of IM We first define the interpretation g2(Γ) ∈ LTS of a BIP
interaction model Γ. We define the interface of g2(Γ) to be 2P = {p!, p? | p ∈ P},
where P is the interface of Γ. We define the data domain of g2(Γ) to be D =⋃
p∈P Dp, where Dp is the data type of port p (cf. Section 2.1.1). We associate to
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every interaction expression α ∈ Γ a set ∆(α) ⊆ (D + 1)2P of data assignments
δ : 2P → D+ 1, and we add, for every α ∈ Γ and δ ∈ ∆(α), a transition (q, δ, q) to
the stateless labelled transition system g2(Γ).

We introduce some notation to define the set of data assignments ∆(α). For
every BIP interaction expression α, we write Pα for its bottom ports, gα for its
guard, upαw and upαL for the restriction of the up function to its top port and its
local variables, respectively, and dnαbot for the restriction of the down function to its
bottom ports. For every data assignment δ : 2P → D+ 1, we define δup(p) = δ(p!)
and δdn(p) = δ(p?), for all p ∈ Pα.

In this notation, we define

g2(Γ) = ({q}, (D + 1)2P , {(q, δ, q) | α ∈ Γ, δ ∈ ∆(α)}), (2.6)

where δ ∈ ∆(α) iff δ(2P \ 2Pα) = {0}, δdn = dnαbot(up
α
w(δup), up

α
L(δup)), and

gα(δup) = tt. Note that we use the value of upαw(δup) as a local variable, since we
consider only non-hierarchical BIP interaction models.

In [BSBJ14], Bliudze et al. encode BIP interaction models in Top/Bottom
(T/B) components, i.e., an automaton over interaction expressions together with
local variables. Furthermore, they define a semantics for T/B components, which
indirectly defines an interpretation of interaction models. Equation (2.6) imitates
this interpretation without using T/B components explicitly.

Interpretation of CA± We now define the interpretation of a stateless con-
straint automaton with polarity A = ({q},Nin,Nout,→, q) ∈ CA± over a data
domain D. By definition, we find a set of unidirectional ports P , such that
Nin = {p! | p ∈ P}, Nout = {p? | p ∈ P}, and, for every p ∈ P , ports p! and
p? synchronize. We use 2P as the port names of f2(A). We obtain the transitions
of f2(A) by replacing every transition labelled with N, g in A with a set of tran-
sitions labelled with δ ∈ ∆(N, g) = {δ : 2P → D + 1 | δ(2P \ N) = {0}, δ |= g},
where ∆(N, g) contains all data assignments δ : 2P → D + 1 that satisfy the
synchronization constraint N and data constraint g. Now, define

f2(A) = ({q}, (D + 1)2P , {(q, δ, q) | q N,g−−→ q, δ ∈ ∆(N, g)}). (2.7)

2.3.2 Reo to BIP

Since BIP interaction models are stateless, we cannot translate an arbitrary con-
straint automaton (i.e., Reo connector) into BIP. Interaction models in BIP pre-
clude keeping track of the state of a Reo connector. Hence, the translation of the
interaction model of a BIP architecture into a port automaton in Section 2.2.2
inspires us for our translation bip2.

First, we describe intuitively how we translate a stateless constraint automaton
A over a data domain D to a BIP interaction model. We transform every transition
in A with label N, g into a simple BIP connector with N as its bottom ports,
together with a guard, an up and a down function that mimic the data constraint
g. We define the corresponding set bip2(A) of BIP interaction expressions by the
set of all transformed transitions from A.
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We now construct an interaction expression for any transition labelled N, g in
automaton A as follows:

α(N, g) = ({wN,g} ← PN ).[gin(XPN
) : YPN

:= solve(g,XPN
) //XPN

:= YPN
],

where PN satisfies 2PN = {p!, p? | p ∈ PN} = N ; the variables XPN
= {xp |

p ∈ PN} model the values assigned to bottom ports; the variables YPN
= {yp |

p ∈ PN} model some fresh local variables; the guard gin is any quantifier free
formula equivalent to ∃ON : g(IN , ON ), with input variables IN = {dp! | p! ∈ N}
and output variables ON = {dp? | p? ∈ N}; and function solve(g,XPN

) returns
any vector YPN

satisfying g(XPN
, YPN

). All variables have data type D (the data
domain of A), i.e., xp :D for all p ∈ N .

Let P be the interface of A. Define bip2 as follows:

bip2(A) = (P, {α(N, g) | (q,N, g, q) ∈ →}). (2.8)

Intuitively, the solve function in α(N, g) computes a solution of the guard g,
given all input values dp!, with p! ∈ N . Note that the solve function in α(N, g) is
not deterministic. However, comparing the solve function to the random function
in Figure 4 in [BSBJ14], we see that this generality is justified.

Example 2.3.2. Consider a Sync channel from port a to b. To model this chan-
nel as a constraint automaton A ∈ CA±, we duplicate the ports and obtain the
interface P = {a!, a?, b!, b?}. In view of Figure 2.2, we model a Sync channel as
A = ({q}, P, {(q, P, g, q)}, q), with g ≡ da! = db?. The translation of A to a BIP
interaction model consist of a single BIP interaction expression

α(P, g) = ({w} ← {a, b}).[tt : (ya, yb) := (xa, xb) // (xa, xb) := (ya, yb)],

because tt ≡ ∃da?∃db?(da! = db?), for any given da!, db! ∈ D, and the solve function
solve(g, xa, xb) = (xa, xb) acts as the identity. ♦

2.3.3 BIP to Reo

The correspondence between BIP interaction expressions and automata transitions
from Section 2.3.2, provides the main idea for the translation of interaction models
into stateless constraint automata. If Γ is a set of simple BIP connectors, we assign
to every α ∈ Γ a transition τα labelled with N(α), g(α), and subsequently construct
the stateless constraint automaton consisting of all such τα transitions.

Let α be a simple BIP interaction expression. Define N(α) = 2Pα = {p?, p! |
p ∈ Pα}. Furthermore, let D? = (dp?)p∈P , D! = (dp!)p∈P , and define

g(α) =
∧
p∈P dp!, dp? ∈ Dp ∧ gα(D!) ∧ D? = dnαbot(up

α
w(D!), upαL(D!)),

where we use our relaxation on the data constraint language from Section 2.1.2 and
our notation regarding a BIP interaction expression α from Section 2.3.1. Note that
g(α) is independent of the top port w, because we consider only non-hierarchical
connectors.

Let Γ be a set of simple BIP connectors with interface P . Recall that D =⋃
p∈P Dp. Define the constraint automaton reo2(Γ) over D by

reo2(Γ) = ({q}, P ! ∪ P?, {(q,N(α), g(α), q) | α ∈ Γ}, q). (2.9)
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Example 2.3.3. Consider the interaction expression αmax from Example 2.1.2,
with data domain restricted to D = {0, . . . , 232 − 1}. We translate the interaction
model Γ = {αmax} using Equation (2.9), i.e., we compute A = reo2(Γ). Trivially,
A is stateless. Its set of input ports equals P ! = {a!, b!}, and its set of output
ports equals P? = {a?, b?}. A has a single transition (q,N, g, q), with guard g ≡∨
x,y,z∈D : z=max(x,y)(da! = x ∧ db! = y ∧ da? = z ∧ db? = z) and synchronization

constraint N = {a!, b!, a?, b?}. ♦

2.3.4 Preservation of properties

To show the faithfulness of translations bip2 and reo2, we show that interpretations
f2 and g2 commute with translations bip2 and reo2 in Figure 2.9.

Theorem 2.3.1. For all A ∈ CA± and all Γ ∈ IM we have g2(bip2(A)) = f2(A)
and f2(reo2(Γ)) = g2(Γ).

Proof. (Sketch) Let A ∈ CA± be a constraint automaton with polarity with in-
terface P , let (q,N, g, q) be a transition in A, and let δ : 2P → D + 1 be a data
assignment. By definition, we have δ ∈ ∆(α(N, g)) if and only if δ(2P \2Pα) = {0},
δdn = dnαbot(up

α
w(δup), up

α
L(δup)), and gα(δup) = tt, where α = α(N, g). Using the

definition of α(N, g), it follows that δ ∈ ∆(α(N, g)) if and only if δ(2P \N) = {0}
and δ satisfies g. Thus, δ ∈ ∆(α(N, g)) if and only if δ ∈ ∆(N, g). Using the
definitions of f2 and g2, we find that g2(bip2(A))) = f2(A).

Let Γ ∈ IM be a BIP interaction model with interface P , let α ∈ Γ be a BIP
interaction expression, and let δ : 2P → D+1 be a data assignment. By definition,
we have δ ∈ ∆(N(α), g(α)) if and only if δ(2P \N(α)) = {0} and δ satisfies g(α).
Using the definition of N(α) = 2Pα and g(α), it follows δ ∈ ∆(N(α), g(α)) if and
only if δ(2P \ 2Pα) = {0} and δdn = dnαbot(up

α
w(δup), up

α
L(δup)), and gα(δup) = tt.

Thus, δ ∈ ∆(N(α), g(α)) if and only if ∆(α). Using the definitions of f2 and g2,
we find that f2(reo2(Γ)) = g2(Γ).

Corollary. The translations bip2 and reo2 preserve all properties expressible in
LTS, i.e., f2(A) ∈ P ⇔ g2(bip2(A)) ∈ P and g2(Γ) ∈ P ⇔ f2(reo2(Γ)) ∈ P for all
P ⊆ LTS, A ∈ CA± and Γ ∈ IM.

Example 2.3.4. Consider the following safety property ϕ for the interaction ex-
pression αmax from Example 2.1.2: “the value retrieved from port a equals zero”.
Clearly, this safety property does not hold, whenever a or b offers a non-zero in-
teger. Note that ϕ depends solely on the interpretation of the interaction model
Γ = {αmax} in LTS, and hence ϕ is expressible in LTS. Using Section 2.3.4 we
conclude that ϕ is false also for Amax = reo2({αmax}). Thus, we know any exe-
cutable code generated from the constraint automaton Amax does not satisfy ϕ.
More generally, Section 2.3.4 allows us to use the Reo compiler to generate correct
code for a BIP interaction model. ♦
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2.4 Data-sensitive BIP architectures

Due to the absence6 of a data-sensitive equivalent of a BIP architecture, our data-
sensitive translation presented in Section 2.2 appears restricted in comparison with
our data-agnostic translation in Section 2.3. It seems straightforward to extend BIP
architectures to the data-sensitive domain by adding coordinating components and
replacing the interaction model with a data-sensitive interaction model. However,
this extension requires also a composition operator for interaction models, which
is not present in the current literature [BSBJ14]. In this section, we propose a
data-sensitive extension to BIP architectures and their composition, and we show
how this extension relates to Reo connectors.

2.4.1 Composition of BIP interaction expressions

BIP architecture composition in Definition 2.1.4 consists of two parts: it merges
the coordinating components into a single set of coordinators, and it composes
the BIP interaction models by gluing interactions together. This gluing has not
yet been defined for data-sensitive BIP interaction expressions [BSBJ14]. We now
propose a possible definition for this gluing of data-sensitive BIP interactions.

Let α1 and α2 be two BIP interaction expressions. Intuitively, their compo-
sition α1 ∗ α2 synchronizes α1 and α2. That is, both interactions fire in a single
atomic step. This means that the composition should evaluate both guards and
synchronously execute the upward and downward dataflow of both interaction ex-
pressions whenever both guards are satisfied.

Suppose α1 and α2 do not share local variables. In that case, we can simulate
synchronous execution of the upward data transfer expressions of α1 and α2 by
sequentially executing both expressions. However, since α1 and α2 may share
bottom ports, the downward data transfer expressions may write different values
to the shared bottom ports. Hence, we cannot simply execute both downward data
transfer expressions sequentially.

Generally, the downward data transfer expression of a BIP interaction expres-
sion α may depend on the top ports of α. When this is the case, the value produced
by the downward data expression becomes known only after hierarchical composi-
tion. Thus, at design time we can neither check nor avoid that the downward data
transfer expressions of α1 and α2 disagree on their shared bottom ports.

Example 2.4.1. Consider the BIP interaction expression

α′max = ({w} ← {a, b}).[tt : xw := max(xa, xb) // xa, xb := xw],

where each port in P = {a, b, w, l} is of type integer, i.e., xp : Dp = Z, for all
p ∈ P, and tt is true. The value of the downward data transfer expression in α′max

depends on the value xw of its top port w. ♦

When two BIP interaction expressions α1 and α2 do not depend on their top
ports, we can determine whether α1 and α2 agree on shared bottom ports. Indeed,
we know the relationship between the values presented to the upward data transfer
expression and the values computed by the downward data transfer expression.

6This text was written before [BHM19]
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This allows us to force agreement already in the guard of the composed BIP inter-
action expression α1 ∗ α2. In this way, we can safely execute both downward data
transfer expressions sequentially.

Definition 2.4.1 (Composition of interaction expressions). Let α1 and α2 be two
interaction expressions without shared local variables and for which the downward
data transfer expression does not depend on top ports. We define the composition
α1 ∗α2 of α1 and α2 as follows: top(α1 ∗α2) = ∅, bot(α1 ∗α2) = bot(α1)∪bot(α2),
upα1∗α2 = (upα1 , upα2), dnα1∗α2 = (dnα1 , dnα2),

gα1∗α2
= gα1

∧ gα2
∧
[
dnα1

|S(upα1
(X1

Q, X
1
L)) = dnα2

|S(upα2
(X2

Q, X
2
L))
]
,

where dnαi |S is the restriction of dnαi to the shared variablesXS over S = bot(α1)∩
bot(α2), Xi

Q are the variables over bot(αi), and Xi
L are the local variables of αi.

The local variables of α1 ∗ α2 are X1
L ∪X2

L.

Example 2.4.2. Consider the following BIP interaction expressions α1 = (∅ ←
{a, b}).[tt : xk := xa // xb := xk], and α2 = (∅ ← {b, c}).[tt : xl := xb // xc := xl],
which simulate two Sync channels over a, b and b, c respectively (See Figure 2.2).
Then, their composition α1 ∗ α2 is given by (∅ ← {a, b, c}).[tt : xk := xa;xl :=
xb // xb := xk;xc := xl).

This composition merely synchronizes ports a and c, while there is no data
exchange between them. On the other hand, the composition of the two Sync
channels does transfer data from source a to sink c. Hence, composition of interac-
tion expressions does not correspond directly to composition of Reo channels. ♦

Example 2.4.3. Consider the following BIP interaction expressions α1 = (∅ ←
{a, b}).[tt : xk := max(xa, xb) // xa, xb := xk], and α2 = (∅ ← {b, c}).[tt : xl :=
max(xb, xc) // xb, xc := xl], which are similar to the BIP interaction expression
αmax from Example 2.1.2 (except that we omitted the top port). Intuitively, per-
haps, combining max(xa, xb) and max(xb, xc) yields max(xa, xb, xc). However, the
restriction that downward data transfer expressions of α1 and α2 must agree on
their shared bottom port b, implies that the composition α1∗α2 takes the following
form:

α1 ∗ α2 = (∅ ← {a, b, c}).[max(xa, xb) = max(xb, xc) :

xk := max(xa, xb);xl := max(xb, xc) // xa, xb := xk;xc := xl].

The upward and downward data transfer expressions are composed sequentially.
Note that since the downward data transfer does not depend on top ports, the
sequential order in this composition is irrelevant. The guard consists of the con-
junction of the guards of α1 and α2, together with the statement that the downward
data transfer expressions agree on the value of xb. ♦

2.4.2 Abstraction on BIP interaction expressions

Example 2.4.2 shows that the composition of interaction expressions does not cor-
respond directly to composition of Reo connectors. We now investigate the reason
for this incompatibility and show that it is possible to simulate composition of Reo
connectors by means of an abstraction operator on BIP interaction expressions.
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a! a? b1! b1?
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b2! b2? c! c?
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b! b?

(a) Composition

a! a? b! b? c! c?
R

(b) Abstraction

Figure 2.11: Composition (a) and abstraction (b) for interaction expressions.

Consider a Sync channel R1 over a and b and a Sync channel R2 over b and c
(cf. Figure 2.2). In order to comply with the notation from Section 2.3, we rename
every channel end p to p!, if it is a source end, or p?, if it is a sink end. In this way,
we obtain two Reo connectors R′1 and R′2 that are Sync channels over a!, b? and
b!, c? respectively.

This renaming splits node b into an output port b? and an input port b!. To
preserve the intention of composition in Reo, we need to add a Sync channel from
p? to p!, for every internal port p of the connector. For boundary nodes, there is
no need to add a Sync channel.

Using the translation discussed in Section 2.3.2, we obtain from R′1 a BIP
interaction expression α1 over a and b. Similarly, we find fromR′2 a BIP interaction
expression α2 over b and c. The composition α1 ∗ α2 of α1 and α2 yields a BIP
interaction expression over a, b and c.

The composition of BIP interaction expressions may also be described in terms
of the Reo connectors R′1 and R′2. Figure 2.11(a) shows the construction that
simulates this composition. First, we split R1 and R2 by renaming their shared
ports b! and b? to b1!, b2! and b1?, b2? respectively, and we add two fresh ports
b! and b?. We replicate the data that we observe at b! to both b1! and b2!. We
check the data retrieved from b1? and b2? for equality and pass it to b?. The node
with the equality sign is responsible for this equality check. This node is a Reo
component that takes two identical data items from its input and synchronously
transfers one of these items to its output. Finally, we synchronize R1 and R2 by
adding a SyncDrain between b! and b? (cf. Figure 2.2).

As in Example 2.4.2, we see that the BIP interaction expression composition
R of R′1 and R′2 yields no dataflow from a to c. Indeed, the depicted composition
merely synchronizes b? and b! using a SyncDrain channel. However, the renaming
of R1 and R2 to R′1 and R′2 required an additional Sync channel from b? to b!.
Hence, in order to simulate composition of Reo connectors, we need to add this
Sync channel. We model this addition of the Sync channel by an operation called
abstraction. Figure 2.11(b) shows the effect of abstraction on the composed Reo
connector R.

In terms of Reo connectors, the effect of abstraction is clear. Now, we formu-
late this abstraction operator in terms of interaction expressions. Consider the
interaction expression in Figure 2.11(b). The addition of the Sync channel imposes
a restriction on the observed dataflow at b: the data presented as input for the
upward data transfer equals the output retrieved from the downward data transfer
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expression. This means that the abstraction of b requires us to find a fixed point of
the composition of the upward and downward data transfer expressions. Moreover,
this fixed point needs to satisfy the guard of the interaction expression. Once we
have computed this fixed point, we just use it as input to the interaction.

Since we use our own input at b instead of input obtained from a BIP compo-
nent, we must hide b from the interface of the interaction. This explains why we
call this operation abstraction.

Definition 2.4.2 (Abstraction on interaction models). Let α be the BIP inter-
action expression (∅ ← Q).[g : XL := up(XQ) //XQ := dn(XL)], and let p ∈ Q
be a bottom port of α. Let udp(XQ) = dn(up(XQ))|xp

be the restriction to xp
of the composition of up and dn. Denote the set of fixed points of the function
xp 7→ udp(xp, XQ\{p}) by F . Let fp(XQ\{p}) ∈ F be any partial function that
returns, when possible, any fixed point from F such that g(xp, XQ\{p}). We call
fp a fixed point function of α with respect to p. Then, we define the abstraction
α \ p of α with respect to p as

(∅ ← Q \ {p}).[∃xp ∈ F. g : XL := up(XQ\{p}, fp(XQ\{p})) //XQ\{p} := dn(XL)] .

For convenience, we assume that a fixed point function is a random function.
However, in practice we care only about the fact that this function returns a fixed
point from F that satisfies the guard.

Example 2.4.4. Consider the BIP interaction expressions α1 and α2 from Ex-
ample 2.4.2, and their shared bottom port b. We compute the abstraction α =
(α1 ∗ α2) \ b. The mapping udb : xb 7→ xa gives the restriction to xb of the com-
position of the upward and downward data transfer expressions. The set of fixed
points of udb consists of F = {xa}. Trivially, the guard of α equals gα = tt. Hence,
the fixed point function of α is given by fp(xa, xc) = xa. Therefore, we find that
α = (∅ ← {a, c}).[tt : xk := xa;xl := xa // xc := xl].

We see that the value of xa flows via xb to xc, which simulates the dataflow in
the composition of the two Sync channels in Example 2.4.2. ♦

Example 2.4.5. Consider the composed BIP interaction expression α1 ∗ α2 from
Example 2.4.3 and its bottom port b. We compute the abstraction α = (α1∗α2)\b.
The restriction to xb of the composition of the upward and downward data transfer
expressions is given by the mapping udb : xb 7→ max(xa, xb). The set of fixed points
of udb is given by F = {v | v ≥ xa}. Since any xb ≥ xa, xc can serve as a witness,
the guard of α simplifies to gα ≡ ∃xb ≥ xa.(xb ≥ xc) ∨ (xc ≥ xb ∧ xb = xc) ≡ tt.
Thus, the fixed point function fp(xa, xc) = rnd({y | y ≥ xa, xc}) may return any
value greater than or equal to both xa and xc. Finally, we get that (α1 ∗ α2) \ b is
given by

(∅ ← {a, c}).[tt : xk := max(xa, r); xl := max(r, xc) // xa := xk;xc := xl],

where r = rnd({v | v ≥ xa, xc}). Hence, since r is random, (α1 ∗α2) \ b returns the
value max(xa, xc) + C, where C ≥ 0 is an arbitrary positive number. ♦
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2.4.3 Data-sensitive BIP architectures

The extension of BIP architectures to the data-sensitive domain requires us to
combine data-agnostic BIP architectures with interaction expressions that are data-
sensitive [ABB+14, BSBJ14].

First, we need to generalize the coordinating components in a BIP architecture.
For this, we use a restricted type of constraint automata with polarity.

Definition 2.4.3 (Atomic BIP components). An atomic BIP component is a con-
straint automaton A such that every transition (q,N, g, q′) ∈ → synchronizes at
most one bidirectional port, i.e., N ∈ {∅, {p!, p?}}, for some bidirectional port p.

Coordinating components in data-agnostic BIP architectures are disconnected
(cf. Definition 2.1.1). This notion lifts trivially to sets of atomic BIP components.

Next, we generalize the data-agnostic interaction model γ to a data-sensitive
interaction model Γ. Every data-sensitive BIP interaction expression α ∈ Γ reduces
to a data-agnostic interaction N = bot(α) ∈ γ.

Definition 2.4.4. A data-sensitive BIP architecture is a triple A = (C, P,Γ) con-
sisting of a finite disconnected set C of atomic BIP components, a finite set P of
ports, and an interaction model Γ over P (cf. Definition 2.1.1 and 2.1.6).

Using the operational semantics of atomic components, provided in [BSBJ14,
Definition 3.2], and the interpretation g2 of a data-sensitive interaction model,
defined in Section 2.3.1, we define the following semantics for data-sensitive BIP
architectures:

Definition 2.4.5 (Semantics of data-sensitive BIP architecture). Consider a data-
sensitive BIP architecture A = ({C1, . . . , Cn}, P,Γ). The semantics g3(A) of A is
given by the labelled transition system (

∏n
i=1Qi, (D + 1)2P ,→), where Qi is the

state space of atomic component Ci, and → is the smallest relation that satisfies
the following rule: if δ : 2P → D + 1 is a data assignment such that (q, δ, q) is a
transition in g2(Γ), and for all components Ci we have either

1. q′i = qi and dom(δ) ∩ Pi = ∅; or

2. (qi, N, g, q
′
i) is a transition in Ci, dom(δ) ∩ Pi = N , and δ |= g,

then (qi)
n
i=1

δ−→ (q′i)
n
i=1.

2.4.4 Composition of data-sensitive BIP architectures

Using the concepts introduced in Sections 2.4.1 and 2.4.2, we lift the composition
operator of data-agnostic BIP architectures to data-sensitive BIP architectures.

Because the composition of coordinating components consists of set-union, its
extension to data-sensitive BIP architectures is trivial. The composition of data-
sensitive interaction models is less straightforward. Given two data-sensitive BIP
interaction models Γ1 and Γ2, the composed data-sensitive interaction model Γ
should intuitively consists of composed BIP interaction expressions α1 ∗ α2, with
αi ∈ Γi for both i. However, we cannot allow every combination of α1 and α2,
because they may synchronize on different shared ports.
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Every BIP interaction expression α in the data-sensitive domain, reduces to a
BIP interaction bot(α) in the data-agnostic domain, where bot(α) are the bottom
ports of α. In this way, a BIP interaction model Γ reduces to a data-agnostic
interaction model γ = {bot(α) | α ∈ Γ}.

Let γ1 and γ2 be the reduced BIP interaction models derived from Γ1 and
Γ2, and consider the BIP interactions bot(α1) and bot(α2) in γ1 and γ2. Let γ
be the composition of γ1 and γ2. According to Definition 2.1.4, we have that
N = bot(α1 ∗ α2) ∈ γ if and only if N ∩ P1 ∈ γ1 and N ∩ P2 ∈ γ2. It is not hard
to see that, in order to ensure that bot(α1 ∗ α2) ∈ γ, it suffices to assume that
bot(α1) ∩ P2 = bot(α2) ∩ P1.

Definition 2.4.6 (Composition of data-sensitive BIP interaction models). Let Γ1

and Γ2 be two interaction models with interfaces P1 and P2, respectively, such that
no BIP interaction expression has top ports and no local variable is shared. We
define the composition of Γ1 and Γ2 as Γ1 ∗Γ2 = {α1 ∗α2 | αi ∈ Γi,bot(α1)∩P2 =
bot(α2) ∩ P1}.

Notice that the restriction to interaction expressions that do not have top ports
implies that the condition in Definition 2.4.1, which requires that the downward
data transfer do not depend on top ports, is trivially satisfied. Hence, the compo-
sition operator on data-sensitive BIP interaction models is well-defined.

Moreover, notice that it does not make sense to weaken the condition bot(α1)∩
P2 = bot(α2) ∩ P1 any further. Suppose that α1 and α2 satisfy only bot(α1 ∗
α2) ∩ Pi ∈ γi, for i = 1, 2. Then we find α′1 ∈ Γ1 and α′2 ∈ Γ2 such that bot(α′1 ∗
α′2) = bot(α1 ∗ α2). Although, α′1 ∗ α′2 and α1 ∗ α2 extend the same data-agnostic
interaction, they may behave very differently with respect to data.

Now, Definition 2.4.6 allows us to define our desired composition operator for
data-sensitive BIP architectures.

Definition 2.4.7 (Composition of data-sensitive BIP architectures). Let A1 =
(C1, P1,Γ1) and A2 = (C2, P2,Γ2) be two data sensitive BIP architectures such
that C1 ∪ C2 is disconnected and no BIP interaction expression has top ports and
A1 and A2 share no local variables. Then, we define the composition A1 ⊕ A2 as
(C1 ∪ C2, P1 ∪ P2,Γ1 ∗ Γ2).

The composition of data-sensitive BIP interaction models in Definition 2.4.6
can cause an interaction-space explosion. Such an explosion can never occur us-
ing hierarchical composition only [BSBJ14]. This makes the data-sensitive BIP
architecture composition more expressive than hierarchical composition.

Example 2.4.6. Consider a Reo connector that consist of N parallel Sync chan-
nels, i.e., we have a Sync channel Rai,bi from ai to bi, for each i ∈ {1, . . . , N}.
Since any combination of Sync channels can fire, the associated constraint automa-
ton exhibits 2N transitions. The direct translation from Section 2.3 requires us to
translate every transition into a corresponding BIP interaction expression.

Using BIP architecture composition from Definition 2.4.7, it suffices to translate
each Sync channel Rai,bi into a BIP architecture Aai,bi = (∅, {ai, bi}, {αai→bi , α∅}),
where αai→bi = (∅ ← {ai, bi}).[tt : xl := xai // xbi := xl] models the Sync chan-
nel and α∅ = (∅ ← ∅).[tt : − //−] models the empty transition. This empty
interaction allows the other BIP architectures to proceed independently of this
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Figure 2.12: Translation of Reo channels and nodes to data-sensitive BIP architec-
tures. The BIP interaction expressions are given by αa→b,c = (∅ ← {a, b, c}).[tt :
xl := xa // xb, xc := xl], αa→b = αa→b,b, and αa↓b = (∅ ← {a, b}).[tt : − //−].
The atomic BIP component C models the behavior of the FIFO1 channel.

BIP architecture. Hence, Definition 2.4.7 enables us to translate only N channels
instead of 2N transitions. ♦

Definition 2.4.8 (Abstraction of data-sensitive BIP architectures). Let A =
(C, P,Γ) be a data-sensitive BIP architecture, and p ∈ P a dangling port (i.e.,
p /∈ PC , for all C ∈ C). Then, we define the abstraction A \ p as (C, P \ {p}, {α \ p |
α ∈ Γ}).

2.4.5 Incremental translation

The proposed composition operator from Definition 2.4.7 together with the abstrac-
tion operator from Definition 2.4.2 allow us to incrementally translate constraint
automata to data-sensitive BIP architectures and vice versa. We formalize this
by defining two translations, and show that they both preserve the semantics of
translated entities.

Reo to BIP Consider a Reo circuit R, and associate to each channel and node
in R its constraint automaton (see Figure 2.2). Rename every input port p of any
channel or node in R to p!, and every output port of any channel or node in R
to p?. This procedure splits every shared port p into two ports p! and p?, which
essentially disconnects all channels and nodes. Write X = {A1, . . . ,Am} for the
obtained set of constraint automata with polarity. Our goal is to translate each
Ai ∈ X individually to a data-sensitive BIP architecture, and then compose them
using Definitions 2.4.2 and 2.4.7. To this end, we define the translation bip3(A) of
a BIP-friendly constraint automaton with polarity A.

Let A be a constraint automaton with polarity over P , which means that A uses
names from 2P = {p!, p? | p ∈ P}. Since atomic components are not allowed to
synchronize their ports and since interaction in BIP is stateless, we need to assume
thatA is BIP-friendly: A is either stateless (i.e., QA = {q}) or does not synchronize
any of its ports (i.e., for every transition (q,N, g, q′) we have N = {p!, p?} for some
p ∈ P ). Figure 2.2 shows some examples of BIP-friendly automata.

When A is stateless, we can translate A into an interaction model bip2(A). We
now simply define bip3(A) = (∅, P, bip2(A)). See Figure 2.12 for an example. When
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A does not synchronize any of its ports, we can interpret A as an atomic component
A′, where we rename every port p ∈ P to a port p′ ∈ P ′. The prime is used only
to construct a fresh port name. Now, we interpret every p ∈ P as a dangling port
of the translated data-sensitive BIP architecture and connect p with p′ using the
interaction αp,p′ = (∅ ← {p, p′}).[tt : xk := xp;xl := xp′ // xp := xl;xp′ := xk].
Thus, we define

bip3(A) =

{
(∅, P, bip2(A)) if A is stateless

({A′}, P ∪ P ′, {αp,p′ | p ∈ P}) if A is non-synchronizing
(2.10)

The restriction that the automatonA should be either stateless or non-synchronizing
is not problematic. Every synchronizing stateful automaton A can be decomposed
into a set {A1, . . . ,Am} of stateless and non-synchronizing automata [BKK14]. In-
deed, each automaton in the decomposition is the CA representation of a stateless
Reo channel or a FIFO1 buffer.

Using the translation bip3, we can now translate the Reo circuitR incrementally.
Let {A1, . . . ,Am} be a set of BIP-friendly constraint automata with polarity and
S = {p | {p!, p?}∩NAi

∩NAj
6= ∅ for some distinct i, j} be the set of shared/inter-

nal ports of this system of automata. The following diagram illustrates the working
of the incremental translation from Reo to BIP:

{A1, . . . ,Am} {bip3(A1), . . . , bip3(Am)}

∃2S(A1 on · · · Am on G) L (bip3(A1)⊕ · · · ⊕ bip3(Am)) \ S
g3f3

bip3

(2.11)

Here, f3 is the canonical extension of f2 defined in equation Equation (2.7), − \ S
is the abstraction operator defined in Definition 2.4.8, and G is a stateless gluing
automaton that for every subset P ⊆ S of internal ports, has a transition with syn-
chronization constraint N = {p!, p? | p ∈ P} and data constraint g ≡ ∧p∈P dp! =
dp?. Observe that G essentially models all Sync channels from p? to p! for every
p ∈ S. In this way, we reconnect the nodes that were split by our encoding of
polarity.

Example 2.4.7. Let R be the sequential composition of two Sync channels, i.e.,
R = Ra,b on Rb,c where Rx,y is a Sync channel from x to y. First, we associate to
Rx,y its constraint automaton with polarity

Ax,y = ({q}, {x!, x?, y!, y?}, {(q, {x!, x?, y!, y?}, dx! = dy?, q)}, q).

Thus, we represent R by {Aa,b,Ab,c}. To reconnect the channel ends b! and b?,
we add a stateless gluing automaton G with a single transition that has a synchro-
nization constraint N = {b?, b!} and data-constraint g ≡ db? = db!. So now, the
semantics of R is given by f3(∃b!∃b?(Aa,b on Ab,c on G)) and consists of a stateless
labelled transition system that encodes that for every observed δ : 2{a, c} → D, we
have δ(a!) = δ(c?).

Using the incremental translation from Diagram 2.11 and α1 and α2 from Ex-
ample 2.4.2, we obtain data-sensitive BIP architectures bip3(Aa,b) and bip3(Ab,c)
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given by (∅, {a, b}, {α1}) and (∅, {b, c}, {α2}), respectively. Note that b is the only
internal node in R, hence S = {b}. Now, Example 2.4.4 shows that the sys-
tem {bip3(Aa,b), bip3(Ab,c)} composes into a single BIP architecture A given by
(∅, {a, c}, {(α1 ∗ α2) \ b}). It is now easy to see that f3(∃b!∃b?(Aa,b on Ab,c on G))
and g3(A) are bisimilar. ♦

In the previous example, we stated that the incremental translation from Di-
agram 2.11 preserves bisimilarity, but in fact, it preserves even a stronger equiva-
lence: isomorphism. Informally, labelled transition systems are isomorphic if their
transition relations are identical modulo state renaming. Consequently, isomor-
phism implies bisimilarity.

Definition 2.4.9 (Isomorphism). If Li = (Qi, (D + 1)2Pi ,→i, q
0
i ) ∈ LTS, i = 1, 2,

then L1 and L2 are isomorphic iff P1 = P2 and there exists a bijective function

f mapping states from Q0 to Q1 such that f(q0
0) = q0

1 and q0
δ−→0 q′0, for some

q0, q
′
0 ∈ Q0, if and only if f(q0)

δ−→1 f(q′0).

Theorem 2.4.1. Translation bip3 is correct and compositional, i.e., Diagram 2.11
commutes modulo isomorphism of labelled transition systems.

Proof. Let Ai = (Qi,Ni,→i, q0i), for i ∈ {1, . . . ,m}, be BIP-friendly constraint
automata with polarity, and let S = {p | {p!, p?} ∩ Ni ∩ Nj 6= ∅, with i 6= j} be
the set of shared ports. The state space of f3(∃2S(A1 on · · · on Am on G)) equals
Q1×· · ·×Qm×{qG}, and the state space of g3((bip3(A1)⊕. . .⊕bip3(Am))\S) equals∏
j∈J Qj , where J ⊆ {1, . . . ,m} is the set of indices of the BIP-friendly components

that are non-synchronizing. We show that the mapping (q1, . . . , qm, qG) 7→ (qi)i∈J
constitutes an isomorphism between K = f3(∃2S(A1 on · · · on Am on G)) and
L = g3((bip3(A1)⊕ . . .⊕ bip3(Am)) \ S).

Let τ = ((q1, . . . , qm, qG), δ, (q′1, . . . , q
′
m, qG)) be a transition in K. Using Def-

inition 2.1.9, if follows that τ is in K if and only if there exists an extension
δ′ :

⋃
i 2Ni → D + 1 of δ with δ′(p) = δ(p) for all p ∈ (

⋃
i 2Ni) \ 2S such that

((q1, . . . , qm, qG), δ′, (q′1, . . . , q
′
m, qG)) is a transition in f3(A1 on · · · on Am on G).

Write δ′|2Ni for the restriction of δ′ to 2Ni. Using Definition 2.1.8, it follows that τ
is in K if and only if τi = (qi, δ

′|2Ni
, q′i) is a transition in f3(Ai) or dom(δ′)∩2Ni = ∅

and q′i = qi, for all i ∈ {1, . . . ,m}, and δ′(p!) = δ′(p?), for all p ∈ S, due to the
gluing automaton G. Using equations Equation (2.10) and Equation (2.8), we have
that τ is in K if and only if g3(bip3(Ai)) has a transition τi or dom(δ′) ∩ Ni = ∅
and q′i = qi, for all i ∈ {1, . . . ,m}, and δ′(p!) = δ′(p?), for all p ∈ S. By the
definition of the composition operator on data-sensitive BIP architectures in Defi-
nition 2.4.7 and the definition of g3 in Definition 2.4.5, it follows that τ is in K if
and only if ((qi)i∈J , δ′, (q′i)i∈J) is a transition in g3(bip3(A1)⊕ . . .⊕ bip3(Am)) and
δ′(p!) = δ′(p?), for all p ∈ S. Using the abstraction operator in Definition 2.4.2, it
follows that τ is in K if and only if ((qi)i∈J , δ, (q′i)i∈J) is a transition in L. Since
7→ trivially preserves initial states, we conclude that 7→ is an isomorphism which
proves the theorem.

Applying Theorem 2.4.1 for m = 1, we obtain, since S = ∅, correctness of bip3.

Corollary. g3(bip3(A)) ∼= f3(A), for all CA with polarity A.
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BIP to Reo Let {A1, . . . , An} be a set of data-sensitive BIP architectures, and
assume no two atomic components share a port. Our goal is to translate the
composition A1 ⊕ · · · ⊕An to a constraint automaton with polarity by translating
each BIP architecture Ai individually. To this end, we extend the translation reo2

to data-sensitive BIP architectures.
Let A = ({C1, . . . , Cn}, P,Γ) be a data-sensitive BIP architecture. Trivially,

every atomic component Ci constitutes a constraint automaton with polarity. By
reusing our translation reo2, we define

reo3(A) = reo2(Γ) on
n∏
i=1

Ci. (2.12)

Let {A1, . . . , An} be a set of data-sensitive BIP architectures, and assume no
two atomic components share a port. The following diagram illustrates the working
of the incremental translation from BIP to Reo:

{A1, . . . , An} {reo3(A1), . . . , reo3(An)}

A1 ⊕ · · · ⊕An L reo3(A1) on · · · on reo3(An)

reo3

g3 f3

(2.13)

Example 2.4.8. Consider the atomic component C42 = ({q}, {b!, b?},→, q), with
→ = {(q, {b!, b?}, db! = 42, q)}, and let α1 and α2 be the BIP interaction ex-
pressions from Example 2.4.3. Now, consider the data-sensitive BIP architec-
tures A1 = ({C42}, {a, b}, {α1}) and A2 = (∅, {b, c}, {α2}) over the data domain
D = {0, . . . , 232 − 1}. Then, g3(A1 ⊕ A2) is given by a stateless labelled tran-
sition system that encodes that for every observed δ : 2{a, b, c} → D we have
δ(a?) = max(δ(a!), δ(b!)), δ(c?) = max(δ(b!), δ(c!)), δ(a?) = δ(b?) = δ(c?), and
δ(b!) = 42. Using Example 2.3.3, it follows that f3(reo3(A1) on reo3(A2)), which
is equal to f3(reo2({α1}) on C42 on reo2({α2})), amounts to a labelled transition
system that is bisimilar to g3(A1 ⊕A2). ♦

Theorem 2.4.2. Translation reo3 is correct and compositional, i.e., Diagram 2.13
commutes modulo isomorphism of labelled transition systems.

Proof. Let {A1, . . . , An} be a set of data-sensitive BIP architectures such that no
two atomic components share a port. The state space of g3(A1 ⊕ · · · ⊕An) equals∏
C∈C QC , where C =

⋃
i CAi

are the atomic components of A1 ⊕ · · · ⊕ An. The
state space of f3(reo3(A1) on . . . on reo3(An)) equals {q}×∏n

i=1

∏
C∈CAi

QC , where

CAi
is the set of atomic components of Ai. We show that the mapping (qC)C∈C 7→

(q, (qC)C∈CAi
)ni=1 constitutes an isomorphism between K = g3(A1 ⊕ · · · ⊕An) and

L = f3(reo3(A1) on . . . on reo3(An)).
Let τ = ((qC)C∈C , δ, (q′C)C∈C) be a transition in K. By definition of g3 in

Definition 2.4.5, it follows that τ is in K if and only if δ is accepted by the composed
BIP interaction model Γ and (qC , δ|PC

, q′C) in f3(C) or dom(δ) ∩ PC = ∅ and
qC = q′C for all atomic components C ∈ C. By definition of the composition
operator on data-sensitive BIP architectures in Definition 2.4.7, it follows that τ
is in K if and only if, for all i ∈ {1, . . . , n}, the following conditions are satisfied:
(q, δ|PAi

, q) is a transition in g2(Γi), with Γi the BIP interaction model of Ai,
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and (qC , δ|PC
, q′C) in f3(C) or dom(δ) ∩ PC = ∅ and qC = q′C , for all atomic

components C ∈ CAi
. Since g2(Γi) ∼= f2(reo2(Γi)) by Theorem 2.3.1, we conclude

that τ is in K if and only if ((q, (qC)C∈CAi
), δ|PAi

, (q, (q′C)C∈CAi
)) is a transition

in f3(reo3(Ai)). Using Definition 2.1.8, it follows that that τ is in K if and only
if ((q, (qC)C∈CAi

)ni=1, δ, (q, (q
′
C)C∈CAi

)ni=1) is a transition in L. Since 7→ trivially
preserves initial states, we conclude that 7→ is an isomorphism, which proves the
theorem.

By applying Theorem 2.4.2 for n = 1, we obtain correctness of reo3.

Corollary. f3(reo3(A)) ∼= g3(A), for all data-sensitive BIP architectures A.

Thus, Theorems 2.4.1 and 2.4.2 show how our proposed composition operator
of Definition 2.4.7 enables us to translate between Reo connectors, modeled by
constraint automata with polarity, and data-sensitive BIP architectures.

2.5 Related work

Instead of using labelled transition systems as common semantics (Figures 2.7 and
2.9), we may also choose another model for concurrent systems. The Tile Model
offers such an alternative semantics for concurrent systems [GM00]. The basic idea
is to associate an m-tuple of terms in n variables (si(x1, . . . , xn))mi=1 over the term
algebra with signature Σ to an arrow s : n → m in the graph with nodes from N.
Every function symbol s ∈ Σ with arity n is interpreted as an arrow s : n → 1.
As Plotkin’s structural operational semantics uses terms in an algebra to represent
the state of a system, the Tile Model uses the arrows s : n → m to describe the
configuration of a concurrent system. Transitions from one configuration to another
are formulated by means of tiles. A tile α (denoted by α : s

a−→
b
t) is a diagram

n m

α
p q
a

s

t

b (2.14)

that represents a rewriting rule that states that trigger a can transform initial
configuration s into the final configuration t and produce effect b. The trigger a
and effect b are called the observations of α. Tiles may be composed horizontally,
vertically, and in parallel, using the monoidal operator ⊗ on N given by n ⊗m =
n+m.

A configuration can be seen as a connector. In this view, the source n and
target m of a configuration s : n→ m correspond to the interface of the connector.
Since the interfaces p and q in diagram Equation (2.14) may differ from n and m,
the Tile Model provides a natural semantics for dynamic reconfiguration in Reo
[ABC+08].

Bruni et al. show that Petri nets with boundaries are equally expressive as
BIP without priorities [BMM11]. They showed that this formal correspondence
indirectly relates BIP to the Tile Model, which resulted in the definition of the
Petri calculus. Since boundaries are mainly used for composition, the monolithic
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translation by Bruni et al. encodes BIP without priorities into Petri nets without
boundaries. A similar encoding exists for Reo, which translates port automata into
Petri nets [Kra09].

An indirect comparison of BIP and Reo, in the data-agnostic domain, through
their respective comparisons with other models, e.g., Petri nets, is certainly pos-
sible. Nevertheless, the direct and formal translations we present in this chapter
allow direct translation tools between BIP and Reo, that are otherwise difficult, if
not impossible, to construct based on such indirect comparisons.

Beside BIP and Reo, there are many other examples of coordination languages
[PA98]. Their relations with BIP and Reo have been studied by others. For in-
stance, Proença and Clarke provide a detailed comparison between Orc and Reo
[PC08], Chkouri et al. present a translation of AADL into BIP [CRBS08], and Tal-
cott et al. connect both ARC and PBRD to Reo by providing mappings between
their semantic models [TSR11].

2.6 Discussion

In the data-agnostic domain, we showed that BIP architectures and port automata
coincide modulo internal transitions, witnessed by the weak simulation in The-
orem 2.2.2, and independent progress, witnessed by the condition ∅ ∈ γ1 ∪ γ2 in
Theorem 2.2.4. In the data-sensitive domain, we showed by Theorem 2.3.1 that the
observable behavior of BIP interaction models and stateless constraint automata
is identical. We extended the notion of a data-agnostic BIP architecture to the
data-sensitive domain (Definition 2.4.4), and showed that these data-sensitive BIP
architectures correspond to constraint automata with polarity (Corollaries 2.4.5
and 2.4.5).

Our formal correspondences between BIP and Reo reveal differences and sim-
ilarities of their fundamental design principles. One similarity is that both BIP
and Reo provide constructs that allow high-level specification of multiparty syn-
chronization, such as a barrier synchronization. Although multiparty synchroniza-
tion is used in several approaches, such as the bulk-synchronous parallel (BSP)
model [Val90] or the Parameterized Networks of Synchronized Automata (pNets)
[BAC+09], most of the process algebras lack this feature, expressing multiparty
synchronization by a cluttered composition of binary synchronizations. Exceptions
include Winskel’s synchronization algebra [WN95] and Bergstra & Klop’s algebra
of communicating processes (ACP) [BK85]. Controlling and constraining multi-
party synchronization is, however, more complex in ACP than it is in BIP and Reo
(because additional operators, communication and block, need to be used beside
parallel composition to specify admissible synchronizations). This is illustrated in
work by Krause et al. [KKdV12], who encoded Reo’s semantics (i.e., Reo’s com-
position operator and a number of primitives) in mCRL2 [CGK+13], a modern
process specification language based on ACP.

The focus of this chapter is on formal relations between BIP and Reo. As such,
detailed comparison of BIP or Reo with process algebras or other models that
support multi-party synchronization is beyond our scope. However, support for
multiparty synchronization in some other models, and the consensus in BIP and
Reo to support this notion through first-order constructs confirms the practical
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significance of this concept.
On the other hand, BIP and Reo treat the separation between computation

and coordination differently. The BIP framework concretely defines what sepa-
rates computation (BIP behavior) from coordination (BIP interaction), while Reo
merely separates computation (Reo components) and coordination (Reo connector)
structurally. Indeed, Reo does not force a fixed universal definition for computation
and coordination in all applications. Without giving a fixed definition of separa-
tion criterion, Reo’s structural separation of computation from coordination (i.e.,
component versus connector) simply means that, while this separation is always
important, the distinction between the two is in the eye of the beholder: in different
applications, different, or even the same people, may find it convenient to draw the
line that separates computation and coordination at different places to suit their
needs. For example, the stateful behavior of a FIFO with capacity of 1 strictly
places what this entity does in the behavior layer of BIP, as a (computation) com-
ponent. In Reo, such stateful components can, of course, be regarded and used as
computation as well. However, when deemed appropriate, one can use the same
component (i.e., a FIFO1 channel) in the construction of a Reo connector as well,
e.g., to express the stateful, turn-taking interaction between two components, as
in Figure 2.4.

The property-preserving translations presented in this chapter enable us to
lift the composition operator for data-sensitive Reo circuits to BIP architectures.
Besides lifting theoretical results, it seems natural to investigate whether it is pos-
sible to transfer also other techniques, such as those used in compilation and model
checking. For example, Reo’s compositional approach to code generation [Jon16]
may yield a very different distributed implementation of a BIP system. Comparing
the performance of such a postulated implementation of BIP, can reveal valuable
insights for compilation.

The results in this chapter show that both BIP and Reo can be interpreted as
a variant of labeled transitions sytems (LTS). In the sequel of this thesis, we work
for the large part with the semantics of coordination languages. In fact, one of our
main contributions consists in developing coordination language semantics that
improve expressiveness (Chapters 3 and 7) and tooling (Chapters 5 and 6). The
only exception is Chapter 4, where we develop a syntax to build actual systems
with these new semantics. Here, we adopt Reo’s compositionally principle as a
basis of our syntax.





Chapter 3

Protocols with Preferences

The comparison between BIP en Reo in the Chapter 2 shows that priority layer in
BIP has no clear counterpart in graphical Reo language. Although Reo designers
recognize the need for language constructs that express priority, the straightfor-
ward approach to priority taken in BIP is not satisfactory, because BIP lacks a
composition operator that propagates local priorities to global ones. Such a prior-
ity composition operator is required for a full priority model in Reo, because the
semantics of larger Reo connectors is defined as the composition of the semantics
of its channels and nodes. The current chapter aims to partially resolve the dis-
crepancy between BIP and Reo by further developing a (compositional) semantics
for Reo connectors that includes a notion preference1.

The literature offers several semantic formalisms to express the behavior of
Reo connectors. The work in [JA12] collects, classifies, and surveys around thirty
semantics based on co-algebraic or coloring techniques, and other models based on,
for instance, constraints and Petri nets. The operational models (i.e., automata)
are probably the most popular approaches: the main classes are represented by
constraint automata, and (several) related variants, and context-sensitive automata.

The aim of the current work is to generalize soft constraint automata [AS12] or
soft component automata [KAT16, KAT17] (SCA in both cases), which is a variant
of constraint automata that is developed after the publication of the survey [JA12].
An SCA is a state-transition system where transitions are labelled with actions
and preferences. Higher-preference transitions typically contribute more towards
the goal of the component.

The contribution of this chapter is twofold. First, we relax the definition of the
underlying structure that models preferences. Instead of semirings (as in [AS12,
KAT16, KAT17]), we use complete lattice monoids (see Section 3.1.1) to allow
bipolar preferences. Since the unit element, 1, is the only sensible preference of an
idling transition, any useful transition must have a positive preference p > 1.

Second, we extend SCA with a notion of memory (SCAM), as already accom-
plished for (non-soft) constraint automata [JKA17]. Each transition of a SCAM
can also impose a condition on the current data assigned to a finite set of mem-
ory locations, and update their respective values. Therefore, together with states,

1The work in this chapter is based on [DGLS21, DGS18]
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memory locations determine the configuration of a connector, and influence its
observable behavior.

The outline of the chapter is as follows: Section 3.1 defines soft constraints and
shows that they can be compared and composed, and their variables renamed and
hidden. Section 3.2 introduces soft constraint automata with memory (SCAMs)
and their interpretation as soft constraints. We define their composition and hiding,
and show their correctness with respect to the soft constraint semantics. Section 3.3
presents a case study illustrating the composition and hiding operations on SCAMs.
Section 3.4 offers a novel encoding of context-sensitive behavior based on SCAMs.
Finally, Section 3.5 summarizes the related work on different semantics proposed
for CA, and Section 3.6 wraps up with conclusive thoughts and hints about future
research.

3.1 Preliminaries on soft constraints

In contrast to Boolean constraints, a soft constraint is a constraint that need not
be fully satisfied [BMR97]. Instead, such a constraint assigns a preference value
that measures the degree of satisfaction of a solution. The goal is to find a solution
that maximizes this preference value.

The structure of this section is as follows: Section 3.1.1 proposes complete lattice
monoids (CLMs) to serve as a structured domain of preference values, which allows
us to compare and compose preference values. Section 3.1.2 develops a complete
lattice monoid of streams equipped with a lexicographic order. We use this con-
struction in the semantics of soft constraint automata in Section 3.2. Section 3.1.3
presents our personal take on cylindric and diagonal operators [SRP91]: they are
mostly drawn with minor adjustments from [GSPV17]. Section 3.1.4 shows that
the set of soft constraints is itself a complete lattice monoid that admits cylindric
and diagonal operators. As such, soft constraints can be compared and composed,
and variables in a soft constraint can be renamed and hidden.

3.1.1 Complete lattice monoids

The first step is to define an algebraic structure that models preference values.
We refer to [GS17] for the missing proofs as well as for an introduction to bipolar
preferences and a comparison with other proposals.

Definition 3.1.1 (Partial order). A partial order (PO) is a pair 〈A,≤〉, such that
A is a set and ≤ ⊆ A×A is a reflexive, transitive, and anti-symmetric relation. A
complete lattice (CL) is a PO, such that any subset of A has a least upper bound
(LUB).

The LUB of a subset X ⊆ A is denoted as
∨
X, and it is unique by anti-

symmetry of ≤. Note that
∨
A and

∨ ∅ correspond respectively to the top, denoted
as >, and to the bottom, denoted as ⊥, of the CL.

Definition 3.1.2 (Complete lattice monoid). A (commutative) monoid is a triple
〈A,⊗,1〉, such that ⊗ : A × A → A is a commutative and associative operation
and 1 ∈ A is its identity element.
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A partially ordered monoid (POM) is a 4-tuple 〈A,≤,⊗,1〉, such that 〈A,≤〉 is
a PO and 〈A,⊗,1〉 a commutative monoid. A complete lattice monoid (CLM) is
a POM, such that its underlying PO is a CL.

As usual, we use the infix notation: a⊗ b stands for ⊗(a, b).
According to Definition 3.1.2, the partial order ≤ and the product ⊗ can be

unrelated. This is not the case for monotone CLMs.

Definition 3.1.3 (Monotonicity). A CLM 〈A,≤,⊗,1〉 is monotone if and only if,
for all a, b, c ∈ A, we have that a ≤ b implies a⊗ c ≤ b⊗ c.

Our framework (Lemma 3.1.6) requires a condition that is slightly stronger than
monotonicity:

Definition 3.1.4 (Distributivity). A CLM 〈A,≤,⊗,1〉 is distributive if and only
if, for every element a ∈ A and every subset X ⊆ A, we have

a⊗
∨
X =

∨
{a⊗ x | x ∈ X}.

Note that a ≤ b is equivalent to
∨{a, b} = b, for all a, b ∈ A. Hence, a

distributive CLM is monotone and ⊥ is its zero element (i.e., a ⊗ ⊥ = ⊥, for all
a ∈ A).

Example 3.1.1 (Boolean CLM). The Boolean CLM B = 〈{0, 1},≤,×, 1〉, with
the usual order and multiplication, is a distributive CLM. ♦

Distributive CLMs generalize tropical semirings, which define their (idempo-
tent) sum operator as a ⊕ b =

∨{a, b}, for all a, b ∈ A. If, moreover, 1 is the top
of the CL, we end up with absorptive semirings [Gol03](in the algebraic literature)
or c-semirings [BMR97] (in the soft constraint literature). See [BG06] for a brief
survey on residuation for such semirings. Together with monotonicity, imposing 1
to coincide with > means that preferences are negative(i.e., a ≤ 1, for all a ∈ A).
Since we allow the top of the CL to be strictly positive(i.e., 1 < >), our approach
based on complete lattice monoids falls into the category of bipolar approaches.

Example 3.1.2 (Bipolar CLM). The bipolar CLM K = 〈{0, 1,∞},≤,×, 1〉, with
the usual order and multiplication (extended to ∞ by defining 0 × ∞ = 0 and
1×∞ =∞×∞ =∞ > 1), is a distributive CLM. ♦

Example 3.1.3 (Power set). Given a (possibly infinite) set V of variables, we
consider the monoid 〈2V ,∪, ∅〉 of (possibly empty) subsets of V , with union as the
monoidal operator. Since the operator is idempotent (a ⊗ a = a, for all a ∈ A),
the natural order (a ≤ b ⇔ a ⊗ b = b, for all a, b ∈ A) is a partial order, and
it coincides with subset inclusion: in fact, the power set 〈2V ,⊆,∪, ∅〉 is a CLM.
Moreover, since the LUB,

∨
, and the product, ⊗, both model set-union, the power

set CLM is distributive. ♦

Example 3.1.4 (Extended integers). The extended integers 〈Z ∪ {±∞},≤,+, 0〉,
where ≤ is the natural order, such that, for all k ∈ Z,

−∞ ≤ k ≤ +∞,
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+ is the natural addition, such that, for all k ∈ Z ∪ {+∞},

±∞+ k = ±∞, +∞+ (−∞) = −∞,

and 0 the identity element, constitutes a distributive CLM. Here, +∞ and −∞ are
respectively the top and the bottom element of the CL. ♦

The following construction allows us to compose primitive CLMs (such as those
in Examples 3.1.1 to 3.1.4) into more complex CLMs:

Definition 3.1.5 (Cartesian product). The Cartesian product of two CLMs 〈A1,≤1

,⊗1,11〉 and 〈A2,≤2,⊗2,12〉 is the CLM 〈A1 × A2,≤,⊗, (11,12)〉, such that, for
all (a1, a2), (b1, b2) ∈ A1 ×A2,

1. (a1, a2) ≤ (b1, b2) if and only if a1 ≤1 b1 and a2 ≤2 b2;

2. (a1, a2)⊗ (b1, b2) = (a1 ⊗1 b1, a2 ⊗2 b2).

Note that the Cartesian product is a well-defined CLM.

Lemma 3.1.1. The Cartesian product of distributive CLMs is distributive.

3.1.2 Streams of preferences

We now introduce the CLM of streams, which we use for our semantics of SCAMs
in Definition 3.2.5. Here we generalize the results in [GHMW13] on binary lexi-
cographic operators. In the following, we denote by Aω the set of streams(infinite
sequences) of elements of A.

Definition 3.1.6 (Lexicographic order). Let 〈A,≤〉 be a PO. The lexicographic
order ≤l on Aω is given by

a0a1 · · · ≤l b0b1 · · · iff

{
∀i. ai = bi ∨
∃j. aj < bj ∧ ∀i < j. ai = bi

We write <l for the usual strict version of the lexicographic order ≤l.
The following lemma provides a recursive description of LUBs in lexicographi-

cally ordered streams:

Lemma 3.1.2. Let 〈A,≤〉 be a CL and X ⊆ Aω a subset of the PO 〈Aω,≤l〉.
Then,

∨
X = x0x1x2 · · · ∈ Aω exists and satisfies, for all i ≥ 0, the recursion

xi =
∨
{bi | x0x1 · · ·xi−1bibi+1 · · · ∈ X}.

Proof. Define x0x1 · · · ∈ Aω using the recursion in the lemma.
We prove that x0x1 · · · is an upper bound of X. Let a0a1 · · · 6= x0x1 · · · be

in X. Find the smallest i ≥ 0, such that ai 6= xi. Then, we have ai ∈ {bi |
x0x1 · · ·xi−1bibi+1 · · · ∈ X}, and ai < xi. Thus, a0a1 · · · ≤l x0x1 · · · .

We prove that x0x1 · · · is minimal. Let u0u1 · · · 6= x0x1 · · · be an upper bound
of X. Find the smallest i ≥ 0, such that ui 6= xi. For every x0 · · ·xi−1bi · · · ∈ X, we
have x0 · · ·xi−1bi · · · ≤l u0u1 · · · = x0 · · ·xi−1ui · · · , which implies bi ≤ ui. Hence,
xi =

∨{bi | x0 · · ·xi−1bi · · · ∈ X} ≤ ui, and x0x1 · · · ≤l u0u1 · · · .
We conclude that

∨
X = x0x1 · · · , which proves the result.



61 CHAPTER 3. PROTOCOLS WITH PREFERENCES

Let ⊗ω be the operator on data stream given by the point-wise application
of ⊗, and let 1ω the data stream composed just by 1. Lemma 3.1.2 shows that
〈Aω,≤l,⊗ω,1ω〉 is a CLM. However, it turns out (Lemma 3.1.3) that this CLM is
not distributive due to the presence of non-cancellative (or collapsing) elements in
A:

Definition 3.1.7 (Cancellative elements). An element c in a CLM 〈A,≤,⊗,1〉 is
cancellative if and only if there a⊗ c = b⊗ c implies a = b, for all a, b ∈ A.

In any distributive CLM, ⊥ is a non-cancellative element.

Lemma 3.1.3. The CLM 〈Aω,≤l,⊗ω,1ω〉 is not distributive.

Proof. Let c be a non-cancellative element in a distributive CLM 〈A,≤,⊗,1〉. By
definition, we find distinct elements a, b ∈ A, with a ⊗ c = b ⊗ c. Without loss
of generality, we may assume that a < b (otherwise, take b′ =

∨{a, b} and use
distributivity to show that a⊗c = b′⊗c). Point-wise multiplication of the inequality
a>ω <l b⊥ω by c1ω yields

b⊥ω ⊗ω c1ω = (b⊗ c)⊥ω <l (a⊗ c)>ω = a>ω ⊗ω c1ω,

which contradicts monotonicity (and, hence, distributivity).

To obtain a distributive CLM of streams, we restrict its carrier, Aω, to a suitable
subset. Let Aι be the set of cancellative elements, and let Ac be the set of non-
cancellative elements. The following example shows that the subset Aωι ⊆ Aω of
streams of cancellative elements is not a suitable domain for the CLM of streams,
as it is not closed under LUBs.

Example 3.1.5. Let 〈A,≤,+, 0〉, with A = Z ∪ {±∞}, be the CLM of extended
integers from Example 3.1.4. Observe that Aι = Z and Ac = {±∞}. Although ∅
and {1ω, 2ω, 3ω, · · · } are subsets of Aωι , their respective LUBs are (by Lemma 3.1.2)
equal to (−∞)ω and (+∞)(−∞)ω, and not included in Aωι . ♦

To ensure that the set of streams is closed under LUBs, we further include ele-
ments of the shape A∗ιAc⊥ω: streams prefixed by a (possibly empty) finite sequence
of cancellative elements, then followed by a single occurrence of a non-cancellative
element, and then closed by an infinite sequence of ⊥.

Theorem 3.1.4 (Lexicographic CLM). If S = 〈A,≤,⊗,1〉 is a distributive CLM,
then Sω = 〈Aωι ∪A∗ιAc⊥ω,≤l,⊗ω,1ω〉 is so.

Proof. The POM Sω is a CLM, because its carrier B = Aωι ∪A∗ιAc⊥ω is closed with
respect to LUBs: Let X ⊆ B and

∨
X = x0x1 · · · . Suppose that xi ∈ Ac, for some

i ≥ 0. Let j > i be arbitrary, and consider the set Xj = {b | x0 · · ·xi · · ·xj−1b · · · ∈
X}. Since X ⊆ B and xi ∈ Ac, we have either Xj = ∅ or Xj = {⊥}. By
Lemma 3.1.2, we have xj =

∨
Xj = ⊥, and we conclude that

∨
X ∈ B.

Next, we show that the CLM Sω is distributive, i.e., that a⊗ω∨X =
∨{a⊗ωx |

x ∈ X}. Let X ⊆ B be a subset of the carrier, and a ∈ B. Let also p =
∨
X and

q =
∨{a ⊗ω x | x ∈ X}: we show by induction that ai ⊗ pi = qi for all i ≥ 0. So,

let us suppose that aj ⊗ pj = qj for all 0 ≤ j < i, which is vacuously true for i = 0.
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Lemma 3.1.2 shows that qi =
∨
S, with S = {b | q0 · · · qi−1b · · · ∈ {a⊗ωx | x ∈ X}}.

We distinguish two cases:
Case 1: Suppose that some aj , 0 ≤ j < i, is non-cancellative. Then, a ∈ B

implies that ai = ⊥. Hence, we have either S = ∅ or S = {⊥}, and we find
qi =

∨
S = ⊥ = ai ⊗ pi.

Case 2: Suppose that all aj , 0 ≤ j < i, are cancellative. Then,

qi =
∨
S =

∨
{ai ⊗ xi | x0x1 · · · ∈ X ∧ aj ⊗ xj = qj for all j < i}.

Distributivity of the original CLM and the induction hypothesis implies

qi = ai ⊗
∨
{xi | x0x1 · · · ∈ X, aj ⊗ xj = aj ⊗ pj , for all j < i}.

Applying Lemma 3.1.2 yields

qi = ai ⊗
∨
{xi | p0 · · · pi−1xi · · · ∈ X} = ai ⊗ pi.

In both cases, we find qi = ai ⊗ pi, which completes the proof.

Example 3.1.6. Looking at the CLM 〈Z ∪ {±∞},≤,+, 0〉 of extended integers
from Example 3.1.4 and Example 3.1.5, the set of elements of the associated lexi-
cographic CLM is Zω ∪ Z∗{⊥,>}⊥ω. ♦

3.1.3 Cylindric operators for ordered monoids

We introduce two families of operators on CLMs, which enable hiding and renam-
ing of variables (cf., [GSPV17, GSPV15]). The first family is parameterized by a
cylindric operator, and models existential quantification. The second family is pa-
rameterized by a diagonal operator, and models of equality of variables. Cylindric
and diagonal operators originate in the context of cylindric algebras [HMT81], and
entered the constraint literature via [SRP91].

Definition 3.1.8 (Pomonoid action). Let S = 〈A, popl91 ≤,⊗,1〉 be a CLM and
let P = 〈E,≤〉 a PO. An action of S on P is a function φ : A× E → E, such that,
for all a, b ∈ A and all e ∈ E,

1. φ(1, e) = e,

2. φ(a, φ(b, e)) = φ(a⊗ b, e),

3. a ≤ b =⇒ φ(a, e) ≤ φ(b, e).

The first two requirements state that φ is a monoid action of S on E, and the
third one states that φ is monotone in the first argument.

Let V be a set of variables, and recall the power set CLM 〈2V ,⊆,∪, ∅〉 from
Example 3.1.3. Consider a CLM 〈A,≤,⊗,1〉, whose elements a ∈ A can be thought
of as expressions with variables from V . The partial order, ≤, the product, ⊗, and
the identity, 1, can be thought of as implication, conjunction, and tautology, re-
spectively. The following definition axiomatizes existential quantification for these
expressions.
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Definition 3.1.9 (Cylindric operator and support). A cylindric operator ∃ over a
CLM 〈A,≤,⊗,1〉 and set of variables V is an action ∃ : 2V × A → A, such that,
for all X ⊆ V , all a, b ∈ A, and all C ⊆ A,

1. ∃(X,1) = 1,

2. ∃(X, a⊗ ∃(X, b)) = ∃(X, a)⊗ ∃(X, b),

3. ∃(X,∨C) =
∨{∃(X, c) | c ∈ C}.

The support of a ∈ A is the set of variables supp(a) = {x | ∃({x}, a) 6= a}.

In the following, we use ∃Xa for ∃(X, a) and ∃xa, when X = {x}.
Item 3 in Definition 3.1.9 is required for the correctness proofs of SCAM oper-

ations on SCAMs (Theorems 3.2.1 and 3.2.2). Item 3 implies monotonicity of ∃ in
the second argument (a ≤ b implies ∃Xa ≤ ∃Xb, for all X ⊆ V and all a, b ∈ A).
By Definition 3.1.8 it holds that a = ∃∅a ≤ ∃Xa and X ∩ supp(∃(X, a)) = ∅.

Next, we axiomatize expressions that equate two variables:

Definition 3.1.10 (Diagonalisation). Let ∃ be a cylindric operator over a CLM
〈A,≤,⊗,1〉 and a set of variables V . A diagonal operator δ for ∃ is a family of
idempotent elements δx,y ∈ A, indexed by pairs of variables in V , such that, for all
x, y, z ∈ V and a ∈ A,

1. δx,x = 1,

2. δx,y = δy,x,

3. z 6∈ {x, y} =⇒ δx,y = ∃z(δx,z ⊗ δz,y),

4. x 6= y =⇒ δx,y ⊗ ∃x(a⊗ δx,y) ≤ a.

Axioms 1, 2, and 3 plus idempotency of δx,y imply ∃xδx,y = 1, which in turn
implies (using also idempotency of ∃X) supp(δx,y) = {x, y} for x 6= y.

Diagonal operators can be used for modelling variable substitution [GSPV17]:
substituting y for x 6= y in a yields ∃x(a⊗ δx,y).

3.1.4 Soft constraints (on infinite domains)

We define the notion of soft constraints, following the approach in [BMR06], but
generalizing the preference structure, as in [GSPV17, GSPV15]. Soft constraints
are expressions that evaluate to a value in a given CLM. They generalize crisp
constraints, which are expressions that evaluate into the Boolean CLM.

Definition 3.1.11 (Soft constraints). Let V be a set of variables, D a domain
of interpretation and S = 〈A,≤,⊗,1〉 a CLM. A soft constraint is a function
c : (V → D)→ A associating a value in A with each assignment η : V → D of the
variables.

We write C(V,D,S) for the set of all such soft constraints.
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We write cη to denote the application of a constraint c : (V → D) → A to a
variable assignment η : V → D.

Definition 3.1.11 does not impose any restriction on the number of variables and
the size of the domain of interpretation. In fact, our framework requires infinitely
many timed variables, as introduced in Section 3.2.1. Different from standard
practice in soft constraint literature, we also consider a possibly infinite domain
of interpretation, D, which necessitates the introduction of memory locations in
Definition 3.2.3.

In the following example, we introduce notation to view preference values and
Boolean constraints as soft constraints.

Example 3.1.7 (Constant constraints). A preference value a ∈ A induces a soft
constraint [a] defined as [a]η = a, for every assignment η : V → D. ♦

Example 3.1.8 (Boolean constraints). A Boolean constraint B induces a soft
constraint [B] defined, for every assignment η : V → D, as

[B]η =

{
1 if η satisfies B

⊥ otherwise

For example, for a variable v ∈ V , a datum d ∈ D, and an assignment η : V → D,
we have [v = d]η = 1 if and only if η(v) = d. Since conjunction with a tautology
should act as the identity, we choose 1 instead of >. ♦

The set of constraints forms a CLM, with the structure lifted from S.

Lemma 3.1.5 (The CLM of constraints). The set C(V,D, S) of soft constraints,
endowed with partial order ≤, composition ⊗, and unit [1] defined as

1. c1 ≤ c2 if c1η ≤ c2η for all η : V → D

2. (c1 ⊗ c2)η = c1η ⊗ c2η
is a CLM denoted as C(V,D, S). The LUB of a subset C ⊆ C(V,D, S) satisfies
(
∨
C)η =

∨{cη | c ∈ C}, for all assignments η : V → D. The CLM C(V,D,S) is
distributive if S is so.

Combining constraints using the ⊗ operator builds a new constraint whose sup-
port involves at most the variables of the original ones. The composite constraint
associates, with every assignment, a preference that is equal to the product of the
preferences of its constituents.

Note that, in a bipolar setting, we do not have conjunction elimination: for
constraints c1, c2 ∈ C(V,D, S), c2 > 1, monotonicity implies c1 ⊗ c2 > c1, where ≤
is interpreted as implication.

Given a function η : V → D and a set X ⊆ V , we denote by η|X : X → D the
usual restriction.

Lemma 3.1.6 (Cylindric and diagonal operators for constraints). If S is a dis-
tributive CLM, then the CLM of constraints C(V,D, S) admits a diagonal operator
δx,y = [x = y], for all x, y ∈ V , and a cylindric operator ∃X , defined, for all soft
constraints c ∈ C(V,D, S) and all subsets X ⊆ V of variables, as

(∃Xc)η =
∨
{cρ | ρ|V \X = η|V \X}.
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Proof. Using the definitions from Example 3.1.8, Lemma 3.1.5, and distributivity
of S, it is straightforward to verify that all axioms in Definitions 3.1.8 to 3.1.10 are
satisfied. For example, for all soft constraints c, d ∈ C(V,D, S) and all X ⊆ V , we
have, for all assignments η : V → D, that

(∃X(c⊗ ∃Xd))η =
∨
{cρ⊗ (∃Xd)ρ | ρ|V \X = η|V \X}

=
∨
{cρ⊗ (

∨
{dξ | ξ|V \X = η|V \X}) | ρ|V \X = η|V \X}

=
∨
{cρ | ρ|V \X = η|V \X} ⊗

∨
{dξ | ξ|V \X = η|V \X}

= (∃Xc⊗ ∃Xd)η,

which shows that ∃X(c⊗ ∃Xd) = ∃Xc⊗ ∃Xd.

Hiding removes variables from the support: supp(∃Xc) ⊆ supp(c) \ X.2 Note
that both the infinite number of variables and the infinite domain of interpretation
necessitate the existence of LUBs in the definition of ∃Xc, which motivates the
introduction of complete lattices in the previous section.

Although a soft constraint c evaluates mappings η : V → D that assign a
value in D to every variables in V , the evaluation cη may depend on the as-
signment of a (finite) subset of them, called its support. The cylindric operator
from Lemma 3.1.6, together with Definition 3.1.9, provides a precise characteriza-
tion of the support of a soft constraint. For instance, a binary constraint c with
supp(c) = {x, y} is a function c : (V → D) → A that depends only on the as-
signment of variables {x, y} ⊆ V , meaning that two assignments η1, η2 : V → D
that differ only for the image of variables z 6∈ {x, y} coincide (i.e., cη1 = cη2). The
support corresponds to the classical notion of scope of a constraint.

3.2 Soft constraint automata with memory

Constraint automata have been introduced in [BSAR06] as a formalism to de-
scribe the behavior and data flow in coordination models(such as the Reo lan-
guage [BSAR06]); they can be considered as acceptors of timed data streams [BSAR06,
DGS18, AR02]. Constraint automata have been enriched with new features to
create more expressive formalisms. On the one hand, constraint automata with
memory (CAM) enrich constraint automata with a finite set of memory loca-
tions [JKA17]. This extension allows one to handle infinite state spaces by enabling
the values of each memory location to range over an infinite data domain. On the
other hand, soft constraint automata (SCA) enrich constraint automata with soft
constraints [AS12]. This extension allows one to express preference amongst dif-
ferent executions.

We present soft constraint automata with memory (SCAM): a generic framework
that captures both CAM and SCA in a single formalism. Our approach differs
significantly from both existing works with respect to its semantics. Originally,
SCA are acceptors of tuples of weighted timed data streams [AS12, DGS18]. In the
current work, we interpret a SCAM as a special kind of soft constraint, encoding
the same information in an alternative way.

2The operator is called projection in constraints literature, and ∃Xc is denoted c ⇓V \X .
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3.2.1 Soft languages

Memory is the capacity to preserve information through time. Therefore, given a
finite set of memory locations L, we model the behavior of a location v ∈ L as an
infinite sequence of timed variables

(v, 0), (v, 1), . . . , (v, i), . . . ,

where variable (v, i) represents the value of memory location v ∈ L at time step
i ∈ N0.

We write L̂ = L×N0 for the set of timed variables. We define the k-th derivative
of a variable x = (v, i) ∈ L̂ as xk = (v, i)k = (v, k+i). We define the k-th derivative

of a set of variables X ⊆ L̂ as Xk = {xk | x ∈ X}.
For notational convenience, we treat a timed variable (v, 0) ∈ L̂ and a plain

variable v as equal, and we write a prime for the first derivative. For example, the
expression m′ = a expands to an expression (m, 1) = (a, 0) on timed variables.

Next, we extend the data domain D with a special symbol ∗ /∈ D that denotes
“no-data”, and write D∗ = D ∪ {∗}. We model a single execution of a SCAM as
an assignment to timed variables.

Definition 3.2.1 (Data stream). A data stream is a map η : L̂→ D∗.

Intuitively, η(v, i) ∈ D∗ represents the data observed at location v ∈ L and time
step i ≥ 0. If η(v, i) = ∗, no data is observed at location v and time step i. We

define the k-th derivative ηk : L̂→ D∗ of a data stream η as ηk(v, i) = η(v, k + i),
for all v ∈ L and i ≥ 0.

We can visualize a data stream η as an infinite table, with columns indexed
by variables v ∈ L, rows indexed by non-negative integers i ∈ N0, and entries
containing either ∗ or data from D. For a time step i ≥ 0, we can represent the
i-th row of η as the partial map ηi : L ⇀ D, with dom(ηi) = {v ∈ L | η(v, i) 6= ∗}
and ηi(v) = η(v, i), for all v ∈ dom(ηi). We refer to ηi as the i-th data assignment.
The empty function τ : L ⇀ D, with dom(τ) = ∅, is also a valid data assignment.
We use τ to represent an explicit silent step.

Definition 3.2.2 (Soft languages). A soft language over a CLM 〈A,≤,⊗,1〉 is a

function c : (L̂→ D∗)→ A.

Suppose that we have a morphism h : A → B. Then, we can view any soft
language c over A as a soft constraint over B. Indeed, the composition h ◦ c
that maps a data stream η to the value h(cη) ∈ B constitutes a soft constraint
over B. In particular, if B is the Boolean CLM B, we can view a soft constraint
as a crisp constraint that defines a set of accepted executions. Hence, such a
constraint corresponds naturally to a constraint automaton [BSAR06], which are
thus subsumed by Definition 3.2.2.

Lemma 3.1.6 shows that soft constraints form a cylindric algebra. Thus, relevant
notions, such as composition and hiding, carry over from soft constraints to SCAMs.
It is straightforward to verify that all these notions correspond to their classical
definitions in the literature.
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3.2.2 Syntax

We fix a finite set of memory locations X , a data domain D, and a distributive and
cancellative CLM S. Recall the CLM of constraints C(V,D,S) from Lemma 3.1.5,
for some set of variables V and domain of interpretation D.

Definition 3.2.3 (SCAM). A soft constraint automaton with memory over D and
S is a 6-tuple 〈Q,N ,X ,−→,Q0, c0〉, such that

1. Q is a finite set of states,

2. N is a finite set of port variables,

3. X is a finite set of memory locations,

4. −→ ⊆ Q× 2N × C(N̂ ∪ X ,D∗,S)×Q is a finite set of transitions,

5. Q0 ⊆ Q is a set of initial states, and

6. c0 ∈ C(N̂ ∪ X ,D∗,S) is an initial constraint

such that X ∩N = ∅, supp(c0) ⊆ X , and (q,N, c, p) ∈ −→ implies that supp(c) ⊆
N ∪ X ∪ X ′ (where X ′ = {x′ | x ∈ X} is the set of first derivatives).

We usually write q
N,c−−→ p instead of (q,N, c, p) ∈ −→ and we call N the synchro-

nization constraint and c the guard of the transition, respectively. We say that a
transition is invisible, whenever N = ∅.

Different from [DGS18], the condition supp(c) ⊆ N ∪ X ∪ X ′ means that the
guards are soft constraints with a single time step look-ahead for memory loca-
tions. This is just a simplifying assumption: the following results would carry over
smoothly.

Definition 3.2.4 (Runs). Let T = 〈Q,X ,N ,−→,Q0, c0〉 be a SCAM. A run λ of
T from q ∈ Q is an infinite sequence in −→ω, with λi = (pi, Ni, ci, qi) ∈ −→, such
that p0 = q and qi = pi+1, for all i ≥ 0. We write R(T , q) for the set of runs of T
from q and R(T ) =

⋃
q∈Q0

R(T , q) for the set of runs of T .

The intuitive meaning of a SCAM T as an operational model for service queries
is similar to the interpretation of labelled transition systems as models for reactive
systems. The states represent the configurations of a service. The transitions
represent the possible one-step behavior, where the meaning of a transition p

N,c−−→ q

is that we can move from configuration p to q, whenever

1. all ports in n ∈ N perform an I/O operation,

2. all other ports in N\N perform no I/O operation,

3. all ports/memory locations in N ∪ X ∪ X ′ satisfy the guard c.

Each assignment to ports in N represents the data exchanged by the I/O operations
through these ports, while assignments to variables in X and X ′ represent the data
in memory locations before and after the transition.

For example, a transition p
{a,b},[x=a]⊗[x′=b]−−−−−−−−−−−−→ q from state p to q fires ports a and

b, and the value at port a is equal to the current value of the memory x, and the



3.2. SOFT CONSTRAINT AUTOMATA WITH MEMORY 68

q0[a = 10]⊗ [l = 0] q1

〈{b}, cb〉

〈{s}, cs〉

Figure 3.1: A SCAM over the data domain N0 and CLM 〈Z ∪ {±∞},≤,+, 0〉,
where cb = [−b]⊗ [a′ = a− b]⊗ [b ≤ a]⊗ [l′ = b] buys an affordable item and saves
its price, and cs = [s]⊗ [a′ = a+ s]⊗ [l ≤ s] sells that item for a higher price.

next value at the memory x is equal to the current value at port b. Port variables,
if not hidden, can be shared with other SCAM (cf., Definition 3.2.6), while memory
variables are not shared (cf., Theorem 3.2.1).

Example 3.2.1 (A SCAM for buying and selling). We describe an agent that
prefers to buy an item as cheap as possible, and prefers to maximize its profit.
We use the set N0 of natural numbers as a data domain, and we use the extended
integers 〈Z ∪ {±∞},≤,+, 0〉 as preference values. In particular, every datum can
be viewed as a preference value.

Figure 3.1 shows a (deterministic) SCAM for buying and selling. The set of
ports, N , is {b, s}, where the value at b is the purchase price of an item, and the
value at s is the selling price of an item. The set of variables, X , is {a, l}, where a is
the current balance, and l is the price of current item. The soft constraint cb buys
(a′ = a−b) an affordable (b ≤ a) item, and stores its value (l′ = b). The preference
of −b ensures that maximizing preference amounts to minimizing purchase price.
The soft constraint cs sells the current item (a′ = a+ s) for a higher price (l ≤ s).
The preference of s ensures that maximizing preference amounts to maximizing
selling price. ♦

3.2.3 Semantics

Recall the lexicographically-ordered CLM of streams Sω from Theorem 3.1.4. We
interpret a SCAM T as a soft language

L(T ) : (N̂ ∪ X → D∗)→ Sω

that assigns a preference stream from Sω to every possible execution. The con-
straint L(T ) can be seen as the language of the SCAM T .

We describe the intuitive semantics of a SCAM. Let η : N̂ ∪ X → D∗ be a
data stream. First, we define the preference stream cλη ∈ Sω of η with respect
to a run λ = t0t1t2 · · · ∈ R(T , q) from a state q ∈ Q. We compute the initial
preference c0η ∈ S and, for every transition ti = (pi, Ni, ci, qi) in the run λ, we
compute the preference ctiη

i ∈ S of transition ti, where ηi is the ith derivative of η,
and cti is the soft constraint composed from the guard ci and the synchronization
constraint Ni. For i ≥ 0, consider the composition ai = c0η ⊗ ctiη

i ∈ S. If
the initial condition and all transition guards and synchronization constraints are
satisfied (i.e., ai cancellative, for all i ≥ 0), then the preference stream of η equals
cλη = a0a1a2 · · · ∈ Sω. Otherwise, we set cλη = ⊥ω.
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Next, we define the preference value of the data stream η assigned by the SCAM
T as the least upper bound (in the lexicographically-ordered CLM of streams Sω)
over all possible runs that start from an initial state. The lexicographic order
implies that, at any given state, the SCAM prefers to take the outgoing transition
of maximal preference. Indeed, any run that starts with an outgoing transition
of suboptimal preference results in a preference stream that is suboptimal in the
lexicographic order.

Finally, we hide all memory locations, which prevents SCAMs from synchroniz-
ing on shared memory locations (Theorem 3.2.1).

Definition 3.2.5 (SCAM semantics). Let T = 〈Q,N ,X ,−→,Q0, c0〉 be a SCAM.
The semantics of a transition t = (p,N, c, q) ∈ −→ is a soft constraint ct ∈
C(N̂ ∪ X ,D∗,S) defined as

ct = c⊗
⊗
n∈N

[n 6= ∗]⊗
⊗

n∈N\N
[n = ∗].

The semantics of a run λ = t0t1t2 · · · ∈ R(T , q) from a state q ∈ Q is a soft

constraint cλ that maps a data stream η : N̂ ∪ X → D∗ to the preference stream
cλη defined as

cλη =

{
a0a1a2 · · · if ai = c0η ⊗ ctiηi is cancellative, for all i ≥ 0,

⊥ω otherwise

The accepted language of T at q ∈ Q is defined as

L(T , q) =
∨
{cλ | λ ∈ R(T , q)}.

The language of T is defined as

L(T ) = ∃X̂
∨
{L(T , q) | q ∈ Q0}.

Definition 3.2.5 deals exclusively with infinite paths in a SCAM T : if a state q
has no outgoing transitions, then c(T , q)η = ⊥, for every data stream η.

Example 3.2.2 (The language of business). Let T be the SCAM from Exam-

ple 3.2.1. Consider a data stream η : ̂{b, s, a, l} → N0 whose prefix is defined in
Figure 3.2. From η(a, 0) = 10 and η(l, 0) = 0, it follows that

c0η = ([a = 10]⊗ [l = 0])η = 1,

which means that the initial condition is satisfied. There exists only one possible
run λ = t0t1 · · · in T from the initial state q0. Hence, the stream of preferences
associated with η satisfies

L(T )η = (∃{̂a,l}
∨
{cλ})η = (∃{̂a,l}cλ)η = cλη,

where the last equality follows from the fact that the preferences are independent
of the memory locations a and l. Concretely, the stream of preferences L(T )η =
a0a1 · · · satisfies

a0 = c0η ⊗ ct0η0 = 1⊗ cbη0 = −η0(b, 0) = −η(b, 0) = −6

a1 = c0η ⊗ ct1η1 = 1⊗ csη1 = η1(s, 0) = η(s, 1) = 7
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x b s a l

η(x, 0) 6 ∗ 10 0

η(x, 1) ∗ 7 4 6

η(x, 2)
...

... 11
...

Figure 3.2: Data stream for the SCAM from Example 3.2.1, wherein the agent
starts with 10 units of money, buys an item for 6 units, and sells it for 7 units.

The lexicographic order on preference streams ensures that any other data stream

ρ : ̂{b, s, a, l} → N0, for which ρ(b, 0) < 6, satisfies L(T )η <l L(T )ρ, which means
that the data stream ρ is preferred over η. In other words, the SCAM T prefers to
minimize the purchase price. ♦

3.2.4 SCAM composition

We now introduce the product of automata, extending [AS12, Definition 5].

Definition 3.2.6 (Soft join). Let Ti = (Qi,Xi,Ni,→i,Q0i, c0i) for i ∈ {0, 1} be
two SCAMs over D and S, with (N0∪N1)∩(X0∪X1) = ∅. Then, their soft product
T0 ./ T1 is the tuple 〈Q0 ×Q1,X0 ∪ X1,N0 ∪ N1,−→,Q00 ×Q01, c00 ⊗ c01〉 where
−→ is the smallest relation that satisfies the rule

q0
N0,c0−−−→0 p0, q1

N1,c1−−−→1 p1, N0 ∩N1 = N1 ∩N0

〈q0, q1〉 N0∪N1,c0⊗c1−−−−−−−−−→ 〈p0, p1〉

The rule applies when there is a transition in each automaton such that they can
fire together. This happens only if the two local transitions agree on the subset of
shared ports that fire (which is empty, if no ports are shared). The transition in the
resulting automaton is labelled with the union of the name sets on both transitions,
and the constraint is the conjunction of the constraints of the two transitions.

Note that the new automaton may include asynchronous executions: it suffices

that the SCAM is reflexive, i.e., every q has an idling transition q
∅,1−−→ q. To avoid

such idling transitions to be of maximal preference, we must use a bipolar CLM of
preferences, wherein > > 1.

We now express the composition of SCAM in Definition 3.2.6 in terms of com-
position of languages as defined in Lemma 3.1.5.

Theorem 3.2.1 (Correctness of soft join). Let T0 and T1 be two SCAMs sharing
no memory location. Then, L(T0 ./ T1) = L(T0)⊗ L(T1).

Proof. We first show that, for all (q0, q1) ∈ Q0 ×Q1, we have

L(T0 ./ T1, (q0, q1)) =
∨
{cρ0 ⊗ cρ1 | ρi ∈ R(Ti, qi), i ∈ {0, 1}}. (3.1)

Let ρ ∈ R(T0 ./ T1, (q0, q1)) be a run from (q0, q1). By construction of T0 ./ T1, we
find runs ρi ∈ R(Ti, qi), for i ∈ {0, 1}, such that cρ = cρ0 ⊗ cρ1 . Hence, cρ is less
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than or equal to the right-hand side of Equation (3.1). Since, ρ is arbitrary, we
conclude the ≤ part of Equation (3.1).

For i ∈ {0, 1}, let ρi ∈ R(Ti, qi) be, a run from qi. If ρ0 and ρ1 are not compatible
according to the rule in Definition 3.2.6, we have cρ0 ⊗ cρ1 = [⊥ω] ≤ L(T0 ./
T1, (q0, q1)). If ρ0 and ρ1 are compatible according to the rule in Definition 3.2.6,
we find a run ρ ∈ R(T0 ./ T1, (q0, q1)) from (q0, q1), such that cρ0 ⊗ cρ1 = cρ ≤
L(T0 ./ T1, (q0, q1)). Since ρ0 and ρ1 are abritrary, we conclude the ≥ part of
Equation (3.1), which proves Equation (3.1).

Using Equation (3.1) and Theorem 3.1.4, we find, for (q0, q1) ∈ Q0 ×Q1, that

L(T0 ./ T1, (q0, q1)) =
1⊗
i=0

∨
{cρi | ρi ∈ R(Ti, qi)}

= L(T0, q0)⊗ L(T1, q1)

Since no memory is shared, we have X0 ∩ X1 = ∅. Then,

L(T0 ./ T1) = ∃X̂
∨
{L(T0, q0)⊗ L(T1, q1) | q0 ∈ Q00, q1 ∈ Q01}

= ∃X̂0
∃X̂1

1⊗
i=0

∨
{L(Ti, qi) | qi ∈ Q0i}

=

1⊗
i=0

∃X̂i

∨
{L(Ti, qi) | qi ∈ Q0i} = L(T0)⊗ L(T1),

which proves the result.

3.2.5 SCAM hiding

The hiding operator [BSAR06] abstracts the details of the internal communication
in a constraint automaton. For SCA [AS12, Definition 6], the hiding operator
∃OT removes from the transitions all the information about the ports in O ⊆ N ,
including those in the(support of the) constraints. The definition smoothly extends
over SCAMs: in fact, since we allow silent transitions, our definition is much more
compact.

Definition 3.2.7 (Soft hiding). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM and
O ⊆ N a set of ports. Then, ∃OT is the SCAM 〈Q,X ,N \O −→∗,Q0〉 where −→∗
is defined by q

N\O,∃Oc−−−−−−→∗ p iff q
N,c−−→ p.

We express the correctness of hiding in terms of the cylindric operator on soft
constraints from Lemma 3.1.6.

Theorem 3.2.2 (Correctness of soft hiding). Let T be a SCAM and O a set of its
ports. Then, L(∃OT ) = ∃OL(T ).

Proof. We prove that, for all q ∈ Q, we have

L(∃OT , q) =
∨
{∃Oc(ρ) | ρ ∈ R(T , q)}. (3.2)



3.3. CASE STUDY 72

By construction of ∃OT in Definition 3.2.7, we have a natural 1-1 correspondence
between runs ρ ∈ R(∃OT , q) in ∃OT from q and runs ρ′ ∈ R(T , q) in T from
q, which satisfies cρ = ∃Ocρ′ . Using the same approach used in the proof of
Theorem 3.2.1 (i.e., ≤ and ≥ on LUBs), we conclude that Equation (3.2) holds.
For all q ∈ Q, we now find that L(∃OT , q) = ∃OL(ρ, q). Hence, L(∃OT ) = ∃OL(T ),
which proves the result.

3.3 Case study

We present an example that illustrates the operations of composition and hiding for
SCAMs. The example consists of an interrupt management-system tied to a data-
flow of information. Even if academic, it is rooted into concepts widely adopted by
several real-world examples, e.g., a computer CPU receiving hardware and software
interrupts.

We show that, even if the machine has the ability to keep executing a process,
in the presence of a kill signal sent by the operator, the machine chooses to stop.
The given construction could be adapted to express the case where more than one
machine is controlled by an operator.

As a carrier for the preferences of the soft constraints, we use the CLM of
extended integers S = 〈Z ∪ {±∞},≤,+, 0〉 from Example 3.1.4. Recall that a
tautology has preference 1, which is the element 0 ∈ S, and a false constraint has
the least preference −∞ ∈ S. We refer to +∞ as the element >, and −∞ as the
element ⊥.

3.3.1 Operator

Let A = 〈{q0, q1}, {k, s, i, ack}, {c, id},−→, {q0}, [id = ∗] ⊗ [c = 0]〉 be the SCAM
representation of the operator, with transition relation −→ as defined in Figure 3.3.
Initially, the memory id is empty. The operator, in state q0, waits to receive a signal
i and stores the value carried by the signal in the memory location id. Then, the
operator waits for a signal s 6= ∗ to arrive, and takes the outgoing transition from
q0 to q1 only if the value of s equals the current value of memory location id.
Simultaneously, the operator starts a counter by setting the memory location c
to 10. Being in state q1, the operator repeatedly decreases its counter c. When
the value of memory location c becomes negative, the operator sends a kill signal
carrying the value stored in memory location id. If the operator receives, in state
q1, an acknowledge signal ack with the value stored in the memory location id, the
operator sets the counter memory location c to 0, and returns to its initial state
q0.

The preference values in Figure 3.3 ensure that, if the guards of the self tran-
sition at q1 and the transitions from q1 to q0 are satisfied by the same assignment,
the operator prefers to send a kill or acknowledge signal (transitions from q1 to q0)
instead of decreasing its counter (self transition at q1).
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q0[id = ∗]⊗ [c = 0] q1

〈∅, [1]〉 〈∅, [1]〉

〈∅, [1]⊗ [c′ = c− 1]〉〈{i}, [>]⊗ [id′ = i]⊗ [id = ∗]〉
〈{s}, [1]⊗ [s = id]⊗ [c′ = 10]〉

〈{k}, [>]⊗ [k = id]⊗ [c ≤ 0]〉

〈{ack}, [>]⊗ [ack = id]⊗ [c′ = 0]〉

Figure 3.3: The operator’s SCAM A over an arbitrary data domain and the CLM
〈Z ∪ {±∞},≤,+, 0〉.

p0

[id = 1]⊗ [c = 0]

p1 p2

〈∅, [1]〉 〈∅, [1]〉 〈∅, [1]〉

〈∅, [2]⊗ [c′ = c− 1]⊗ [c > 0]〉

〈{ack}, [1]⊗ [ack = id]⊗ [c = 0]〉

〈{s}, [e = id]⊗ [c′ ≤ 20]〉 〈{k}, [1]⊗ [k = id]〉

Figure 3.4: The machine’s SCAM B over an arbitrary data domain and the CLM
〈Z ∪ {±∞},≤,⊗,1〉.

3.3.2 Machine

Let B = 〈{p0, p1, p2}, {k, s, ack}, {c, id},−→, {p0}, [id = 1]⊗ [c = 0]〉 be the SCAM
representation of a machine, whose transition relation −→ is shown in Figure 3.4.
The machine starts in p0, with the identity value 1 stored in the memory id.
Whenever the value observed on port s corresponds to its identity id, the machine
can start executing and moves from state p0 to p1. In state p1, the execution of the
machine is simulated by decreasing a counter from a non-deterministically selected
initial value of at most 20. Once the counter reaches 0, the machine sends an
acknowledgement with its own id value, and gets back to state p0. At any point,
however, the machine can be interrupted by a kill signal and goes to state p2.

The constraints of the machine ensure that the machine terminates, if a kill
signal is received. In absence of a kill signal, the machine prefers to execute the
process before sending the acknowledgement.

3.3.3 Composition

Figure 3.5 shows the SCAM of the composition A ./ B of the operator, A, and
the machine, B. Their composition synchronizes on the shared ports k, ack, and s
between A and B. While the I/O direction of a port is not explicitly mentioned,
one should think of the port k as an input port for the machine and output port
for the operator. Similarly, the port ack is used as an output port for the machine
and input port for the operator.
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s00

[id = 1]⊗ [c = 0]

s11 s02

〈∅, cq1,q1,∅,1 ⊗ cp1,p1,∅,2〉

〈∅, [1]〉

〈∅, [1]〉

〈∅, cp1,p1,∅,2〉

〈∅, cq1,q1,∅,1〉
〈∅, [1]〉

〈{ack}, cq1,q0,{ack} ⊗ cp1,p0〉

〈{s}, cq0,q1 ⊗ cp0,p1〉

〈{i}, cq0,q0,{i} ⊗ cp0,p0〉

〈{k}, cq1,q0,{k} ⊗ cp1,p2〉

Figure 3.5: The product A ./ B of the machine’s SCAM and operator’s SCAM,
where sij = (qi, pj) and cx,y,N,e is the constraint of the underlying SCAM labelling
transition from state x to state y with synchronization set N and constant pref-
erence e. If clear from the context, some elements from x, y,N, e are omitted to
identify the constraint.

s00

[id = 1]⊗ [c = 0]

s11 s01

〈∅, cq1,q1,∅,1 ⊗ cp1,p1,∅,2〉

〈∅, [1]〉
〈∅, cp1,p1,∅,2〉

〈∅, cq1,q1,∅,1〉
〈∅, [1]〉

〈{ack}, cq1,q0,{ack} ⊗ cp1,p0〉

〈{s}, cq0,q1 ⊗ cp0,p1〉

〈{i}, cq0,q0〉

〈∅, cp1,p1,∅,2〉

〈∅, [1]〉

〈{i}, cq0,q0,{i} ⊗ cp0,p0〉

〈{k}, cq1,q0,{k}〉

Figure 3.6: The product A ./ ∃k(B) of the machine’s SCAM and operator’s SCAM
after hiding k in the machine, using the same notation for states and guards as in
Figure 3.5.

If satisfied, the soft constraint cq1,q1,∅,1 ⊗ cp1,p1,∅,23 evaluates to the preference
2 + 1 = 3, and the soft constraint cq1,q0,{k} ⊗ cp1,p2 evaluates to the preference >.
Since 3 < >, when the counter memory of the operator reaches 0, the run where
the kill signal is sent has higher preference than the run where the machine keeps
executing its process.

3.3.4 Hiding

We compare the product A ./ B with the product A ./ ∃k(B), wherein we first
hide the port k in B. As displayed in Figure 3.6, the composite system goes to the
state s01, where the transition 〈∅, cp1,p1,∅,2〉 can still be taken (i.e. the machine
is still running). Hence, hiding the kill signal in B does not force the machine to
terminate its execution. Note that state s01 is a deadlock, because the operator
cannot receive an acknowledge signal or send a kill signal.

3See the label of Figure 3.5 for clarification on the notation.
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q 〈{a}, [ε]〉〈{a, b}, [>]⊗ [a = b]〉
〈∅, [1]〉

a b

Figure 3.7: SCAM representation of the context-sensitive lossysync channel, and
its Reo notation. The passing transition, 〈{a, b}, [>] ⊗ [a = b]〉, has priority over
the losing transition, 〈{a}, [ε]〉, and the losing transition has priority over the idling
transition, 〈∅, [1]〉.

3.4 Application to context-sensitivity

We apply our SCAM framework to model context-sensitivity, which is also known
as context-dependency or as context-awareness.

Definition 3.4.1. A component is context-sensitive iff an I/O request by the
environment can disable an action of the component.

One source of context-sensitivity is priority. If an I/O request by the envi-
ronment enables a high-priority action, then previously enabled actions of lower
priority become disabled. Although other sources of context-sensitivity must exist
in theory, we do not know of any convincing example.

The notion of context-sensitivity received considerable attention in the Reo
community. The primal example of a context-sensitive Reo connector is a lossysync
channel, which accepts a datum d from its input end, and either atomically offers d
at its output end, or loses d if the output is not ready to accept. The literature offers
a variety of semantic models that encode context-sensitive behavior, namely color-
ing semantics [CCA07], augmented Büchi automata of records [IBC08], intentional
automata [CNR11], and guarded automata [BCS12]. Context-sensitivity can be en-
coded in context-insensitive models by adding dual ports [JKA11]. Although we
consider context-sensitivity in the realm of Reo, we stress that context-sensitivity
is a fundamental concept that applies to languages other than Reo.

The environment of a connector can be represented in at least two ways. On
the one hand, augmented Büchi automata of records, intentional automata, and
guarded automata represent the environment as the subset of ports of the connec-
tor that have pending requests. On the other hand, coloring semantics and the
encoding in [JKA11] represent the environment as another connector of identical
type that composes with current connector.

All existing context-sensitive models for Reo [CCA07, IBC08, CNR11, BCS12,
JKA11] have special syntax to detect the presence or absence of pending I/O re-
quests. Intentional automata, guarded automata, and augmented Büchi automata
of records query the presence of I/O request via a Boolean guard. The coloring
semantics uses two colors for the absence of data flow, which allows the connector
to detect the presence of I/O requests. The dual ports in the encoding in [JKA11]
serve the same purpose as the two colors in the coloring semantics.

We now propose a context-sensitive semantics without any syntax to detect the
presence or absence of pending I/O requests. As such, our approach is arguably
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q0 [m = ∗] q1

〈{a}, [>]⊗ [m′ = a]〉

〈{b}, [>]⊗ [b = m]〉〈∅, [1]〉 〈∅, [1]〉

a

m

b
�

Figure 3.8: SCAM representation of the fifo channel, and its Reo notation.

q0 [m = ∗] q1

〈{a, b}, [>]⊗ [a = b]⊗ [m′ = b]〉

〈{c}, [>]⊗ [c = m]〉〈∅, [1]〉 〈∅, [1]〉

〈{a}, [ε]〉 〈{a}, [ε]〉
a b c

�

Figure 3.9: Composition of the lossysync and fifo in Figures 3.7 and 3.8. If the fifo
channel can drain its buffer, then the lossysync channel cannot lose any datum.

simpler than existing approaches. The basic idea is to distinguish four types of
transitions, namely

1. illegal transitions with unsatisfiable soft constraint.

2. idling transition (i.e., a silent self-loop transition).

3. losing transition (as in the lossysync).

4. regular transitions (i.e., legal, non-idling, non-losing transitions).

We assign to each transition type a unique preference value from the CLM E =
K × B, where ⊥ = (⊥,⊥), 1 = (1,>), ε = (>,⊥), and > = (>,>) correspond
respectively with illegal, idling, losing, and regular transitions.

The partial order ≤ on E induces a priority relation on the set of enabled
transitions in a SCAM over E . If present, the connector fires any enabled transition
of highest priority. The multiplication, ⊗, is used to propagate the types through
composition.

Figure 3.7 shows the SCAM representation of the lossysync channel. We verify
that the SCAM representation of lossysync behaves as desired, if it operates in
isolation. Note that ⊥ < 1 < > and ⊥ < ε < >, but ε and 1 are incomparable. If
the lossysync has no pending I/O operations on a or b, then the idling transition,
〈∅, [1]〉, is the only enabled transition. If there is a pending input at port a, then the
losing transition, 〈{a}, [ε]〉, and the idling transition, 〈∅, [1]〉, are enabled. Since 1
and ε are incomparable, the choice between losing and idling is non-deterministic. If
there are pending I/O operations on both a and b, then all transitions are enabled.
In particular, the passing transition, 〈{a, b}, [>] ⊗ [a = b]〉, has priority over all
other transitions.
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We now verify that the SCAM representation of lossysync behaves as desired, if
it operates in a composition. Our approach crucially relies on the correct identifi-
cation of the three different transition types, namely the illegal, idling, and losing
transitions. We define the type of a global transition τ = τ1 | · · · | τn as follows:

1. τ is illegal iff one local transitions τi is illegal,

2. τ is idling iff all local transitions τi are idling,

3. τ is losing iff τ is not illegal and one transitions τi is losing.

4. τ is regular iff τ is not idling and all τi are idling or regular.

The following result ensures that the transition types are correctly propagated
through the composition of SCAMs.

Lemma 3.4.1. Consider the CLM E, and let x = a1 ⊗ · · · ⊗ an, for some n ≥ 2,
and a1, . . . , an ∈ E. Then, for I = {1, . . . , n}, we have

1. x = ⊥ if and only if ∃i ∈ I. ai = ⊥.

2. x = 1 if and only if ∀i ∈ I. ai = 1.

3. x = ε if and only if (∃i ∈ I. ai = ε) ∧ (∀i ∈ I. ai 6= ⊥).

4. x = > if and only if (∃i ∈ I. ai = >) ∧ (∀i ∈ I. ai ∈ {1,>}).

Proof. Follows immediately from the definition.

Example 3.4.1. Consider the composition C of the lossysync channel and the fifo
channel, as depicted in Figure 3.9. Suppose that C is in state q1, which means that
the fifo channel is full. If there is a pending I/O request on port c, then the data
can be taken out of the can drain its buffer, then the lossysync channel cannot lose
any datum. ♦

It is important to observe that the bipolar approach is essential for the construc-
tion of our context-sensitive model. To see this, note that 1 is the only sensible
preference value for an idling transition. Otherwise, composition with an idling
transition would change the preferences. If 1 = > holds (as is the case for c-
semirings), then the priority of the losing transition is necessarily lower than the
priority of the idling transition. Consequently, any component would prefer idling
(which is always possible) over losing, which is clearly undesirable.

3.5 Related work on constraint automata

The closest related work to what is discussed in this chapter concerns other exten-
sions of constraint automata (CAs), previously advanced in the ample literature
about Reo.

Quantitative CAs (QCAs) are introduced in [ACMM07, MA09] with the aim of
describing the behavior of connectors tied to their quality of service (QoS), e.g., a
reliability measure or the shortest transmission time. Similarly to CAs, the states
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of a QCAs correspond to the internal states of the connector it models. The la-
bel on a transition consists instead of a firing set, a data constraint, and a cost
that represents a QoS metric. Hence, QCAs differ from timed [ABdBR07] and
probabilistic [Bai05] constraint automata, because these latter two classes of mod-
els describe functional aspects of connectors, while QoS represents non-functional
properties.

As applications, SCAs have been already used in [AS12, SSAA13] and [KAT16,
KAT17, TNAK16]. Different from previous related work, the main motivation
behind SCAs is to associate an action with a preference. In [AS12, SSAA13] the
authors present a formal framework that is able to discover stateful web services,
and to rank the results according to a similarity score expressing the affinities
between the query, asked by a user, and the services in a database. Preference for
the similarity between the query and each service is modeled through SCAs. In the
second group of works instead, the authors advance a framework that facilitates
the construction of autonomous agents in a compositional fashion; these agents
are ‘soft’, in that their actions are associated with a preference value, and agents
may or may not execute an action depending on a threshold preference. Hence, at
design-time, SCAs can be used to reason about the behavior of the components in
an uncertain physical world, i.e., to model and verify the behavior of cyber-physical
systems.

Research on SCAs is currently a trending topic among all the different lines
concerning Reo. An example is [Tal18], where the authors describe two com-
plementary approaches to the specification and analysis of robust cyber-physical
agent systems: the first one focuses on abstract theoretical concepts based on au-
tomata and temporal logics, called soft component automata; the second approach
describes a concrete experimental approach based on executable rewriting logic
specifications, simulation, search, and model checking, called soft agents [Tal18].
The soft agents framework combines ideas from several previous works: i) the use
of soft constraints and SCAs for specifying robust and adaptive behavior, ii) par-
tially ordered knowledge sharing for communication in disrupted environments, iii)
and the real-time Maude approach to modelling timed systems.

The work in [JKA17] extensively presents a kind of CA (there named as W/MC)
consisting of a finite set of states, a finite set of transitions, three sets of directed
ports, and a set of memory cells. The presence of memory cells in W/MC allows
one to explicitly model the content of buffers, instead of using states. The main
difference is that constraints are not soft in [JKA17], and consequently they do not
allow for representing preference values, as needed by application summarized in
the following paragraph.

Along the same line concerning cyber-physical systems, the related literature
is represented by several works, as for example is [TNAK16] and [BMMS16]. In
[TNAK16] the authors formalize soft agents in the Maude rewriting logic system
[CDE+02]. The most important features of this framework are the explicit rep-
resentation of the physical state, the cyber perception of this state, the robust
communication via sharing of partially ordered knowledge, and the robust behav-
ior based on soft constraints. In [BMMS16] the authors address the problem of
finding what local properties the agents in a cyber-physical system have to satisfy
to guarantee a global required property φ; preferences are modeled via semirings
on actions, and verified through a model checking function. Note that also all
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the examples in [KAT16] use SCAs (with preferences) to model the behavior of
cyber-physical systems.

The feature of enhancing automata with memory has roots in the dawn of com-
puter science. In this way, an automaton can base its transition on both the current
symbol being read and values stored in memory; moreover, it can issue commands
to the memory device whenever it makes a transition. For example, pushdown
automata (PDAs) employ a stack through which operations can be determined by
the first element on such a data structure; a transition rule optionally pops the top
of the stack, and optionally pushes new symbols onto the stack. Stack automata
allow access to and operations on deeper elements instead, and can recognize a
strictly larger set of languages than PDAs [HU67]. Applications may concern also
computational models in biology: e.g., automata can use memory to stabilize the
behavior of modeled proteins [AA16].

A conclusive related work is represented by [MSKA14], where Reo channels
are annotated with stochastic values for data arrival rates at channel ends and
processing delay rates at channels. Automata are thus stochastically extended in
order to compositionally derive a QoS-aware semantics for Reo. The semantics
is given by translating a component into continuous-time Markov chains. Our
approach deals with preferences by using a more general approach: we do not only
consider time but different systems of preferences (even bipolar ones), as long as
they can be cast in the algebraic structure we present in Section 3.2.

3.6 Discussion

We have reworked soft constraint automata as originally proposed in [AS12, KAT16],
with the dual purpose of first, extending the underlying algebraic structure in or-
der to model both positive and negative preferences, and second, adding memory
locations as originally provided for ‘standard’ constraint automata [JKA17].

As future work, we have many directions in mind. First, we would like to
extend existing Reo compilers [Jon16, DA18a] to a SCAM-based compiler. Our
results allow the user to conveniently compile context-sensitive connectors.

Next, we would like to exploit the properties of soft constraints to give additional
operators on SCAMs, such as operators for port renaming or for determinizing
guards by adding [m′ = m], whenever m′ is unbound.

Finally, we would like to encode the behavior of SCAMs into a concurrent
constraint programming language [GSPV17]. Such languages provide agents with
actions to tell (i.e., add) and ask (i.e., query) constraints to a centralized store of
information; this store represents a constraint satisfaction problem, and standard
heuristic-based techniques might be applied to find a solution to complex conditions
on filter channels [Arb11].
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Chapter 4

Protocol Syntax

The protocol specifications introduced in Part I offer explicit information on the
interactions of tasks in a given application, and we can use this information for
scheduling. However, scheduling operates on concrete tasks, rather than their for-
mal specifications. Therefore, we now study compilation of these protocol specifica-
tion, which allows us to develop scheduling techniques for the generated executable.

History shows that the number of compilers for Reo is proportional to the
number of PhD students that worked on Reo, and each tool uses its own input
language. For example, the Dreams framework [PCdVA12] uses a graphical editor
in Eclipse, The Lykos compiler [Jon16] uses FOCAML, and Vereofy uses the RSL
[Klü12]. The current chapter aims to unify these toolsets by proposing a syntax
for Reo protocols called Treo1. A key feature of the Treo language is that it allows
tool developers to extend Treo with their own semantics of primitive components,
which is an essential feature in view of plethora of semantics models for Reo [JA12].

Many tools for Reo have been implemented as a collection of Eclipse plugins
called the ECT [ECT]. The main plugin in this tool set consists of a graphical
editor that allows a user to draw a connector on a canvas. The graphical editor
has an intuitive interface with a flat learning curve. However, it does not pro-
vide constructs to express parameter passing, iteration, recursion, or conditional
construction of connector graphs. Such language constructs are more easily of-
fered by familiar programming language constructs in a textual representation of
connectors.

In the context of Vereofy (a model checker for Reo), Baier, Blechmann, Klein,
and Klüppelholz developed the Reo Scripting Language (RSL) and its compan-
ion language, the Constraint Automata Reactive Module Language (CARML)
[BBKK09, Klü12]. RSL is the first textual language for Reo that includes a con-
struct for iteration, and a limited form of parameter passing. Primitive channels
and nodes are defined in CARML, a guarded command language for specification
of constraint automata. Programmers then combine CARML specified constraint
automata as primitives in RSL to construct complex connectors and/or complete
systems. In contrast to the declarative nature of the graphical syntax of Reo, RSL
is imperative.

1The work in this chapter is based on [DA18b]
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Jongmans developed the First-Order Constraint Automata with Memory Lan-
guage (FOCAML) [Jon16], a textual declarative language that enables composi-
tional construction of connectors from a (pre-defined set of) primitive components.
As a textual representation for Reo, however, FOCAML has poor support for its
primary design principle: Reo channels are user-defined, not tied to any specific
formalism to express its semantics, and compose via shared nodes with predefined
merge-replicate behavior. Although FOCAML components are user-defined, FO-
CAML requires them to be of the same predefined semantic sort (i.e., constraint
automata with memory [BSAR06]). The primary concept of Reo nodes does not
exist in FOCAML, which forces explicit construction of their ‘merge-replicate’ be-
havior in FOCAML specifications.

Jongmans et al. have shown by benchmarks that compiling Reo specifications
can produce executable code whose performance competes with or even beats that
of hand-crafted programs written in languages such as C or Java using conventional
concurrency constructs [JHA14, JA15, JA16b, JA16a, JA18]. A textual syntax
for Reo that preserves its declarative, compositional nature, allows user-defined
primitives, and faithfully complies with the semantics of its nodes can significantly
facilitate the uptake of Reo for specification of protocols in large-scale practical
applications.

In this chapter, we introduce Treo, a declarative textual language for component-
based specification of Reo connectors with user-defined semantic sorts and prede-
fined node behavior. We describe the structure of a Treo file by means of an abstract
syntax (Section 4.1). In Listing 4.1, we provide a concrete syntax of Treo as an
ANTLR4 grammar [Par13]. In on-going work, we currently use Treo to compile Reo
into target languages such as Java, Promela, and Maude [Reo]. The construction
of the Treo compiler is based on the theory of stream constraints [DA18a].

In order to preserve the agnosticism of Reo regarding the concrete semantics of
its primitives, Treo uses the notion of user-defined semantic sorts. A user-defined
semantic sort consist of a set of component instances together with a composition
operator ∧, a substitution operator [ / ], and a trivial component > (Section 4.2).
The composition operator defines the behavior of composite components as a com-
position of its operands. The substitution operator binds nodes in the interface or
passes values to parameters.

For a given semantic sort, we define the meaning of abstract Treo programs
(Section 4.3). Treo is very liberal with respect to parameter values. A component
definition not only accepts the usual (structured) data as actual parameters, but
also other component instances and other component definitions. Among other
benefits, this flexible parameter passing supports component sharing, which is use-
ful to preserve component encapsulation [BCL+06, Figure 2].

A given semantics sort may possibly distinguish between inputs and outputs.
Thus, not all combinations of components may result in a valid composite compo-
nent. For example, the composition may not be defined, if two components share
an output. In Treo, however, it is safe to compose components on their outputs,
because, complying with the semantics of Reo, the compiler inserts special node
components to ensure well-formed compositions (Section 4.4).

We conclude by discussing related work (Section 4.5), and pointing out future
work (Section 4.6).
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4.1 Treo syntax

We now present a textual representation for the graphical Reo connectors in Sec-
tion 2.1.2. Table 4.1 shows the abstract syntax of Treo.

K ::= I | KND D ::= V | 〈U0〉(U1){C}
L ::= ε | L, T | L, T0..T1 C ::= V | A | C0C1 | {C | P} | D〈L〉(U)
U ::= ε | U, V T ::= V | C | D | [L] | T0 : T1 | T [L] | F (L)
V ::= N | V [L] P ::= V ∈ T | R(L) | ¬P | P0 ∧ P1 | P0 ∨ P1 | (P )

Table 4.1: Abstract syntax of Treo, with start symbol K (a source file), and ter-
minal symbols for imports (I), primitive components (A), functions (F ), relations
(R), names (N), and the empty list (ε). The bold vertical bar in {C | P} is just
text.

We introduce the symbols in the abstract syntax by identifying them in some
concrete examples. These concrete examples are Treo programs that can be parsed
using the concrete Treo syntax shown in Listing 4.1.

grammar Treo;
file : sec? imp* assg* EOF;
sec : ’section ’ name ’;’;
imp : ’import ’ name ’;’;
assg : ID defn;
defn : var | params? nodes comp;
comp : defn vals? args | var | ’{’ atom+ ’}’ | ’{’ comp* (’|’ pred)? ’}’

| ’for ’ ’(’ ID ’in’ list ’)’ comp
| ’if’ ’(’ pred ’)’ comp (’else ’ ’(’ pred ’)’ comp)* (’else ’ comp)?;

atom : STRING ; /* Example syntax for primitive components */
pred : ’true ’ | ’false ’ | ’(’ pred ’)’ | var ’in’ list

| term op=(’<=’ | ’<’ | ’>=’ | ’>’ | ’=’ | ’!=’) term
| var | ’forall ’ ID ’in ’ list ’:’ pred
| ’exists ’ ID ’in ’ list ’:’ pred | ’not ’ pred | pred (’and ’|’,’) pred
| pred ’or ’ pred | pred ’implies ’ pred;

term : var | NAT | BOOL | STRING | DEC | comp | defn | list | ’len(’ term ’)’
| ’(’ term ’)’ | <assoc=right > term list | <assoc=right > term ’^’ term
| ’-’ term | term op=(’*’ | ’/’ | ’%’ | ’+’ | ’-’) term;

vals : ’<’ ’>’ | ’<’ term (’,’ term)* ’>’;
list : ’[’ ’]’ | ’[’ item (’,’ item)* ’]’;
item : term | term ’..’ term | term ’:’ term;
args : ’(’ ’)’ | ’(’ var (’,’ var)* ’) ’;
params : ’<’ ’>’ | ’<’ var (’,’ var)* ’>’;
nodes : ’(’ ’)’ | ’(’ node (’,’ node)* ’)’;
node : var (io=(’?’ | ’!’ | ’:’) ID?)?;
var : name list*;
name : (ID ’.’)* ID;
NAT : (’0’ | [1 -9][0 -9]*);
DEC : (’0’ | [1 -9][0 -9]*) ’.’ [0 -9]+;
BOOL : ’true ’ | ’false ’;
ID : [a-zA -Z_][a-zA -Z0 -9_]*;
STRING : ’\"’ .*? ’\"’;
SPACES : [ \t\r\n]+ -> skip;
SL_COMM : ’//’ .*? (’\n’|EOF) -> skip;
ML_COMM : ’/*’ .*? ’*/’ -> skip;

Listing 4.1: Concrete ANTLR4 syntax of Treo (Treo.g4).

Consider the following Treo file (K in Table 4.1) representing the Alternator2:

import syncdrain;

import sync;

import fifo1;
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alternator2(a1,a2,b1) {

sync(a1,b1) syncdrain(a1,a2) sync(a2,b2) fifo1(b2,b1)

}

On the first line, we import (I) three different component definitions. On the
second line, we define the alternator2 component (ND). Its definition (D) has
no parameters (〈U0〉), and three nodes, a1, a2, and b1, in its interface ((U1)). The
body ({C}) of this definition consists of a set of component instances that interact
via shared nodes. The first component instance sync(a1,b1) is an instantiation
(D〈L〉(U)) of the imported sync definition (D) with nodes a1 and b1 ((U)) and
without any parameters (〈L〉).

All nodes that occur in the body, but not in the interface, are hidden. Hiding
renames a node to a fresh inaccessible name, which prevents it from being shared
with other components. In the case of alternator2, node b2 is not part of the
interface, and hence hidden.

Constructed from existing components, alternator2 is a composite component
(C0C1). However, not every component is constructed from existing components,
and we call such components primitive (A). The following Treo code shows a
possible (primitive) definition of thefifo1 component.

fifo1(a?,b!) { empty -{a},true-> full; full -{b},true-> empty; }

The definition of the fifo1 differs from the definition of the alternator2 in two
ways.

The first difference is that the fifo1 component is (in this case) defined directly
as a constraint automaton [BSAR06]. Constraint automata constitute a popular
semantic sort for specification of Reo component types, and forms the basis of the
Lykos compiler [Jon16]. However, constraint automata are not the de facto stan-
dard: the literature offers more than thirty different semantic sorts for specification
of Reo components [JA12], such as the coloring semantics and timed data stream
semantics. To accommodate the generality that disparate semantics allow, Treo fea-
tures user-defined semantic sorts, which means that the syntax for primitive com-
ponents is user-defined. For example, this means that we may also define the fifo1
component by referring to a Java file via fifo1(a?,b!){ "MyFIFO1.java" }.

The second difference is that the nodes a and b in the interface are directed.
That is, each of its interface nodes is either of type input or output, designated
by the markers ? and !, respectively. In Reo, it is safe to join two channels on a
shared sink node (e.g., node b1 in Figure 2.3). However, the composition operators
in most Reo semantics do not automatically produce the correct behavior for such
nodes (e.g., see [BSAR06, Section 4.3] for further details). Therefore, most Reo
semantics require well-formed compositions, wherein each node has at most one
input channel end and at most one output channel end.

The restriction of well-formed compositions can be very inconvenient in practice.
To ensure well-formed compositions, a programmer must implement every Reo node
with more than one input or output channel end as a node component. The interface
of this node component is determined by its degree, which is a pair (i, o) giving
the numbers of its coincident source and sink ends. Such explicit node components
make component constructions verbose and hard to maintain. For convenience, the
Treo compiler uses the above input/output annotations to compute the degree of
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each node in a composition, and subsequently inserts the correct node components
in the construction. We may view the input/output annotations as syntactic sugar
that ensures well-formed compositions. This feature allows programmers to remain
oblivious to these annotations and well-formed composition.

The ellipses in Figure 2.3 signify the parametrized construction of the Alternatork
connector, for k > 2. This notation is informal and not supported in the graphical
Reo editor [ECT], which offers no support for parametrized constructions. In Treo,
however, we can define the Alternatork connector as:

alternator<k>(a[1:k],b[1]) {

sync(a[1],b[1])

{

syncdrain(a[i-1],a[i])

sync(a[i],b[i])

fifo1(b[i],b[i-1])

| i in [2..k]

}

}

The definition of the alternator depends on a parameter k. Since Treo is a
strongly typed language with type-inferencing, there is no need to specify a type
for the (integer) parameter k. The interface consists of an array of nodes a[1:k]

and the single node b[1]. Here, [1:k] is an abbreviation for the list [[1..k]]

that contains a single list of length k. The array a[1:2] stands for the slice
[a[1],a[2]] of a, while the expression a[1..2] stands for the element a[1][2]

in a (cf., Equation (4.2)). For iteration, we write { ... | i in [2..k] } using
set-comprehension ({C | P} in Table 4.1).

Instead of defining alternator iteratively, we may also provide a recursive
definition as follows:

recursive_alternator(a[1:k],b[1],b[k]) {

recursive_alternator(a[1:k-1],b[1],b[k-1])

{syncdrain(a[k-1],a[k]) sync(a[k],b[k]) fifo1(b[k-1],b[k]) | k > 1}

}

Here, the value of k is defined by the size of a[1:k], and we use set-comprehension
{ ... | k > 1 } for conditional construction, as well. Indeed, the resulting set
of component instances is non-empty, only if k > 1 holds. Although Treo syntax
allows recursive definitions, the semantics presented in Section 4.3 does not yet
support recursion, which we leave as future work.

We illustrate the practicality of Treo by providing code for a chess playing
program [Jon16, Figure 3.29]. In this program, two teams of chess engines compete
in a game of chess. We define a chess team as the following Treo component:

import parse; /* and the other imports */

team<engine[1:n]>(inp,out) {

for (i in [1..n]) {

engine[i](inp,best[i]) parse(best[i],p[i])

if (i > 1) concatenate(a[i-1],p[i],a[i])

}
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sync(best[1],a[1]) majority(a[n],b) syncdrain(b,c)

fifo1(inp,c) move(b,d) concatenate(c,d,out)

}

The for-loop for (i in [1..n]) ... and if-statement if (i > 1) ... are just
syntactic sugar for set-comprehensions {... | i in [1..n]} and {... | i > 1},
respectively. The team component depends on an array engine[1:n] of param-
eters. This array does not contain the usual data values, but consists of Treo
component definitions. In the body of the team component, these definitions are
instantiated via engine[i](inp,best[i]). In RSL [BBKK09, Klü12] and FO-
CAML [Jon16], it is impossible to pass a component as a parameter, which makes
these languages less expressive than Treo.

We may view the team component as an example of role-oriented programming
[CDB+16]. Indeed, the team component encapsulates a list of chess engines in a
component, so that they can collectively be used as a single participant in a chess
match:

match() {

fifo1full<"">(a,b) fifo1(c,d)

team<[eng1, eng2]>(a,d) team<[eng3]>(b,c)

}

Treo treats not only component definitions, but also component instances as values.
By passing a single component instance as a parameter to multiple components,
this feature allows component (instance) sharing (cf., [BCL+06, Figure 2]). Hence,
it is straightforward to implement a chess match, wherein a single instance of a
chess engine plays against itself.

4.2 Semantic sorts

As noted in Section 4.1, Reo channels can be defined in many different seman-
tic formalisms [JA12], such as the constraint automaton semantics, the coloring
semantics, or the timed data stream semantics. Although each sort of Reo seman-
tics has its unique properties, each of them can be used to define a collection of
composable components with parameters and nodes, which we call a semantic sort:

Definition 4.2.1 (Semantic sort). A semantic sort over a set of names N with
values from V is a tuple (C,∧, [ / ],>) that consists of a set of components C, a
composition operator ∧ : C × C −→ C, a substitution operator [ / ] : C × (N ∪ V)×
N −→ C, and a trivial component > ∈ C.

We assume that the set of names and the set of values are disjoint, i.e., N ∩V =
∅. For convenience, we write C ∧ C ′ for ∧(C,C ′), and C[y/x] for [ / ](C, y, x). For
any semantic sort T , we write CT for its set of components, ∧T for its composition
operator, [ / ]T for its substitution operator, and >T for its trivial component. The
composition operator ∧T ensures that the behavior of finite non-empty composi-
tions is well-defined. To empty compositions we assign the trivial component >T .
The substitution operator [ / ]T allows us to change the interface of a component
via renaming or instantiation. Let C ∈ CT be a component and x ∈ N a name.
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For a name y ∈ N , the construct C[y/x]T renames every occurrence of name x in
C to y. For a value y ∈ V, the construct C[y/x]T instantiates (parameter) x in C
to y.(See Example 4.2.3 for an example of the distinction between renaming and
instantiations.)

A semantic sort T implicitly defines an interface for each component C ∈ C
via the map supp : CT −→ 2N defined as supp(C) = {x ∈ N | C[y/x]T 6=
C, for some name y ∈ N}. If name x does not ‘occur’ in C, substitution of x by
any name y does not affect C, i.e., C[y/x]T = C.

Example 4.2.1 (Systems of differential equations). The set ODE of systems of
ordinary differential equations with variables from N and values V = {v : R −→ R}
constitute a semantic sort. Composition is union, substitution is binding a name or
value to a given name, and the trivial component is the empty system of equations.
Using the ODE semantic sort, we can define continuous systems in Treo. ♦

Example 4.2.2 (Process calculi). Consider the process calculus CSP, proposed
by Hoare [Hoa78]. The set CSP of all such process algebraic terms comprises a
semantic sort. Each process can participate in a number of events, which we can
interpret as names from a given set N . We model the composition of CSP processes
P and Q by means of the interface parallel operator P |[X]| Q, where X ⊆ N is
the set of event names shared by P and Q. We define substitution as simply (1)
renaming the event, if a name is substituted for an event; or (2) hiding the event, if
a values is substituted for an event. Since neither STOP nor SKIP shares any event
with its environment, we may use either one to denote the trivial component. ♦

Example 4.2.3 (I/O-components). Let T be a semantic sort over N and V. We
define the I/O-component sort IOT over T using the notion of a primitive I/O-
component of sort T .

A primitive I/O-component P of sort T is a tuple (C, I,O), where C ∈ CT is a
component, I ⊆ N is a set of input names, O ⊆ N is a set of output names. For
P ⊆ N and x ∈ N and y ∈ N ∪ V, define

P [y/x] =


(P − {x}) ∪ {y} if x ∈ P and y ∈ N
P − {x} if x ∈ P and y ∈ V
P otherwise

(4.1)

We define substitution on primitive I/O-components as

(C, I,O)[y/x] = (C[y/x], I[y/x], O[y/x]),

for all x ∈ N and y ∈ N ∪V. We denote the set of primitive I/O-components over
T as PT .

An I/O-component of sort T is a sequence P1 · · ·Pn ∈ P∗T , with n ≥ 0, of prim-
itive I/O-components of sort T . Composition of I/O-components is concatenation
· of sequences. The trivial I/O-component is the empty sequence ε. We define sub-
stitution of composite I/O-components as (P1 · · ·Pn)[y/x] = P1[y/x] · · ·Pn[y/x],
for all x ∈ N and y ∈ N ∪ V. Hence, IOT = (P∗T , ·, [ / ], ε) is a semantic sort. ♦
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4.3 Denotational semantics

We define the denotational semantics of the Treo language over a fixed, but ar-
bitrary, semantic sort T . The main purpose of this denotational semantics is to
provide a clear abstract structure that guides the implementation of Treo parsers.
The syntax to which this denotational semantics applies is the abstract syntax in
Table 4.1. The general structure of our denotational semantics is quite standard,
and adheres to Schmidt’s notation [Sch86].

Although Treo syntax allows recursive definitions, the semantics presented in
this section does not support this feature. Since not all recursive definitions define
finite compositions of components, extending the current semantics with recursion
is not straightforward, and we leave it as future work.

Variables and terms in Treo are structured as non-rectangular arrays. The set
of all (ragged) arrays over a set X is the smallest set X� such that both X ⊆ X�

and [x0, . . . , xn−1] ∈ X�, if n ≥ 0 and xi ∈ X� for all 0 ≤ i < n. For example,
the set N� of ragged arrays over integers contains all natural numbers from N
as ‘atomic’ arrays, as well as the array [37, [], [[2, [55], 3]]] ∈ N�. Every ragged
array has a length, which can be computed via the map len : X� −→ N defined
inductively as len(x) = 0, if x ∈ X, and len([x0, . . . , xn−1]) = n, otherwise. If
x = [x0, . . . , xn−1] ∈ X� is a ragged array, we access its entries via the function
application x(i) = xi, for every 0 ≤ i < n. We extend the access map N� by
defining x([i0, . . . , in]) as{

x(i0)([i1, . . . , in]) if i0 ∈ N
[x(i00)([i1, . . . , in]), . . . , x(i0m)([i1, . . . , in])] if i0 = [i00, . . . , i0m]

, (4.2)

whenever the right-hand side is defined. Two ragged arrays x ∈ X� and y ∈ Y �

have the same structure (x ' y) iff x ∈ X and y ∈ Y , or len(x) = len(y) and
x(i) ' y(i) for all 0 ≤ i < len(x). We can flatten a ragged array from X� to a
sequence over X via the map flatten : X� −→ X∗ defined as flatten(x) = x, if
x ∈ X, and flatten([x0, . . . , xn−1]) = flatten(x0) · · · flatten(xn−1), otherwise.

Suppose that semantic sort T is defined over a set of names N and a set of
values V, with N ∩ V = ∅. For simplicity, we assume that, for every component
C ∈ CT , its support supp(C) ⊆ N is finite. Since Treo views components as values,
we assume the inclusion CT ⊆ V.

We assume that the set of names N is closed under taking subscripts from N.
That is, if x ∈ N is a name and i ∈ N is a natural number, then we can construct
a fresh name xi ∈ N . To construct sequences of data with variable lengths, we use
a map lst : N2 −→ N� that constructs from a pair (i, j) ∈ N2 of integers a finite
ordered list [i, i+ 1, . . . , j] in N�.

Recall from Section 4.1 that a component accepts an arbitrary but finite number
of parameters and nodes. Therefore, we define a component definition as a map
D : V� × N� −→ CT ∪ { } that takes an array of parameter values from V�

and an array of nodes from N� and returns a component or an error  . Let

D = (CT ∪{ })V
�×N�

be the set of all definitions. As mentioned earlier, Treo also
allows definitions as values, which amounts to the inclusion D ⊆ V.2

2 Such a set of values V exists only if V 7→ CT ∪ (CT ∪ { })V
�×N�

admits a pre-fixed point.
In this work, we simply assume that such V exists.
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We evaluate every Treo construct in its scope σ : N −→ V�, with N ⊆ N
finite, which assigns a value to a finite collection of locally defined names. We
write Σ = {σ : N −→ V� | N ⊆ N finite} for the set of scopes. For a name
x ∈ N and a value d ∈ V�, we have a scope {x 7→ d} : {x} −→ V� defined as
{x 7→ d}(x) = d. For any two scopes σ, σ′ ∈ Σ, we have a composition σσ′ ∈ Σ such
that for every x ∈ dom(σ) ∪ dom(σ′) we have (σσ′)(x) = σ′(x), if x ∈ dom(σ′),
and (σσ′)(x) = σ(x), otherwise. The composite scope σσ′ can be viewed as an
extension of σ that includes definitions and updates from σ′.

Let Names be the set of parse trees with root N , and let NJ−K : Names −→ N
be the semantics of names. We define the semantics of variables as a map VJ−K :
Variables −→ (N� ∪ { })Σ, where Variables is the set of parse trees with root V .
For a scope σ ∈ Σ, we define VJ−K(σ) as follows:

1. VJNK(σ) = NJNK;

2. VJV [L]K(σ) =

{
x(k) if VJV K(σ) = x ∈ N� and LJLK(σ) = k ∈ N�

 otherwise
.

Since N is closed under taking subscripts, we can define n(i) = ni, for all n ∈ N
and i ∈ N, which ensures that x(k) ∈ N� is always defined.

The semantics of arguments is a map UJ−K : Arguments −→ (N� ∪ { })Σ,
where Arguments is the set of all parse trees with root U . For a scope σ ∈ Σ, we
define UJ−K(σ) as follows:

1. UJεK(σ) = [];

2. UJU, V K(σ) =

{
[x1, . . . , xn+1] if UJUK(σ) = [x1, . . . , xn] and VJV K(σ) = xn+1

 otherwise
.

Let Functions be the set of parse trees with root F , and let FJ−K : Functions −→
{Vk −→ V | k ∈ N} be the semantics of functions. The semantics of terms is a map
TJ−K : Terms −→ (V� ∪ { })Σ, where Terms is the set of parse trees with root T .
For a scope σ ∈ Σ, we define TJ−K(σ) inductively as follows:

1. TJV K(σ) =

{
σ(VJV K(σ)) if defined

 otherwise
;

2. TJCK(σ) = CJCK(σ), which is well-defined since CT ⊆ V;

3. TJDK(σ) = DJDK(σ), which is well-defined since D ⊆ V;

4. TJ[L]K(σ) = LJLK(σ);

5. TJT0 : T1K(σ) =

{
lst(x0, x1 − 1) if TJTiK(σ) = xi ∈ N for i ∈ {0, 1}
 otherwise

;

6. TJT [L]K(σ) =

{
x(k) if TJT K(σ) = x ∈ V� and LJLK(σ) = k ∈ N�

 otherwise
;
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7. TJF (L)K(σ) =

{
FJF K(LJLK(σ)) if FJF K : Vk −→ V and len(LJLK(σ)) = k

 otherwise
.

The semantics of lists is a map LJ−K : Lists −→ (V� ∪ { })Σ, where Lists is
the set of parse trees with root L. For a given scope σ ∈ Σ, we define SJ−K(σ)
inductively as follows:

1. LJεK(σ) = [];

2. LJL, T K(σ) =


[x1, . . . , xn+1] if LJLK(σ) = [x1, . . . , xn] ∈ V�

and TJT K(σ) = xn+1 ∈ V
 otherwise

;

3. LJL, T0..T1K(σ) =


[x1, . . . , xn+k] if LJLK(σ) = [x1, . . . , xn] ∈ V�,

TJTiK(σ) = ai ∈ V, for i ∈ {0, 1},
and lst(a0, a1) = [xn+1, . . . , xn+k]

 otherwise

.

Since we use predicates in Treo for list comprehension, we define the semantics
of predicates as a map PJ−K : Predicates −→ (2Σ)Σ, where Predicates is the set of
all parse trees with root P . For a scope σ ∈ Σ, we define the semantics PJ−K(σ) of
a predicate P as the set of all extensions of σ that satisfy P . We define PJ−K(σ)
inductively as follows:

1. PJV ∈ T K(σ) =


{σ{x 7→ ti} | 1 ≤ i ≤ n} if VJV K(σ) = x /∈ dom(σ),

and TJT K(σ) = [t1, . . . , tn]

{σ} if TJV K(σ) ∈ TJT K(σ)

∅ otherwise

,

2. If P is R(L), we define PJR(L)K(σ) = {σ′ ∈ Σ | σ′σ = σ′,LJLK(σ′) ∈ RJRK};

3. If P is ¬P , we define PJ¬P K(σ) = {σ′ ∈ Σ | σ′σ = σ′,¬PJP K(σ′)};

4. If P is P0 ∧ P1, we define PJP0 ∧ P1K(σ) = PJP0K(σ) ∩PJP1K(σ);

5. If P is P0 ∨ P1, we define PJP0 ∨ P1K(σ) = PJP0K(σ) ∪PJP1K(σ);

6. If P is (P ), we define PJ(P )K(σ) = PJP K(σ).

For set and list comprehensions, we can iterate over only a finite subset of scopes
PJP K(σ) of P . We ensure this by restricting the set of scopes to those solutions that
are minimal with respect to inclusion of domains. Formally, we write min PJP K(σ)
for the set of all scopes that are minimal with respect to ≤ defined as σ1 ≤ σ2 iff
dom(σ1) ⊆ dom(σ2), for all σ1, σ2 ∈ PJP K(σ).

The semantics of component instances is a map CJ−K : Components −→ (CT ∪
{ })Σ, where Components is the set of parse trees with root C. Recall that Treo
views components as values (CT ⊆ V). Given a scope σ ∈ Σ, we define CJ−K(σ)
inductively as follows:
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1. CJV K(σ) =

{
σ(x) if VJV K(σ) = x ∈ dom(σ) and σ(x) ∈ CT
 otherwise

;

2. CJAK(σ) = AJAK, where AJ−K : Atoms −→ CT is the semantics of primitive
components;

3. CJC0C1K(σ) =

{
CJC0K(σ) ∧T CJC1K(σ) if CJCiK(σ) ∈ CT , for i ∈ {0, 1}
 otherwise

;

4. CJ{C : P}K(σ) =


>T if min PJP K(σ) is empty or infinite

C1 ∧T · · · ∧T Ck if min PJP K(σ) = {σ1, . . . , σk} 6= ∅,
and CJCK(σi) = Ci ∈ CT

 otherwise

;

5. CJD〈L〉(U)K(σ) =

{
DJDK(σ)(LJLK(σ),UJUK(σ)) if defined

 otherwise
.

The semantics of component definitions is a map DJ−K : Definitions −→ (D ∪
{ })Σ, where Definitions is the set of all parse trees with root D. For a scope
σ ∈ Σ, we define DJ−K(σ) as follows:

1. DJV K(σ) =

{
σ(VJV K(σ)) if VJV K(σ) = x ∈ dom(σ) and σ(x) ∈ D
 otherwise

;

2. If D is a component 〈U0〉(U1){C}, then for an array of parameter values
t ∈ V� and an array of nodes q ∈ N�, we define DJ〈U0〉(U1){C}K(σ)(t, q)
as follows: Recall from Section 4.1 that the number of parameters and nodes
can implicitly define variables. Suppose that there exists a unique ‘index-
defining’ scope σ′ ∈ Σ such that for m = len(t) and n = len(q). Then we
have

(a) UJU0K(σ′) = [s1, . . . , sm] 6=  satisfies si ' t(i), for all 1 ≤ i ≤ m;

(b) UJU1K(σ′) = [p1, · · · , pn] 6=  satisfies pi ' q(i), for all 1 ≤ i ≤ n;

(c) flatten([s1, . . . sm, p1, . . . pn]) ∈ N� has no duplicates;

(d) dom(σ′) ⊆ N is minimal such that properties (a)-(c) are satisfied.

We evaluate the body C of the component definition to the component
CJCK(σσ′), where σσ′ is the composition of σ and σ′. Define the map

r : supp(CJCK(σσ′)) −→ N

as

r(x) =


ti(k1) · · · (kl) if x = si(k1) · · · (kl)
qi(k1) · · · (kl) if x = pi(k1) · · · (kl)
v fresh otherwise

Map r is well-defined, because flatten([s1, . . . sm, p1, . . . pn]) ∈ N� has no
duplicates. Note that r is finite, since we assume that supp(CJCK(σσ′)) is
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(b) surg(P1 · P2 · P3)

Figure 4.1: Surgery on an I/O-component to remove mixed nodes.

finite. We define DJ〈U0〉(U1){C}K(σ)(t, q) as the simultaneous substitutions
CJCK(σσ′)[r(x)/x : x ∈ dom(f)]. If such ‘index-defining’ scope σ′ does not
exists or is not unique, then we simply define DJ〈U0〉(U1){C}K(σ)(t, q) =  .

We define the semantics of files as a map KJ−K : Files −→ Σ∪{ }, where Files
is the set of parse trees with root K. Let IJ−K : Imports −→ Σ be the semantics
of imports. For a scope σ ∈ Σ, we define KJ−K(σ) inductively as follows:

1. KJIK(σ) = IJIK;

2. KJKNDK(σ) =


σ0{x 7→ c} if σ0 = KJKK(σ) 6=  , x = NJNK,

and c = DJDK(σ0) 6=  
 otherwise

.

4.4 Input/output nodes

As mentioned in Section 4.1, nodes of primitive component definitions require in-
put/output annotations. Treo regards such port type annotations as attributes
of the primitive component. For a semantic sort T , we model the input nodes
and output nodes of its instances via two maps I,O : CT −→ 2N satisfying
supp(C) = I(C) ∪ O(C), for all C ∈ CT . If x ∈ I(C) ∩ O(C), then we call x
a mixed node.

Example 4.4.1 (Mixed nodes). Recall the I/O component sort from Example 4.2.3.
Let P1 = (C1, {x}, {y}), P2 = (C2, {y}, ∅), and P3 = (C3, {z}, {y}) be three primi-
tive I/O components. Figure 4.1(a) shows a graphical representation of composition
of P1, P2, and P3. In this figure, an arrow from a node a to a component P in-
dicates that a is an input node of P . An arrow from a component P to a node
a indicates that a is an output node of P . Node y is an output node of P1 and
P3, and it is an input node of P2. Thus, y is a mixed node in the composition
P1 · P2 · P3, where · is sequential composition of I/O components. ♦

Most semantic sorts that distinguish input and output nodes assume well-
formed compositions: each shared node in a composition is an output of one com-
ponent and an input of the other.

Definition 4.4.1 (Well-formedness). A composition C1 ∧T · · · ∧T Cn, with n ≥ 0,
is well-formed if and only if |{i ∈ {1, . . . , n} | x ∈ I(Ci)}| ≤ 1 and |{i ∈ {1, . . . , n} |
x ∈ O(Ci)}| ≤ 1, for all x ∈ N .
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For well-formed compositions, the behavior of the composition naturally corre-
sponds to the composition of Reo connectors. However, specification of complex
components as well-formed compositions is quite cumbersome, because it requires
explicit verbose expression of the ‘merge-replicate’ behavior of every Reo node in
terms of a suitable number of binary mergers and replicators. Reo nodes abstract
from such detail and yield more concise specifications. Like Reo, Treo does not
impose any restriction on the nodes of constituent components in a composition.
Indeed, the denotational semantics of components CJ−K in Section 4.3 uncondi-
tionally computes the composition. To define the semantics of CJ−K for a semantic
sort T where ∧T requires well-formedness, parsing a(non-well-formed) Treo com-
position needs the degree (i.e., the number of coincident input and output channel
ends) of each node to correctly express the ‘merge-replicate’ semantics of that node.
The degree of every node used in a definition can be known only at the end of that
definition. The Treo compiler could discover the degree of every node via two-pass
parsing.

Alternatively, Treo can delay applying composition ∧T in T until parsing com-
pletes, Treo accomplishes this by interpreting a Treo program over the I/O-component
sort IOT , as defined in Example 4.2.3, wherein compositions consist of lists of prim-
itive components. First, Treo wraps each primitive component C ∈ CT within a
primitive I/O-component (C, I(C), O(C)) ∈ PT . Using Section 4.3, Treo parses
the Treo program over the semantic sort IOT as usual, and obtains a single I/O-
component P1 · · ·Pn ∈ IOT .

However, the resulting composition P1 · · ·Pn may not be well-formed. There-
fore, the Treo compiler applies some surgery on P1 · · ·Pn to ensure a well-formed
composition. This surgery consists of splitting all shared nodes in X, and recon-
necting them by inserting a node component. We model these node components
(over semantic sort T ) as a map node : (2N )2 × N −→ CT . For sets of names
I,O ⊆ N and a default name x ∈ N , the component node(I,O, x) ∈ CT has input
nodes I (or {x}, if I is empty) and output nodes O (or {x}, if O is empty).

Definition 4.4.2 (Surgery). The surgery map surg : IOT −→ IOT is defined
as surg(P1 · · ·Pn) = P ′1 · · ·P ′n ·

∏
x∈supp(P1···Pn)Nx, where P ′i = Pi[xi/x : x ∈

supp(Pi)], for all 1 ≤ i ≤ n, and Nx = (node(Ix, Ox, x), Ix, Ox), with Ix = {xi |
x ∈ O(Pi)} and Ox = {xi | x ∈ I(Pi)}. The composition

∏
is ordered arbitrarily.

Intuitively, the surgery map takes a possibly non-well-formed composition and
produces a well-formed composition by inserting node components. Although ini-
tially, multiple components may produce output at the same node. After applying
the surgery map, these components offer data for the same node component via
different ‘ports’.

Example 4.4.2 (Surgery). Figure 4.1(b) shows the result of applying the surgery
map to the I/O-component P1 · P2 · P3 from Example 4.4.1. The surgery map
consists of two parts. First, the surgery map splits every node a ∈ {x, y, z} by
renaming a to ai in Pi, for every 1 ≤ i ≤ n. Second, the surgery map inserts at
every node a ∈ {x, y, z} a node component Na. Clearly, surg(P1 · P2 · P3) is a
well-formed composition. ♦
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4.5 Related work

The Treo syntax offers a textual representation for the graphical Reo language
[Arb04, Arb11]. We propose Treo as a syntax for Reo that (1) provides support
for parameterization, recursion, iteration, and conditional construction; (2) imple-
ments basic design principles of Reo more closely than existing languages; and
(3) reflects its declarative nature. The graphical Reo editor implemented as an
Eclipse plugin [ECT] does not support parameterization, recursion, iteration, or
conditional construction. RSL (with CARML for primitives) [BBKK09, Klü12] is
imperative, while Reo is declarative. FOCAML [Jon16], supports only constraint
automata [BSAR06], while Treo allows arbitrary user-defined semantic sorts for
expressing the behavior of Reo primitives.

Since Treo leaves the syntax for primitive subsystems (i.e., semantic sorts) as
user-defined, Treo is a “meta-language” that specifies compositional construction
of complex structures (using the common core language defined in this chapter)
out of primitives defined in its arbitrary, user-defined sub-languages. As such, Treo
is not directly comparable to any existing language. We can, however, compare
the component-based system composition of Treo with the system composition of
an existing language.

Treo components are similar to proctype declarations in Promela, the input
language for the SPIN model checker developed by Holzmann [Hol04]. However,
the focus of Promela is on imperative definitions of processes, while Treo is designed
for declarative composition of processes.

SysML is a graphical language for specification of systems [FMS14]. SysML
offers 9 types of diagrams, including activity diagrams and block diagrams. Each
diagram provides a different view on the same system [Kru95]. Diagram types in
SysML are comparable to semantic sorts in Treo. The main difference between the
two, however, is that Treo requires a well-defined composition operator, using which
it allows construction of more complex components, while diagram composition is
much less prominent in SysML.

A component model is a programming paradigm based on components and their
composition. Our Treo language can be viewed as one such component model with
a concrete syntax. Over the past decades, many different component models have
been proposed. For example, CORBA [OMG06] is a component model that is flat
in the sense that every CORBA component is viewed as a black box, i.e., it does
not support composite components. Fractal [BCL+06] is an example of a compo-
nent model that is hierarchical, which means a component can be a composition
of subcomponents. Concrete instances of Fractal consist of libraries (API’s) for a
variety of programming languages, such as Java, C, and OMG IDL [BCL+06]. Treo
components and Fractal component differ with respect to interaction: Treo com-
ponents interact via shared names, while Fractal component interact via explicit
bindings.

4.6 Discussion

We propose Treo as a textual syntax for Reo connectors that allows user-defined
semantic sorts, and incorporates Reo’s predefined node behavior. These features
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are not present in any of the existing alternative languages for Reo. We provided
an abstract syntax for Treo and its denotational semantics based on this abstract
syntax. We identify three possible directions for future work.

First, since our semantics disallows recursion, a component in Treo is currently
restricted to consist of a composition of finitely many subsystems. Consequently,
we cannot, for instance, express the construction of a primitive with an unbounded
buffer, Bω, from a set of primitives with buffer capacity of one, B1. It seems,
however, possible to use simulation and recursion to define Bω in terms of B1:
Bω is the smallest (with respect to simulation) component that simulates B1 and
is stable under sequential composition with B1. These assumptions readily imply
that Bω simulates a primitive with buffer of arbitrary large capacity. Semantically,
the unbounded buffer would then be defined as a least fixed point of a certain op-
erator on components. An extension of Treo semantics that allows such fixed point
definitions would provide a powerful tool to define complex ‘dynamic’ components.

Second, the current semantics in Section 4.3 does not support components with
an identity. If we instantiate a component definition twice with the same pa-
rameters, we obtain two instances of the same component. Ideally, component
instantiation should return a component instance with a fresh identity. Allowing
components with identities in Treo enables programmers to design systems more
realistically.

Finally, a semantic sort T from Definition 4.2.1 consists of a single composition
operator ∧T . Generally, a semantic sort consists of multiple composition operators
(each with it own arity). For example, we may need both sequential composi-
tion as well as parallel composition. Extending Treo with (a variable number of)
composition operators would enable users to model virtually all semantic sorts.





Chapter 5

Protocols as Constraints

Given the standardized specification of Reo connections in Treo developed in Chap-
ter 4, we now proceed with the development of a compiler that accepts Treo as
input. The first step in the construction of a compiler for Treo is the selection
of an appropriate semantics of Treo components. The selected semantics has seri-
ous effects on the implementability and scalability of the resulting compiler, and
this decision should therefore not be taken lightly. The current chapter proposes
a semantics for Reo connectors whose intermediate representation is significantly
smaller than the representation of existing semantics, without sacrificing perfor-
mance1. As a result, our approach can compile Reo connectors for which it was
previously infeasible to generate efficient code.

Over a decade ago, Baier et al. introduced constraint automata for the specifi-
cation of interaction protocols [BSAR06]. Constraint automata feature a powerful
composition operator that preserves synchrony: composite constructions not only
yield intuitively meaningful asynchronous protocols but also synchronous protocols.
Constraint automata have been used as basis for tools, like compilers and model
checkers. Jongmans developed Lykos: a compiler that translates constraint au-
tomata into reasonably efficient executable Java code [Jon16]. Baier, Blechmann,
Klein, and Klüppelholz developed Vereofy, a model checker for constraint automata
[BBKK09, Klü12]. Unfortunately, like every automaton model, composition of con-
straint automata suffers from state space and transition space explosions. These
explosions limit the scalability of the tools based on constraint automata.

To improve scalability, Clarke et al. developed a compiler that translates a
constraint automaton to a first-order formula [CPLA11]. The transitions of the
constraint automaton correspond to the solutions of this formula. At run time, a
generic constraint solver finds these solutions and simulates the automaton. Since
composition and abstraction for constraint automata respectively correspond to
conjunction and existential quantification, the first-order specification does not
suffer from state space or transition space explosion. However, the approach pro-
posed by Clarke et al. only delays the complexity until run time: calling a generic
constraint solver at run time imposes a significant overhead.

Jongmans realized that the overhead of this constraint solver is not always

1The work in this chapter is based on [DA18a]

99



5.1. RELATED WORK 100

necessary. He developed a commandification algorithm that accepts constraints
without disjunctions (i.e., conjunctions of literals) and translates them into a small
imperative program [JA16b]. The resulting program is a light-weight, tailor-made
constraint solver with minimal run time overhead. Since commandification accepts
only constraints without disjunction, Jongmans applied this technique to data con-
straints on individual transitions in a constraint automaton. Relying on constraint
automata, his approach still suffers from scalability issues [JKA17].

We aim to prevent state space and transition space explosions by combining
the ideas of Clarke et al. and Jongmans. To this end, we present the language
of stream constraints: a generalization of constraint automata based on temporal
logic. A stream constraint is an expression that relates streams of observed data at
different locations (Section 5.2). We identify a subclass of stream constraints, called
regular (stream) constraints, which is closed under composition and abstraction
(Section 5.3). Regular constraints can be viewed as a constraint automata, and
conjunction of reflexive regular constraints is similar to composition of constraint
automata (Section 5.4).

A straightforward application of the commandification algorithm of Jongmans
to regular stream constraints entails transforming a stream constraint into disjunc-
tive normal form and applying the algorithm to each clause separately. However,
the number of clauses in the disjunctive normal form may grow exponentially in
the size of the composition. To prevent such exponential blowups of the size of
the formula, we recognize and exploit symmetries in the disjunctive normal form.
Each clause in the disjunctive normal form can be constructed from a set of basic
stream constraints, which we call rules. This idea allows us to represent a single
large constraint as certain combination of a set of smaller constraints, called the
rule-based form (Section 5.5). We express the composition of stream constraints
in terms of the rule-based normal form (Section 5.6), and show that, for simple
sets of rules, the number of rules to describe the composition is only linear in the
size of the composition (Section 5.7). The class of stream constraints defined by a
simple set of rules contains constraints for which the size of the disjunctive normal
form explodes, which shows that our approach improves upon existing approaches
by Clarke et al. and Jongmans. We express abstraction on stream constraints in
terms of the rule-based normal form and provide a sufficient condition under which
the number of rules remains constant (Section 5.8). Finally, we conclude and point
out future work (Section 5.10).

5.1 Related work

Representation of stream constraints in rule-based form is part of a larger line
of research on symbolic approaches, such a symbolic model checking [BCM+92,
BCH+97, KNSW07] and symbolic execution [CDE+07]. These approaches not
only use logic (cf., SAT solving techniques [Kem12, Ehl10] for verification), but also
other implicit representations, like binary decision diagrams [Bry86] and Petri nets
[Mur89]. Petri nets offer a small representation of protocols with an exponentially
large state space. While our focus is more on compilation, Petri nets have been
studied in the context of verification. As inspiration for future work, it is interesting
to study the similarities between Petri nets and stream constraints.
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Since regular stream constraints correspond to constraint automata, we can
view regular stream constrains as a restricted temporal logic for which distributed
synthesis is easy. In general, distributed (finite state) synthesis of protocols is
undecidable [PR89, PR90]. Pushing the boundary from regular to a larger class of
stream constraints can be useful for more effective synthesis methods.

5.2 Syntax and semantics

The semantics of constraint automata is defined as a relation over timed data
streams [AR02], which are pairs, each consisting of a non-decreasing stream of time
stamps and a stream of observed (exchanged) data items. The primary significance
of time streams is the proper alignment of their respective data streams, by allowing
“temporal gaps” during which no data is observed. For convenience, we drop the
time stream and model protocols as relations over streams of data, augmented by
a special symbol that designates “no-data” item.

We first define the abstract behavior of a protocol C. Fix an infinite set X of
variables, and fix a non-empty set of user-data Data ⊇ {0} that contains a datum
0. Consider the data domain D = Data ∪ {∗} of data stream items, where we use
the “no-data” symbol ∗ ∈ D \ Data to denote the absence of data. We model a
single execution of protocol C as a function

θ : X −→ DN (5.1)

that maps every variable x ∈ X to a function θ(x) : N −→ D that represents a
stream of data at location x. We call θ a data stream tuple (over X and D). For all
n ∈ N and all x ∈ X, the value θ(x)(n) ∈ D is the data that we observe at location
x and time step n. If θ(x)(n) = ∗, we say that no data is observed at x in step n
(i.e., we may view θ as a partial map N ×X ⇀ Data). The behavior of protocol
C consists of the set

L(C) ⊆ (DN)X (5.2)

of all possible executions of C, called the accepted language of C. We can think of
accepted language L(C) as a relation over data streams. In this chapter, we study
protocols that are defined as a stream constraint:

Definition 5.2.1 (Stream constraints). A stream constraint φ is an expression
generated by the following grammar

φ ::= ⊥ | t0 .
= t1 | φ0 ∧ φ1 | ¬φ | ∃xφ | �φ

t ::= x | d | t′

where x ∈ X is a variable, d ∈ D is a datum, and t is a stream term.

We use the following standard syntactic sugar: > = ¬⊥, φ0∨φ1 = ¬(¬φ0∧¬φ1),
♦φ = ¬�¬φ, (t1 6 .= t2) = ¬(t1

.
= t2), (t1

.
= · · · .= tn) = (t1

.
= t2 ∧ · · · ∧ tn−1

.
= tn),

t(0) = t, and t(k+1) = (t(k))′, for all k ≥ 0. Following Rutten [Rut01], we call t(k),
k ≥ 0, the k-th derivative of term t.

We interpret a stream constraint as a constraint over streams of data in DN. For
a datum d ∈ D, d is the constant stream defined as d(n) = d, for all n ∈ N. The
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operator (−)′, called stream derivative, drops the head of the stream and is defined
as σ′(n) = σ(n+ 1), for all n ∈ N and σ ∈ DN. Streams can be related by

.
= that

expresses equality of their heads: x
.
= y iff x(0) = y(0), for all x, y ∈ DN. The modal

operator � allows us to express that a stream constraint holds after applying any
number of derivatives to all variables. For example, �(x

.
= y) iff x(k)(0) = y(k)(0),

for all k ∈ N and x, y ∈ DN. Stream constraints can be composed via conjunction
∧, or negated via negation ¬. Streams can be hidden via existential quantification
∃.

Each stream term t evaluates to a data stream in DN. Let θ : X −→ DN be
a data stream tuple. We extend the domain of θ from the set of variables X to
the set of terms T ⊇ X as follows: we define θ : T −→ DN via θ(d) = d and
θ(t′) = θ(t)′, for all d ∈ D and terms t ∈ T .

Next, we interpret a stream constraint φ as a relation over streams.

Definition 5.2.2 (Semantics). The language L(φ) ⊆ (DN)X of a stream constraint
φ over variables X and data domain D is defined as

1. L(⊥) = ∅;

2. L(t0
.
= t1) = {θ : X −→ DN | θ(t0)(0) = θ(t1)(0)};

3. L(φ0 ∧ φ1) = L(φ0) ∩ L(φ1);

4. L(¬φ) = (DN)X \ L(φ);

5. L(∃xφ) = {θ : X −→ DN | θ[x 7→ σ] ∈ L(φ), for some σ ∈ DN};

6. L(�φ) = {θ : X −→ DN | θ(k) ∈ L(φ), for all k ≥ 0},

where θ[x 7→ σ] : X −→ DN is defined as θ[x 7→ σ](x) = σ and θ[x 7→ σ](y) = θ(y),
for all y ∈ X \ {x}; and θ(k) : X −→ DN is defined as θ(k)(x) = θ(x(k)), for all
x ∈ X.

Let φ and ψ be two stream constraints and θ : X −→ DN a data stream tuple.
We say that θ satisfies φ (and write θ |= φ), whenever θ ∈ L(φ). We say that φ
implies ψ (and write φ |= ψ), whenever L(φ) ⊆ L(ψ). We call φ and ψ equivalent
(and write φ ≡ ψ), whenever L(φ) = L(ψ).

Example 5.2.1. One of the simplest stream constraints is Sync(a, b), which is
defined as �(a

.
= b). Constraint Sync(a, b) encodes that the data streams at a

and b are equal: θ(a)(k) = θ(b)(k), for all k ∈ N and all θ ∈ (DN)X . Therefore,
Sync(a, b) synchronizes the data flow observed at ports a and b.

Conjunction ∧ and existential quantification ∃ provide natural operators for
composition and abstraction for stream constraints. For example, the composi-
tion Sync(a, b) ∧ Sync(b, c) synchronizes ports a, b, and c. Hiding port b yields
∃b(Sync(a, b) ∧ Sync(b, c)), which is equivalent to Sync(a, c). ♦

Example 5.2.2. Recall that x(k), for k ≥ 0, is the k-th derivative of x. We can
express that a stream x is periodic via the stream constraint �(x(k) .

= x), for some
k ≥ 1. For k = 1, stream x is constant, like 0 and ∗. ♦
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Example 5.2.3. The stream constraint FIFO(a, b,m) defined as m
.
= ∗ ∧ �((a

.
=

m′
.
= 0 ∧ b .= m

.
= ∗) ∨ (a

.
= m′

.
= ∗ ∧ b .= m

.
= 0) ∨ (a

.
= b

.
= ∗ ∧m′ .= m)) models

a 1-place buffer with input location a, output location b, and memory location m
that can be full (m

.
= 0) or empty (m

.
= ∗). ♦

Example 5.2.4. Recall that ∗ models absence of data. Stream constraint �♦(a 6 .=
∗) expresses that always eventually we observe some datum at a. A constraint of
such form can be used to define fairness. ♦

5.3 Regular constraints

We identify a subclass of stream constraints that naturally correspond to constraint
automata. We first introduce some notation.

To denote that a string s occurs as a substring in a stream constraint φ or a
stream term t, we write s ∈ φ or s ∈ t, respectively.

Every stream constraint φ admits a set free(φ) ⊆ X of free variables, defined
inductively via free(⊥) = ∅, free(t0

.
= t1) = {x ∈ X | x ∈ t0 or x ∈ t1}, free(φ0 ∧

φ1) = free(φ0)∪ free(φ1), free(¬φ) = free(�φ) = free(φ), and free(∃xφ) = free(φ) \
{x}.

For every variable x ∈ X, we define the degree of x in φ as

degx(φ) = max({−1} ∪ {k ≥ 0 | x(k) ∈ φ}),

and the degree of φ as deg(φ) = maxx∈X degx(φ). Note that for x /∈ φ we have
degx(φ) = −1. For k ≥ 0, we write freek(φ) = {x ∈ free(φ) | degx(φ) = k} for the
set of all free variables of φ of degree k.

We call a variable x of degree zero in φ a port variable and write P (φ) = free0(φ)
for the set of port variables of φ. We call a variable x of degree one or higher in φ a
memory variable and write M(φ) =

⋃
k≥1 freek(φ) for the set of memory variables

of φ.

Definition 5.3.1 (Regular). A stream constraint φ is regular if and only if φ =
ψ0 ∧�ψ, such that � /∈ ψ0 ∧ ψ and degx(ψ0) < degx(ψ) ≤ 1, for all x ∈ X.

For a regular stream constraint φ = ψ0 ∧ �ψ, we refer to ψ0 as the initial
condition of φ and we refer to ψ as the invariant of φ. Stream constraints Sync(a, b)
and FIFO(a, b,m) in Examples 5.2.1 and 5.2.3 are regular stream constraints.

A regular stream constraint φ has an operational interpretation in terms of
a labeled transition system JφK. States of the transition system consist of maps
q : M(φ) −→ D that assign data to memory locations, and its labels consist of
maps α : P (φ) −→ D that assign data to ports. We write Q(φ) for the set of states
of φ and A(φ) for the set of labels of φ.

Definition 5.3.2 (Operational semantics). The operational semantics JφK of a
regular stream constraint φ = ψ0 ∧ �ψ consists of a labeled transition system
(Q(φ), A(φ),→, Q0), with set of states Q(φ), set of labels A(φ), set of transitions
→ = {(qφ(θ), qφ(θ′), αφ(θ)) | θ ∈ L(ψ)}, and set of initial states Q0 = {qφ(θ) | θ ∈
L(ψ0 ∧ ψ)}, where

1. qφ(θ) : M(φ) −→ D is defined as qφ(θ)(x) = θ(x)(0), for x ∈M(φ); and
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[a 7→ 0, b 7→ ∗]

[a 7→ ∗, b 7→ 0]

[a 7→ ∗, b 7→ ∗] [a 7→ ∗, b 7→ ∗]

Figure 5.1: Semantics of FIFO(a, b,m) over the trivial data domain {0, ∗}.

2. αφ(θ) : P (φ) −→ D is defined as αφ(θ)(x) = θ(x)(0), for x ∈ P (φ).

and θ′ is defined as θ′(x)(n) = θ(x)(n+ 1), for all x ∈ X and n ∈ N.

Example 5.3.1. Consider the regular stream constraint FIFO(a, b,m) from Exam-
ple 5.2.3. Note that in this example, the set of ports equals free0(FIFO) = {a, b}
and the set of memory locations equals free1(FIFO) = {m}. The semantics of
FIFO(a, b,m) over the trivial data domain D = {0, ∗} consists of 4 transitions:

1. ([m 7→ ∗], [m 7→ 0], [a 7→ 0, b 7→ ∗]);

2. ([m 7→ 0], [m 7→ ∗], [a 7→ ∗, b 7→ 0]); and

3. ([m 7→ d], [m 7→ d], [a 7→ ∗, b 7→ ∗]), for every d ∈ {∗, 0}.

Figure 5.1 shows the semantics of FIFO over the trivial data domain. ♦

Equivalent stream constraints do not necessarily have the same operational
semantics. We are, therefore, interested in operational equivalence of constraints:

Definition 5.3.3 (Operational equivalence). Stream constraints φ and ψ are op-
erationally equivalent (φ ' ψ) iff φ ≡ ψ and freek(φ) = freek(ψ), for k ≥ 0.

Example 5.3.2. Let φ be a stream constraint, let t be a term and let x /∈ t be
a variable that does not occur in t. Then, we have ∃x(x

.
= t ∧ φ) ≡ φ[t/x], where

φ[t/x] is obtained from φ by substituting t for every free occurrence of x. Observe
that ∃x(x

.
= t∧φ) and φ[t/x] may admit different sets of free variables: if φ is just

> and t is a variable y, the equivalence amounts to ∃x(x
.
= y) ≡ >. To ensure that

the free variables coincide, we can add the equality t
.
= t and obtain the operational

equivalence ∃x(x
.
= t ∧ φ) ' φ[t/x] ∧ t .= t. ♦

Operational equivalence of stream constraints φ and ψ implies that their oper-
ational semantics are identical, i.e., JφK = JψK. It is possible to introduce weaker
equivalences by, for example, demanding that JφK and JψK are only weakly bisimilar.
Such weaker equivalence offer more room for simplification of stream constraints
than operational equivalence does. As our work does not need this generality, we
leave the study of such weaker equivalences as future work.

The most important operations on stream constraints are composition (∧) and
hiding (∃). The following result shows that regular stream constraints are closed
under conjunction and existential quantification of degree zero variables.

Theorem 5.3.1. For all stream constraints φ and ψ and variables x, we have

1. �φ ∧�ψ ≡ �(φ ∧ ψ); and
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2. ∃x�φ ≡ �∃xφ, whenever degx(φ) ≤ 0 and � /∈ φ.

Proof. For assertion 1, L(�φ ∧ �ψ) = {θ ∈ (DN)X | ∀k ≥ 0 : θ(k) |= φ ∧ ψ} =
L(�(φ ∧ ψ)) shows that �φ ∧�ψ ≡ �(φ ∧ ψ).

For assertion 2, suppose that degx(φ) ≤ 0 and � /∈ φ. We show that θ ∈
L(�∃xφ) if and only if θ ∈ L(∃x�φ), for all θ ∈ (DN)X . By Definition 5.2.2, this
equivalence can be written as

θ(k)[x 7→ µk] |= φ ⇔ (θ[x 7→ σ])(k) |= φ, (5.3)

for all k ≥ 0, σ ∈ DN, and µk ∈ DN such that µk(0) = σ(k)(0).
To prove Equation (5.3), we proceed by induction on the length of φ:
Case 1 (φ := ⊥): Since L(⊥) = ∅, Equation (5.3) holds trivially.
Case 2 (φ := t0

.
= t1): Observe that, since degx(φ) ≤ 0, for all terms t, we have

x ∈ t iff t = x. We conclude Equation (5.3) from µk(0) = σ(k)(0) and

θ(k)[x 7→ µk](t)(0) =

{
µk(0) if t = x

θ(k)(t)(0) if t 6= x

}
= (θ[x 7→ σ])(k)(t)(0).

Case 3 (φ := ψ0 ∧ ψ1): By the induction hypothesis, Equation (5.3) holds for
ψ0 and ψ1. By conjunction of Equation (5.3), we conclude Equation (5.3) for φ.

Case 4 (φ := ¬ψ): By the induction hypothesis, Equation (5.3) holds for ψ. By
contraposition of Equation (5.3), we conclude Equation (5.3) for φ.

Case 5 (φ := ∃yψ): If y = x, then x /∈ free(φ) and both sides in Equation (5.3)
are equivalent to θ(k) |= φ. Hence, Equation (5.3) holds for y = x. Suppose y 6= x.
Then, θ(k)[x 7→ µk] |= φ is equivalent to (θ[y 7→ τ ])(k)[x 7→ µk] |= ψ, for some
τ ∈ DN. Applying the induction hypothesis for θ equal to θ[y 7→ τ ], we conclude
that θ(k)[x 7→ µk] |= φ is equivalent to (θ[y 7→ τ ][x 7→ σ])(k) |= ψ, for some τ ∈ DN.
Since y 6= x, we conclude that Equation (5.3) holds.

We conclude that the claim holds for all φ with degx(φ) ≤ 0 and � /∈ φ.

5.4 Reflexive constraints

Conjunction of stream constraints is a simple syntactic composition operator with
clear semantics: a data stream tuple θ satisfies a conjunction φ0 ∧ φ1 if and only if
θ satisfies both φ0 and φ1. In view of the semantics of regular stream constraints
in Definition 5.2.2, it is less obvious how Jφ0 ∧ φ1K relates to Jφ0K and Jφ1K. The
following result characterizes their relation when no memory is shared.

Theorem 5.4.1. Let φ0 and φ1 be regular stream constraints such that free(φ0) ∩
free(φ1) ⊆ P (φ0 ∧ φ1), and let (qi, q

′
i, αi) ∈ Q(φi)

2 × A(φi), for i ∈ {0, 1}. The
following are equivalent:

1. q0
α0−→ q′0 in Jφ0K, q1

α1−→ q′1 in Jφ1K, and α0|P (φ1) = α1|P (φ0);

2. q0 ∪ q1
α0∪α1−−−−→ q′0 ∪ q′1 in Jφ0 ∧ φ1K,

where | is restriction of maps, and ∪ is union of maps.



5.4. REFLEXIVE CONSTRAINTS 106

Proof. Write φi = ψi0 ∧�ψi, with � /∈ ψi0 ∧ ψi and degx(ψi0) < degx(ψi) ≤ 1, for
all x ∈ X. Then, freek(φi) = freek(ψi), for all i, k ∈ {0, 1}.

Suppose that assertion 1 holds. By Definition 5.2.2, we find, for all i ∈ {0, 1},
some θi ∈ L(ψi) such that qi = qφi

(θi), q
′
i = qφi

(θ′i), and αi = αφi
(θi). Define

θ : X −→ DN by θ(x) = θi(x), if x ∈ free(φi), and θ(x) = ∗, otherwise. Since
free(φ0) ∩ free(φ1) ⊆ P (φ0 ∧ φ1) and α0|P (φ1) = α1|P (φ0), we have that θ0(x) =
θ1(x), for all x ∈ free(φ0) ∩ free(φ1). Hence, θ is well-defined. By construction,
θ |= ψ0 and θ |= ψ1. By Definition 5.2.2, we have θ |= ψ0∧ψ1. By Theorem 5.3.1, we
have φ0∧φ1 = ψ00∧ψ10∧�(ψ0∧ψ1). Since q0∪q1 = qφ0∧φ1

(θ), q′0∪q′1 = qφ0∧φ1
(θ′),

and α0 ∪ α1 = αφ0∧φ1(θ), we conclude assertion 2.
Suppose that assertion 2 holds. We find some θ ∈ L(ψ0 ∧ ψ1), such that

q0 ∪ q1 = qθ, q
′
0 ∪ q′1 = qθ′ , and α0 ∪ α1 = αθ. Then, we conclude assertion 1, for

qi = qφi
(θ), q′i = qφi

(θ′), and αi = αφi
(θ).

Stream constraints φ0 and φ1 without shared variables (free(φ0)∩ free(φ1) = ∅)
seem completely independent. However, Theorem 5.4.1 shows that their composi-
tion φ0∧φ1 admits a transition only if φ0 and φ1 admit respective local transitions
(q0, q

′
0, α0) and (q1, q

′
1, α1), such that α0|P (φ1) = α1|P (φ0). Since φ0 and φ1 do not

share variables, the latter condition on α0 and α1 is trivially satisfied. Still, for one
protocol φi, with i ∈ {0, 1}, to make progress in the composition φ0∧φ1, constraint
φ1−i must admit an idling transition.

To allow such independent progress, we assume that φ1−i admits an idling
transition (q, q, τ), where τ is the silent label over P (φ1−i). The silent label over a
set of ports P ⊆ X is the map τ : P −→ D that maps x ∈ P to ∗ ∈ D. If such
idling transitions are available in every state of φ1, we say that φ1 is reflexive:

Definition 5.4.1 (Reflexive). A stream constraint φ is reflexive if and only if

q
τ−→ q in JφK, for all q ∈ Q(φ).

For regular constraints, we can define reflexiveness also syntactically, for which
we need some notation. For a variable x ∈ X and an integer k ∈ N ∪ {−1}, we
define the predicate x†k (pronounced: “x is blocked at step k”) as follows:

x†k := (x(k) .
= x(k−1)), with x(k) .

= ∗, for all k < 0.

Predicate x†−1 ≡ > is trivially true. Predicate x†0 ≡ (x
.
= ∗) means that we

observe no data flow at port x. Predicate x†1 ≡ (x′
.
= x) means that the data in

memory variable x remains the same.
We now provide a syntactic equivalent of Definition 5.4.1 for regular constraints.

Lemma 5.4.2. A regular stream constraint φ = ψ0 ∧�ψ is reflexive if and only if∧
x∈X x†d(x) |= ψ, where d(x) = degx(φ), for all x ∈ X.

Proof. Since d(x) = −1, for all but finitely many x ∈ X, the stream constraint∧
x∈X x†d(x) is well-defined. By definition,

∧
x∈X x†d(x) |= ψ if and only if, for all

q ∈ Q(φ), there exists some θ ∈ L(ψ), such that qθ = qθ′ = q and αθ = τ .

Example 5.4.1. The stream constraint Sync(a, b) := �(a
.
= b) from Example 5.2.1

is reflexive, because
∧
x∈X x†d(x) = a

.
= ∗ ∧ b .

= ∗ implies a
.
= b. The stream

constraint FIFO from Example 5.2.3 is reflexive, because
∧
x∈X x†d(x) = a

.
= ∗∧b .=

∗ ∧m′ .= m is one of the clauses of FIFO. ♦



107 CHAPTER 5. PROTOCOLS AS CONSTRAINTS

Theorem 5.4.1 suggests a composition operator × on labeled transition systems,
satisfying Jφ0K× Jφ1K = Jφ0∧φ1K. For reflexive constraints φ0 and φ1, composition
× simulates composition of constraint automata [BSAR06]. Constraint automata
also feature a hiding operator that naturally corresponds to existential quantifica-
tion ∃ for stream constraints. We leave a full formal comparison between stream
constraints and constraint automata as future work.

5.5 Rule-based form

The commandification algorithm developed by Jongmans accepts only constraints
without disjunction (i.e., conjunctions of literals) [JA16b]. To apply commandifi-
cation to the invariant ψ of an arbitrary regular stream constraint ψ0 ∧ �ψ, we
can first transform ψ into disjunctive normal form (DNF). However, the number
of clauses in the disjunctive normal form may be exponential in the length of the
constraint. In this section, we introduce an alternative to the disjunctive normal
form that prevents such exponential blow up, for a strictly larger class of stream
constraints. Our main observation is that the clauses of the disjunctive normal form
may contain many symmetries, in the sense that we may generate all clauses from
a set of stream constraints R, called a set of rules. A rule is a stream constraint ρ,
such that deg(ρ) ≤ 1 and � /∈ ρ.

Definition 5.5.1 (Rule-based form). A reflexive stream constraint φ is in rule-
based form iff φ equals

rbf(R) =
∧

x∈free(R)

x†d(x) ∨
∨

ρ∈R:x∈free(ρ)

ρ

 (5.4)

with R a finite set of rules, free(R) =
⋃
ρ∈R free(ρ), and d(x) = maxρ∈R degx(ρ).

A stream constraint φ is defined by R iff φ ' rbf(R).

We provide some intuition behind Definition 5.5.1. For a variable x, there are
two possibilities:

1. Nothing happens at x (i.e., x†d(x)). For a port variable (d(x) = 0) this means
that we do not observe any data (x

.
= ∗). For a memory variable (d(x) = 1)

this means that the data does not change in (x′
.
= x).

2. Something happens at x (i.e., x†d(x) does not hold). Then, the rule-based
form states that (at least) one of the rules with x as a free variable must hold
(and this rule explains what happens at x).

Both possibilities are captured by Equation (5.4).
We apply the rule-based form to the invariant of regular constraints, via ψ0 ∧

� rbf(R), for some degree zero stream constraint ψ0 and set of rules R. Intuitively,
R remains smaller than the DNF of rbf(R) under composition.

Example 5.5.1. Let ψ be a reflexive stream constraint, with deg(ψ) ≤ 1 and
� /∈ ψ. By Definition 5.5.1 and Lemma 5.4.2 and the distributive law, we have

rbf({ψ}) =
∧

x∈free({ψ})

(
x†degx(ψ) ∨ ψ

)
≡

 ∧
x∈free({ψ})

x†degx(ψ)

 ∨ ψ ≡ ψ
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Now, for ψ = (a
.
= b), we get from Example 5.4.1 that Sync(a, b) = �(a

.
= b) ≡

� rbf({a .
= b}), which shows the Sync from Example 5.2.1 can be expressed in

rule-based form. ♦

Example 5.5.2. The stream constraint LossySync(a, b) := � rbf({a .
= a, a

.
= b})

is equivalent to �(b
.
= ∗ ∨ a .

= b). Note that � rbf({>, a .
= b}) ' � rbf({a .

= b}) '
Sync(a, b). Hence, rules a

.
= a and > are different, because they have different sets

of free variables. ♦

Example 5.5.3. The set of rules that define a stream constraint is not unique.
Consider the stream constraint FIFO from Example 5.2.3. On the one hand, we
have FIFO(a, b,m) ' m

.
= ∗ ∧ � rbf({ϕ,ψ}), where ϕ ' a

.
= m′

.
= 0 ∧ m .

= ∗
models the action that puts data in the buffer and ψ ' m′

.
= ∗ ∧ b .

= m
.
= 0

models the action that takes data out of the buffer. On the other hand, we have
FIFO(a, b,m) ' m

.
= ∗ ∧ � rbf({a .

= m′
.
= 0 ∧ b .

= m
.
= ∗, a .

= m′
.
= ∗ ∧ b .

= m
.
=

0}). ♦

Example 5.5.4. Rule-based forms are an alternative to disjunctive normal forms.
Consider the reflexive constraint φ :=

∨n
i=1 ρi in DNF for which the first conjunctive

clause ρ1 is equivalent to
∧
x∈free(φ) x†d(x), with d(x) = degx(φ). By adding equali-

ties of the form x
.
= x, we assume without loss of generality that free(ρi) = free(φ),

for all 2 ≤ i ≤ n. For R = {ρi | 2 ≤ i ≤ n}, it follows from

rbf(R) ≡
∧

x∈free(R)

x †d(x) ∨
∨
ρ∈R

ρ

 ≡

 ∧
x∈free(φ)

x†d(x)

 ∨ ∨
ρ∈R

ρ ≡ φ (5.5)

that φ is defined by the set R. We therefore conclude that every reflexive constraint
can be written in rule-based form. ♦

Definition 5.5.1 presents the rule-based form as a conjunctive normal form. The
following result computes the disjunctive normal form of rbf(R).

Lemma 5.5.1. For every set of rules R, we have

rbf(R) ' dnf(R) :=
∨
T⊆R

∧
ρ∈T

ρ ∧
∧

x∈free(R)\free(T )

x†d(x).

Proof. Let x ∈ X be arbitrary. By construction, degx(dnf(R)) ≤ maxρ∈R degx(ρ).
Since d(x) = maxρ∈R degx(ρ), the clause for T = ∅ shows that degx(dnf(R)) ≥
d(x). By Lemma 5.6.2, degx(rbf(R)) = degx(dnf(R)), for all x ∈ X. Hence,
freek(rbf(R)) = freek(dnf(R)), for all k ≥ 0.

Next, we show that rbf(R) |= dnf(R). Let θ ∈ L(rbf(R)). We find, for every
x ∈ free(R), some rule ρx ∈ R, such that θ |= ρ and x ∈ free(ρ). Now, define
Tθ := {ρx | x ∈ free(R) and θ /∈ L(x†d(x))}. By construction, θ |= ρx, for every
ρx ∈ Tθ. If x ∈ free(R) and θ /∈ L(x†d(x)), then ρx ∈ Tθ and x ∈ free(ρx) ⊆ free(Tθ).
By contraposition, we conclude that θ |= x†d(x), for all x ∈ free(R)\free(Tθ). Hence,
θ |= dnf(R), and L(rbf(R)) ⊆ L(dnf(R)).

Finally, we show that dnf(R) |= rbf(R). Let θ ∈ L(dnf(R)). By definition of
dnf(R), we find some T ⊆ R with θ |= ρ, for all ρ ∈ T , and θ |= x†d(x), for all
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x ∈ free(R) \ free(T ). Suppose that x ∈ free(R) and θ 6|= x†d(x). Since θ |= x†d(x),
for all x ∈ free(R) \ free(T ), we find by contraposition that x ∈ free(T ). Hence, we
find some ψ ∈ T with x ∈ free(ψ). Since θ |= ρ, for all ρ ∈ T , we find that θ |= ψ.
Hence, θ |= rbf(R) and we conclude that rbf(R) ' dnf(R).

5.6 Composition

We express conjunction of stream constraints in terms of their defining sets of rules.
That is, for two sets of rules R0 and R1, we define the composition R0 ∧R1 of R0

and R1, such that rbf(R0 ∧ R1) ' rbf(R0) ∧ rbf(R1). If R0 and R1 do not share
any variable (i.e., free(R0) ∩ free(R1) = ∅), composition R0 ∧ R1 is given by the
union R0 ∪ R1. It is not hard to verify that dnf(R0 ∪ R1) ≡ dnf(R0) ∧ dnf(R1),
whenever R0 and R1 do not share any variable. This result already demonstrates
the power of the rule-based form, because the number of rules grows linearly, while
the number of clauses is the disjunctive normal form grows exponentially. Recall
that we compare the rule-based form with the disjunctive normal form, because
Jongmans’ commandification algorithm requires conjunctions of literals as input.

Of course, the assumption that R0 and R1 do not share any variable is very
strong. In this section, we define the composition R0 ∧ R1 of R0 and R1 for
free(R0) ∩ free(R1) 6= ∅. Intuitively, we must find ‘small’ subsets S ⊆ R0 ∪ R1 of
rules that must synchronize (i.e., fire together) as a result of a shared variable. The
conjunction of all rules in such a subset S yields a rule in the composition R0∧R1.

In view of Example 5.5.4, consider the normal form dnf(R0 ∧ R1). Since
dnf(R0 ∧R1) equals dnf(R0)∧dnf(R1), it suffices to characterize the set of clauses
of dnf(R0)∧dnf(R1). Every such clause is a conjunction of a clause in dnf(R0) and
a clause in dnf(R1). Lemma 5.5.1 shows that the clauses of dnf(Ri) correspond to
subsets Ti of Ri, for all i ∈ {0, 1}. Not every pair of subsets T0 ⊆ R0 and T1 ⊆ R1

yields a clause of dnf(R0) ∧ dnf(R1), but only if S = T0 ∪ T1 is synchronous:

Definition 5.6.1 (Synchronous). A synchronous set over sets of rules R0 and R1

is a subset S ⊆ R0 ∪R1, with free(S) ∩ free(Ri) ⊆ free(S ∩Ri), for all i ∈ {0, 1}.

Example 5.6.1. For any integer i ≥ 1, let ϕi := ai
.
= m′i

.
= 0 ∧ mi

.
= ∗ and

ψi := m′i
.
= ∗∧ ai+1

.
= mi

.
= 0 be the two rules that define FIFO(ai, ai+1,mi), from

Example 5.5.3. The synchronous sets consist of exactly those sets S ⊆ {ϕ1, ψ1} ∪
{ϕ2, ψ2} that satisfy ψ1 ∈ S iff ϕ2 ∈ S. That is, the synchronous sets are given by
∅, {ϕ1}, {ψ2}, {ψ1, ϕ2}, {ϕ1, ψ1, ϕ2}, {ψ1, ϕ2, ψ2}, {ϕ1, ψ1, ϕ2, ψ2}. ♦

Next, we recognize symmetries in the collection of synchronous sets. We can
construct every synchronous set as a union of irreducible synchronous subsets:

Definition 5.6.2 (Irreducibility). A non-empty synchronous set ∅ 6= S ⊆ R0 ∪R1

is irreducible if and only if S = S0∪S1 implies S = S0 or S = S1, for all synchronous
subsets S0, S1 ⊆ R0 ∪R1.

Example 5.6.2. Let R0 and R1 be sets of rules, and let ρ ∈ R0 be a rule, such
that free(ρ) ∩ free(R1) = ∅. We show that {ρ} is irreducible synchronous. Since
free({ρ}) ∩ free(R0) = free(ρ) = free({ρ} ∩ R0) and free({ρ}) ∩ free(R1) = ∅ ⊆
free({ρ} ∩ R1), we conclude that {ρ} is synchronous. Suppose {ρ} = S0 ∪ S1.
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Then, ρ ∈ Si, for some i ∈ {0, 1}. Hence, {ρ} ⊆ Si ⊆ {ρ}, which shows that
Si = {ρ}. We conclude that {ρ} is irreducible synchronous in R0 ∪R1. ♦

Example 5.6.3. Consider ϕi and ψi, for i ∈ {1, 2}, from Example 5.6.1. The
irreducible synchronous sets of {ϕ1, ψ1}∪{ϕ2, ψ2} are {ϕ1}, {ψ2}, and {ψ1, ϕ2}. ♦

Definition 5.6.3 (Composition). The composition of sets of rules R0 and R1 is
R0 ∧R1 := {∧ρ∈S ρ | S ⊆ R0 ∪R1 irreducible synchronous}.

Example 5.6.4. Let R0 and R1 be sets of rules, with free(R0) ∩ free(R1) = ∅.
By Example 5.6.2, we find that {ρ} ⊆ R0 ∪ R1, for all ρ ∈ R0 ∪ R1, is irreducible
synchronous. Hence, every synchronous set S ⊆ R0∪R1, with |S| ≥ 2, is reducible.
Therefore, S ⊆ R0 ∪R1 is irreducible synchronous if and only if S = {ρ}, for some
ρ ∈ R0 ∪R1. We conclude that R0 ∧R1 = R0 ∪R1. Consequently, ∅ is a (unique)
identity element with respect to composition ∧ of sets of rules. ♦

To show that the composition of sets of rules coincides with conjunction of
stream constraints, we need the following result that shows that every non-empty
synchronous set can be covered by irreducible synchronous sets.

Lemma 5.6.1. Let R0 and R1 be sets of rules, and let S ⊆ R0 ∪ R1 be a non-
empty synchronous set. Then, S =

⋃n
i=1 Si, where Si ⊆ R0 ∪R1, for 1 ≤ i ≤ n, is

irreducible synchronous.

Proof. We prove the lemma by induction on the size |S| of S. For the base case,
suppose that |S| = 1. We show that S is irreducible synchronous, which provides
a trivial covering. Suppose that S = S0 ∪ S1, for some synchronous sets S0, S1 ⊆
R0 ∪ R1. Since, |S| = 1, we have S ⊆ Si ⊆ S, for some i ∈ {0, 1}. Hence, S = Si,
and S is irreducible. We conclude that the lemma holds, for |S| = 1.

For the induction step, suppose that |S| = k > 1, and suppose that the lemma
holds, for |S| < k. If S is irreducible, we find a trivial covering of S. If S is reducible,
we find S = S0 ∪ S1, where S0 6= S 6= S1 are synchronous sets in R0 ∪ R1. Since
|Si| < |S|, for i ∈ {0, 1}, we find by the hypothesis that Si =

⋃ni

j=1 Sij . Hence,

S = S0 ∪ S1 =
⋃1
i=0

⋃ni

j=1 Sij . We conclude that the lemma holds, for |S| = k. By
induction on |S|, we conclude the lemma.

Lemma 5.6.2. degx(rbf(R)) = maxρ∈R degx(ρ), for all sets of rules R and x ∈ X.

Proof. For any set of rules R and y ∈ X, we have

degy(rbf(R)) = max
x∈free(R)

max(degy(x†d(x)), max
ρ∈R:x∈free(ρ)

degy(ρ)).

Note that degy(x†d(x)) = d(y), if y = x, and degy(x†d(x)) = −1, otherwise. Since
d(y) = maxρ∈R degy(ρ), we have degy(rbf(R)) = maxρ∈R degy(ρ).

Theorem 5.6.3. rbf(R0 ∧ R1) ' rbf(R0) ∧ rbf(R1), for all sets of rules R0 and
R1.

Proof. By Lemma 5.6.2 and Definition 5.6.3, degx(rbf(R0∧R1)) = degx(rbf(R0)∧
rbf(R1)), for all x ∈ X. Hence, freek(rbf(R0 ∧R1)) = freek(rbf(R0)∧ rbf(R1)), for
all k ≥ 0.
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Next, we show rbf(R0)∧rbf(R1)) |= rbf(R0∧R1). Let θ ∈ L(rbf(R0)∧rbf(R1)).
By Definition 5.5.1, we must show that for every x ∈ free(R0 ∧ R1) there exists
some ρx ∈ R0 ∧ R1 such that x ∈ free(ρx) and either θ |= x†d(x) or θ |= ρx.
Hence, suppose that θ /∈ L(x†d(x)), for some variable x ∈ free(R0 ∧ R1). Since
free(R0 ∧ R1) = free(R0) ∪ free(R1) and θ |= free(R0) ∧ free(R1), we find from
Definition 5.5.1 some ψ ∈ R0∪R1, with θ |= ψ and x ∈ free(ψ). We now show that
there exists an irreducible synchronous set S ⊆ R0∪R1, such that, for ρx :=

∧
ρ∈S ρ,

we have θ |= ρx and x ∈ free(ρx). By repeated application of Definition 5.6.1, we
construct a finite sequence

{ψ} = S0 ( · · · ( Sn,

such that Sn ⊆ R0 ∪R1 is synchronous, and θ |= ∧ρ∈Sn
ρ. Suppose Sk ⊆ R0 ∪R1,

for k ≥ 1, is not synchronous. By Definition 5.6.1, there exists some i ∈ {0, 1}
and a variable x ∈ free(Sk) ∩ free(Ri), such that x /∈ free(Sk ∩ Ri). Since x ∈
free(Ri), we have Rxi := {ρ ∈ Ri | x ∈ free(ρ)} 6= ∅. Since θ |= rbf(Ri), there
exists some ψk ∈ Rxi such that θ |= ψk. Now define Sk+1 := Sk ∪ {ψk}. Since
x /∈ free(Sk ∩ Ri) and x ∈ free(Sk+1 ∩ Ri), we have a strict inclusion Sk ( Sk+1.
Due to these strict inclusions, we have, for k ≥ |R0∪R1|, that Sk = R0∪R1, which
is trivially synchronous in R0 ∪R1. Therefore, our sequence S0 ( · · · of inclusions
terminates, from which we conclude the existence of Sn. By Lemma 5.6.1, we find
some irreducible synchronous set S ⊆ Sn, such that ψ ∈ S. We conclude that
ρx :=

∧
ρ∈S ρ ∈ R0 ∧ R1 satisfies θ |= ρx and x ∈ free(ψ) ⊆ free(S) = free(ρx). By

Definition 5.5.1, we have θ |= rbf(R0 ∧R1), and rbf(R0)∧ rbf(R1) |= rbf(R0 ∧R1).
Finally, we prove that rbf(R0 ∧ R1) |= rbf(R0) ∧ rbf(R1). Let θ ∈ L(rbf(R0 ∧

R1)). We show that θ |= rbf(Ri), for all i ∈ {0, 1}. By Definition 5.5.1, we must
show that for every i ∈ {0, 1} and every x ∈ free(Ri) there exists some ρ ∈ Ri
such that x ∈ free(ρ) and either θ |= x†d(x) or θ |= ρ. Hence, let i ∈ {0, 1}
and x ∈ free(Ri) be arbitrary, and suppose that θ /∈ L(x†d(x)). Since free(Ri) ⊆
free(R0 ∧ R1), it follows from our assumption θ |= rbf(R0 ∧ R1) that θ |= ∧

ρ∈S ρ,
for some irreducible synchronous set S ⊆ R0 ∪ R1 satisfying x ∈ free(S). Since
S ⊆ R0∪R1 synchronous, we find that x ∈ free(S)∩free(Ri) = free(S∩Ri). Hence,
we find some ρ ∈ S ∩ Ri, such that θ |= ρ and x ∈ free(ρ). By Definition 5.5.1,
we conclude that θ |= rbf(Ri), for all i ∈ {0, 1}. Therefore, rbf(R0 ∧ R1) '
rbf(R0) ∧ rbf(R1).

Example 5.6.5. Let ϕi and ψi, for i ≥ 1, be the rules from Example 5.6.1. By
Example 5.6.3, the composition FIFO2 :=

∧2
i=1 FIFO(ai, ai+1,mi) is defined by

the set of rules {ϕ1, ψ1 ∧ ϕ2, ψ2}.2 To compute a set of rules that defines the
composition, it is not efficient to enumerate all (exponentially many) synchronous
subsets of R0 ∪ R1 and remove all reducible sets. Our tools use an algorithm
based on hypergraph transformations to compute the irreducible synchronous sets.
Although is would certainly be possible to offer the details of this algorithm here,
we postpone the description of such an algorithm until Section 6.3.1. The reason

2The rules for the composition of two FIFO stream constraints has striking similarities with
synchronous region decomposition developed by Proença et al. [PCdVA12]. Indeed, ϕ1, ψ1 ∧ϕ2,
and ψ2 correspond to the synchronous regions in the composition of two buffers. Therefore, rule-
based composition generalizes synchronous region decomposition that has been used as a basis
for generation of parallel code [JA18].
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Figure 5.2: Hypergraph representations of
∧2
i=1 FIFO(ai, ai+1,mi).

is that the composition operator does not depend on the particular details of the
syntax of stream constraints. Indeed, knowing which rules share a variable is the
only relevant information for composition. This is precisely the information that is
available in multilabeled Petri nets (introduced in Chapter 6), which can be viewed
as a data-agnostic abstraction of stream constraints.

Figure 5.2 shows a graphical representation of composition FIFO2, using hy-
pergraphs. These hypergraphs consist of sets of hyperedges (x, F ), where x is a
variable and F is a set of rules. Each hyperedge (x, F ) in a hypergraph corresponds
to a disjunction x†d(x) ∨

∨
ρ∈F ρ of the rule-based form in Definition 5.5.1. ♦

5.7 Complexity

In the worst case, composition R0 ∧ R1 of arbitrary sets of rules R0 and R1 may
consists of |R0| × |R1| rules. However, if R0 and R1 are simple, the size of the
composition is bounded by |R0|+ |R1|.

Recall that P (φ) = free0(φ) is the set of port variables of a stream constraint
φ.

Definition 5.7.1 (Simple). A set R of rules is simple if and only if free(ρ) ∩
free(ρ′) ∩ P (rbf(R)) 6= ∅ implies ρ = ρ′, for every ρ, ρ′ ∈ R.

In other words, a set of rules R is simple if no two (distinct) rules share a port
variable. This implies that the dataflow through each port variable is governed by
exactly one rule.

Not every stream constraint can be represented by a simple set of rules. For
example, a binary exclusive router (Figure 2.5(a) and Example 2.1.7) requires two
rules that govern dataflow through its input port A: one rule that routes data from
port A to port B and one rule that routes data from port A to port B′. Since both
rules share port A, the set of rules is not simple.

Example 5.7.1. By Example 5.5.3, the invariant of FIFO(a, b,m) is defined by
R := {a .

= m′
.
= 0 ∧ m .

= ∗,m′ .= ∗ ∧ b .
= m

.
= 0} as well as R′ := {a .

= m′
.
=

0 ∧ b .= m
.
= ∗, a .

= m′
.
= ∗ ∧ b .= m

.
= 0}. The set R is simple, while R′ is not. ♦
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Lemma 5.7.1. Let R0 and R1 be sets of rules, such that free(R0) ∩ free(R1) ⊆
P (rbf(R0 ∪ R1)), and let S ⊆ R0 ∪ R1 be synchronous. Let GS be a graph with
vertices S and edges ES = {(ρ, ρ′) ∈ S2 | free(ρ)∩ free(ρ′)∩P (rbf(R0 ∪R1)) 6= ∅}.
If S irreducible, then GS is connected.

Proof. Suppose that GS is disconnected. We find ∅ 6= S0, S1 ⊆ S, with S0∪S1 = S,
S0 ∩ S1 = ∅ and free(S0) ∩ free(S1) ∩ P (rbf(R0 ∪ R1)) = ∅. We show that S0 and
S1 are synchronous. Let i, j ∈ {0, 1} and x ∈ free(Si) ∩ free(Rj). We distinguish
two cases:

Case 1 (x ∈ free(R1−j)): Then, x ∈ free(R0) ∩ free(R1) ⊆ P (rbf(R0 ∪ R1)).
Since free(S0)∩ free(S1)∩P (rbf(R0 ∪R1)) = ∅, we have x /∈ free(S1−i). Since S is
synchronous, we have x ∈ free(Si) ∩ free(Rj) ⊆ free(S) ∩ free(Rj) ⊆ free(S ∩ Rj).
Hence, we find some ρ ∈ S∩Rj , with x ∈ free(ρ). Since x /∈ free(S1−i), we conclude
that ρ ∈ Si ∩Rj . Thus, x ∈ free(Si ∩Rj), if x ∈ free(R1−j).

Case 2 (x /∈ free(R1−j)): Since x ∈ free(Si), we find some ρ ∈ Si, with x ∈
free(ρ). Since x /∈ free(R1−j), we conclude that ρ ∈ Rj . Hence, x ∈ free(ρ) ⊆
free(Si ∩Rj), if x /∈ free(R1−j).

We conclude in both cases that x ∈ free(ρ) ⊆ free(Si ∩ Rj). Hence, free(Si) ∩
free(Rj) ⊆ free(Si ∩ Rj), for all i, j ∈ {0, 1}, and we conclude that S0 and S1 are
synchronous. Since S0 6= S 6= S1, we conclude that S is reducible. By contraposi-
tion, we conclude that GS is connected, whenever S is irreducible.

Lemma 5.7.2. Let R0 and R1 be simple sets of rules, with free(R0) ∩ free(R1) ⊆
P (rbf(R0∪R1)), and let S0, S1 ⊆ R0∪R1 be irreducible synchronous. If S0∩S1 6= ∅,
then S0 = S1.

Proof. Suppose that S0 ∩ S1 6= ∅. Then, there exists some ρ0 ∈ S0 ∩ S1. We show
that Si ⊆ S1−i, for all i ∈ {0, 1}. Let i ∈ {0, 1}, and ρ ∈ Si. By Lemma 5.7.1,
we find an undirected path in GSi

from ρ0 to ρ. That is, we find a sequence
ρ0ρ1 · · · ρn ∈ S∗, such that ρn = ρ and (ρi, ρi+1) ∈ ESi

, for all 0 ≤ i < n. We
show by induction on n ≥ 0, that ρn ∈ S1−i. For the base case (n = 0), observe
that ρn = ρ0 ∈ S0 ∩ S1 ⊆ S1−i. For the induction step, suppose that ρn ∈ S1−i.
By construction of GSi , we find that free(ρn) ∩ free(ρn+1) ∩ P01 6= ∅, where P01 =
P (rbf(R0 ∪R1)). Let j ∈ {0, 1}, such that ρn+1 ∈ Rj . Since ρn ∈ S1−i and S1−i is
synchronous, we have ∅ 6= free(S1−i) ∩ free(Rj) ∩ P01 = free(S1−i ∩Rj) ∩ P01. We
find some ρ′ ∈ S1−j ∩Rj , with free(ρn+1) ∩ free(ρ′) ∩ P01 6= ∅. Since Rj is simple,
we have ρn+1 = ρ′ ∈ S1−i, which concludes the proof by induction. It follows from
ρn ∈ S1−i that Si ⊆ S1−i, for all i ∈ {0, 1}, that is, S0 = S1.

As seen in Lemma 5.5.1, the number of clauses in the disjunctive normal form
dnf(R0∧R1) can be exponential in the number of rules |R0∧R1| of the composition
of R0 and R1. However, the following (main) theorem shows the number of rules
required to define

∧
i φi is only linear in k.

Theorem 5.7.3. If R0 and R1 are simple sets of rules, and free(R0)∩ free(R1) ⊆
P (rbf(R0 ∪R1)), then R0 ∧R1 is simple and |R0 ∧R1| ≤ |R0|+ |R1|.

Proof. From Lemmas 5.6.1 and 5.7.2, we find that the irreducible synchronous
subsets partition R0 ∪ R1. We conclude that |R0 ∧ R1| ≤ |R0| + |R1|. We now
show that R0 ∧ R1 is simple. Let ρ0 and ρ1 be rules in R0 ∧ R1, with free(ρ0) ∩
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free(ρ1) ∩ P01 6= ∅, where P01 = P (rbf(R0 ∪R1)). By Definition 5.6.3, we find, for
all i ∈ {0, 1}, an irreducible synchronous set Si, such that ρi =

∧
ψ∈Si

ψ. Since
free(ρ0)∩ free(ρ1)∩P01 6= ∅ and free(ρi) = free(Si), for all i ∈ {0, 1}, we find some
x ∈ free(S0)∩ free(S1)∩P01. Suppose that x ∈ free(Rj), for some j ∈ {0, 1}. Since
S0 and S1 are synchronous sets, we have x ∈ free(Si)∩ free(Rj) ⊆ free(Si∩Rj), for
all i ∈ {0, 1}. We find, for all i ∈ {0, 1}, some ψi ∈ Si ∩Rj , such that x ∈ free(ψi).
Hence, free(ψ0) ∩ free(ψ1) ∩ P01 6= ∅, and since Rj is simple, we conclude that
ψ0 = ψ1. Therefore, S0 ∩ S1 6= ∅, and Lemma 5.7.2 shows that S0 = S1 and
ρ0 = ρ1. We conclude that R0 ∧R1 is simple.

The number of clauses in the disjunctive normal form of direct compositions of
k fifo constraints grows exponentially in k. This typical pattern of a sequence of
queues manifests itself in many other constructions, which causes serious scalability
problems (cf., the benchmarks for ‘Alternatork’ in [JKA17, Section 7.2]). However,
Theorem 5.7.3 shows that rule-based composition of k fifo constraints does not
suffer from scalability issues: by Example 5.7.1, the fifo constraint can be defined by
a simple set of rules. The result in Theorem 5.7.3, therefore, promises (exponential)
improvement over the classical constraint automaton representation.

Unfortunately, it seems impossible to define any arbitrary stream constraint by
a simple set of rules. Therefore, the rule-based form may still blow up for certain
stream constraints. It seems, however, possible to recognize even more symmetries
(cf., the queue-optimization in [JHA14]) to avoid explosion and obtain comparable
compilation and execution performance for these stream constraints.

5.8 Abstraction

We now study how existential quantification of stream constraints operates on its
defining set of rules.

Definition 5.8.1 (Abstraction). Hiding a variable x in a set of rules R yields
∃xR := {∃xρ | ρ ∈ R}.

Unfortunately, ∃xR does not always define ∃xφ, for a stream constraint φ de-
fined by a set of rules R. The following result shows that ∃xR defines ∃xφ if and
only if rbf(∃xR) |= ∃x rbf(R). In this case, we call variable x hidable in R.

It is non-trivial to find a defining set of rules for ∃xφ, if x is not hidable in R,
and we leave this as future work.

Theorem 5.8.1. Let R be a set of rules, and let x ∈ X be a variable. Then,
∃x rbf(R) ' rbf(∃xR) if and only if rbf(∃xR) |= ∃x rbf(R).

Proof. Trivially, ∃x rbf(R) ' rbf(∃xR) implies rbf(∃xR) |= ∃x rbf(R). Conversely,
suppose that rbf(∃xR) |= ∃x rbf(R). From Lemma 5.5.1, it follows that ∃x rbf(R) ≡
∃xdnf(R). Since existential quantification distributes over disjunction and ∃xφ ∧
ψ |= ∃xφ ∧ ∃xψ, for all stream constraints φ and ψ, we find

∃xdnf(R) |=
∨
S⊆R

∧
ρ∈S
∃xρ ∧

∧
x 6=y∈free(R)\free(S)

y†d(y) ≡ dnf(∃xR).
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By Lemma 5.5.1, we have ∃x rbf(R) |= rbf(∃xR), and by assumption ∃x rbf(R) ≡
rbf(∃xR). Using Lemma 5.6.2, we have degy(∃x rbf(R)) = maxρ∈R degy(∃xρ) =
degy(rbf(∃xR)), for every variable y. We conclude ∃x rbf(R) ' rbf(∃xR).

Example 5.8.1. Suppose Data = {0, 1}, which means that the data domain
equals D = {0, 1, ∗}. Let 1 be the constant stream defined as 1(n) = 1, for all
n ∈ N. For i ∈ {0, 1}, consider the set of rules Ri = {x = x, x = yi = i}. Observe
that {x = x, x = yi = i} ⊆ R0 ∪ R1 is synchronous, for all i ∈ {0, 1}. Hence,
x = yi = i ∈ R0∧R1, for all i ∈ {0, 1}. However, for θ = [y0 7→ 0, y1 7→ 1], we have
θ |= ∧

i∈{0,1} ∃x(x = yi = i), while ∃x∧i∈{0,1} x = yi = i ≡ ⊥. Thus, variable x is
not hidable from R0 ∧R1. ♦

5.9 Application

In on-going work, we applied the rule-based form to compile protocols (in the form
of Reo connectors) into executable code. Reo is an exogenous coordination lan-
guage that models protocols as graph-like structures [Arb04, Arb11]. We recently
developed a textual version of Reo, which we use to design non-trivial protocols
[DA18b]. An example of such non-trivial protocol is the Alternatork, where k ≥ 2
is an integer. Figure 5.3(a) shows a graphical representation of the Alternatork
protocol.

Intuitively, the behavior of the alternator protocol is as follows: The nodes
P1, . . . , Pk accept data from the environment. Node C offer data to the environ-
ment. All other nodes are internal and do not interact with the environment. In
the first step of the protocol, the Alternatork waits until the environment is ready
to offer data at all nodes P1, . . . , Pk and is ready to accept data from node C. Only
then, the Alternatork transfers the data from Pk to C via a synchronous channel,
and puts the data from Pi in the i-th fifo channel, for all i < k. The behavior of
a synchronous channel is defined by the sync stream constraint in Example 5.2.1.
Each fifo channel has buffer capacity of one, and its behavior is defined by the fifo
stream constraint from Example 5.2.3. In subsequent steps, the environment can
one-by-one retrieve the data from the fifo channel buffers, until they are all empty.
Then, the protocol cycles back to its initial configuration, and repeats its behavior.
For more details on the Reo language and its semantics, we refer to [Arb04, Arb11].

As mentioned in the introduction, Jongmans developed a compiler based on
constraint automata [JKA17]. The otherwise stimulating benchmarks presented
in [JKA17] show that Jongmans’ compiler still suffers from state-space explosion.
Figure 5.3(b) shows the compilation time of the Alternatork protocol for Jongmans’
compiler and ours. Clearly, the compilation time improved drastically and went
from exponential in k to almost linear in k.

Every fifo channel in the Alternatork, except the first, either accepts data from
the environment or accepts data from the previous fifo channel. This choice is made
by the internal node at the input of each fifo channel. Unfortunately, the behavior
of such nodes is not defined in terms of a simple set of rules. Consequently, we
cannot readily apply Theorem 5.7.3 to conclude that the number of rules depends
only linearly on k. However, it turns out that Alternatork can be defined using only
k rules: one rule for filling the buffers of all fifo channels, plus k − 1 rules, one for



5.10. DISCUSSION 116

P1 P2 Pk
· · ·

· · · C• •

(a) Alternatork

 0

 13

 26

 39

 52

 65

 0  125  250  375  500

s
e

c

k

(b) Compilation times

Figure 5.3: Graphical representation (a) of the Alternatork protocol in [JKA17], for
2 ≤ k ≤ 500, and its compilation time (b). The dotted red line is produced by the
Jongmans’ compiler (and corresponds to [JKA17, Fig 11(a)]), and the solid blue
line is our compiler.

taking data out of the buffer of each of the k − 1 fifo channels. This observation
explains why our compiler drastically improves upon Jongmans’ compiler.

5.10 Discussion

We introduce (regular) stream constraints as an alternative to constraint automata
that does not suffer from state space explosions. We define the rule-based form for
stream constraints, and we express composition and abstraction of constraints in
terms of their rule-based forms. For simple sets of rules, composition of rule-based
forms does not suffer from ‘transition space explosions’ either.

We have experimented with a new compiler for protocols using our rule-based
form, which avoids the scalability problems of state- and transition-space explosions
of previous automata-based tools. Our approach still leaves the possibility for
transition space explosion for non-simple sets of rules. In the future, we intend
to study symmetries in stream constraints that are not defined by simple sets of
rules. The queue-optimization of Jongmans serves as a good source of inspiration
for exploiting symmetries [JHA14].

The results in this chapter are purely theoretical. In on-going work, we show
practical implications of our results by developing a compiler based on stream
constraints. Such a compiler requires an extension to the current theory on stream
constraints: we did not compute the abstraction ∃xR on sets of rules R wherein
variable x is not hidable. Example 5.5.4 indicates the existence of situations where
we can compute ∃xR even if x is not hidable, a topic which we leave as future
work.



Chapter 6

Protocols as Petri nets

Our constraint-based approach to the specification of interaction protocols is very
flexible, because many syntactically different constraints have the same meaning.
While such flexibility is useful for development of new compilation techniques, it
distracts attention from the fundamental principle that leads to the exponential
improvement of compilation in Figure 5.3. The most important concept in Chap-
ter 5 is that rule-based stream constraints expose concurrency in constraints that
define sequential behavior.

In the current chapter, we streamline this concept by expressing protocols in
terms of an enhanced version Petri nets called multilabeled Petri nets1. The explicit
concurrency in Petri nets helps us to develop alternative compilers that respect the
available concurrency in a protocol.

Although we desire the protocol specification as an orchestration, we want a
protocol implementation as a choreography. Indeed, implementing the protocol
with a single central protocol component can easily introduce a performance bot-
tleneck. To prevent the bottleneck, we aim for distributed protocols, i.e., protocols
implemented as multiple parallel components.

It is the responsibility of the compiler of the coordination language to produce
efficient protocol implementations. Jongmans [Jon16] developed a compiler that
generates protocol implementations based on constraint automata [BSAR06]. A
constraint automaton is a pair (P,A) consisting of a set of variables P and a
state machine A, whose transition labels are pairs (N, g) consisting of a set of
variables N ⊆ P and a constraint g on their values. The elements P , N , and g are
respectively called interface, synchronization constraint, and data constraint.

Constraint automata model protocols in a simple and intuitive manner. How-
ever, being a state machine, a constraint automaton is inherently sequential. As we
desire distributed protocols, the constraint automaton representation of protocols
is not completely adequate. State-space explosions for constraint automata serve
as evidence for this mismatch. Alternative algorithms to compute the composite
constraint automaton have only partial success [JKA17, Fig. 17(a)].

In contrast to state machines, Petri nets [Rei13] are inherently parallel. More-
over, a state machine can be viewed as a Petri net for which every transition has

1The work in this chapter is based on [Dok19]
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a single input place and a single output place. It seems natural to generalize
constraint automata by replacing the underlying state machine by a Petri net.

In the current chapter, we introduce multilabeled Petri nets as an inherently
parallel extension to constraint automata. After stating some basic results on
monoids and multisets (Section 6.1), we view a constraint automaton as a multil-
abeled Petri net (Section 6.2), which is an ordinary Petri net whose transitions are
labeled by multisets of actions. If multiple (not necessarily distinct) transitions in
a multilabeled Petri net fire in parallel, the composite transition is labeled by the
union of the labels of its constituent transitions.

We generalize constraint automaton composition to composition of multilabeled
Petri nets (Section 6.3). While the composition of arbitrary multilabeled Petri nets
seems hard to compute, we develop an efficient algorithm that composes square-free
nets. Intuitively, a multilabeled Petri net is squarefree iff any action occurs at most
once in every (parallel) execution step of the net.

The number of places in the composite Petri net grows linearly, which prevents
the state-space explosion. Therefore, multilabeled Petri nets are an adequate in-
termediate representation of protocols. Since a transition-space explosion is still
possible, multilabeled Petri nets are not a silver bullet.

Multilabeled Petri nets can contain silent transitions, which have no observable
behavior. Such silent transitions can be the result of hiding irrelevant actions.
In protocol implementations based on multilabeled Petri nets, silent transitions
do not perform any I/O-operation and delay the throughput of the protocol. We
define an abstraction operator for multilabeled nets (Section 6.4) that removes
silent transitions. We develop an algorithm that computes the abstraction of a
multilabeled net.

Finally, we summarize the results (Section 6.5) and point out future work.

Running example We illustrate the composition and abstraction of multil-
abeled Petri nets by an example on a mail server and a client.

Figure 6.1(a) shows the Petri net of a client that can compose, send, receive, and
delete messages. Composed messages are stored as concepts, and received messages
end up in the inbox. The client can concurrently send and receive messages, as is
the case for a large company with internal mail between different departments. We
want every message to be transferred to two recipients (e.g., adding a recipient in
CC). We represent this intend labeling the send transition with the expression a2,
which denotes a multiset that contains a twice.

Figure 6.1(b) shows the Petri net of a server that can transfer messages. A
fingerprint of each transferred message is logged. We assume that message trans-
feral is not buffered: a send message is immediately received. We represent this
by labeling the transfer transition with the expression ab that denotes the multiset
that contains a and b. Note that the order of a and b is irrelevant, as ab and ba
denote the same multiset.

Figure 6.1(c) shows the composition of the client and server, as defined by the
composition operator presented in the current chapter. Composition of multil-
abeled nets synchronize transitions that agree on shared actions. Observe that the
transfer transition must fire twice in order to agree on a with the send transition.
Consequently, the receive transition must fire twice in order to agree on b with the
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Figure 6.1: Multilabeled nets of a client (a) and a mail server (b). Their compo-
sition (c) synchronizes a single send transition with two transfer and two receive
transitions (t equals send | transfer2 | receive2). The abstraction (d) hides the a
and b actions and eliminates the resulting silent transition (s equals t; delete).

transfer2 transition. Hence, the send, transfer, and receive transitions synchronize
into a single parallel transition send | transfer2 | receive2, which we denote as t.
The actions c (compose) and d (delete) of the client are not shared with the server.
Therefore, the client-server composition allows the client to compose and delete a
message, without synchronizing with the mail server.

Figure 6.1(d) shows the abstraction of the composite system, where message
transferal (actions a and b) is hidden. After hiding a and b, transition t becomes
silent. We eliminate this silent transition by sequentially composing t with the (ob-
servable) delete transition. In other words, we replace transition t by the sequential
composition, s, of t followed by delete (i.e., s = t; delete). Note that s deletes only
one of the two messages that are sent. The remaining message can be deleted by
the usual delete transition.

Related work The literature offers a wide variety of composition operators on
Petri nets, which can be divided in two categories, namely topological and parallel
compositions.

By topological compositions, we mean those operators that ‘glue Petri nets
along their places and transitions’. For example, Mazurkiewicz [Maz95, Section 8]
defines a composition operator that glues transitions with the same name. Bernar-
dinello and De Cindio [BdC92, Part II] define a composition that glues Petri nets
on places and transitions. Kotov [Kot78] defines multiple composition operators,
including superposition, which glue two Petri nets along shared places and transi-
tions. Hierarchical composition [Feh91] is a topological composition that identifies
a complete Petri net with a single transition of another Petri net.
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By parallel compositions, we mean those operators that ‘synchronize transitions
of the constituent Petri nets’. A single transition of one Petri net can synchronize
with multiple transitions of the other net. Hence, parallel composition can be seen
as duplication plus gluing, which distinguishes it from topological composition.

Parallel composition is called synchronous, if subsystems must ‘run at the same
speed’. That is, both Petri nets in a composition must simultaneously fire a tran-
sition. Examples of these operators are those that are defined as a product in a
category of Petri nets [vGV87, Win87, MM90, Gol88]. Such composition operators
are not always convenient for specification.

In asynchronous parallel composition, subsystems can run at different speeds.
That is, one Petri net can fire a transition, while the other net does nothing.
Examples of asynchronous compositions include the composition of Petri Boxes
[BDH92], Signal Transition Graphs [VW02], extended safe nets [Tau89, Chapter 4],
zero safe nets [BM97], and general Petri nets [Gol88].

The asynchronous composition operator defined by Anisimov, Golenkov, and
Kharitonov [AGK01] comes closest to our composition operator. Their parallel
composition α‖β of Petri nets is relative to some transition (multi)labelings α and
β of its operands. Unlike our composition operator, Anisimov et al. suppose a
CCS-like synchronization that synchronizes an action a with its conjugate a. As
such, their composition cannot be used as a formal semantics for Reo circuits.

Silent transitions in safe Petri nets can be removed in at least two different ways.
Vogler and Wollowski [VW02] use contraction, which deletes a silent transition and
merges all its input and output places. In general, contraction does not yield a safe
net.

Wimmel [Wim04] eliminates silent transitions from safe Petri nets in three steps:
First, he unfolds a safe Petri net into an occurrence net, whose graph structure is
acyclic. Next, he finds the process [Pra86] (i.e., the set of all accepted pomsets)
of the occurrence net, while ignoring all silent transitions. Finally, he constructs a
suitable finite quotient of the process. By construction, the resulting Petri net has
no silent transitions and is pomset-equivalent to the original net.

6.1 Preliminaries

6.1.1 Graded monoids

A monoid is a triple (M,+, 0), where + : M ×M → M is an associative binary
operation, with identity element 0. A submonoid of (M,+, 0) is a monoid of the
form (S,+, 0), where S ⊆ M is a subset of M that contains 0 ∈ S and is closed
under addition.

An element x in a monoid M is invertible iff there exists some y ∈ M , such
that x+ y = 0. An element x in a monoid M is irreducible iff x = a+ b implies
that a or b is invertible, for all a, b ∈M .

A monoid (M,+, 0) is graded if there exists a map g : M → N, such that, for
all x, y ∈M , we have g(x+ y) = g(x) + g(y) and if g(x) = 0 then x is invertible.

Lemma 6.1.1. Every element in a graded monoid is a sum of irreducibles.

Proof. Let x ∈ M be arbitrary. We show by induction on the grading g(x) ∈ N
that x is a sum of irreducibles.
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If g(x) = 0, then x is invertible. Hence, x+y = 0, for some y ∈M . If x = a+b,
for some a, b ∈M , then a+ (b+ y) = 0 and a is invertible. Thus, x is irreducibile.
In particular, x is a sum of irreducibles.

Suppose that every y ∈ M , with g(y) < g(x), is a sum of irreducibles. If
x is irreducible, then x is a sum of irreducibles. Suppose that x is reducible,
i.e., x = a + b, for some non-invertible a, b ∈ M . By definition of the grading,
g(a), g(b) > 0. Hence, g(a), g(b) < g(a)+g(b) = g(x). By the induction hypothesis,
a and b are sums of irreducibles, and so is x.

By induction, every element in a graded monoid is a sum of irreducibles.

A right-ideal of a monoid (M,+, 0) is a subset I ⊆ M , such that x ∈ I and
y ∈M implies x+y ∈ I, for all x, y ∈M . A right-ideal I of a monoid M is proper
iff 0 /∈ I. An element x ∈ I is right-irreducible (in I) iff x = a + b and a ∈ I
implies that b is invertible, for all a, b ∈M .

Lemma 6.1.2. Let I be a proper right ideal of a graded monoid M . Every element
in M is a (possibly empty) sum of right-irreducibles in I plus an element r ∈M \I.

Proof. Since the lemma holds trivially for right-irreducibles in I, let x ∈ M be
right-reducible. We show by induction on the grading g(x) ∈ N that x is a possibly
empty sum of right-irreducibles in I plus an element r ∈M \ I.

If g(x) = 0, then x is invertible. Since I is proper, we have x ∈ M \ I. Hence,
x is an empty sum of right-irreducibles plus r = x.

Suppose that every y, with g(y) < g(x), is a possibly empty sum of right-
irreducibles in I plus an element r ∈M \I. Since x is right-reducible, we find some
a ∈ I and some non-invertible b, such that x = a+ b. Non-invertibility of b implies
that g(b) > 0. Hence,

g(a) < g(a) + g(b) = g(a+ b) = g(x).

The induction hypothesis shows that a = (
∑n
i=1 ai) + r is a sum of n ≥ 0 right-

irreducibles a1, . . . , an in I plus an element r ∈M \ I. Since a ∈ I and r ∈M \ I,
we have n ≥ 1. Thus,

∑n
i=1 ai is an element of the right-ideal I. As I is proper,∑n

i=1 ai is non-invertible, and g(
∑n
i=1 ai) ≥ 1. This implies that

g(r + b) < g(
∑n
i=1 ai) + g(r + b) = g((

∑n
i=1 ai) + r + b) = g(x).

The induction hypothesis applied to r + b yields right-irreducibles b1, . . . , bm and
an element r′ ∈ M \ I, such that r + b = (

∑m
j=1 bj) + r′. Hence, x = a + b =

(
∑n
i=1 ai) + r + b = (

∑n
i=1 ai) + (

∑m
j=1 bj) + r′, which proves the lemma.

6.1.2 Multisets

A multiset over a set X is an unordered collection of elements with duplicates,
which is formally represented as a map m : X → N that counts the number of
occurrences of each x ∈ X in the multiset. The set of all multisets over X is
denoted as NX . The cardinality |m| of a multiset m is defined as the cardinality
of the set {(x, k) | x ∈ X, 0 ≤ k < m(x)}. A multiset m is non-empty iff
0 < |m|, and finite iff |m| < ℵ0, where ℵ0 is the first infinite cardinal number. The
empty multiset is denoted as ∅. The set of all finite multisets over X is denoted as
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N(X) = {m : X → N | |m| < ℵ0}. The free commutative monoid is the triple
(N(X),∪, ∅).

For k ∈ N, and multisets m,m′ ∈ NX , the union m∪m′, intersection m∩m′,
difference m \m′, and multiplication km are defined, for x ∈ X, as

(m ∪m′)(x) = m(x) +m′(x),

(m ∩m′)(x) = min(m(x),m′(x)),

(m \m′)(x) = m(x) .−m′(x)

(k ·m)(x) = k ·m(x),

where .− is monus, defined as a .− b = max(a − b, 0), for all a, b ∈ N. The subset
relation of multisets is defined as m ⊆ m′ iff m(x) ≤ m′(x), for all x ∈ X.

Multisets m0,m1,m2 ∈ NX satisfy the following identities:

m0 \ (m1 ∪m2) = (m0 \m1) \m2

m0 ∪ (m1 \m0) = m1 ∪ (m0 \m1)

(m0 ∪m1) \m2 = (m0 \m2) ∪ (m1 \ (m2 \m0))

Restriction m|Y of a multiset m on X to a subset Y ⊆ X is defined, for all
y ∈ Y , as m|Y (y) = m(y).

It is convenient to represent a finite multiset over a set X as (an equivalence
class of) a finite sequence of elements from X. Let X∗ be the free monoid on X
that consists of all finite words of elements from X (including the empty word ε).
A word w ∈ X∗ induces a multiset w : X → N, by defining, for all x ∈ X,

ε(x) = 0, wx(x) = w(x) + 1, wy(x) = w(x), for y 6= x.

Note that different words might define the same multiset. For example, xy and yx
both denote the multiset wherein both x and y occur once.

6.2 Multilabeled Petri nets

Multilabeled Petri nets are Petri nets whose transitions are labeled with a multiset
of actions.

Definition 6.2.1. A multilabeled (Petri) net is a tuple (A,P, T, µ0) with

1. A a set of actions,

2. P a set of places,

3. T ⊆ NP × NA × NP a set of transitions, and

4. µ0 : P → N an initial marking.

Inspired by Goltz [Gol88], the notation in Definition 6.2.1 slightly differs from
the usual notation of Petri nets. The advantage of this presentation is that tran-
sitions (including its set of input and output places) can be studied in isolation,
which allows for parallel and sequential composition of transitions.
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For a transition t = (P, α,Q) ∈ T , we write •t = P for the multiset of input
places of t, we write t• = Q for the multiset of output places of t, and we write
`(t) = α for the multiset of labels of t.

For the development of the composition operator for multilabeled nets in Sec-
tion 6.3, we use the standard concurrent semantics of Petri nets, which allows
multiple transitions to fire in parallel.

Definition 6.2.2. A multitransition of a multilabeled net (A,P, T, µ0) is a finite
multiset θ : T → N of transitions. N(T ) denotes the set of all multitransitions.

A multitransition θ ∈ N(T ) of a multilabeled net N = (A,P, T, µ0) defines a
(concrete) transition τ(θ) = (•θ, `(θ), θ•) in NP × NA × NP , wherein

•θ =
⋃
t∈T θ(t) · •t

θ• =
⋃
t∈T θ(t) · t•

`(θ) =
⋃
t∈T θ(t) · `(t)

A multitransition θ of a N is enabled at a marking µ ∈ NP iff •θ ⊆ µ. A marking
µ′ ∈ NP is obtained from a marking µ ∈ NP via a multitransition θ (denoted
µ [θ〉 µ′) iff θ is enabled at µ, and µ′ = (µ \ •θ) ∪ θ•.
Definition 6.2.3. The concurrent semantics of a multilabeled net (A,P, T, µ0)
is a pointed, directed, labeled graph (V,E, µ0), consisting of

1. vertices V = {µ : P → N}, and

2. labeled edges E = {(µ, `(θ), µ′) ∈ V × NA × V | µ [θ〉 µ′, |θ| > 0}.
Note that the empty multitransition θ = ∅ does not constitute a valid step in

the semantics, as ∅ allows for internal divergent behavior (by always firing ∅).
For the development of the abstraction operator in Section 6.4, we rely on the

interleaving semantics of nets:

Definition 6.2.4. The interleaving semantics of a multilabeled net (A,P, T, µ0)
is a pointed, directed, labeled graph (V,E, µ0), consisting of

1. vertices V = {µ : P → N}, and

2. labeled edges E = {(µ, `(t), µ′) ∈ V × NA × V | µ [t〉 µ′}.
The only difference between the concurrent semantics and interleaving seman-

tics of multilabeled nets is the cardinality of the multitransitions.
We introduce some terminology for a multilabeled net N = (A,P, T, µ0). N is

called finite iff A, P , and T are all finite. For k ≥ 1, N is called k-bounded iff
every reachable marking µ satisfies µ(p) ≤ k, for all p ∈ P . N is called safe iff N
is 1-bounded.

A marking µ′ ∈ NP is reachable from a marking µ ∈ NP via a sequence of
transitions t1 · · · tn ∈ T ∗, with n ≥ 0, (denoted µ [t1 · · · tn〉 µ′) iff there exists
markings µ1, . . . , µn−1 ∈ NP , such that µ [t1〉µ1 · · ·µn−1 [tn〉µ′. A firing sequence
of N is a sequence of transitions t1 · · · tn ∈ T ∗, with n ≥ 0 and µ0 [t1 · · · tn〉 µ′, for
some marking µ′. A marking µ is called reachable iff µ is reachable from the
initial marking µ0.
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ab

(a) sync(a, b)

a

b

(b) fifo1(a, b)

a1am+1 · · · am+n

amam+1 · · · am+n

...

(c) nodem,n(a1, . . . , am+n)

ab〈db = f(da)〉

(d) transformerf (a, b)

Figure 6.2: Multilabeled nets for Reo primitives. The action 〈db = f(da)〉 in the
transformer is the encoding of a data constraint.

A transition t is dead in N iff t does not occur on any firing sequence. A
transition t is potentially fireable in N iff t is not dead in N . For k ≥ 1, a
transition t ∈ T in a multilabeled net N is k-live iff •t(p) ≤ k, for all p ∈ P . Every
potentially fireable transition in a k-bounded net is k-live.

6.2.1 Constraint automata

As stated earlier, multilabeled nets generalize constraint automata [BSAR06] (with-
out data constraints). If data constraints are ignored, the interpretation of con-
straint automata as multilabeled nets is rather straightforward. Figure 6.2 shows
the multilabeled nets for some frequently used Reo primitives.

The sync(a, b) protocol in Figure 6.2(a) accepts a datum at input a and immedi-
ately offers it at output b. Since the sync(a, b) protocol is stateless, its multilabeled
net does not contain a place. The fifo1(a, b) protocol in Figure 6.2(b) accepts a
datum at input a and stores it. In the next step, it offers the stored datum at
output b. The nodem,n(a, . . . , am+n) protocol in Figure 6.2(c) accepts a datum
at any input ai, with 1 ≤ i ≤ m, and immediately offers a copy of it at every
output aj , with m < j ≤ m + n. The place in the nodem,n(a, . . . , am+n) protocol
does not serve as memory, but encodes the conflict between the transitions. The
transformerf (a, b) protocol accepts a datum da from its input a, and simultaneously
offers the datum f(da) at its output b. The transformation of datum da into db is
modeled by the data constraint db = f(da).

In general, constraint automata can have non-trivial data constraints, as is
the case for transformerf (a, b). It is certainly possible to extend the definition of
multilabeled nets (Definition 6.2.1) to include data constraints as well. However,
such extension would not add any expressiveness to multilabeled nets, because
data constraints can be encoded as fresh actions. For example, the data constraint
db = f(da) can be encoded as a fresh action 〈db = f(da)〉, which we call a data-
constraint action. Freshness ensures that data-constraint actions are not used for
synchronization (as is defined in Section 6.3). After composition, data-constraint
actions can be decoded back into data constraints. If multiple data-constraint
actions end up in the same transition label, their decoded data constraints are
combined via conjunction. Figure 6.2(d) shows the multilabeled net for the trans-
former channel.

The above trick to encode data constraints as actions can be similarly applied
to other semantic models [JA12].

The multilabeled nets that come from constraint automata are square-free:
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Definition 6.2.5. A multitransition θ in a multilabeled net N is square-free
iff `(θ)(a) ≤ 1, for all a ∈ A(N). A multilabeled net N is square-free iff every
potentially-fireable multitransition θ in N is square-free.

It is easy to verify that all multilabeled nets in Figure 6.2 are square-free: every
transition is square-free and every multitransition θ of size |θ| > 1 is dead.

The main reason for considering square-free nets is that their composition can
be easily computed.

6.3 Composition

For this section, fix two multilabeled nets Ni = (Ai, Pi, Ti, µ0i), for i ∈ {0, 1},
which are interpreted according to the concurrent semantics in Definition 6.2.3.

We define the composition N0×N1 of N0 and N1 that synchronizes N0 and N1

on shared actions A0 ∩A1. We follow a standard approach to define the (parallel)
composition of multilabeled nets. First, we generate all combinations of transitions
in N0 and N1 that can fire in parallel. Next, we restrict to synchronizing combina-
tions that ‘agree on shared actions’. Finally, we restrict to a subset of combinations
that generate all synchronizing combinations.

Recall that the disjoint union X + Y of two sets X and Y is defined as (X ×
{0}) ∪ (Y × {1}).

Definition 6.3.1. A global transition is a finite multiset η : T0 + T1 → N.

A global transition η ∈ N(T0+T1) has, for i ∈ {0, 1}, a local component
η|i ∈ N(Ti) defined as η|i(t) = η(t, i), for all t ∈ Ti.

The set N(T0+T1) of all global transitions, endowed with the union ∪ of multiset
and the empty multiset ∅, constitutes a monoid. Moreover, multiset cardinality,
|·|, defines a grading on N(T0+T1). In particular, any submonoid of N(T0+T1) is a
graded monoid.

We now formalize the notion of agreement on shared actions:

Definition 6.3.2. A global transition η ∈ N(T0+T1) is S-compatible, S ⊆ A0∩A1,
iff `(η|0)(a) = `(η|1)(a), for all a ∈ S. The set of S-compatible global transitions is
denoted as C(S) ⊆ N(T0+T1). We call η compatible, if η is A0 ∩A1-compatible.

Intuitively, the local components η|0 and η|1 of an S-compatible multitransition
η ∈ N(T0+T1) agree only on the shared actions in S, while they may disagree on
shared actions a ∈ (A0 ∩A1) \ S outside of S.

A compatible global transition η ∈ C(A0 ∩ A1) defines a (concrete) transition
λ(η) = (•η, `(η), η•) ∈ NP0+P1 × NA0∪A1 × NP0+P1 , with

•η(p, i) = •(η|i)(p)
η•(p, i) = (η|i)•(p)
`(η)(a) = `(η|i)(a) if a ∈ Ai

for all (t, i) ∈ T0 + T1 and a ∈ A0 ∪ A1. Note that `(η)(a) is well-defined, since
`(η|0)(a) = `(η|1)(a), for a ∈ A0 ∩A1.
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The empty global transition ∅ is trivially S-compatible, for all S ⊆ A0 ∩ A1.
Furthermore, the union α ∪ β of two compatible global transitions is again S-
compatible, for all S ⊆ A0∩A1. Hence, the set of S-compatibles C(S) is a (graded)
submonoid of the graded monoid N(T0+T1). Lemma 6.1.1 shows that every com-
patible global transition can be decomposed into irreducibles.

Any reducible S-compatible global transition η = α ∪ β, for some global tran-
sitions α and β, is redundant, as λ(η) can be simulated by firing λ(α) and λ(β) in
parallel. Hence, we consider the set C0(S) ⊆ C(S) of all irreducible S-compatible
global transitions.

The image of C0(A0∩A1) under the map λ : C(A0∩A1)→ NP0+P1×NA0∪A1×
NP0+P1 defines the set of transitions of the composition:

Definition 6.3.3. The composition N0×N1 of the multilabeled nets N0 and N1

is a multilabeled net with actions A0∪A1, places P0+P1, transitions λ(C0(A0∩A1)),
and initial marking µ0 defined as µ0(p, i) = µ0i(p), for all (p, i) ∈ P0 + P1.

It is laborious but straightforward to verify that the composition of multilabeled
Petri nets is associative. The composition is commutative only up to renaming of
places, due to the index from the disjoint union. The composition is idempotent
only up to semantic equivalence, as is duplicates the places.

Example 6.3.1. Consider the mail example in Figure 6.1, and suppose that the
set of actions of the client equals {a, b, c, d} and the set of actions of the server
equals {a, b}. According to Definition 6.3.3, the transitions in the composition
of the nets in Figures 6.1(a) and 6.1(b) consist of irreducible compatible global
transitions. The compose transition in Figure 6.1(a) and the (implicit) empty
multitransition ∅ in Figure 6.1(b) trivially agree on shared actions. Therefore,
(compose | ∅) is a compatible transition. Being of length 1, the compose transition
is necessarily irreducible, which implies that the compose transition is a transition
of the composition in Figure 6.1(c).

Similarly, the global transition η, with components η|0 = send | receive2 and
η|1 = transfer2, is also a compatible transition. Indeed, the label of η|0 and η|1
both equal a2b2. Clearly, η is irreducible, which shows that λ(η) is a transition of
the composition in Figure 6.1(c). ♦

6.3.1 Composition algorithm

Definition 6.3.3 only defines the transitions of the composition: it does not suggest
a procedure on how these transitions can be found. It seems difficult to compute
the composition of arbitrary multilabeled nets. Since the current work is motivated
by constraint automata, we develop an algorithm that computes the composition
of square-free multilabeled nets (Definition 6.2.5).

Lemma 6.3.1 shows that square-freeness must be checked only for atomic nets.

Lemma 6.3.1. If N0 and N1 are square-free, then so is N0 ×N1.

Proof. If a global transition η ∈ N(T0+T1) is potentially fireable, then so are its
local components η|0 and η|1. For i ∈ {0, 1}, square-freeness of Ni implies that
`(η|i)(a) ≤ 1 and a ∈ Ai. By construction, `(η)(a) ≤ 1, for all a ∈ A0 ∪A1. Hence,
N0 ×N1 is square-free.
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By Definition 6.3.3, the composition N0 × N1 can contain dead transitions.
Since these dead transitions do not contribute to the behavior of the multilabeled
net, it is no problem if our composition algorithm does not generate them. As the
composition, N0 ×N1, is square-free, we consider only square-free transitions:

Definition 6.3.4. A global transition η : T0 + T1 → N is square-free if λ(η)
is square-free. For S ⊆ A0 ∩ A1, we denote the set of all square-free, irreducible
S-compatible global transitions as C0(S) ⊆ C0(S).

We compute the composition of square-free nets N0 and N1 by recursion on
the number of shared actions. This procedure is conveniently expressed with the
following terminology:

Definition 6.3.5. The difference da(η) of a global transition η ∈ N(T0+T1) at a
shared action a ∈ A0 ∩A1 is defined as the integer

da(η) = `(η|0)(a)− `(η|1)(a).

The set of all square-free, irreducible, S-compatible global transitions with differ-

ence d ∈ Z is denoted as Cd0 (S).

It is straightforward to verify that da(α ∪ β) = da(α) + da(β), for global tran-
sitions α, β ∈ N(T0+T1).

Since every global transition is ∅-composite, C(∅) = N(T0+T1) and C0(∅) =
T0 + T1, where each (t, i) ∈ T0 + T1 is viewed as a singleton multiset on T0 + T1.

Lemma 6.3.2 expresses square-free, irreducible S-compatibles in terms of square-
free, irreducible S′-compatibles, with S′ ⊆ S.

Lemma 6.3.2. If S ⊆ A0 ∩A1, and a ∈ (A0 ∩A1) \ S then

C0(S ∪ {a}) ⊆ C0
0 (S) ∪ {α−1 ∪ α1 | αd ∈ Cd0 (S)} ⊆ C(S ∪ {a}).

Proof. For the first inclusion, let η ∈ C0(S ∪ {a}). Since every S ∪ {a}-compatible
is also S-compatible, we have that η ∈ C(S). As C(S) is a graded monoid,
Lemma 6.1.1 shows that, for some n ≥ 1 and β1, . . . , βn ∈ C0(S), we have

η = β1 ∪ · · · ∪ βn

Since η is square-free, we have,for every 1 ≤ k ≤ n, that

`(βk)(a) ≤∑n
i=1 `(βi)(a) = `(

⋃n
i=1 βi)(a) = `(η)(a) ≤ 1,

which shows that every βi, 1 ≤ i ≤ n, is square-free. In particular, the difference
of βi at a satisfies da(βi) ∈ {−1, 0, 1}. We distinguish two cases:

Case 1: Suppose that da(β1) = 0. Then, β1 and β2 ∪ . . . ∪ βn are both S-

compatible. Irreducibility of η shows that n = 1. Hence, η = β1 ∈ C0
0 (S).

Case 2: Suppose that da(β1) = ±1. Since η is S-compatible, we have that∑n
i=1 da(βi) = da(

⋃n
i=1 βi) = da(η) = 0

Since da(βi) ∈ {−1, 0, 1}, for 1 ≤ i ≤ n, we find some 1 < k ≤ n, such that
da(βk) = −da(β1) = ∓1. Without loss of generality, we assume that k = 2. From
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Algorithm 1: Distribution

Input : Two finite, square-free multilabeled nets N0 and N1.
Output: C0(A0 ∩A1) ⊆ C ⊆ C(A0 ∩A1).

1 C ← T0 + T1 ⊆ N(T0+T1);
2 foreach a ∈ A0 ∩A1 do
3 foreach d ∈ {−1, 0, 1} do
4 Cd ← {η ∈ C | da(η) = d};
5 C ← C0 ∪ {α ∪ β | (α, β) ∈ C−1 × C1, α ∪ β square-free};

da(β1∪β2) = da(β1) +da(β2) = 0, it follows that β1∪β2 and β3∪ . . .∪βn are both
S-compatible. Irreducibility of η and non-emptyness of βi, for 1 ≤ i ≤ n, shows

that n = 2, which implies that η = β1 ∪ β2, with βi ∈ C±2i∓3
0 (S), for i ∈ {1, 2}. In

both cases, η ∈ C0
0 (S) ∪ {α−1 ∪ α1 | αd ∈ Cd0 (S)}.

For the second inclusion, let η ∈ C0
0 (S) ∪ {α−1 ∪ α1 | αd ∈ Cd0 (S)}. Suppose

that η ∈ C0
0 (S). By construction, da(η) = 0, which shows that η ∈ C(S ∪ {a}).

Every decomposition of η in C(S ∪ {a}) is also a decomposition in C(S). Hence,
irreducibility of η in C(S) implies that η ∈ C0(S ∪ {a}).

Suppose η ∈ {α−1 ∪ α1 | αd ∈ Cd0 (S)}. Then, we have da(η) = da(α−1 ∪ α1) =
da(α−1) + da(α1) = −1 + 1 = 0. Hence, η ∈ C(S ∪ {a}).

Algorithm 1 computes a set C ⊆ C(A0∩A1) of compatible global transitions of
two square-free multilabeled nets N0 and N1, including all square-free, irreducible
global transitions (i.e., C ⊇ C0(A0 ∩ A1)). We conjecture that Algorithm 1 ac-
tually generates C = C0(A0 ∩ A1), which means that Algorithm 1 produces only
irreducible global transitions.

For clarity, we present distribution (Algorithm 1) in its simplest form. Distribu-
tion can be optimized by using an appropriate data structure for set C for efficient
constructions of the subsets Cd = {η ∈ C | da(η) = d}, for d ∈ {−1, 0, 1}.

Theorem 6.3.3. Distribution (Algorithm 1) is totally correct.

Proof. By Lemma 6.3.2, after S ⊆ A0 ∩A1 iterations, set C consists of all square-
free, irreducible S-compatibles. Finiteness of N0 and N1 ensures that A0 ∩ A1 is
finite, which implies termination.

Example 6.3.2 (Alternator). Consider the alternatorn protocol, n ≥ 2, defined as
the following composition of node, sync, syncdrain, and fifo1 components:

alternatorn =
∏n
i=1

(
node1,3(ai; a

1
i , a

2
i , a

3
i )× node2,1(b1i , b

2
i ; bi)× sync(a2

i , b
1
i )
)

×∏n−1
i=1

(
syncdrain(a3

i , a
1
i+1)× fifo1(bi+1, b

2
i )
)
,

where the multilabeled net for syncdrain and sync are identical. For those familiar
with the syntax of Reo, alternator5 has the following diagram:
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Figure 6.3: Composition and abstraction of the alternator5 protocol.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

� � � �
Using Algorithm 1 and Theorem 6.3.3, we can compute the multilabeled net of
alternator5. The composition is shown in Figure 6.3(a). For readability, we do not
draw the places induced by the node components. Their contents remains the same
throughout the execution of the alternator5. We also hide all internal actions by
removing from the transition labels all actions other than b1 and a1, . . . , a5. We
formalize this procedure in Definition 6.4.1.

The multilabeled net in Figure 6.3(a) can be used for the implementation of
the alternator5 protocol. In a naive implementation, a place is implemented as
a variable, and a transtion is implemented as a thread. Each thread reads and
writes to these variables according to the flow relation, and performs I/O-operations
according to the transition label. In particular, transitions with an empty label do
not perform any I/O-operation. Of course, care must be taken for variables that
are shared amongst different threads. ♦

The number of places in a composition N0 ×N1 is the sum of the places in N0

and N1, which shows that the composition operator in Definition 6.3.3 does not
suffer from state-space explosions. The total number of transitions in a composition
N0×N1 equals the number of irreducible compatible subsets of N0 and N1, which
can potentially grow large. The following result shows that, for ‘nice compositions’,
the number of transitions in the composition does not blow up.

Corollary. The composition N0 × N1 has at most |T0| + |T1| transitions, if for
every a ∈ A0 ∩A1 there exists an i ∈ {0, 1} with |{t ∈ Ti | `(t)(a) > 0}| ≤ 1.
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a

b

c

d

Figure 6.4: Synchronous regions lose concurrency.

Proof. The condition ensures that, in Algorithm 1, |C−1| = 1 or |C1| = 1. Hence,
the size of C does not increase, which shows that the upper bound holds.

Example 6.3.3. As shown in [JKA17, Fig. 17(a)], the constraint automaton
representation of the alternatorn protocol does not scale well in n ≥ 1. However,
for multilabeled Petri nets the situation is completely different. Applying Line 5
to the compositions in alternatorn in Example 6.3.2, it can be shown that, for every
n ≥ 1, the number of transitions of the alternatorn is equal to n. As such, the
multilabeled net representation of the alternatorn protocol does not suffer from a
state-space or a transition-space explosion. ♦

6.3.2 Discussion on concurrency in Reo

Despite the wealth of available semantics for Reo connectors [JA12], most of them
focus only on synchronization, but ignore the concurrent behavior of a Reo connec-
tor. Since these semantics form the basis of the Reo compilers, these deficiencies in
the semantics of Reo leads to problems in the implementation of the Reo language.

For example, Jongmans uses constraint automata (CA) for his compiler for Reo
protocols. Since CA are sequential machines, and a sequential implementation of
Reo connector is not utilizing all available resources, Jongmans first decomposes
the Reo protocol in synchronous regions and runs those regions in parallel with
minimal synchronization overhead. In other words, Jongmans partially compen-
sates for the loss of concurrency in CA by considering a decomposition of the CA
and synchronizing these components at run time.

Unfortunately, the synchronous regions decomposition does not recover all avail-
able concurrency that was present in the original Reo protocol, as demonstrated
by the following example:

Example 6.3.4. Consider the connector in Figure 6.4. It is a single synchronous
region and it compiled into a single threaded program that executes the constraint
automaton in Figure 6.5. The transitions ac and bd are independent and can fire
concurrently in the original Reo connector. However, the sequential implementa-
tion as a CA loses this independence. ♦

In contrast with the CA semantics, our multilabeled Petri net semantics models
both the concurrent and synchronous behavior of a Reo connector. It is captures
all available concurrency event within a single synchronous region:

Example 6.3.5. Figure 6.4 shows the multilabeled Petri net for the synchronous
regions from Example 6.3.4. The places ensure that no two adjacent transitions
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{a, c}, da = dc

{a, d}, da = dd{b, c}, db = dc

{b, d}, db = dd

{a, b, c, d}, da = dc ∧ db = dd {a, b, c, d}, da = dd ∧ db = dc

Figure 6.5: Constraint automaton of Figure 6.4

{a, c}

{a, d}

{b, d}

{b, c}

Figure 6.6: Multilabeled Petri net of Figure 6.4

can fire simultaneously. Hence, the {a, c} and {b, d} can fire at the same time. The
same applies to the {a, d} and {b, c} transitions. ♦

6.4 Abstraction

The definition of multilabeled Petri nets allows for silent transitions, i.e., transitions
t with an empty label `(t) = ∅. Such silent transitions can be introduced by hiding
internal actions:

Definition 6.4.1 (Hiding). Hiding an action a ∈ A in a multilabeled net N yields
the net ∃aN = (B,P, {(•t, `(t)|B , t•) | t ∈ T}, µ), where B = A \ {a} and `(t)|B is
the restriction of `(t) to B.

The hiding operator ∃a simply drops all occurrences of a from the label of every
transition in the given Petri net.

As indicated in Example 6.3.2, the naive implementation of a silent transition
is a thread that does not perform any I/O-operations. As a result, these silent
transitions can delay the throughput of the protocol.

In this section, we aim to improve the generated code by transforming a fixed
multilabeled net N = (A,P, T, µ0) into an equivalent net ∂N without any silent
transitions. To define the abstraction operator ∂, we follow the same strategy
as for composition of multilabeled nets. First, we consider all possible sequential
compositions of transitions. Next, we restrict to sequences of transitions with
observable behavior. Finally, we restrict to sequences of transitions that generate
all observable traces.
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6.4.1 Sequential compositions

Consider the set T ∗ of all firing sequences ofN , i.e., all finite sequences of transitions
of N . Following Mazurkiewicz [Maz95], strictly different firing sequences can be
considered identical up to permutation of independent transitions.

Definition 6.4.2. The dependency relation D ⊆ T × T is defined as

(s, t) ∈ D ⇔ s• ∩ •t 6= ∅ or t• ∩ •s 6= ∅ or `(s) 6= ∅ 6= `(t)

Intuitively, transitions s and t are dependent iff one transition takes the output
of the other as input, or if both transitions are observable. Note that conflicting
transitions are not necessarily dependent.

The dependency relation D induces a trace equivalence ≡ ⊆ T ∗ defined as
the smallest congruence on T ∗, such that st ≡ ts, for all (s, t) /∈ D. An equivalence
class [x] = {y ∈ T ∗ | y ≡ x} of a firing sequence x is called a trace.

The trace monoid T ∗/≡ is the set {[x] | x ∈ T ∗} of all traces, endowed with
composition, defined, for all x, y ∈ T ∗, as [x][y] = [xy]. Since ≡ is a congruence,
composition of traces is well-defined.

Observable behavior of traces is a map o : T ∗/≡ → (NA \ {∅})∗ defined, for
all x ∈ T ∗, as

o([ε]) = ε, o([xt]) =

{
o([x])`(t) if `(t) 6= ∅
o([x]) otherwise

Since observable transitions do not commute (Definition 6.4.2), o is well-defined.
Next, we define map σ : T ∗/≡ → NP × NA × NP that maps every trace w to

a concrete transition σ(w) ∈ NP × NA × NP . The definition of this map relies on
sequential composition of transitions:

Definition 6.4.3. The sequential composition s; t of transitions s, t in a mul-
tilabeled net N is defined as (•(s; t), `(s; t), (s; t)•), where

•(s; t) = •s ∪ (•t \ s•), (s; t)• = t• ∪ (s• \ •t), `(s; t) = o([st])

For a sequential composition s; t, transition t can use the tokens produced by s.
Hence, t consumes only the tokens from the multiset difference •t \ s•. Therefore,
the sequential composition s; t consumes only the tokens in the multiset union
•s ∪ (•t \ s•).

Example 6.4.1. Figure 6.7(b) shows some sequential compositions of transitions
s and t in Figure 6.7(a). Intuitively, the sequential composition s; t performs t after
s. The token generated in place q by s is immediately consumed by t. Therefore,
s; t does not have q as input place or output place.

Note, however, that t; s has q both as input place and output place, because
the token produced at place q by s comes too late. ♦

Sequential composition of traces is a map σ : T ∗/≡ → NP × NA × NP
defined, for all traces w ∈ T ∗/≡ and transitions t ∈ T , as

σ([ε]) = (∅, ∅, ∅), σ(wt) = σ(w); t. (6.1)



133 CHAPTER 6. PROTOCOLS AS PETRI NETS

p q r

α
s

β

t

(a) Two dependent transitions

p q r

αβ

s; t

β

t

βα

t; s

(b) Sequential composition

Figure 6.7: Sequential composition of transitions with multilabels α and β.

Lemmas 6.4.1 and 6.4.2 show that σ is a well-defined homomorphism, that is, σ(u)
does not depend on the representative of u ∈ T ∗/≡, and σ(uv) = σ(u);σ(v), for
all traces u, v ∈ T ∗/≡.

Lemma 6.4.1. If (s, t) /∈ D, then s; t = t; s.

Proof. If (s, t) /∈ D, then s• ∩ •t = t• ∩ •s = ∅ and either `(s) 6= ∅ or `(t) 6= ∅.
The latter condition implies that `(s; t) = o([st]) = o([ts]) = `(t; s). The former
condition implies that •t \ s• = •t and •s \ t• = •s, which implies

•(s; t) = •s ∪ (•t \ s•) = (•s \ t•) ∪ •t = •(t; s)

Similarly, it follows that (s; t)• = (t; s)•, which proves s; t = t; s.

By construction, sequential composition of traces σ parses each trace as a left-
associative composition. Thus, for traces u and v in T ∗/≡, σ(uv) and σ(u);σ(v)
could evaluate to different transitions. Lemma 6.4.2 shows that these expressions
are equal, and that sequential composition of traces is a homomorphism.

Lemma 6.4.2. Sequential composition of transitions is associative.

Proof. The identities in Section 6.1 show, for all transitions r, s, t ∈ T , that

•(r; (s; t)) = •r ∪ (•(s; t) \ r•)
= •r ∪ ( ( •s ∪ (•t \ s•) ) \ r• )

= •r ∪ (•s \ r•) ∪ ( (•t \ s•) \ (r• \ •s)) )

= •(r; s) ∪ ( •t \ ( s• ∪ (r• \ •s) ) )

= •(r; s) ∪ (•t \ (r; s)•)

= •((r; s); t)

Similarly (r; (s; t))• = ((r; s); t)•. Since concatenation is associative,

`(x; (y; z)) = o(x)o(y)o(z) = `((x; y); z),

which shows that x; (y; z) and (x; y); z.

Sequential composition of traces induces observational equivalence ≈ ⊆
T ∗/≡ defined as v ≈ w iff σ(v) = σ(w). Since sequential composition of traces is a
homomorphism, observable equivalence ≈ is a congruence.
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6.4.2 Elimination of silent traces

Consider the setO = {w ∈ T ∗/≡ | o(w) 6= ε} of observable traces, which constitutes
a proper right-ideal in the trace monoid T ∗/≡. Lemma 6.1.2 shows that every
observable trace w, with o(w) 6= ε, can be decomposed as a sequence of right-
irreducibles in O followed by a silent trace v, with o(v) = ε.

Every trace w whose observable behavior o(w) has length greater than one
admits a decomposition uv, with o(u) 6= ε and v 6≡ ε. Hence, the observable
behavior o(w) of a right-irreducible trace w ∈ O must have length one.

Nevertheless, the length |w| of the trace w can be arbitrarily large. To shrink
the set of traces that generate all observable behavior, we consider two additional
conditions.

Definition 6.4.4. A trace w is acyclic iff |w| = minw′≈w |w′|.
Every contiguous subtrace of an acyclic trace is acyclic.

Lemma 6.4.3. If uvw is acyclic, then v is acyclic.

Proof. If v is not acyclic, then there exists a trace v′ ≈ v, such that |v′| < |v|. Then,
|uv′w| < |uvw|, and σ(uv′w) = σ(u);σ(v′);σ(w) = σ(u);σ(v);σ(w) = σ(uvw).
Hence, uv′w ≈ uvw, and uvw is not acyclic.

Definition 6.4.5. A trace w is k-live iff σ(w′) is k-live, for every suffix w′ of w.

Every contiguous subtrace of a k-live trace is k-live.

Lemma 6.4.4. If uvw is k-live, then v is k-live.

Proof. If v is not k-live, then v can be decomposed as v = v0v1, such that σ(v1)
is not k-live. Then, uvw can be decomposed as (uv0)(v1w). From •σ(v1w) =
•(σ(v1);σ(w)) = •σ(v1) ∪ (•σ(w) \ σ(v1)•) ⊇ •σ(v1), it follows that σ(v1w) is also
not k-live, and that uvw is not k-live.

The results in Lemmas 6.1.2, 6.4.3 and 6.4.4 show that the trace w = [t1 . . . tn]
of every firing sequence t1 . . . tn, n ≥ 1, can be generated from right-irreducible,
acyclic, k-live traces modulo observational equivalence ≈. To see this, note that
w comes from a firing sequence, which means that w is k-live by construction.
Now, select some acyclic w′ ≈ w (i.e., w′ is of minimal length). Lemma 6.1.2
applied for the right-ideal O = {u ∈ T ∗/≡ | o(u) 6= ε} yields a decomposition
w′ = a1 . . . anb, where a1, . . . , an are right-irreducible in O, and o(b) = ε is silent.
Since w is acylcic and k-live, Lemmas 6.4.3 and 6.4.4 show that the traces a1, . . . , an
are right-irreducible, acyclic, and k-live.

Definition 6.4.6. The abstraction ∂N of the multilabeled net N is defined as
(A,P, {σ(w) | w right-irreducible, acyclic, and k-live}, µ).

Example 6.4.2. Consider the composite net N in Figure 6.1(c). Hiding actions
a and b results in a net N ′ = ∃a∃bN , where send | transfer2 | receive2 is a silent
transition. From the current marking, the netN ′ can eventually produce observable
behavior. However, to do so, N ′ must first firing a silent transition.

Application of the abstraction operator yields the ∂N ′, as shown in Figure 6.1(d).
In contrast with N ′, the abstraction ∂N ′ can directly fire an observable transition
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Algorithm 2: Abstraction

Input : A finite, k-bounded multilabeled net N = (A,P, T, µ0).
Output: H = {x ∈ T ∗ | [x] right-irreducible, acyclic, and k-live}.

1 H ← {t | t ∈ T, `(t) 6= ∅};
2 repeat
3 h← |H|;
4 H ← H ∪ {sx | x ∈ H, s ∈ T, `(s) = ∅, sx 6≡ xs, σ([sx]) /∈

σ(H), [sx] k-live};
5 until h = |H|;

in the current marking. As a result, the abstraction ∂N ′ produces observable be-
havior faster than N ′, and the executable code generated from ∂N ′ potentially
optimizes the code generated from N ′. ♦

6.4.3 Abstraction algorithm

The transitions of the abstraction ∂N of a multilabeled net N can be computed
by recursion on the length of the underlying traces. Algorithm 2 shows a straight-
forward tree search that starts from the shortest possible acyclic, k-live, right-
irreducible traces, namely the observable transitions.

Theorem 6.4.5. Algorithm 2 is totally correct.

Proof. It is routine to check that, after n ≥ 0 iterations, H contains all acyclic,
k-live, right-irreducible traces of length n + 1. For termination, observe that a
finite, k-bounded net has only finitely many k-live transitions.

Example 6.4.3. We use Algorithm 2 to eliminate the silent transitions alternater5
protocol as shown in Figure 6.3(a). Table 6.1 shows the intermediate steps

Figure 6.3(b) shows the resulting multilabeled net ∂alternator5. In ∂alternator5,
a reader component at the output b1 of alternator5 does not need to wait for silent
transitions to move the data into the fifo1 buffer between b2 and b1. Instead, the
reader can immediately take the data from the first non-empty fifo1 buffer. As
such, the naive implementation of the abstraction ∂alternator5 should have higher
throughput than alternator5. We did not yet verify this claim experimentally. ♦

6.5 Discussion

We introduce multilabeled Petri nets, i.e., Petri nets whose transitions are labeled
by a multiset of actions. We define a binary composition operator for multilabeled
nets, and construct an algorithm to compute the composition. We define a unary
abstraction operator that removes silent transitions from multilabeled nets, and
construct an algorithm to compute the abstraction.

The composition algorithm Algorithm 1 assumes that the multilabeled nets are
square-free. Although the assumption of square-freeness is justified in the context
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Table 6.1: Abstraction of the multilabeled net in Figure 6.3(a) using Algorithm 2.

w s •w w• `(w) acyclic 1-live irreduc.

t1 s1 e1e2e3e4 f1f2f3f4 a1 · · · a5b1 y y y
t2 s2 f1 e1 b y y y
t3 e1f2 e2f1 ∅ y y y
t4 e2f3 e3f2 ∅ y y y
t5 e3f4 e4f3 ∅ y y y
t3t1 e2

1e3e4f2 f2
1 f2f3f4 a1 · · · a5b1 y y

t4t1 e1e
2
2e4f3 f1f

2
2 f3f4 a1 · · · a5b1 y y

t5t1 e1e2e
2
3f4 f1f2f

2
3 f4 a1 · · · a5b1 y y

t3t2 s3 e1f2 e1e2 b y y y
t4t2 e2f1f3 e1e3f2 b y y
t5t2 e3f1f4 e1e4f3 b y y
t3t3t2 e2

1f
2
2 e1e

2
2f1 b y y

t4t3t2 s4 e1e2f3 e1e2e3 b y y y
t5t3t2 e1e3f2f4 e1e2e4f3 b y y
t3t4t3t2 e2

1f2f3 e1e2e3f1 b y y
t4t4t3t2 e1e

2
2f

2
3 e1e2e

2
3f2 b y y

t5t4t3t2 s5 e1e2e3f4 e1e2e3e4 b y y y
t3t5t4t3t2 e2

1e3f2f4 e1e2e3e4f1 b y y
t4t5t4t3t2 e1e

2
2f3f4 e1e2e3e4f2 b y y

t5t5t4t3t2 e1e2e
2
3f

2
4 e1e2e3e

2
4f3 b y y

of constraint automata, it would be very useful to be able to automatically compose
more general multilabeled nets (such as the running example).

While the definition of the composition operator relies on the concurrent se-
mantics of nets, the definition of the abstraction operator relies on interleaving
semantics. As a result, the composition and abstraction operator are not interop-
erable, in the sense that ∂(N0 × N1) 6= ∂N0 × ∂N1, for multilabeled nets N0 and
N1. Such an identity would allow for simplification of intermediate compositions,
which potentially speeds up the construction of the composition.
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Chapter 7

Protocols with Workloads

The interaction protocol in a concurrent software imposes dependencies amongst
the different processes in this software. For example, the rate at which a producer
process can fill a buffer of bounded capacity depends on the rate at which a con-
sumer process drains it. In most applications, the protocol is defined implicitly as a
combination of locks and semaphores. For software written in an exogenous coordi-
nation language (cf., Part I) the protocol is explicit, which reveals the dependencies
that are relevant for scheduling.

We can exploit this relevant scheduling information to optimize the execution
of concurrent software. For example, smart scheduling of processes can offer pro-
tection against concurrent access of shared resources in a concurrent application,
without suffering from drawbacks of the standard mutual exclusion protocols (e.g.,
locks). Imagine we have a crystal ball that accurately reveals when each process
accesses its resources and their proper order of execution. We can then use this in-
formation to synthesize a scheduler that executes the processes in the correct order
and prevents concurrent access to shared resources by speeding up or slowing down
the execution of each process. Locks now become redundant, and their overhead
can be avoided.

Unfortunately, some relevant scheduling information is lost if we represent the
protocol in one of the existing protocol semantics (such as our stream constraints
from Part II), which leaves us with a blurred crystal ball. Existing semantics encode
precisely the order of all interactions, but they ignore the amount of work that must
be performed in between these interactions. Therefore, existing protocol semantics
are inadequate and prevent us from formulating the scheduling problem. In the
current chapter, we develop work automata, which is a semantics for components
and protocols that allows us to formalize the scheduling problem1.

In Section 7.1 we introduce the syntax and semantics of work automata and
define a weak simulation relation that allows us to compare the behavior of two
work automata. We define two fundamental operations, namely composition and
hiding. Composition allows us to construct a work automaton for a large system
by composing the work automata of its smaller subsystems. The composition op-
eration synchronizes the behavior on shared (inter)actions. Although these shared

1The work in this chapter is based on [DA17]
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interactions are relevant for composition, we might want to ignore them in a larger
context. The hiding allows us to do this. By defining composition and hiding
of work automata, we can extend our Treo language from Chapter 4 with syntax
to express primitive work automata. Our generic (semantics-agnostic) Reo then
automatically computes the work automaton of the complete application. We po-
tentially benefit from all semantics-independent compiler optimizations, such as
the queue-optimization [JHA14] and protocol splitting [JCP16].

Composition of work automata may suffer from a state space explosion. A large
number of states in a work automaton complicates its analysis. In Section 7.2, we
introduce state-space minimization techniques to counter this state space explosion.
We define in Section 7.2 two procedures, called translation and contraction, that
simplify a given work automaton by minimizing its number of states. We provide
conditions (Theorems 7.2.3 and 7.2.5) under which translation and contraction
preserve weak simulation.

We show by means of an example that some large work automata can be sim-
plified to their respectively “equivalent” single state work automata. The state-
invariant of the single state of such a resulting automaton defines a region in a
multidimensional real vector space. Geometric features of this region reveal in-
teresting behavioral properties of the corresponding concurrent application. For
example, (explicit or implied) mutual exclusion in an application corresponds to
a hole in its respective region, and non-blocking executions correspond to straight
lines through this region. Since straight lines are easier to detect than non-blocking
executions, the geometric perspective provides additional insight into the behavior
of an application. We postulate that such information may be used to develop a
smart scheduler that avoids the drawbacks of locks.

In Section 7.3, we discuss related work, and in Section 7.4 we conclude and
point out future work.

7.1 Work automata

7.1.1 Syntax

Consider an application A that consists of n ≥ 1 concurrently executing processes
X1, . . . , Xn. We measure the progress of each process Xi in A by a positive real
variable xi ∈ R+, called a job, and represent the current progress of application
A by a map p : J → R+, where J = {x1, . . . , xn} is the set of all jobs in A. We
regulate the progress using boolean constraints φ ∈ B(J) over jobs:

φ ::= > | ⊥ | x ∼ n | φ0 ∧ φ1 | φ0 ∨ φ1, (7.1)

with ∼ ∈ {≤,≥,=}, x ∈ J a job and n ∈ N0 ∪ {∞}. We define satisfaction
p |= φ of a progress p : J → R+ and a constraint φ ∈ B(J) by the following rules:
p |= x ∼ n, if p(x) ∼ n; p |= φ0 ∧ φ1, if p |= φ0 and p |= φ1; p |= φ0 ∨ φ1, if p |= φ0

or p |= φ1. The interface of application A consists of a set of ports through which
A interacts with its environment via synchronous operations, each one involving a
subset N ⊆ P of its ports.

We define the exact behavior of a set of processes as a labeled transition system
called a work automaton. The progress value p(x) of job x may increase in a state
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Figure 7.1: Mutual exclusion of processes A1 and A2 by means of a lock L.

q of a work automaton, as long as the state-invariant I(q) ∈ B(J) is satisfied. A
state-invariant I(q) defines the amount of work that each process can do in state
q before it blocks. A transition τ = (q,N,w,R, q′) allows the work automaton
to reset the progress of each job x ∈ R ⊆ J to zero and change to state q′,
provided that the guard, defined as synchronization constraint N ⊆ P together
with the job constraint w ∈ B(J), is satisfied. That is, the transition can be fired,
if the environment is able to synchronize on the ports N and the current progress
p : J → R+ of A satisfies job constraint w.

Definition 7.1.1 (Work automata). A work automaton is a tuple (Q,P, J, I,→
, φ0, q0) that consists of a set of states Q, a set of ports P , a set of jobs J , a state
invariant I : Q → B(J), a transition relation → ⊆ Q × 2P × B(J) × 2J × Q, an
initial progress φ0 ∈ B(J), and an initial state q0 ∈ Q.

Example 7.1.1 (Mutual exclusion). Figure 7.1 shows the work automata of two
identical processes A1 and A2 that achieve mutual exclusion by means of a global
lock L. The progress of process Ai is recorded by its associated job xi, and the
interface of each process Ai consists of two ports ai and bi. Suppose we ignore
the overhead of the mutual exclusion protocol. Then, lock L does not need a job
and its interface consists of ports a1, a2, b1, and b2. Each process Ai starts in
state 0 with φ0 := xi = 0 and is allowed to execute at most one unit of work, as
witnessed by the state-invariant xi ≤ 1. After finishing one unit of work, Ai starts
to compete for the global lock L by synchronizing on port ai of lock L. When Ai
succeeds in taking the lock, then lock L changes its state from − to + and process
Ai moves to state 1, its critical section, and resets the progress value of job xi to
zero. Next, process Ai executes one unit of work in its critical section. Finally, Ai
releases lock L by synchronizing on port bi, executes asynchronously its last unit
of work in state 2, and resets to state 0. ♦

7.1.2 Semantics

We define the semantics of a work automaton A = (Q,P, J, I,→, φ0, q0) by means
of a finer grained labeled transition system JAK whose states are configurations:

Definition 7.1.2 (Configurations). A configuration of a work automaton A is a
pair (p, q) ∈ RJ+ ×Q, where p : J → R+ is a state of progress, and q ∈ Q a state.

The transitions of JAK are labeled by two kinds of labels: one for advancing
progress of A and one for changing the current state of A. To model advance of
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and (b) transition from state q to q′ with reset of job x1.

progress of A, we use a map d : J → R+ representing that d(x) units of work has
been done on job x. Such a map induces a transition

(p, q)
d−→ (p+ d, q), (7.2)

where + is component-wise addition of maps (i.e., (p+ d)(x) = p(x) + d(x), for all
x ∈ J). Figure 7.2(a) shows a graphical representation of transition Equation (7.2).
A state of progress p of A corresponds to a point in the plane.

In practice, the value of each job x ∈ J continuously evolves from p(x) to
p(x) + d(x). We assume that, during transition Equation (7.2), each job makes
progress at a constant speed. This allows us to view the actual execution as a path
γ : [0, 1]→ RJ+ defined by γ(c) = p+ c · d, where RJ+ is the set of maps from J to
R+ and · is component-wise scalar multiplication (i.e., (p+c ·d)(x) = p(x)+c ·d(x),
for all x ∈ J). At any instant c ∈ [0, 1], the state of progress p+ c · d must satisfy
the current state-invariant I(q). Figure 7.2(a) shows execution γ as the straight
line connecting p and p + d. For every c ∈ [0, 1], state of progress γ(c) = p + c · d
corresponds to a point on the line from p to p + d. Note that, since we have a
transition from p to p+c·d in JAK for all c ∈ [0, 1], Figure 7.2(a) provides essentially
a finite representation of an infinite semantics, i.e., one with an infinite number of
transitions through intermediate configurations between (p, q) and (p + d, q). In
Section 7.2.1, we use this perspective to motivate our gluing procedure.

The transition in Equation (7.2) is possible only if the execution does not block
between p and p + d, i.e., state of progress p + c · d satisfies the state-invariant
I(q) of q, for all c ∈ [0, 1]. Since I(q) defines a region {p ∈ RJ+ | p |= I(q)} of a
|J |-dimensional real vector space, the non-blocking condition just states that the
straight line γ between p and p+ d is contained in the region defined by I(q) (see
Figure 7.2(a)).

A transition τ = (q,N,w,R, q′) changes the state of the current configuration
from q to q′, if the environment allows interaction via N and the current state of
progress p satisfies job constraint w. As a side effect, the progress of each job x ∈ R
resets to zero. Such state changes occur on transitions of the form

(p, q)
N−→ (p[R], q′), (7.3)

where p[R](x) = 0, if x ∈ R, and p[R](x) = p(x) otherwise. Figure 7.2(b) shows a
graphical representation of transition Equation (7.3). The current state of progress
satisfies both the current state-invariant and the guard of the transition, which
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allows to change to state q′ and reset the value of x1 to zero. For convenience, we
allow at every configuration (p, q) an ∅-labeled self loop which models idling.

Definition 7.1.3 (Operational semantics). The semantics of a given work au-
tomaton A = (Q,P, J, I,→, φ0, q0) is the labeled transition system JAK with states
(p, q) ∈ RJ+ ×Q, labels RJ+ ∪ 2P , and transitions defined by the rules:

d : J → R+, ∀c ∈ [0, 1] : p+ c · d |= I(q)

(p, q)
d−→ (p+ d, q)

(S1)

τ = (q,N,w,R, q′) ∈ →, p |= w ∧ I(q), p[R] |= I(q′)

(p, q)
N−→ (p[R], q′)

(S2)

(p, q)
∅−→ (p, q)

(S3)

where p[R](x) = 0, if x ∈ R, and p[R](x) = p(x) otherwise.

Based on the operational semantics JAK of a work automaton A, we define
the trace semantics of a work automaton. The trace semantics defines all finite
sequences of observable behavior that are accepted by the work automaton.

Definition 7.1.4 (Actions, words). Let P be a set of ports and J a set of jobs.
An action is a pair [N, d] that consist of a set of ports N ⊆ P and a progress
d : J → R+. We write ΣP,J for the set of all actions over ports P and jobs J . We
call the action [∅,0], with 0(x) = 0 for all x ∈ J , the silent action. A word over P
and J is a finite sequence u ∈ Σ∗P,J of actions over P and J .

Definition 7.1.5 (Trace semantics). Let A = (Q,P, J, I,→, φ0, q0) be a work
automaton. A run r of A over a word ([Ni, di])

n
i=1 ∈ Σ∗P,J is a path

r : (p0, q0)
N1−−→ d1−→ s1 · · · sn−1

Nn−−→ dn−→ sn

in JAK, with p0 |= φ0∧I(q0). The language L(A) ⊆ Σ∗P,J of A is the set of all words
u for which there exists a run of A over u.

Example 7.1.2. The language of the process Ai in Figure 7.1(a) trivially contains
the empty word, and the word u = [∅,1][{a},1][{b},1], where 1(xi) = 1. Using
Definitions 7.1.3 and 7.1.5, we conclude that v = [∅,1][{a},1][{b},0.5][∅,0.5], with
0.5(xi) = 0.5, is also accepted by Ai. Note that we can obtain v from u by splitting
[{b},1] into [{b},0.5][∅,0.5]. ♦

7.1.3 Weak simulation

Different work automata may have similar observable behavior. In this section,
we define weak simulation as a formal tool to show their similarity. Intuitively, a
weak simulation between two work automata A and B can be seen as a map that
transforms any run of A into a run of B with identical observable behavior.

Following Milner [Mil89], we define a new transition relation, ⇒, on the opera-
tional semantics JAK of a work automaton A that ‘skips’ silent steps.
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Definition 7.1.6 (Weak transition relation). For any two configurations s and t

in JAK, and any a ∈ RJ+ ∪ 2P we define s
a

=⇒ t if and only if either

1. a = ∅ and s (
∅−→)∗ t; or

2. a ∈ 2P \ {∅} and s
∅

=⇒ s′
a−→ s′′

∅
=⇒ t; or

3. a ∈ RJ+, s
∅

=⇒ s1
c1·a−−→ t1

∅
=⇒ s2 · · · tn−1

∅
=⇒ sn

cn·a−−−→ tn
∅

=⇒ t, and
∑n
i=1 ci = 1,

with n ≥ 1, si, ti configurations in JAK, ci ∈ [0, 1], (ci · a)(x) = ci · a(x), for all
x ∈ J and all 1 ≤ i ≤ n.

Definition 7.1.7 (Weak simulation). Let Ai = (Qi, P, J, Ii,→i, φ0i, q0i), for i ∈
{0, 1} be two work automata, and let � ⊆ (RJ+ × Q0) × (RJ+ × Q1) be a binary
relation over configurations of A0 and A1. Then, � is a weak simulation of A0 in
A1 (denoted as A0 � A1) if and only if

1. p00 |= φ00 ∧ I0(q00) implies (p00, q00) � (p01, q01), with p01 |= φ01 ∧ I1(q01);

2. s � t and s
a−→ s′, with a ∈ RJ+ ∪ 2P , implies t

a
=⇒ t′ and s′ � t′, for some t′.

We call � a weak bisimulation if and only if � and its inverse �−1 = {(t, s) | s � t}
are weak simulations. We call A0 and A1 weakly bisimilar (denoted as A0 ≈ A1)
if and only if there exists a weak bisimulation between them.

7.1.4 Composition

Thus far, our examples used work automata to define the exact behavior of a single
job (or just a protocol L in Figure 7.1(b)). We now show that work automata are
expressive enough to define the behavior of multiple jobs simultaneously. To this
end, we define a product operator × on the class of all work automata. Before we
turn to the definition, we first introduce some notation. For i ∈ {0, 1}, let Ai =
(Qi, Pi, Ji, Ii,→i, φ0i, q0i) be a work automaton and let τi = (qi, Ni, wi, Ri, q

′
i) ∈ →i

be a transition in Ai. We say that τ0 and τ1 are composable (denoted as τ0 _ τ1)
if and only if N0 ∩ P1 = N1 ∩ P0. If τ0 _ τ1, then we write τ0 | τ1 = ((q0, q1), N0 ∪
N1, w0 ∧ w1, R0 ∪R1, (q

′
0, q
′
1)) for the composition of τ0 and τ1.

Definition 7.1.8 (Composition). Let Ai = (Qi, Pi, Ji, Ii,→i, φ0i, q0i), i ∈ {0, 1},
be two work automata. We define the composition A0 × A1 of A0 and A1 as the
work automaton (Q0 ×Q1, P0 ∪ P1, J0 ∪ J1, I0 ∧ I1,→, φ00 ∧ φ01, (q00, q01)), where
→ is the smallest relation that satisfies:

i ∈ {0, 1}, τi ∈ →i, τ1−i ∈ →1−i ∪ {(q, ∅,>, ∅, q) | q ∈ Q1−i}, τ0 _ τ1
τ0 | τ1 ∈ →

By means of the composition operator in Definition 7.1.8, we can construct
large work automata by composing smaller ones. The following lemma shows that
the composite work automaton does not depend on the order of construction.

Lemma 7.1.1. (A0 × A1) × A2 ≈ A0 × (A1 × A2), A0 × A1 ≈ A1 × A0, and
A0 ×A0 ≈ A0, for any three work automata A0, A1, and A2.
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Figure 7.3: The complete application M = L×A1×A2. In state q1q2, lock L is in
state (−1)q1+q2+1 and process Ai is in state qi.

Example 7.1.3. Consider the work automata from Example 7.1.1. The behavior
of the application is the composition M of the two processes A1 and A2 and the
lock L. Figure 7.3 shows the work automaton M = L × A1 × A1. Each state-
invariant equals >∧ x1 ≤ 1∧ x2 ≤ 1. The competition for the lock is visualized by
the branching at the initial state 00. ♦

7.1.5 Hiding

Given a work automaton A and a port a in the interface of A, the hiding operator
A \ {a} removes port a from the interface of A. As a consequence, the hiding
operator removes every occurrence of a from the synchronization constraint N of
every transition (q,N,w,R, q′) ∈ → by transforming N to N \ {a}. In case N
becomes empty, the resulting transition becomes silent. If, moreover, the source
and the target states of a transition are identical, we call the transition idling.

Definition 7.1.9 (Hiding). Let A = (Q,P, J, I,→, φ0, q0) be a work automaton,
and M ⊆ P a set of ports. We define A\M as the work automaton (Q,P \M,J,→M

, φ0, q0), with →M = {(q,N \M,w,R, q′) | (q,N,w,R, q′) ∈ →}.
Lemma 7.1.2. Hiding partially distributes over composition: M ∩ P0 ∩ P1 = ∅
implies (A0×A1) \M ≈ (A0 \M)× (A1 \M), for any two work automata A0 and
A1 with interfaces P0 and P1, respectively.

Example 7.1.4. Consider the work automaton M in Figure 7.3. Work automaton
M ′ = M \ {a, b} is M where every occurrence of {a} or {b} is substituted by ∅. ♦

7.2 State Space Minimization

The composition operator from Definition 7.1.8 may produce a large complex work
automaton with many different states. In this section, we investigate if, and how, a
set of states in a work automaton can be merged into a single state, without break-
ing its semantics. In Section 7.2.1, we present by means of an example the basic
idea for our simplification procedures. We define in Section 7.2.2 a translation op-
erator that removes unnecessary resets from transitions. We define in Section 7.2.3
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Figure 7.4: Graphical representation (a) of semantics JM ′K of the work automaton
M ′ in Example 7.1.4, where white regions represent state-invariants, and (b) result
after gluing the regions in(a). Starting in a configuration below line α and above
line β, parallel execution of x1 and x2 never blocks on lock L.

a contraction operator that identifies different states in a work automaton. We
show that translation and contraction are correct by providing weak simulations
between their pre- and post-operation automata.

7.2.1 Gluing

The following example illustrates an intuitive gluing procedure that relates the prod-
uct work automaton M in Figure 7.3 to the punctured square in Figure 7.4(b).
Formally, we define the gluing procedure as the composition of translation (Sec-
tion 7.2.2) and contraction (Section 7.2.3).

Example 7.2.1 (Gluing). Consider the work automaton M ′ in Example 7.1.4
that describes the mutual exclusion protocol for two processes. Our goal is to
simplify M ′ to a work automaton K that simulates M ′. To this end, we introduce
in Figure 7.4(a) a finite representation of the infinite semantics JM ′K of M ′, based
on the geometric interpretation of progress discussed in Section 7.1.2. For any
given state q of M ′, the state-invariant I(q) = x1 ≤ 1 ∧ x2 ≤ 1 is depicted in
Figure 7.4(a) as a region in the first quadrant of the plane. Each configuration (p, q)
of M ′ corresponds to a point in one of these regions: q determines its corresponding
region wherein point p resides. Each transition of M ′ is shown in Figure 7.4(a) as
a dotted arrow from the border of one region to that of another region. We refer
to these dotted arrows as jumps. A jump λ from a region R of state q to another
region R′ of state q′ represents infinitely many transitions from configurations (p, q)
to configurations (p′, q′), for all p and p′, as permitted by the semantics JM ′K. By
the job constraint of the transition corresponding to λ, p and p′ must lie on the
borders of R and R′, respectively, that are connected by λ.

From a topological perspective, a jump from one region to another can be viewed
as ‘gluing’ the source and target configuration of that jump. We can glue any two
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Figure 7.5: Work automaton K that corresponds to Figure 7.4(b).

regions in Figure 7.4(a) together by putting regions (i.e., state-invariants) of the
source and the target states side by side to form a single state with a larger region.
Each jump in Figure 7.4(a) from a source to a target state corresponds to an idling
transition (c.f., rule Equation (S3) in Definition 7.1.3) within a single state. When
we apply this gluing procedure in a consistent way to every jump in Figure 7.4(a),
we obtain a single state work automaton K that is defined by a single large region,
as shown in Figure 7.4(b). Figure 7.5 shows the actual work automaton that
corresponds to this region. Note that the restart transition allows the state of
progress to jump in Figure 7.4(a) from configuration ((x, 1), i2) to ((x, 0), i0) and
from configuration ((1, y), 2j) to ((0, y), 0j), for all x, y ∈ [0, 1] and i, j ∈ {0, 1, 2}.
Thus, the restart transition identifies opposite boundaries in Figure 7.4(b), turning
the punctured square into a torus. ♦

The next example shows that the geometric view of the semantics of the work
automaton in Example 7.2.1 reveals some interesting behavioral properties of M ′.

Example 7.2.2. Consider the mutual exclusion protocol in Example 7.1.1. Is it
possible to find a configuration such that parallel execution of jobs x1 and x2 (at
identical speeds) never blocks, even temporarily, on lock L? It is not clear from the
work automata in Figure 7.1 (or in their product automaton as, e.g., in Figure 7.3)
whether such a non-blocking execution exists. Since only one process can acquire
lock L, the execution that starts from the initial configuration blocks after one unit
of work. However, using the geometric perspective offered by Figure 7.4(b) and the
fact that a parallel execution of jobs x1 and x2 at identical speeds correspond to a
diagonal line in this representation, it is not hard to see that any execution path
below line α and above line β is non-blocking. ♦

Regions of lock-free execution paths as revealed in Example 7.2.2 are interesting:
if some mechanism (e.g., higher-level semantics of the application or tailor-made
scheduling) can guarantee that execution paths of an application remains contained
within such lock-free regions, then their respective locks can be safely removed
from the application code. With or without such locks in an application code, a
scheduler cognizant of such lock-free regions can improve resource utilization and
performance by regulating the execution of the application such that its execution
path remains in a lock-free region.

Example 7.2.3 (Correctness). Let M ′ be the work automaton in Example 7.1.4,
and K the work automaton in Figure 7.5. We denote a configuration of M ′ as
a tuple (p1, p2, q0, q1, q2), where pi ∈ R+ is the state of progress of job xi, for
i ∈ {0, 1}, and (q0, q1, q2) ∈ {−,+} × {0, 1, 2}2 is the state of M ′. We denote a
configuration of K as a tuple (p1, p2, 0), where pi ∈ R+ is the state of progress
of job xi, for i ∈ {0, 1}. The binary relation � over configurations of M ′ and



7.2. STATE SPACE MINIMIZATION 148

0x = 0

x ≤ 1

1

x ≤ 1

∅, x ≤ 1, {x}

(a) A

0x = 0

x ≤ 1

1

x ≤ 2

∅, x ≤ 1, ∅

(b) B
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K defined by (p1, p2, q0, q1, q2) � (q1 + p1, q2 + p2, 0), for all 0 ≤ pi ≤ 1 and
(q0, q1, q2) ∈ {−,+} × {0, 1, 2}2, is a weak simulation of M ′ in K.

Note that �−1 is not a weak simulation of K in M ′ due to branching. Consider
the configurations s = (1, 1,−, 0, 0) and s′ = (0, 1,+, 1, 0) of M ′, and t = (1, 1, 0)
of K (cf., Figures 7.4(a) and 7.4(b)). While in configuration t job x2 can make
progress, execution of x2 is blocked at s′ because process A1 has obtained the lock.
Since s′ � t, we conclude that �−1 is not a weak simulation of K in M ′.

Fortunately, we can still prove that K is a correct simplification of M by trans-
forming �−1 into a weak simulation. Intuitively, such transformation remove pairs
like (t, s′) ∈ �−1. We make this argument formal in Section 7.2.3. ♦

As illustrated in Example 7.2.2, gluing can reveal interesting and useful proper-
ties of an application. To formalize the gluing procedure, we define two operators
on work automata. The main idea is to transform a given work automaton A1 into

an equivalent automaton A2, such that (almost) any step (p1, q1)
∅−→ (p′1, q

′
1) in JA1K

corresponds with an idling step (p2, q2)
∅−→ (p′2, q

′
2) in JA2K, i.e., a step with p′2 = p2

and q′2 = q2. To achieve this correspondence, we define a translation operator that
ensures p′2 = p2, and a contraction operator that ensures q′2 = q2.

7.2.2 Translation

In this section, we define the translation operator that allows us to remove resets
of jobs from transitions. The following example shows that removal of job resets
can be compensated by shifting the state-invariant of the target state.

Example 7.2.4 (Shifting). Suppose we remove the reset of job x on the transition
of work automaton A in Figure 7.6(a). If we fire the transition at x = a ≤ 1, then
the state of progress of x in state 1 equals a instead of 0. We can correct this error
by shifting the state-invariant of 1 by a, for every a ≤ 1. We, therefore, transform
the state-invariant of 1 into x ≤ 2 (see Figure 7.6(b)). ♦

The transformation of work automata in Example 7.2.4 suggests a general trans-
lation procedure that, intuitively,(1) shifts each state-invariant I(q), q ∈ Q, along
the solutions of some job constraint θ(q) ∈ B(J), and(2) removes for every transi-
tion τ = (q,N,w,R, q′) some resets ρ(τ) ⊆ J from R.

Definition 7.2.1 (Shifts). A shift on a work automaton (Q,P, J, I,−→, φ0, q0) is
a tuple (θ, ρ) consisting of a map θ : Q→ B(J) and a map ρ : −→→ 2J .

We define how to shift state-invariants along the solutions of a job constraint.
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Definition 7.2.2. Let φ, θ ∈ B(J) be two job constraints with free variables among
x = (x1, . . . , xn), n ≥ 0. We define the shift φ ↑ θ of φ along (the solutions of) θ
as any job constraint equivalent to ∃t(φ(x− t) ∧ θ(t)).

Lemma 7.2.1. ↑ is well-defined: for all φ, θ ∈ B(J) there exists ψ ∈ B(J) such
that ∃t(φ(x− t) ∧ θ(t)) ≡ ψ.

We use a shift (θ, ρ) to translate guards and invariants along the solutions of
job constraint θ and to remove resets occurring in ρ:

Definition 7.2.3 (Translation). Let σ = (θ, ρ) be a shift on a work automaton
A = (Q,P, J, I,→, φ0, q0). We define the translation A ↑ σ of A along the shift σ
as the work automaton (Q,P, J, Iσ,→σ, φ0 ↑ θ(q0), q0), with Iσ(q) = I(q) ↑ θ(q)
and →σ = {(q,N,w ↑ θ(q), R \ ρ(τ), q′) | τ = (q,N,w,R, q′) ∈ →}.

Lemma 7.2.2. If θ ∈ B(J) has a unique solution δ |= θ, then p+δ |= φ ↑ θ implies
p |= φ, for all p ∈ RJ+ and φ ∈ B(J).

Theorem 7.2.3. If p |= w ∧ I(q) and δ |= θ(q) implies (p+ δ)[R \ ρ(τ)]− p[R] |=
θ(q′), for every transition τ = (q,N,w,R, q′) and every p, d ∈ RJ+, then A � A ↑ σ.
If, moreover, θ(q) has for every q ∈ Q a unique solution, then A ≈ A ↑ σ.

For at transition τ = (q,N,w,R, q′), suppose θ(q) and θ(q′) define unique so-
lutions δ and δ′, respectively. If σ eliminates job x ∈ R (i.e., x ∈ ρ(τ)), then
p(x)+δ(x) = δ′(x), for all p |= w∧I(q). Thus, w∧I(q) must imply x = δ′(x)−δ(x),
which seems a strong assumption. For a deterministic application, however, it
makes sense to have only equalities in transition guards. In this case, a transition
is enabled only when a job finishes some fixed amount of work, which corresponds
to having only equalities in transition guards.

Example 7.2.5. Let M ′ be the work automata in Example 7.1.4, σ = (δ, ρ) the
shift defined by θ(q) := x1 = q1 ∧ x2 = q2, and ρ(τ) = Rτ . Theorem 7.2.3 shows
that M ′ ↑ σ and M ′ are weakly bisimilar. ♦

7.2.3 Contraction

In this section, we define a contraction operator that merges different states into a
single state. To determine which states merge and which stay separate, we use an
equivalence relation ∼ on the set of states Q.

Definition 7.2.4 (Kernel). A kernel of a work automaton A is an equivalence
relation ∼ ⊆ Q×Q on the state space Q of A.

Recall that an equivalence class of a state q ∈ Q is defined as the set [q] = {q′ ∈
Q | q ∼ q′} of all q′ ∈ Q related to q. The quotient set of Q by ∼ is defined as
the set Q/∼ = {[q] | q ∈ Q} of all equivalence classes of Q by ∼. By transitivity,
distinct equivalence classes are disjoint and Q/∼ partitions Q.

Definition 7.2.5 (Contraction). The contraction A/∼ of a work automaton A =
(Q,P, J, I,→, φ0, q0) by a kernel ∼ is defined as (Q/∼, P, J, I ′,→′, φ0, [q0]), where
→′ = {([q], N,w,R, [q′]) | (q,N,w,R, q′) ∈ →} and I ′([q]) =

∨
q̃∈[q] I(q̃).
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The following results provides sufficient conditions for preservation of weak
simulation by contraction. The relation � defined by (p, [q]) � (p, q), for all (p, q) ∈
RJ+ ×Q, is not a weak simulation of A/∼ in A. As indicated in Example 7.2.3, we
can restrict � and require only (p, [q]) � (p, α(p, [q])), for some section α.

Definition 7.2.6 (Section). A section is a map α : RJ+ ×Q/∼ → Q such that for
all q, q′ ∈ Q and p, d ∈ RJ+

1. p |= I ′([q]) implies p |= I(α(p, [q]));

2. q ∼ α(p, [q]);

3. p |= φ0 ∧ I(q0) implies α(p, [q0]) = q0;

4. (p, [q])
N−→ (p′, [q′]) implies (p, α(p, [q]))

N
=⇒ (p′, α(p′, [q′]));

5. (p, q)
d−→ (p+ d, q) implies (p, α(p, [q]))

d
=⇒ (p+ d, α(p+ d, [q])).

In contrast with conditions (1), (2), and (3) in Definition 7.2.6, conditions (4)
and (5) impose restrictions on the contraction A/∼. These restrictions allow us to
prove, with the help of the following lemma, weak simulation of A/∼ in A.

Lemma 7.2.4. If (p, [q])
d−→ (p+d, [q]), then there exist k ≥ 1, 0 = c0 < · · · < ck =

1 and q1, . . . , qk ∈ [q] such that p+ c · d |= I(qi), for all c ∈ [ci−1, ci] and 1 ≤ i ≤ k.

Theorem 7.2.5. A � A/∼; and if there exists a section α, then A/∼ � A.

In our concluding example below, we revisit our intuitive gluing procedure mo-
tivated in Section 7.2.1 to show how the theory developed in Sections 7.2.2 and
7.2.3 formally supports our derivation of the geometric representation of JKK from
JM ′K and implies the existence of mutual weak simulations between K and M ′.

Example 7.2.6. Consider the work automaton M ′ ↑ σ from Example 7.2.5, and let
∼ be the kernel that relates all states ofM ′ ↑ σ. The contraction (M ′ ↑ σ)/∼ results
in K, as defined in Example 7.2.1 (modulo some irrelevant idling transitions).
Define α(p, [(q1, q2)]) = minH, where H = {(q1, q2) ∈ {0, 1, 2}2 | p |= Iσ(q1, q2)} is
ordered by (q1, q2) ≤ (q′1, q

′
2) iff q1 ≤ q′1 and q2 ≤ q′2. By Theorem 7.2.5, we have

M ′ � K and M �M ′. By Example 7.2.3, M ′ and K are not weakly bisimilar. ♦

The work automaton in Figure 7.3 and the geometric representation of its infi-
nite semantics in Figure 7.4(a), only indirectly define a mutual exclusion protocol
in M ′. By Example 7.2.6, we conclude that M ′ is weakly language equivalent to a
much simpler work automaton K that explicitly defines a mutual exclusion proto-
col by means of its state-invariant. Having such an explicit dependency visible in
a state-invariant, reveals interesting behavioral properties of M ′, such as existence
of non-blocking paths. These observations may be used to generate schedulers that
force the execution to proceed along these non-blocking paths, which would enable
a lock-free implementation and/or execution.
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7.3 Related work

Work automata without jobs correspond to port automata [KC09], which is a data-
agnostic variant of constraint automata [BSAR06]. In a constraint automaton, each
synchronization constraint N ⊆ P is accompanied with a data constraint that inter-
relates the observed data da, at every port a ∈ N . Although it is straightforward to
extend our work automata with data constraints, we refrain from doing so because
our work focuses on synchronization rather then data-aware interaction. Hiding on
constraint automata defined by Baier et al. in [BSAR06] essentially combines our
hiding operator in Definition 7.1.9 with contraction from Theorem 7.2.5.

The syntax of work automata is similar to the syntax of timed automata [AD94].
Semantically, however, timed automata are different from work automata because
jobs in a work automaton may progress independently (depending on whether or
not they are scheduled to run on a processor), while clocks in a timed automaton
progress at identical speeds. For the same reason, work automata differ semanti-
cally from timed constraint automata [ABdBR04], which is introduced by Arbab et
al. for the specification of time-dependent connectors.

This semantic difference suggests that we may specify a concurrent application
as a hybrid automaton [Hen00], which can be seen as a timed automaton wherein the
speed of each clock, called a variable, is determined by a set of first order differential
equations. Instead of fixing the speed of each process beforehand, via differential
equations in hybrid automata, our scheduling approach aims to determine the speed
of each process only after careful analysis of the application. Therefore, we do not
use hybrid automata to specify a concurrent application

Weighted automata [DKV09] constitute another popular quantitative model for
concurrent applications. Transitions in a weighted automaton are labeled by a
weight from a given semiring. Although weights can define the workload of tran-
sitions, weighted automata do not show dependencies among different concurrent
transitions, such as mutual exclusion [vGV97]. As a consequence, weighted au-
tomata do not reveal dependencies induced by a protocol like work automata do.

A geometric perspective on concurrency has already been studied in the context
of higher dimensional automata, introduced by Pratt [Pra91] and Van Glabbeek
[vG91]. This geometric perspective has been successfully applied in [vGV97] to
find and explain an essential counterexample in the study of semantic equivalences
[vG06], which shows the importance of their, and indirectly our, geometric perspec-
tive. A higher dimensional automaton is a geometrical object that is constructed
by gluing hypercubes. Each hypercube represents parallel execution of tasks associ-
ated with each dimension. This geometrical view on concurrency allows inheritance
of standard mathematical techniques, such as homology and homotopy, which leads
to new methods for studying concurrent applications [GJ92, Gun01].

7.4 Discussion

We extended work automata with state-invariants and resets and provided a for-
mal semantics for these work automata. We defined weak simulation of work
automata and presented translation and contraction operators that can simplify
work automata while preserving their semantics up to weak simulation. Although
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translation is defined for any shift (θ, ρ), the conditions in Theorem 7.2.3 prove
bisimulation only if θ has a unique solution. In the future, we want to investigate
if this condition can be relaxed—and if so, at what cost—to enlarge the class of
applications whose work automata can be simplified using our transformations.

Our gluing procedure in Example 7.2.1 associates a work automaton with a
geometrical object, and Example 7.2.2 shows that this geometric view reveals in-
teresting behavioral properties of the application, such as mutual exclusion and
existence of non-blocking execution paths. This observation suggests our results
can lead to smart scheduling that yields lock-free implementation and/or execu-
tions.

State-invariants and guards in work automata model the exact amount of
work that can be performed until a job blocks. In practice, however, these ex-
act amounts of work are usually not known before-hand. This observation suggests
that the ‘crisp’ subset of the multidimensional real vector space defined by the
state-invariant may be replaced by a density function. We leave the formalization
of such stochastic work automata as future work.



Chapter 8

Protocol Scheduling

The work automata developed in Section 7.1 encode all relevant scheduling infor-
mation of a concurrent application and its protocol. For optimal performance of
a concurrent software, the scheduler must take these dependencies into account.
However, operating systems schedulers are application-independent and remain
oblivious to the dependency information inherent in a protocol, even if such in-
formation is available. At best, these schedulers detect consequential effects of a
protocol, such as blocking on an I/O-operation or waiting for a lock.

In this chapter, we develop a scheduling framework that extracts all scheduling
information from a given work automaton and produces an ideal scheduler for the
given software1. The most straightforward implementation of this ideal scheduler
is to replace the operating system scheduler with our ideal scheduler. However, this
approach is not possible if the operating system runs multiple different applications,
each of which requiring its own ideal scheduler.

We offer an alternative approach that implements the ideal scheduler without
changing the operating system scheduler. The main idea is to exploit the dual-
ity between schedules and protocols mentioned in Chapter 1 and transform the
ideal schedule into a scheduling protocol. Then, we refine the original protocol
by composing it with the scheduling protocol. The refined protocol forces the
operating system scheduler to closely follows the ideal schedule, which improves
the performance of the concurrent application. The scheduling protocol exploits
the fact that the operating system scheduler executes only processes that are not
blocked or waiting. Hence, it can enforce a custom schedule by blocking all appli-
cation processes, except for those that should run according to the application’s
desired schedule. We block a process by prolonging existing blocking operations
like I/O operations or waiting for a lock. Therefore, our approach assumes that
the application’s desired custom schedule is non-preemptive.

We synthesize non-preemptive schedules for concurrent applications using algo-
rithms for games on graphs (Section 8.1). A graph game is a two-player zero-sum
game played by moving a token on a directed graph, wherein each vertex is owned
by one of the players. Typically, the ownership of the nodes along a path through
the graph alternates between the two players. If the token is at a vertex owned

1The work in this chapter is based on [DA21, DJA16]
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by a player, this player moves the token along one of the outgoing edges to the
next vertex, after which the process repeats. The winning condition determines
the player that wins based on the resulting path of the token.

We represent the scheduling problem as a graph game between the scheduler
and the application (Section 8.2). The scheduler selects the processes that can
execute, and the application resolves possible non-determinism within the processes
of the concurrent program. Game-theoretic machinery computes a strategy for the
scheduler that optimizes the execution of the concurrent program (according to
an objective function that embodies some desired performance measure). Here,
we consider only the objective of maximizing throughput, but similar techniques
can also optimize for other scheduling performance measures, like fairness, context-
switches, or energy consumption.

We view the resulting non-preemptive scheduling strategy itself as a scheduling
protocol, and we compose the original protocol with this scheduling protocol to
obtain a composite, scheduled protocol (Section 8.3). To evaluate the effect of
the restricted protocol on a practical situation, we implement a reference version
and a scheduled version of a simple cyclo-static dataflow network. This network
consists of four processes, called actors, that interact asynchronously via five buffers
(Figure 8.1). A buffer can handle overflows by dropping items to match its capacity.
We measure the throughput (i.e., the time between consecutive productions) of
both versions of the program. The throughput of the reference version varies
significantly, and is on average worse than the throughput of the scheduled version,
which, moreover, shows only a small variation.

Finally, we conclude and point to future work in Section 8.5.

8.1 Graph games

Our scheduling framework uses algorithms for games on graphs to construct non-
preemptive schedules [DJA16]. A graph game is a two-player game of infinite
duration. The possible move sequences are characterized by a safety automaton:

Definition 8.1.1. A safety automaton is a tuple (Q,Σ, δ, q0, F ), with Q a finite
set of states, Σ a finite set of moves, δ : Q×Σ→ Q a transition function, q0 ∈ Q an
initial state, and F ⊆ Q a set of accepting states, such that for every state q ∈ Q,
we have q ∈ F if and only if δ(q, σ) ∈ F , for some move σ ∈ Σ.

In other words, a safety automaton is a deterministic finite automaton (DFA),
wherein accepting states cannot be reached from non-accepting states, and every
accepting state has an accepting successor.

As usual, we extend the transition function δ to finite move sequences by defin-
ing δ(q, λ) = q and δ(q, sσ) = δ(δ(q, s), σ), for every state q ∈ Q, finite move
sequence s ∈ Σ∗, move σ ∈ Σ, and empty sequence λ ∈ Σ∗.

Since we are interested in infinite games only, we define the accepted language
of a safety automaton as follows:

Definition 8.1.2. The accepted language L(A) of a safety automaton A is the set
of infinite words σ1σ2 · · · ∈ Σω, such that δ(q0, σ1 · · ·σn) ∈ F , for all n ≥ 0.
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Instantiating Definition 8.1.2 for n = 0, we see that δ(q0, σ1 · · ·σn) = δ(q0, λ) =
q0 ∈ F , which means that the accepted language is non-empty if and only if the
initial state q0 is accepting.

Consider a state q ∈ Q of a safety automaton. While all moves are possible in
q (the transition function is defined for all pairs of states and moves), not every
move is enabled in the sense that it leads to an accepted word. In view of Defini-
tion 8.1.2, we consider the set Σq = {σ | δ(q, σ) ∈ F} of enabled moves at q. By
Definition 8.1.1, Σq is non-empty, for accepting states q ∈ F .

Based on safety automata, we construct a graph game as follows:

Definition 8.1.3. A graph game is a tuple (A,C,W ), with A = (Q,Σ, δ, q0, F )
a safety automaton, C ⊆ Q a set of controlled states, and W ⊆ Σω a winning
condition.

A graph game (A,C,W ) is played by two players (say Player 1 and Player
2) who take turns to move a token from state to state. We consider Player 1 a
protagonist and Player 2 an antagonist. To simplify notation, we write C1 = C for
the states controlled by Player 1, and we write C2 = Q\C for the states controlled
by Player 2. Initially, the token is in state q0 ∈ Q. If the token is in state q ∈ Ck,
with k ∈ {1, 2}, then Player k selects an enabled move σ ∈ Σq and moves the token
to state δ(q, σ). As a result, the token moves along a path

q0
σ1−→ q1

σ2−→ q2
σ3−→ · · ·

through the safety automaton. Player 1 wins if the sequence σ1σ2σ3 · · · ∈ Σω of
moves is contained in the winning condition W . Otherwise, Player 2 wins.

A joint strategy (for both players) is a function ζ : Σ∗ → Σ that selects a
move, for every finite move sequence. A strategy for Player k ∈ {1, 2} is a function
ζk : Pk → Σ, with Pk = {σ1 · · ·σn ∈ Σ∗ | δ(q0, σ1 · · ·σn) ∈ Ck}, that selects a
move, for every finite move sequence that leads to a state controlled by Player k.
If Player k follows a strategy ζk, then the resulting move sequence is contained in
the set

L(ζk) = {σ1σ2σ3 · · · ∈ L(A) | ζk(σ1 · · ·σn) = σn+1 whenever defined}

of outcomes of the game that are ensured by following strategy sk. A strategy ζ1
for Player 1 is winning if L(ζ1) ⊆W . That is, strategy ζ1 ensures that the resulting
move sequence is contained in W , irrespective of the moves of Player 2. Winning
strategies for Player 2 are defined similarly. A strategy ζk for Player k is optimal,
if it is winning or if no winning strategy for Player k exists.

Of course, for a given game, it is impossible that both players have a winning
strategy. However, for general winning conditions, it is possible that neither player
has a winning strategy. In this case, the game is not determined. Nevertheless,
Martin proved [Mar75] that graph games are determined if the winning condition
is a Borel set2. Unfortunately, the results by Martin are descriptive and do not
suggest a practical algorithm to find a winning strategy.

For simpler winning conditions, such as the ratio objective, we do have algo-
rithms that compute a winning strategy:

2A Borel set is a subset of Σω obtained from languages of safety automata by repeated com-
plements and countable intersections.
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Definition 8.1.4. A ratio game is a graph game with a winning condition

Ws/t≥v =

{
σ1σ2σ3 · · · ∈ Σω

∣∣∣ lim inf
n→∞

∑n
i=1 s(σi)∑n
i=1 t(σi)

≥ v and t(σ1) 6= 0

}
for some functions s : Σ→ Z and t : Σ→ N0, and value v ∈ Q.

To the best of our knowledge, ratio games are introduced by Bloem et al. for the
synthesis of robust systems [BGHJ09]. The winning condition Ws/t≥v stipulates
that, for every ε ≥ 0 there exists some time N ≥ 0, such that for all n ≥ N after
this time, the fraction (

∑n
i=1 s(σi))/(

∑n
i=1 t(σi)) is at most ε less than v.

If t(σ) = 1, for all moves σ ∈ Σ, then we obtain a mean-payoff game. Much
research has been devoted to finding efficient algorithms that solve mean-payoff
games. One of the best known algorithms for mean-payoff games is due to Brim
et al. [BCD+11]. Their solution for mean-payoff games generalize easily to ratio
games. We provide a brief explanation of this algorithm, and refer to [BCD+11]
for full details.

A classical result by Ehrenfeucht and Mycielsky [EM79], called memoryless
determinacy, states that there exists a positional optimal joint strategy for mean-
payoff games (and ratio games).

Definition 8.1.5. A joint strategy ζ : Σ∗ → Σ is positional, if δ(q0, s1) = δ(q0, s2)
implies ζ(s1) = ζ(s2), for all move sequences s1, s2 ∈ Σ∗.

A positional strategy depends only on the current state δ(q0, s), instead of the
full history s ∈ Σ∗. If both players follow some positional strategy, the outcome of
the game is a path

q0
σ1−→ · · · → qk

σk−→ · · · → qn
σn−−→ qk

σk−→ · · · (8.1)

in the safety automaton that ends with a cycle in the distinct states qk, . . . , qn.
The outcome of a ratio game is winning for a value v = a/b ∈ Q if and only if
(
∑n
i=k s(σi))/(

∑n
i=k t(σi)) ≥ v = a/b, which is equivalent to

∑n
i=k w(σi) ≥ 0, with

w(σ) = b · s(σ)− a · t(σ), for all moves σ ∈ Σ.
Brim et al. observed that positional winning strategies for Player 1 in a ratio

game correspond with consistent valuations:

Definition 8.1.6. A valuation f : Q→ N0 ∪ {∞} is consistent in state q ∈ Q iff

1. q ∈ C1 implies f(q) + w(σ) ≥ f(δ(q, σ)), for some move σ ∈ Σq, or

2. q ∈ C2 implies f(q) + w(σ) ≥ f(δ(q, σ)), for every move σ ∈ Σq,

A valuation is consistent if it is consistent in every state.

Suppose that there exists a consistent valuation f : Q → N0 ∪ {∞}. Re-
peated application of Definition 8.1.6 to the path in Equation (8.1) yields f(qk) +∑n
i=1k w(σi) ≥ f(δ(qk, σ1 · · ·σn)) = f(qk). If f(qk) <∞ is finite, then the outcome

is winning for Player 1.
Brim et al. suggest a value iteration method to find the smallest possible

valuation (we compare valuations pointwise: f ≤ f ′ iff f(q) ≤ f ′(q), for all states
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Algorithm 3: Synthesis problem for ratio games.

Input : A ratio game (A,C,Ws/t≥v), with A = (Q,Σ, δ, q0, F ), functions
s : Σ→ Z and t : Σ→ N0, and a value v = a

b ∈ Q.
Output: A the largest quasi-strategy ζ : Q→ 2Σ that is winning.

1 foreach σ ∈ Σ do w(σ)← b · s(σ)− a · t(σ);
2 foreach q ∈ Q do f(q)← 0;
3 foreach q ∈ C do c(q)← |{σ ∈ Σq | f(q) + w(σ) < f(δ(q, σ))}|;
4 B ←∑

q∈Q max({0} ∪ {−w(q, σ) | σ ∈ Σq});
5 L← {q ∈ Q | f inconsistent in q};
6 while L 6= ∅ 6= {q ∈ Q | f(q) = 0} and f(q0) <∞ do
7 Pick q ∈ L, with f(q) minimal;
8 fq ← f(q);
9 f(q)← min{n ∈ {1, . . . , B,∞} | f [q 7→ n] consistent in q};

10 L← L \ {q};
11 if q ∈ C then c(q)← |{σ ∈ Σq | f(q) + w(σ) < f(δ(q, σ))}|;
12 foreach (p, σ) with δ(p, σ) = q 6= p and f(p) + w(σ) < f(q) do
13 if p ∈ C then
14 if f(p) + w(σ) ≥ fq then c(p)← c(p)− 1;
15 if c(p) = 0 then L← L ∪ {p};
16 if p ∈ Q0 then L← L ∪ {p};
17 foreach q ∈ Q do

ζ(q)← {σ ∈ Σq | f(q) + w(σ) ≥ f(δ(q, σ)), and f(q) <∞};

q ∈ Q). Our Algorithm 3 shows a variation of their algorithm with only a few
minor, but novel, adjustments.

The first modification is on Lines 6 and 7. Let a = minq∈Q f∗(q) be the smallest
value of the smallest valuation f∗. If a <∞, then the valuation f ′ : Q→ N0 defined
as f ′(q) = f∗(q) − a, for all q ∈ Q, is less than or equal to f∗. Minimality of f∗
shows that a = 0, which means that there exists a state q ∈ Q with f∗(q) = 0. We
refer to q ∈ Q with f∗(q) = 0 as a pivot state. If there are no more pivot states,
we can terminate the value iteration.

The second (minor) modification is on Line 9, which becomes apparent for states
q ∈ Q with a negative self loop transition (i.e., some σ ∈ Σ with δ(q, σ) = q and
w(σ) < 0). While the original algorithm by Brim et al. repeatedly adds −w(σ)
to the valuation f(q) at state q, Algorithm 3 immediately jumps to the smallest
valuation that resolves the inconsistency at q.

Value problem For given functions s and t, we have a family {Ws/t≥v | v ∈ Q}
of winning conditions. Since Player 1 wishes to maximize the ratio between the
cumulatives of s and t, it is natural to look for the largest value v ∈ Q for which
there exists a winning strategy. This problem is known as the value-problem. The
set of values that are winning for Player 1 is a half-open interval (−∞, v∗], with v∗
the optimal value. Using Algorithm 3, we can test the query v ≥ v∗ for any value
v ∈ Q. Hence, the value problem can be solved by a binary search. Comin and
Rizzi [CR17] improved this idea by reusing results from earlier queries.



8.2. SCHEDULING GAME 158

E1

E2

E3

E4

E5

A1
15

A2
15

A3
15

A1
2

8

A1
3

24

A1
4 4

A2
4 4

A3
4 4

Figure 8.1: Petri net representation of a small cyclo-static dataflow graph.

8.2 Scheduling Game

We use the graph games from Section 8.1 to develop a game-theoretic framework for
the synthesis of non-preemptive schedules. We assume that a concurrent program
is given in the form of a work automaton (Q,Σ, J, T, I, c0) (cf., Section 7.1). Of
course, we assume that the work automaton accurately models the real application.
It may be nontrivial to verify whether or not the work automaton in fact models
the application sufficiently accurately, but this concern is beyond the scope of our
work on scheduling. In the worst case, one can ensure the application’s compliance
with the work automaton model by means of runtime verification.

As a running example, we formalize a simple cyclo-static dataflow network as
a work automaton.

Example 8.2.1. Figure 8.1 shows the Petri net representation [Mur89] of a small
cyclo-static dataflow (CSDF) graph from [Bam14, p. 29]. Recall that a Petri
net consists of places (depicted as circles) that contain zero or more tokens, and
transitions (depicted as rectangles). A transition firing consumes a single token
from each of its input places and produces a token in each of its output places.

The system in Figure 8.1 consists of 4 actors (A1 to A4), which are connected
via 5 buffers (E1 to E5). The original example in [Bam14] does not make any
assumptions on the nature of the buffers: they can be FIFO, LIFO, lossy, or priority
buffers. For our purpose, we assume that writing to a full buffer loses the written
data. For simplicity, Figure 8.1 represents each buffer as a place in the Petri net.
The losing behavior is made precise in the work automaton in Figure 8.2(e).

Each actor Ai, for 1 ≤ i ≤ 4, cycles through a number of phases (hence the name
cyclo-static). Figure 8.1 represents each phase as a transition Aji , for some index
j, in the Petri net. Each phase of an actor requires time to execute. Although the
actual times may vary, we consider only the worst-case execution times (WCET).
We assume that all phases of a given actor have the same WCET. The integer
value next to each transition in Figure 8.1 specifies its WCET. ♦

Although the functional behavior (as a Petri net) of the dataflow network in
Figure 8.1 is very precise, its non-functional behavior (the timing of transitions)
is still unclear. The following example makes this precise by providing a work
automaton for each actor and buffer in Figure 8.1:

Example 8.2.2. Figure 8.2 shows the work automata that encode the informal
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description of the behavior of the CSDF graph in Example 8.2.1. The work au-
tomaton for Ai, with 1 ≤ i ≤ 4, has a real-valued job variable ji that measures the
progress of its respective actor. The initial condition j1 = 0 in Figure 8.2(a) shows
that actor A1 must first perform 5 units of work on j1 before it can produce on
E1 and E3. In contrast, the initial condition j4 = 4 in Figure 8.2(b) shows that
actor A4 can immediately consume tokens from E3 and E4. The work automata
for A2 and A3 in Figures 8.2(c) and 8.2(d) are very similar. Each first consumes a
datum from its input buffer, then executes for a given amount of time, and finally
produces a datum in its output buffer. Figure 8.2(e) shows the work automaton for
a buffer of capacity 4 (buffers of other capacity are defined similarly). The self-loop
transition on state s4 loses the data, if the buffer is full. ♦
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3 ,ē
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Figure 8.2: Work automata for the dataflow graph in Figure 8.1, without the idling
transitions (si, ∅,>, ∅, si), for all states i. The self-loop transition in (e) loses the
data, if the buffer is full.

By definition, non-preemptive scheduling relies on the cooperation of the appli-
cation for managing its execution. We therefore, assume that the work automaton
is cooperative:

Definition 8.2.1. A work automaton A is cooperative if and only if for every job
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bj = 0

j = 0

r

j ≤ B

{xj},>, ∅

{yj}, j ≤ B, {j}

Figure 8.3: Work automaton specifying cooperative behavior of a job j. Signal
xj executes job j, and signal yj yields job j. The bound B ∈ N0 ensures job j
eventually yields.

0>
>

1

>

X,>, ∅

Y,>, ∅
Z,>, ∅

Figure 8.4: Work automaton GA specifying the rules of the scheduling game for
a work automaton A. The scheduler selects any signal X ⊆ N that intersects
XJ = {xj | j ∈ J}. The application selects a signal Y ⊆ N \ XJ that intersects
YJ = {yj | j ∈ J} or a signal Z ⊆ N \XJ that does not intersect YJ .

j ∈ J of A, we have that A ./ Aj and A are identical up to renaming of states,
where Aj is the work automaton in Figure 8.3.

To obtain a scheduling game from a given cooperative work automaton A, we
compose A with the auxiliary work automaton GA in Figure 8.4 that allows us to
determine which player is to move and what moves are allowed by each player. In
the composition A ./ GA, every state is either controlled (if GA is in state 0) or
uncontrolled (if GA is in state 1).

In the sequel, we assume without loss of generality that the work automaton
GA is already integrated in the specification of the cooperative work automaton:

Definition 8.2.2. A cooperative work automaton is playable iff A ./ GA and A
are identical up to state renaming.

The semantics of a playable cooperative work automaton A from Definition 7.1.3
cannot be used directly in a graph game, because there are infinitely many ways
to make progress via the d-transitions. Of course, not all progressions are equally
likely to happen. In fact, if sufficiently many processors are available, we expect
that all running processes make an equal amount of progress. We assume that
these processes run uninterruptedly and at equal speeds. That is, we use job
assignments [S] : J → R, for a subset of jobs S ⊆ J , such that [S](j) = 1 if j ∈ X,
and [S](j) = 0, otherwise. We denote the expected transition in the semantics with
a double arrow:

Definition 8.2.3. The expected semantics JAKe of a work automaton A is the
subgraph of JAK with the ⇒ edges defined by the rules

c
[S]−−→ c′ if c

[S′]−−→ c′ and S′ 6= S then S * S′

c
[S]
=⇒ c′

and
c
σ−→ c′

c
σ
=⇒ c′
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1 1 1 3 1 1 3

2 4 2 4 1 4 2 4

Figure 8.5: Generated schedule. The vertical dashed line indicates the start of the
period.

The expected transition relation is just a subrelation of the real transition re-
lation of the semantics of a work automaton. Note that there is no guarantee that
the real execution follows the expected one. However, we show in Section 8.3 that
deviations of real execution from expected execution do not cause deadlocks.

Lemma 8.2.1. The expected semantics of a cooperative work automaton is finite.

Proof. Since A is cooperative, the progress of every job is bounded by B ∈ N0 in
every state (Figure 8.3). By a simple induction, it follows that the configurations

of the expected semantics are contained in the finite set Q× {0, . . . , B}J .

The final ingredient for a scheduling game is an objective. The only restriction
that we impose on a scheduling objective is that it must be expressible as a ratio
objective Ws/t≥v, in terms of some functions s : M → Z and t : M → N0.

Example 8.2.3. The composition of the work automata in Figures 8.2 and 8.4
yields a game graph. We maximize the throughput, which we define as the ratio
between the number of productions and the number of time steps (ticks). We can
count the productions by counting how often e5 fires. Hence, we define

s(a1 · · · an) = |{i | e5 ∈ ai ∈ Σ}| and t(a1 · · · an) = |{i | ai ∈ RJ+}|.

Algorithm 3 finds a subgame for which every play is of optimal throughput.
As the CSDF graph is a deterministic program, all non-determinism is con-

trolled by the scheduler. Since all options ensure optimal throughput, we can
resolve the non-determinism arbitrarily. We resolve non-determinism by preferring
idling. The deterministic scheduling strategy for this example can be presented as
a Gantt chart, shown in Figure 8.5. ♦

8.3 Protocol restriction

Consider a playable cooperative work automaton A from Section 7.1 and a non-
preemptive scheduling strategy ζ : C → Σ from Section 8.2, with C the set of
configurations of the expected semantics JAKe of A. Now we intend to implement
the schedule ζ as a protocol A(ζ) that blocks precisely those jobs that are not
supposed to make progress, such that the operating system scheduler has to closely
follow the desired scheduling strategy.

The solution to ratio games in Algorithm 3 returns a subgraph of the original
game graph. For a scheduling game, vertices are configurations of A, and the
edge come from the expected transition relation. Hence, the resulting scheduling
strategy can be easily transformed back into a work automaton.
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Definition 8.3.1. The scheduling work automaton A(ζ) of a scheduling strategy
ζ is defined as the tuple (C,Σ, ∅,→, I, c0) with states C = Q×NJ0 , trivial invariant
I(c) = > for all states c ∈ C, and transition relation defined by the rule

c ∈ C controlled c
a

=⇒ c′ ζ(c) defined implies a = ζ(c)

c
a,>,∅−−−→ c′

We enforce the scheduling strategy by considering the composition A ./ A(ζ).
The composition A ./ A(ζ) does not introduce any new, undesired executions,
but merely restricts the composition to a subset of desired executions of A. By
construction, A and A(ζ) synchronize only on signals, which agrees with the fact
that the schedule ζ is non-preemptive.

For the construction of the scheduling game in Section 8.2, we assume that
scheduled jobs run as expected, i.e., they run continuously and at constant speed.
However, it is actually very likely that the actual execution deviates from the
expected execution. A natural question is whether such deviations may confuse
the scheduler enough to introduce deadlocks.

Theorem 8.3.1. If A is a composition of simple work automata, then A ./ A(ζ)
is deadlock free.

A simple work automaton is a work automaton with at most one job and no
silent transitions that in every configuration can either make progress or fire a
transition, but cannot do both. The work automata in Figure 8.2 are examples of
simple work automata.

of Theorem 8.3.1. The state-space of A ./ A(ζ) is defined by tuples consisting
of a state q ∈ Q and a configuration (q′, p′) of A(ζ). Let c = ((q, (q′, p′)), p) ∈
(Q × (Q × NJ0 )) × RJ be a reachable configuration of A ./ A(ζ). The absence of
silent transitions ensures that the scheduler A(ζ) knows the state of A (i.e, we have
q = q′). The progress p : J → R of the jobs may still be unknown (i.e., p 6= p′

is possible). By construction, there exists some expected execution of A ./ A(ζ)
that passes through the same state q (although the progress may be different from
p) and enables a transition t = (q, σ, g, R, q′). Since the work automaton for each
job is simple, the guard g of transition t states that the progress of a subset of
jobs is maximal (while the progress of other jobs is irrelevant). Hence, from c we
can make sufficient progress to enable transition t, which implies that c is not a
deadlock.

Example 8.3.1. To evaluate the schedule in Figure 8.5, we implement the CSDF
graph in Figure 8.1 in Python. We performed the experiment on a 64-bit Windows
10 Home Edition with a Intel R© CoreTM i7-7700HQ CPU at 2.80 GHz and 16 GB
RAM. We executed the source code with a 64-bit Python 3.9.0 interpreter.

Appendix B shows the source code of the scheduled application. It is obtained
manually, but mechanically, from the original source code in Appendix A by adding
barrier synchronizations between the actors and a scheduler process. This scheduler
process implements the non-preemptive schedule in Figure 8.5.

Figure 8.6 shows the histogram (with a bin-size of 10 ms) of the output of both
versions of the program. We measure the throughput (i.e., the time between suc-
cessive productions) of each version. Both the expected value and the standard
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Figure 8.6: Throughput of original program (a) and scheduled program (b). The
horizontal axis is the time in milliseconds between successive firings of A3

4 (grouped
in bins of 10 milliseconds), and the vertical axis is the frequency of each bin.

deviation of the two versions differ. The original version has an expected through-
put of 441 ms with a standard deviation of 95 ms. The scheduled version has an
expected throughput of 386 ms and a standard deviation of 6 ms.

The quality of the schedule alone does not explain the improvement of the
expected throughput; the characteristics of the original protocol are the most im-
portant factor in this example. Recall that we use overflow buffers, which means
that an actor loses its datum, if its respective buffer is full. If a datum is lost, all
effort invested in its production is also lost. The general-purpose scheduler of the
operating system is unaware of these losses. ♦

Although the game-theoretic framework in Section 8.1 aims to optimize the
expected throughput, Example 8.3.1 shows that the most significant improvement
in the scheduled protocol is in its impact on the standard deviation of the through-
put. The time between successive productions is much more predictable for the
scheduled version compared to the original version. Since we force the operating
system scheduler to closely follow a fixed, deterministic schedule, predictability of
the throughput is not surprising.

Predictable timing is a requirement for many systems. For example, a pace-
maker must assist a patient’s heart to beat at a regular and predictable rate, and
a self-driving car must sense and analyze its environment at a predictable rate to
avoid collisions. The results of Example 8.3.1 show that the unpredictable behav-
ior of the scheduler of the operating systems can be made tightly predictable by
restricting the protocol through composition with a scheduling protocol.

8.4 Related work

There is a wealth of literature on different models for concurrent software, ranging
from the well-known Petri nets [Mur89], to the lesser-known higher-dimensional
automata [Pra91, vG06].

Our implementation of the scheduler as a composition is very similar to the
definition of a scheduler defined by Goubault [Gou95]. In his work, Goubault
specifies the application as a higher dimensional automaton and views the scheduler
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as a subautomaton. While our scheduling framework builds on graph games, his
work depends on the solution of a particular problem on huge sparse matrices.

The work on (variants of) timed automata [AD90] is closely related to our work
in Chapters 7 and 8. In fact, syntax of work automata is identical that of timed
automata, and the clock variables in timed automata correspond naturally with
the jobs in work automata. However, their semantics differs significantly: in a
timed automaton all clocks progress at the same speed, while work automata do
not make assumptions on the relative speeds of job progress.

Stopwatch automata [CL00] are one step closer to work automata, as in each
state a clock is either running or paused. This feature allows stopwatch automata
to use the clocks to measure the progress of jobs [AM02].

Uppaal Stratego [DJL+15] is a tool the analysis of stochastic priced timed
games. Similar to our work, this tool uses strategies to achieve safety and per-
formance. Uppaal Stratego enforces these strategies via parallel composition with
the original automaton. In contrast with our work, Uppaal Stratego can handle
stochastic environments by means of simulation and reinforcement learning. Up-
paal Stratego’s ideas complement our work. Currently, we use the algorithm for
ratio games from Section 8.1 to solve the scheduling game in this chapter. How-
ever, replacing this algorithm with Uppaal Stratego’s algorithms would provide the
benefits of both approaches.

8.5 Discussion

Protocols contain valuable information indispensable for construction of optimal
(non-preemptive) schedules for allocation of resources to execute a concurrent ap-
plication. Exogenous languages like Reo express a protocol as an explicit software
construct, which makes this scheduling information accessible. We express proto-
cols together with their scheduling information in terms of the work automaton se-
mantics of Reo. We construct a generic scheduling framework based on ratio games
to find optimal non-preemptive schedules for an application defined as a work au-
tomaton. By composing such a scheduling protocol with the original protocol of an
application, we obtain a composite scheduled protocol that forces generic operating
system preemptive schedulers to closely follow the desired optimal schedule. The
exogenous nature of Reo guarantees that the application code remains oblivious to
the substitution of the composite scheduled protocol for its original protocol. An
experiment shows that a scheduled version of a cyclo-static dataflow network (with
the composite protocol) has higher and more predictable throughput compared to
its original version.

Future work The algorithm by Brim et al. to solve ratio games requires the full
state-space of an application. In view of the state-space explosion problem, we can
use other schemes (like Monte-Carlo tree search) to find good schedules.

Although the work presented in our current chapter focuses on maximizing
throughput, the ratio objective can express many other scheduling performance
measures, like fairness, context-switches, or energy consumption. We intend to
express these performance measures in terms of ratio objectives.
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Conclusion

9.1 Summary

With the advent of multicore processors [ABD+09] and data centers [Kan09] com-
puter hardware has become increasingly parallel, which allows one to run multiple
pieces of software at the same time on different machines. Programmers can en-
joy the fruits of parallelism by partitioning software into relatively independent
components and running these components simultaneously.

Of course, these components are not completely independent: they must cooper-
ate to achieve the common goal of the complete software system. Such cooperation
of components requires shared resources and coordination. As explained in Part I,
coordination is best expressed in an explicit interaction protocol that clearly defines
the interactions amongst all components in the software. An explicit interaction
protocol not only improves code structure, but also enables automated analysis of
the protocol [Klü12], and improved execution efficiency by compiler optimizations
[Jon16]. In Chapter 2, we compare two coordination languages, BIP and Reo,
and offer formal translations between them. Our comparison reveals differences
between BIP and Reo with respect to composition and priority. The difference in
composition leads to the proposal of a composition operator for data-sensitive BIP
architectures.

We aim to narrow the ‘priority gap’ between BIP and Reo in Chapter 3 by
expanding the theory of soft constraint automata with memory cells and bipolar
preference values. These soft constraint automata offer a semantics for Reo wherein
bipolar preference values can express a weak form of priority, such as context-
sensitivity. Our approach to context-sensitivity differs significantly from other ap-
proaches (that do not model preferences as explicit values), such as connector
coloring [CCA07], dual ports [JKA11], intentional automata [CNR11], augmented
Büchi automata of records [IBC08], and guarded automata [BCS12]. Although we
consider context-sensitivity in the realm of Reo, we stress that context-sensitivity
is a fundamental concept that applies to languages other than Reo.

Part II of our thesis focuses on the generation of executable code for a given
interaction protocol that merges its coordinated components into a single concur-
rent software. We temporarily ignore the coordinated components and study the

165
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interaction protocol in isolation. The basis of any compiler is a well-defined in-
put language. Many Reo tools use a plugin in the Eclipse editor as a graphical
editor for Reo connectors. The graphical editor not only commits the user to the
Eclipse editor, but also lacks important features such as parameter passing, itera-
tion, recursion, or conditional construction of connectors. Some Reo tools therefore
develop their own textual language, each having a specific Reo semantics in mind.
In Chapter 4, we propose a textual language, called Treo, that does not commit to
any specific semantics.

We use the freedom of the semantics in Treo to propose a new semantics that
represents Reo connectors as temporal logic formulas called stream constraints.
Such constraints can be written in may equivalent forms. Since composition is
conjunction, the composite constraint grows linearly in size. However, compila-
tion of such a conjunction is hard and requires a constrain solver (possibly at run
time). Chapter 5 identifies the rule-based form as a form that balances the trade-
off between composition and compilation of constraints. A rule in a rule-based
form corresponds naturally to a loosely coupled thread or process, which makes
compilation straightforward. The composition of rule-based constraints grows lin-
early most many practical cases (such as the Alternatork in Figure 5.3), and grows
exponentially only in the worst case. We implemented a Reo compiler based on
stream constraints, and showed that it outperforms the state-of-the-art Reo com-
piler ([JKA17]).

Reflecting on our stream constraints, our main observation is the discrepancy
with respect to concurrency between Reo connectors and their formal semantics
[JA12]. While Reo connectors are considered concurrent, almost all semantics for
Reo are expressed in an inherently sequential model (such as streams or automata).
The encoding of Reo connectors into zero-safe (Petri) nets is the only exception.
This mismatch results in ad hoc extraction of concurrency via techniques like ‘syn-
chronous region decomposition’ [JCP16], ‘local multiplication’ [Jon16], or our rule-
based form in Chapter 5. In Chapter 6, we propose an inherently concurrent
semantics for Reo connectors as Multilabeled Petri nets, which turns the ad hoc
extraction of concurrency from our rule-based form into the standard interpreta-
tion of concurrency in Petri nets. While the syntax and semantics of Petri nets
is standard, our main contribution is a composition operator on Petri nets that
mimics the composition in stream constraints. As a result, we obtain a simple
expressive Reo semantics that can be effectively compiled into efficient code.

In Part III, we study the effect of the interaction protocol schedulability of the
complete software (including the coordinated components). In order to compute
high quality schedules for a software system, we must know how much processing
time (or work) each component requires. To this end, we develop work automata
in Chapter 7, which express, for a fixed number of components, how much work
each component can/must do. We develop a gluing technique that allows us to
minimize the state space of a work automaton to potentially a single state with a
complex invariant. This invariant exposes mutual exclusion as holes in a higher-
dimensional space. If a scheduler can avoid such holes, we can potentially drop the
(costly) locks that prevent the application from transgressing into these holes.

Next, we use work automata to develop a game theoretic scheduling framework.
In general, the scheduler decides which components can run, while the application
decides how to resolve non-determinism during execution. In Chapter 8 we for-
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malize this game as a two-player zero-sum game played on a graph, and slightly
adapt existing solutions to compute a scheduling strategy for a small cyclo-static
dataflow application that optimizes throughput.

The most straightforward solution to implement our synthesized strategy is to
replace the default operating system scheduler with a custom application-specific
scheduler. While this approach is possible, it is a non-trivial, costly task that re-
quires administrative rights on the operating system. We present a novel alternative
that implements the synthesized strategy in the software, while keeping the default
operating system scheduler in place. First, we transform the resulting strategy into
a scheduling protocol, and subsequently compose this scheduling protocol with the
original protocol of the application. As a result, a general-purpose operating system
scheduler (which schedules all non-blocked components in a round-robin fashion)
will closely follow our optimal strategy. As a result, we avoid complex custom
schedulers, while still obtaining our scheduling goals.

9.2 Future work

In this thesis, we demonstrated the practical use of the schedule-protocol duality
from Chapter 1 by applying it to the special case of cyclo-static dataflow soft-
ware. However, the applications of the schedule-protocol duality are not limited
to this special case, and further research can study the implications of this duality
on cyber-physical software and real-time systems. These more general systems of-
ten have real-time constraints and alternative objectives (other than throughput),
which we do not consider in the current thesis.

Even if a program is represented as a small Petri net, its scheduling game can
have a very large number of positions. The scheduling game of the cyclo-static
dataflow program from Chapter 8 turned out to be just small enough to be solved
on our personal laptop, but solving the scheduling game for larger programs requires
superior hardware like a computer cluster. To handle even larger applications, we
can improve the scalability of schedule synthesis by using different solvers that
avoid the state-space explosion. One direction is to search for classes of programs
that can be scheduled by existing powerful solvers (like ILP solvers, SAT solvers, or
SMT solvers). Another direction is to develop scheduling heuristics that simplify
scheduling synthesis at the cost of suboptimal solutions.

The work automata introduced in Chapter 7 encode all relevant scheduling
information and we use them as input to our scheduling framework. In this thesis,
we assumed that these work automata are given and put our focus on the resulting
scheduling problem. Although the problem of finding the work automata of a
given program is non-trivial, the search can be automated, if all necessary details
(such as the exact machine instructions and the hardware architecture) are known.
Even if not all necessary details are known, we can still approximate the size of
the workloads through experimentation. The workload can then be represented
as a distribution (rather than a single value), which can be encoded as a work
automaton via non-deterministic transitions.
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65–87.



171 BIBLIOGRAPHY

[AS12] Farhad Arbab and Francesco Santini. Preference and similarity-based
behavioral discovery of services. In Maurice H. ter Beek and Niels
Lohmann, editors, Web Services and Formal Methods - 9th Inter-
national Workshop, WS-FM 2012, Tallinn, Estonia, September 6-7,
2012, Revised Selected Papers, volume 7843 of Lecture Notes in Com-
puter Science, pages 118–133. Springer, 2012.
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[CPLA11] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab.
Channel-based coordination via constraint satisfaction. Sci. Comput.
Program., 76(8):681–710, 2011.

[CR17] Carlo Comin and Romeo Rizzi. Improved pseudo-polynomial bound
for the value problem and optimal strategy synthesis in mean payoff
games. Algorithmica, 77(4):995–1021, 2017.

[CRBS08] Mohamed Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph
Sifakis. Translating AADL into BIP - application to the verification
of real-time systems. In Michel R. V. Chaudron, editor, Models in
Software Engineering, Workshops and Symposia at MODELS 2008,
Toulouse, France, September 28 - October 3, 2008. Reports and Re-
vised Selected Papers, volume 5421 of Lecture Notes in Computer Sci-
ence, pages 5–19. Springer, 2008.

[DA17] Kasper Dokter and Farhad Arbab. Exposing latent mutual exclusion
by work automata. In Mohammad Reza Mousavi and Jiŕı Sgall, edi-
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Appendix A

Original CSDF program

import multiprocessing as mp

import queue

import psutil

import time

def dummy_work(duration):

a = 1

for i in range(duration * 100000):

a = (a * i) % 10000

def put_or_lose(e):

try:

e.put_nowait(True)

except queue.Full:

pass

def A1(e1 , e2 , e3):

wcet = 5

psutil.Process ().cpu_affinity ([0 ,1])

while True:

dummy_work(wcet)

put_or_lose(e1)

put_or_lose(e3)

dummy_work(wcet)

put_or_lose(e1)

put_or_lose(e3)

dummy_work(wcet)

put_or_lose(e2)

put_or_lose(e3)

def A2(e1 , e4):

wcet = 8

psutil.Process ().cpu_affinity ([0 ,1])

while True:

e1.get()
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dummy_work(wcet)

put_or_lose(e4)

def A3(e2 , e5):

wcet = 24

psutil.Process ().cpu_affinity ([0 ,1])

while True:

e2.get()

dummy_work(wcet)

put_or_lose(e5)

def A4(e3 , e4 , e5):

wcet = 4

psutil.Process ().cpu_affinity ([0 ,1])

throughputs = []

while len(throughputs) < 500:

t = time.time()

dummy_work(wcet)

e3.get()

e4.get()

dummy_work(wcet)

e3.get()

e4.get()

dummy_work(wcet)

e3.get()

e5.get()

throughputs.append(round (1000*( time.time()-t)))

print(throughputs)

if __name__ == ’__main__ ’:

e1 = mp.Queue (50)

e2 = mp.Queue (50)

e3 = mp.Queue (50)

e4 = mp.Queue (50)

e5 = mp.Queue (50)

A = [

mp.Process(target=A1,args=(e1, e2, e3), daemon=True),

mp.Process(target=A2,args=(e1, e4), daemon=True),

mp.Process(target=A3,args=(e2, e5), daemon=True),

mp.Process(target=A4,args=(e3, e4, e5), daemon=True)

]

for p in A:

p.start()

A[3]. join()
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Scheduled CSDF program

import multiprocessing as mp

import queue

import psutil

import time

def dummy_work(duration):

a = 1

for i in range(duration * 100000):

a = (a * i) % 10000

def put_or_lose(e):

try:

e.put_nowait(True)

except queue.Full:

pass

def A1(e1 , e2 , e3 , b):

wcet = 5

psutil.Process ().cpu_affinity ([0 ,1])

while True:

b.wait()

dummy_work(wcet)

put_or_lose(e1)

put_or_lose(e3)

b.wait()

b.wait()

dummy_work(wcet)

put_or_lose(e1)

put_or_lose(e3)

b.wait()

b.wait()

dummy_work(wcet)

put_or_lose(e2)

put_or_lose(e3)

b.wait()
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def A2(e1 , e4 , b):

wcet = 8

psutil.Process ().cpu_affinity ([0 ,1])

while True:

b.wait()

e1.get()

dummy_work(wcet)

put_or_lose(e4)

b.wait()

def A3(e2 , e5 , b):

wcet = 24

psutil.Process ().cpu_affinity ([0 ,1])

while True:

b.wait()

e2.get()

dummy_work(wcet)

put_or_lose(e5)

b.wait()

def A4(e3 , e4 , e5 , b):

wcet = 4

psutil.Process ().cpu_affinity ([0 ,1])

throughputs = []

while len(throughputs) < 500:

t = time.time()

b.wait()

dummy_work(wcet)

e3.get()

e4.get()

b.wait()

b.wait()

dummy_work(wcet)

e3.get()

e4.get()

b.wait()

b.wait()

dummy_work(wcet)

e3.get()

e5.get()

b.wait()

throughputs.append(round (1000*( time.time()-t)))

print(throughputs)

def Scheduler(b1 , b2 , b3 , b4):

b1.wait()

b1.wait()

b1.wait()

b2.wait()

b1.wait()

b1.wait()
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b2.wait()

b4.wait()

b1.wait()

b3.wait()

b4.wait()

while True:

b2.wait()

b2.wait()

b4.wait()

b4.wait()

b1.wait()

b1.wait()

b3.wait()

b1.wait()

b4.wait()

b4.wait()

b2.wait()

b1.wait()

b1.wait()

b1.wait()

b3.wait()

b2.wait()

b4.wait()

b4.wait()

if __name__ == ’__main__ ’:

e1 = mp.Queue (50)

e2 = mp.Queue (50)

e3 = mp.Queue (50)

e4 = mp.Queue (50)

e5 = mp.Queue (50)

b1 = mp.Barrier (2)

b2 = mp.Barrier (2)

b3 = mp.Barrier (2)

b4 = mp.Barrier (2)

A = [

mp.Process(target=A1,args=(e1,e2,e3,b1),daemon=True),

mp.Process(target=A2,args=(e1,e4,b2),daemon=True),

mp.Process(target=A3,args=(e2,e5,b3),daemon=True),

mp.Process(target=A4,args=(e3,e4,e5,b4),daemon=True),

mp.Process(

target=Scheduler ,

args=(b1,b2,b3,b4),

daemon=True

)

]

for p in A:

p.start()

A[3]. join()
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Samenvatting

Met de opkomst van multicore processoren en datacenters is computer hardware in
toenemende mate parallel geworden, waardoor het mogelijk is om verschillende soft-
wareonderdelen tegelijkertijd op verschillende machines uit te voeren. Coördinatie
van deze softwareonderdelen wordt het beste uitgedrukt in een coördinatietaal als
een expliciet interactieprotocol dat de interacties tussen alle onderdelen van de
software duidelijk definieert.

Een expliciet interactieprotocol verbetert niet alleen de structuur van de code,
maar maakt ook geautomatiseerde analyse van het protocol mogelijk om de uit-
voeringsefficiëntie van de software te verbeteren. In het bijzonder bevatten inter-
actieprotocollen belangrijke informatie die essentieel is voor efficiënte roostering,
een activiteit die betrekking heeft op de toewijzing van (reken)middelen aan soft-
waretaken. In dit proefschrift richten we ons specifiek op het verbeteren van de
uitvoeringsefficiëntie door middel van roosteren. Roosteren is bijna altijd de verant-
woordelijkheid van een generiek besturingssysteem dat geen aannames maakt over
de software en daardoor alle relevante roosterinformatie in die software negeert.
Als gevolg hiervan kan het besturingssysteem alleen niet zorgen voor optimaal
geroosterde uitvoering van de software.

In dit proefschrift stellen we een oplossing voor die het protocol in de soft-
ware verandert, zodat het efficiënt wordt geroosterd door het generieke besturings-
systeem. Het belangrijkste idee is om gebruik te maken van de dualiteit tussen
roostering en coördinatie. Om precies te zijn, analyseren we het protocol van de
software om een optimale roosterstrategie voor deze software te bepalen. Vervol-
gens dwingen we dit optimale rooster af door de strategie op te nemen in het oor-
spronkelijke protocol. Als gevolg hiervan dwingen we de onwetende roostermodule
van het besturingssysteem om ons vooraf bepaalde optimale rooster te volgen.

Om dit grotere doel te bereiken, presenteren we drie kleinere bijdragen. Ten
eerste verkrijgen we een uitgangspunt voor de planningsinformatie die beschikbaar
is in een coördinatietaal door twee coördinatiestalen, BIP en Reo, met elkaar te
vergelijken. Onze vergelijking leidt tot het voorstel van een compositieoperator
voor datasensitieve BIP-architecturen en de uitbreiding van de theorie van zachte
beperkingsautomaten (soft constraint automata) met geheugencellen en bipolaire
voorkeurswaarden.

Vervolgens bepalen we alle onafhankelijke delen van de software (inclusief die
in het protocol) die kunnen worden gepland. Hier introduceren we twee werke-
lijk gelijktijdige semantieken, namelijk multigelabelde Petri-netten en stroombeper-
kingen (stream constraints) in regelgebaseerde vorm. Door deze semantieken als
interne representatie te gebruiken, verbeteren we aanzienlijk de state-of-the-art
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Reo-compiler. Als bijproduct stellen we een tekstuele taal voor genaamd Treo
voor, waarmee we grote protocollen kunnen opbouwen door primitieve protocollen
samen te stellen.

Ten slotte representeren we alle relevante roosterinformatie van elk deel van de
software door de software uit te drukken als een werkautomaat die uitdrukt hoeveel
werk elk deel van de software kan/moet doen. We gebruiken deze werkautomaten
om een speltheoretisch roosterraamwerk te ontwikkelen dat roosteren formaliseert
als een tweespeler-nulspel dat wordt gespeeld op een graaf. We maken een kleine
aanpassing op bestaande oplossingen om een roosterstrategie te berekenen voor
een kleine cyclo-statistische datastroomtoepassing die de doorvoer optimaliseert.
Zoals beloofd dwingen we de optimale roosterstrategie af door deze te integreren
met het oorspronkelijke protocol, waardoor aangepaste wijzigingen in de standaard
roostermodule van het besturingssysteem worden vermeden.

Hoofdstuk 9 geeft een uitgebreidere samenvatting van dit proefschrift.



Summary

With the advent of multicore processors and data centers, computer hardware has
become increasingly parallel, allowing one to run multiple pieces of software at the
same time on different machines. Coordination of these pieces is best expressed in
a coordination language as an explicit interaction protocol that clearly defines the
interactions among all components in the software.

An explicit interaction protocol not only improves code structure but also en-
ables automated analysis of the protocol to improve execution efficiency of the
software. Specifically, interaction protocols contain significant information that is
essential for efficient scheduling, an activity that concerns the allocation of (com-
puting) resources to software tasks. In this thesis, we focus in particular on im-
proving execution efficiency through scheduling. Almost always, scheduling is the
responsibility of a general-purpose operating system that makes no assumptions on
the software and thereby ignores all relevant scheduling information in that soft-
ware. As a result, the operating system alone cannot ensure optimally scheduled
execution of the software.

In this thesis, we propose a solution that changes the protocol in the software
such that it will be efficiently scheduled by the general-purpose operating system.
The main idea is to take advantage of the duality between scheduling and coor-
dination. To be precise, we analyze the protocol of the software to determine an
optimal scheduling strategy for this software. Then, we enforce this optimal sched-
ule by incorporating the strategy in the original protocol. As a result, we force the
ignorant operating scheduler to follow our precomputed optimal schedule.

To achieve this larger goal, we present three smaller contributions. First, we
obtain a baseline for the scheduling information that is available in a coordination
language by comparing two coordination languages, BIP and Reo. Our comparison
leads to the proposal of a composition operator for data-sensitive BIP architectures
and the expansion of the theory of soft constraint automata with memory cells and
bipolar preference values.

Next, we concretely establish all independent parts in the software (including
those in the protocol) that can be scheduled. Here, we introduce two truly concur-
rent semantics namely multilabeled Petri nets and stream constraints in rule-based
form. Using these semantics as an intermediate representation, we significantly im-
prove state-of-the-art Reo compiler. As a byproduct, we propose a textual language
called Treo that allows us to construct large protocols by composing primitive ones.

Finally, we represent all relevant scheduling information of each part of the
software by expressing the software as a work automaton that expresses how much
work each part of the software can/must do. We use these work automata to
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develop a game-theoretic scheduling framework that formalizes scheduling as a
two-player zero-sum game played on a graph. We slightly adapt existing solutions
to compute a scheduling strategy for a small cyclo-static dataflow application that
optimizes throughput. As promised, we enforce the optimal scheduling strategy
by integrating it with the original protocol, which avoids custom changes to the
default operating system scheduler.

A more extensive summary of this thesis appears in Chapter 9.
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