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ABSTRACT

Choline has been shown to exert 
atherogenic effects in Apoe-

/- and Ldlr-/- mice, related to its 
conversion by gut bacteria into 
trimethylamine (TMA) that is 
converted by the liver into the 
proinflammatory metabolite 
trimethylamine-N-oxide (TMAO). 
Since butyrate beneficial ly 
modulates the gut microbiota 
and has anti-inflammatory and 
antiatherogenic properties, the 
aim of the present study was to 

investigate whether butyrate can alleviate choline-induced atherosclerosis. To this 
end, we used APOE*3-Leiden.CETP mice, a well-established atherosclerosis-prone model 
with human-like lipoprotein metabolism. Female APOE*3-Leiden.CETP mice were fed 
an atherogenic diet alone or supplemented with choline, butyrate or their combination 
for 16 weeks. Interestingly, choline protected against fat mass gain, increased the 
abundance of anti-inflammatory gut microbes, and increased the expression of gut 
microbial genes involved in TMA and TMAO degradation. Butyrate similarly attenuated 
fat mass gain and beneficially modulated the gut microbiome, as shown by increased 
abundance of anti-inflammatory and short chain fatty acid-producing microbes, and 
inhibited expression of gut microbial genes involved in lipopolysaccharide synthesis. 
Both choline and butyrate upregulated hepatic expression of flavin-containing 
monooxygenases, and their combination resulted in highest circulating TMAO levels. 
Nonetheless, choline, butyrate and their combination did not influence atherosclerosis 
development, and TMAO levels were not associated with atherosclerotic lesion size. 
While choline and butyrate have been reported to oppositely modulate atherosclerosis 
development in Apoe-/- and Ldlr-/- mice as related to changes in the gut microbiota, 
both dietary constituents did not affect atherosclerosis development while beneficially 
modulating the gut microbiome in APOE*3-Leiden.CETP mice.
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INTRODUCTION

Atherosclerosis, the main underlying cause of cardiovascular diseases (CVD), is a 
chronic disease arising from an imbalanced cholesterol metabolism and a maladaptive 
immune response [1]. Hypercholesterolemia induces the retention of apolipoprotein 
(Apo) B-containing cholesterol-rich lipoproteins in the arterial intima, which triggers 
infiltration of circulating monocytes into the intima, induces cholesterol-laden 
foam cell formation and accumulation, and subsequently initiates and aggravates 
atherosclerosis [1]. Therefore, cholesterol-lowering therapy potently reduces morbidity 
and mortality of atherosclerotic CVD (asCVD) [2]. Yet, a significant burden of asCVD 
remains, at least partly due to the residual inflammatory risk [3]. Therefore, there is an 
urgent need to search for additional therapeutic targets which govern atherogenesis, 
particularly those regulating both cholesterol metabolism and inflammation.

Several lines of evidence have linked the gut microbiota to atherogenesis [4, 5]. The 
gut microbiota is mainly shaped by dietary factors. Bacteria in the gut can metabolize 
complex dietary components to generate various functional small-molecule metabolites 
[4, 5]. Trimethylamine N-oxide (TMAO) is a gut-derived metabolite that has been 
described to aggravate atherosclerosis in Apoe−/− and Ldlr−/− mice [6, 7]. Gut microbiota 
generate TMAO from dietary choline via a two-step meta-organismal pathway to 
first produce trimethylamine (TMA) that is delivered via the portal vein to the liver 
where it can be rapidly oxidized into TMAO by flavin monooxygenases (FMOs). 
TMAO aggravates atherosclerosis via various mechanisms, such as promoting foam 
cell formation and activation of the inflammatory response [6, 8]. Hence, TMAO-
lowering interventions may have therapeutic potential to reduce asCVD risk. 
Interestingly, butyrate, a short chain fatty acid (SCFA), has been shown to protect 
against atherosclerosis in Apoe−/− and Ldlr−/− mice [9-12]. This is in part mediated 
through its action on the gut microbiota, since butyrate suppresses the overgrowth of 
pathogenic gut microbes, inhibits the synthesis of endotoxins, and prevents bacterial 
translocation. As a result, butyrate alleviates systemic inflammation, thereby halting 
atherosclerosis progression [9].

Based on the hypothesis that butyrate may be able to protect against dietary choline-
induced atherosclerosis development, the aim of the present study was to examine 
the effects of choline, butyrate and their combination on atherosclerosis in APOE*3-
Leiden.CETP mice, a well-established translational model for human-like lipoprotein 
metabolism. In contrast to our expectations, we demonstrate that both choline and 
butyrate beneficially modulate the gut microbiome without affecting atherosclerosis 
development, and TMAO levels were not associated with atherosclerotic lesion size.

2
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MATERIALS AND METHODS

For details of animals and antibodies used, please see the Major Resources Table in 
the Supplementary Materials.

Mice
Female APOE*3-Leiden.CETP mice were generated as previously described [13]. Mice at 
the age of 8-12 weeks were housed under standard conditions (22°C; 12/12-hour light/
dark cycle) with ad libitum access to water and a cholesterol-containing Western-
type diet (WTD; 0.15% cholesterol and 16% fat; ssniff, Soest, Germany). All mice were 
acclimatized to housing and WTD for 3 weeks prior to the dietary intervention. Then, 
based on 4-hour fasted plasma lipid levels, body weight as well as body composition, 
these mice were randomized to 4 treatment groups using RandoMice [14] (n=17 per 
group) receiving either WTD (ctrl group), WTD+choline (1.2% w/w, according to 
previous studies [6, 15]; choline group), WTD+butyrate (5% w/w, according to previous 
studies [16, 17]; butyrate group) or WTD+butyrate+choline (1.2% w/w choline and 5% 
w/w butyrate; butyrate+choline group) for 16 weeks according to a well-established 
protocol in our group [18-20]. The sample size was calculated based on the average 
atherosclerotic lesion area of 1×105 μm2 in the ctrl group with a standard deviation 
lesion size of 0.3×105 μm2. We considered a difference in plaque size of 30% to be 
biologically relevant. To achieve the differences with α=5% and a power of 80%, 17 
animals per group were therefore needed. Mice were group housed (4-5 per cage) 
during the experimental period to avoid stress caused by single housing. All animal 
experiments were performed in accordance with the Institute for Laboratory Animal 
Research Guide for the Care and Use of Laboratory Animals, and were approved by the 
National Committee for Animal Experiments and by the Ethics Committee on Animal 
Care (Protocol No. AVD1160020172927) and Experimentation of the Leiden University 
Medical Center (Protocol No. PE.18.063.006). All animal procedures were conform the 
guidelines from Directive 2010/63/EU of the European Parliament on the protection of 
animal used for scientific purposes.

Body weight and body composition
Body weight was measured weekly with a scale, and body composition of conscious mice 
was measured biweekly using an EchoMRI-100 analyzer (EchoMRI, Houston, TX, USA).

Plasma lipid profiles and choline metabolites
Every 4 weeks, after 4 hours of fasting (9:00-13:00), tail vein blood was collected into 
paraoxon-coated glass capillaries. These capillaries were placed on ice and centrifuged, 
and plasma was collected and stored at -20°C. Plasma total cholesterol (TC) and 
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triglyceride (TG) levels were determined (n=17 per group) using commercial enzymatic 
kits from Roche Diagnostics (Mannheim, Germany). Plasma high density lipoprotein 
cholesterol (HDL-C) and non-HDL-C levels (n=17 per group) were determined as 
previously described [19]. At week 16, plasma choline, betaine, TMA and TMAO 
levels were quantified (n=10 per group) using liquid chromatography-tandem mass 
spectrometry as described under Expanded Methods in the Supplementary Materials.

Gene expression
Total RNA was extracted from snap-frozen tissues using the Tripure RNA isolation 
reagent (Roche, Mijdrecht, The Netherlands), according to the manufacturer’s 
instructions. Complementary DNA for quantitative reverse transcriptase-PCR was 
generated as previously described [18]. The expression of mRNA was normalized to Actb 
and Rplp0 mRNA levels and expressed as fold change compared with the ctrl group. 
The primer sequences are listed in the Supplementary Materials.

Genomic DNA extraction and metagenomic sequencing
At week 16, cecal contents were collected, and genomic bacterial DNA was isolated 
with the fast DNA stool mini kit (QIAamp, Germany) following the manufacturer’s 
instructions. Then, these DNA samples were used for determination of gut microbial 
gene expression via qPCR as well as metagenomics sequencing. Sequencing data was 
processed as described under Expanded Methods in the Supplementary Materials.

Atherosclerotic plaque characterization and quantification
Hearts were collected and fixated in phosphate-buffered 4% formaldehyde, embedded in 
paraffin after dehydration in 70-100% ethanol and cross-sectioned (5 µm) perpendicular 
to the axis of the aorta throughout the aortic root area, starting from the appearance 
of open aortic valve leaflets. Per mouse, 4 sections with 50 µm intervals were used for 
atherosclerosis measurements. Sections were stained with haematoxylin-phloxine-saffron 
for histological analysis. Lesions were categorized by severity according to the guidelines 
of the American Heart Association adapted for mice [21]. Sirius Red staining was used to 
quantify the collagen area. Monoclonal mouse antibody M0851 (1:800; Dako, Heverlee, The 
Netherlands) against smooth muscle cell actin was used to quantify the smooth muscle 
cell area. Rat monoclonal anti-mouse MAC-3 antibody (1:1000; BD Pharmingen, San Diego, 
CA, USA) was used to quantify the macrophage area. Immunostainings were amplified 
using Vector Laboratories Elite ABC kit (Vector Laboratories Inc., Burlingame, CA, USA) 
and the immune-peroxidase complex was visualized with Nova Red (Vector Laboratories 
Inc., Burlingame, CA, USA). Lesion area and composition were analyzed using Image J 
software. The stability index was calculated by dividing the relative collagen and smooth 
muscle cell area by the relative area of macrophages within the same lesion.

2
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Statistical analyses
Statistical analyses among these 4 groups were assessed using One-way ANOVA 
followed by a Fisher’s LSD post hoc test, unless indicated otherwise. The square 
root of the lesion area was taken to linearize the relationship with the plasma TC, 
non-HDL-C, HDL-C and TG exposures and plasma TMAO levels (at 16 week). To 
assess significant correlations between atherosclerotic lesion size and plasma lipids 
and TMAO, univariate regression analyses were performed. Then, to predict the 
contribution of these plasma parameters to the atherosclerotic lesion size, multiple 
regression analysis was performed. Data are presented as mean±SEM, and a P value less 
than 0.05 is considered statistically significant. All statistical analyses were performed 
with GraphPad Prism 9 (GraphPad Software Inc., California, CA, USA) except for 
univariate and multiple regression analyses which were performed with SPSS 20.0 
(SPSS, Chicago, IL USA) for Windows and metagenomic data analysis using R packages.

RESULTS

Choline and butyrate attenuate WTD-induced fat mass gain in APOE*3-
Leiden.CETP mice
To address how choline and butyrate affect atherosclerosis in a mouse model for human-
like lipoprotein metabolism, we fed female APOE*3-Leiden.CETP mice a cholesterol-
containing WTD alone or supplemented with choline, butyrate or a combination of 
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Fig. 1. Choline and butyrate attenuate WTD-induced fat mass gain in APOE*3-Leiden.CETP mice. 
(A) Experimental set up. (B) Cumulative food intake (n=4-5 per group), (C) body weight (n=16-17 per group), 
and (D) body fat mass (n=16-17 per group) were monitored throughout the experimental period. Data are 
shown as mean±SEM. Differences were assessed using one-way ANOVA followed by a Fisher’s LSD post-
test. *P<0.05; **P<0.01, ***P<0.001, compared with the control (ctrl) group. WTD, Western-type diet.
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both supplements for 16 weeks (Fig. 1A). Neither choline nor butyrate affected food 
intake (Fig. 1B). Despite this, choline and butyrate attenuated WTD-induced body 
weight gain (Fig. 1C), which was explained by reduced fat mass gain (Fig. 1D) without 
affecting body lean mass (Fig. S1).

Choline and butyrate beneficially modulate the gut microbiome in APOE*3-
Leiden.CETP mice

Previous studies have shown that the gut microbiota participates in choline- and 
butyrate-induced modulation of body weight and atherogenesis [16, 22, 23]. We thus 
performed whole metagenome shotgun sequencing to assess the impact of choline, 
butyrate and their combination on the gut microbiota composition and function. 
While principal component analysis revealed great similarities of the gut microbiome 
structure among the groups (Fig. 2A), choline reduced the gut microbial α diversity, 
regardless of butyrate supplementation (Fig. 2B). At the phylum level, most gut 
commensal microbes belonged to Bacteroidetes, Firmicutes, Proteobacteria, which, along 
with Actinobacteria and Verrucomicrobia, represented approximately 95% of the total 
microbial community (Fig. S2A). At the species level, Faecalibaculum rodentium (F. 
rodentium), Parabacteroides distasonis (P. distasonis) and Bacteroides uniforms (B. uniforms) 
were abundant among the groups (Fig. 2C). As compared to control treatment, butyrate 
enriched species with proposed anti-inflammatory properties, such as Duncaniella spB8 
(D. spB8) [24, 25] and Blautia producta (B. producta) [26], Faecalibaculum (F. prausnitzii) 
[27, 28] and Ruthenibacterium lactatiformans (R. lactatiformans) [29] (Fig. 2D).

Simultaneously, butyrate downregulated gut microbial genes involved in 
lipopolysaccharide (LPS) biosynthesis when compared to control treatment (Fig. 2E, 
S2B). In addition, choline increased several bacterial species compared to control 
treatment, including a probiotic microbe Lactobacillus reuteria (L. reuteria) [30] and 
three anti-inflammatory species of the Olsenella genus [31] (Fig. 2F). Interestingly, 
choline treatment did not affect TMA-producing bacteria, had no impact on gut 
microbial genes associated with TMA synthesis (Fig. 2G), and did not affect the 
expression of choline trimethylamine-lyase (CutC), an essential bacterial choline 
TMA-lyase gene (Fig. 2H). Rather, choline treatment upregulated gene expression of 
enzymes involved in TMA and TMAO degradation, including TMA corrinoid protein 
and TMAO reductase (Fig. 2I), effects that were blunted upon concomitant butyrate 
administration (Fig. S2C-E). Moreover, choline treatment upregulated gut microbial 
genes involved in starch and sugar metabolism (Fig. 2G), which are associated with 
SCFA production [32]. Furthermore, the combination group shared greater similarities 
in the gut composition and function compared to the choline group than the butyrate 

2
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group (Fig. S3A-E). Taken together, both choline and butyrate beneficially affected the 
gut microbial composition and function in WTD-fed APOE*3-Leiden-CETP mice, with 
a greater impact on the gut microbiome induced by choline versus butyrate.
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Fig. 2. Choline and butyrate beneficially modulate the gut microbiome in APOE*3-Leiden.CETP 
mice. At the end of the study, the cecal content was collected and sequenced using metagenomics se-
quencing (n=10 per group). (A) Principal component analysis (PCA) at the species level. (B) The Shannon 
index at the species level. (C) The abundance of the top 15 microbial species. (D and F) Linear discrim-
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Co-administration of choline and butyrate, instead of choline or butyrate 
alone, increases plasma TMAO levels in APOE*3-Leiden.CETP mice
Then, we investigated the role of dietary choline and butyrate in choline metabolism. 
To this end, we performed targeted metabolomics analyses to measure choline-related 
metabolites in plasma. Dietary choline increased plasma levels of choline and its 
oxidation product betaine (Fig. 3A-B) without affecting plasma TMA levels (Fig. 3C), 
while butyrate did not alter the levels of choline and its metabolites (Fig. 3A-D). Of 
note, only combination treatment increased TMAO levels (Fig. 3D). We observed 
that both choline and butyrate upregulated the hepatic expression of Fmos (i.e., Fmo2 
and Fmo3; Fig. 3E). Co-administration of choline and butyrate caused the highest 
expression of Fmo3 in the liver (Fig. 3E), which may explain the highest plasma TMAO 
levels in the combination group.
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Fig. 3. Co-administration of choline and butyrate, instead of choline or butyrate alone, increases 
plasma TMAO levels in APOE*3-Leiden.CETP mice. At week16, plasma levels of (A) choline, (B) beta-
ine, (C) TMA and (D) TMAO were determined. (E) At the end of the study, the relative mRNA expression 
of flavin-containing monooxygenases (Fmos) was determined in the liver. Data are shown as mean±SEM 
(n=10 per group). Differences were assessed using one-way ANOVA followed by a Fisher’s LSD post hoc 
test. *P<0.05; **P<0.01, ***P<0.001, compared with the ctrl group; #P<0.05, ##P<0.01, ###P<0.001, compared to 
the butyrate group; $$P<0.01, $$$P<0.001, compared to the choline group. Fmos, flavin monooxygenases; TMA, 
trimethylamine; TMAO, trimethylamine N-oxide.

Choline and butyrate do not affect plasma lipid levels in APOE*3-Leiden.
CETP mice
Choline and butyrate have been suggested to modulate reverse cholesterol transport 
(RCT) [11, 33]. However, choline upregulated to only some extent the expression of 
genes involved in HDL assembly (e.g. ATP-binding cassette subfamily A member 1, 
Abca1; Fig. 4A;), HDL uptake (e.g. scavenger receptor class B type 1, Srb-1; Fig. 4B), 
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bile acid secretion (e.g. bile salt export pump, Bsep; Fig. 4C), sterol secretion (e.g. ATP-
binding cassette transporter G member 5, Abcg5; Fig. 4D), Ldlr and CETP (Fig. 4E). And, 
butyrate had minor impact on the expression of these genes (Fig. 4A-E). Similarly, 
neither choline nor butyrate had any evident effects on levels of plasma TG, TC, HDL-C 
and non-HDL-C (Fig. S4A-B, 4F-G).
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Fig. 4. Choline and butyrate do not affect plasma lipid levels in APOE*3-Leiden.CETP mice. The 
relative expression of genes involved in high-density lipoprotein (HDL) assembly and clearance (A and 
B), bile acid synthesis and secretion (C), and sterol secretion (D) was determined. (E) The mRNA levels 
of low-density lipoprotein receptor and cholesteryl ester transfer protein (CETP) were measured. Fasting 
plasma levels of total cholesterol (TC; F) and non-high-density lipoprotein cholesterol (non-HDL-C; G) 
were determined throughout the experimental period. Data are represented as mean±SEM (A-E, n=9-10 per 
group; F-G, n=16-17 per group). Differences were assessed using one-way ANOVA followed by a Fisher’s LSD 
post hoc test. *P<0.05; **P<0.01, ***P<0.001, compared with the ctrl group; #P<0.05, compared to the butyrate 
group. Abca1, ATP-binding cassette subfamily A member 1; Abcg5, ATP-binding cassette transporter G 
member 5; Bsep, bile salt export pump; Cyp27a1, sterol 27-hydroxylase; Cyp7a1, cholesterol 7α-hydroxylase; 
Ldlr, low density lipoprotein receptor; Srb-1, scavenger receptor class B type 1.

Choline and butyrate have no impact on atherosclerosis development in 
APOE*3-Leiden-CETP mice
We next assessed the size, severity and composition of atherosclerotic lesions throughout 
the aortic root in the heart isolated after 16 weeks of treatment. Neither choline, butyrate 
nor their combination affected atherosclerotic plaque area, severity and composition 
(Fig. 5A-D, S5A-C). In accordance, choline and butyrate had no impact on atherosclerotic 
plaque stability (Fig. 5E), as calculated from dividing the relative collagen and smooth 
muscle cell area by the relative area of macrophages within the same lesion. While 
univariate regression analysis revealed that the atherosclerotic lesion area was to some 
extent predicted by plasma cholesterol levels (Fig. 5F, S5D-F), plasma TMAO levels were 
not associated with atherosclerotic lesion size in APOE*3.Leiden-CETP mice (Fig. 5G).
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Fig. 5. Choline and butyrate have no impact on atherosclerosis development in APOE*3-Leiden.
CETP mice. At 16 weeks, hearts were collected, and the valve area in the aortic root was stained with 
haematoxylin–phloxine–saffron (HPS). To quantify the contents of collagen, smooth muscle cells and 
macrophages within the lesion, the valve area in the aortic root was stained with Picrosirius red (PSR), 
anti-α-smooth muscle cell actin (α-SMC actin) antibody and anti-MAC3 antibody, respectively. (A) Rep-
resentative pictures of every staining. (B) The relationship between atherosclerotic lesion area and the 
distance from aortic valve was determined by calculating the lesion area of 4 consecutive sections (with 
50 μm intervals) beginning with the appearance of open aortic valve leaflets (n=13-16 per group). Lesions 
were categorized into undiseased (C), mild, and severe (D) lesions (n=13-16 per group). (E) The stability 
index was calculated by dividing the smooth muscle cell and collagen area by macrophage area within the 
same lesion. The square root (SQRT) of the atherosclerotic lesion area plotted against plasma (F) non-HDL-C 
exposure and TMAO (G) levels, and linear regression analyses were performed. Data are represented as 
means±SEM (B-F, n=13-16 per group; G, n=10 per group). Comparisons among four groups were performed 
using one-way ANOVA followed by a Fisher’s LSD post hoc test.
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DISCUSSION

Choline has been reported to aggravate atherosclerosis development, as caused by 
generation of TMAO through the gut-liver axis [6, 33], while butyrate beneficially 
modulates the gut microbiota and shows antiatherogenic effects, in Apoe−/− and Ldlr−/− 
mice [9-11]. Based on our hypothesis that butyrate is able to alleviate choline-induced 
atherosclerosis, we set out to evaluate the effects of choline, butyrate and their 
combination in APOE*3.Leiden-CETP mice, a well-established model for human-like 
lipid metabolism and atherosclerosis development. In contrast to expectations, we 
here report that both choline and butyrate beneficially modulate the gut microbiome, 
without affecting atherosclerosis development. Likewise, the combination of choline 
and butyrate did not influence atherosclerosis development, and TMAO levels were 
not associated with atherosclerotic lesion size.

First, we demonstrated that choline exerts beneficial effects on the gut microbial 
composition and function without influencing atherosclerosis. Choline increased 
cecal abundance of L. reuteria and three species in the Olsenella genus. L. reuteria has 
been reported to improve gut barrier function via reducing inflammation [30, 34], and 
bacteria of the Olsenella genus enhance the efficacy of immune checkpoint inhibitors in 
cancer by enhancing anti-inflammatory capacities of T cells [31]. In this study, choline 
did not affect the cecum content expression of bacterial CutC, a key gene responsible 
for converting choline into TMA by the gut microbiota. In line with this finding, 
choline did not affect plasma TMA levels. Choline did upregulate hepatic expression 
of Fmos (especially Fmo3), encoding the rate-limiting enzymes responsible for the 
oxidation of TMA to TMAO [15, 33]. However, choline did not influence plasma TMAO 
levels, which may be explained by upregulated gut microbial gene expression of TMAO 
reductase that reduces TMAO to TMA, and TMA corrinoid that catabolizes TMA to 
methane [35, 36]. It has been shown that excess choline can also be metabolized to other 
metabolites, such as phosphocholine and acetylcholine [37-39], and the mouse model 
used here may have different choline metabolism compared to other mouse models 
such as Apoe-/- and Ldlr-/- mice. Thus, future studies are needed to explore the differences 
in choline metabolism between in the various mouse models. In addition, we observed 
that choline slightly upregulated hepatic expression of RCT-related genes. This is in 
contrast to previous studies in Apoe-/- mice, which proposed that choline suppresses 
expression of RCT-related genes to aggravate atherosclerosis [33], although it is in 
fact in line with the absence of effects of choline on atherosclerosis in APOE*3-Leiden.
CETP mice. We did observe that choline profoundly upregulates hepatic expression 
of CETP and Ldlr. Therefore, the seeming discrepancies between the different mouse 
models might be explained by a choline-mediated increase of CETP-mediated transfer 
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of neutral lipids between lipoproteins and a APOE-LDLR mediated clearance pathway 
of triglyceride-rich lipoprotein remnants, which are both operational in APOE*3-Leiden.
CETP mice but not in ApoE-/- mice. In fact, and in line with our findings, a very recent 
study showed that choline does not affect atherosclerosis in CETP-expressing Apoe-

/- mice [40].

Similarly to choline, butyrate also beneficially modulated the gut microbiome although 
in different aspects. Butyrate increased cecal abundance of the anti-inflammatory 
species D. spB8 [24, 25] as well as three strains known for producing SCFAs, including 
acetate-producing B. producta [26], butyrate-producing F. Prausnitzii [27, 28] and lactate-
producing R. lactatiformans [29]. Furthermore, butyrate downregulated cecal microbial 
genes involved in LPS synthesis, which may imply that butyrate alleviates LPS-induced 
damage of gut barrier integrity [41]. Previous studies showed that butyrate reduces 
atherosclerotic lesion size in Apoe-/- and Ldlr-/- mice partially via improving gut barrier 
function [9-12, 42]. This was attributed to maintained gut microbiota homeostasis and 
inhibited LPS synthesis, which reduces gut barrier permeability and thus reduces 
systemic inflammation [42-44]. Probably as a combined result, butyrate inhibited 
macrophage infiltration into atherosclerotic plaques and halts plaque progression [9, 
45]. In contrast, we found no influence of butyrate on atherosclerotic size, severity and 
composition including macrophage content within atherosclerotic lesions in APOE*3-
Leiden.CETP mice. In addition to beneficially modulating gut microbiome, butyrate 
has been demonstrated to promote RCT and thus to improve cholesterol metabolism, 
by primarily stimulating ABCA1-mediated cholesterol efflux in macrophages and 
increasing hepatic bile acid synthesis and secretion, thereby alleviating atherosclerosis 
in Apoe-/- mice [11]. In our mouse model, butyrate only slightly affected hepatic 
expression of RCT-related genes including Abca1 and did not affect cholesterol levels. 
Moreover, plasma non-HDL-C levels were positively correlated to atherosclerotic size. 
Therefore, it is likely that atherosclerosis is more inflammation-driven in Apoe-/- and 
Ldlr-/- mice, and more cholesterol-driven in APOE*3-Leiden.CETP mice, explaining why 
butyrate is not atheroprotective in our model.

TMAO has been identified as the main mediator of the previously described atherogenic 
effects of choline in Apoe-/- and Ldlr-/- mice [6, 33]. In the present study, we observed 
that treatment with the combination of choline and butyrate increased plasma TMAO 
levels as compared to single treatments. This is likely due to the observation that 
butyrate impaired the choline-induced TMA and TMAO degradation signaling. Indeed, 
the gut microbial gene expression of TMA corrinoid protein and TMAO reductase in 
the combination group was comparable to that of the control and butyrate groups. 
However, in spite of increased plasma TMAO levels, combined choline and butyrate 
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administration did not affect atherosclerosis. Of note, plasma TMAO levels were not 
associated with atherosclerotic lesion size. The fact that TMAO induces atherosclerosis 
in Apoe-/- and Ldlr-/- mice but not in APOE*3-Leiden.CETP mice, may suggest that TMAO 
lacks atherogenic properties in humans. Indeed, many human dietary trials did not 
find any association between plasma TMAO and CVD risk [46-48]. Multiple meta-
analyses and systematic reviews have shown that the intake of eggs, rich in TMAO 
precursors, is not correlated to heart disease risk and mortality [49]. Similarly, another 
systematic review and a cohort study have concluded that TMAO does not associate 
with CVD risk [50].

In conclusion, we demonstrate that in APOE*3-Leiden.CETP mice, a well-established 
model for human-like lipoprotein metabolism, both choline and butyrate beneficially 
modulate the gut microbiome and increase TMAO, however without affecting 
atherosclerosis.
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SUPPLEMENT

Expanded methods

Plasma targeted metabolome

Plasma samples (20 µL per sample; n=10 per group) were prepared for quantitation 
of choline, betaine, TMA and TMAO level. The measurement was performed by BGI 
genomics (Shenzhen, Guang Zhou, China). In brief, plasma protein was precipitated 
by adding methanol/acetonitrile (15/85; 180 µL per sample). These plasma samples were 
then centrifuged (20,000 × g, 15 min, 4°C). The supernatants (10 µL per sample) were 
taken and mixed with pure acetonitrile (190 µL per sample). After the centrifugation 
(20,000 × g, 15 min, 4°C), the supernatants (5 µL per sample) were mixed with pure 
acetonitrile (55 µL per sample), and tested using liquid chromatography with tandem 
mass spectrometry (LC-MS/MS). Standard curve was prepared as follows. 1000 
ppm (mg/mL) of each standard solution was prepared using methanol/acetonitrile 
(15:85), and then pure acetonitrile was used to gradually dilute standard solution to 
prepare a 0-200 ppb mixed standard into 9 standard concentration points. LC-MS/MS 
analysis was carried out using an ACQUITY UPLC I-Class (Waters, Framingham, MA, 
USA) coupled to QTRAP6500+ mass spectrometry (SCIEX, Framingham, MA, USA). 
Reversed-phase separation was performed on a BEH HILIC column (100 mm × 2.1 mm, 
1.7 µm; Waters, Framingham, MA, USA) according to the manufacturer’s instruction. 
The mobile phase consisted of ultrapure water, 0.15% formic acid, 10 mM ammonium 
formate and acetonitrile. Mass spectrometry was performed using ESI ion source in 
a positive ion mode. Using MultiQuant software (SCIEX, Framingham, MA, USA), 
the default parameters are used for automatic identification and integration of each 
multiple reaction monitoring (MRM) transition (ion pair), and manual inspection is 
assisted. The concentration of choline-related metabolites was obtained by substituting 
the integrated peak area of the targeted index in the sample into the standard curve, 
followed by multiplying by the dilution factor.

Metagenomics sequencing and analysis

Whole-genome shotgun sequencing of all samples (n=10 per group) was carried out on 
a DNBSEQ platform at BGI Genomics (Shenzhan, Guang Zhou, China). SOAPnuke was 
used to remove low quality sequences. Human sequences were removed using Bowtie2 
[1]. The filtered high-quality reads were assembled into contigs using MEGAHIT [2], 
and only contigs of ≥ 300 bp were used. Genes were predicated by MetaGeneMark [3]. 
A non-redundant gene catalogue was constructed using CD-HIT [4]. Gene taxonomy 
was annotated to Kraken2 [5] database. High-quality reads were mapped back to 
the constructed non-redundant gene catalogue using Salmon [6] to calculate gene 

2

165187_Cong Liu_BNW-proof-5.indd   51165187_Cong Liu_BNW-proof-5.indd   51 04-04-2023   09:3704-04-2023   09:37



Chapter 2

52

abundance within each sample. Gene functional identification was annotated to 
Kyoto Encyclopedia of Genes and Genomes (KEGG) [7] and KEGG orthology (KO), 
and Carbohydrate-Active EnZymes (CAZy) [8]. Principal component analysis (PCA) 
[59] at the species level, linear discriminant analysis (LDAL) and relative abundance 
of pathways and enzymes were analysed using R packages.

Supplementary Table 1 List of primer sequences for the targeted mouse genes used in 
mRNA expression analysis

Gene Forward primer (5’-3’) Reverse Primer (5’-3’)

Abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG

Abcg5 TGTCCTACAGCGTCAGCAACC GGCCACTCTCGATGTACAAGG

Actb AACCGTGAAAAGATGACCCAGAT CACAGCCTGGATGGCTACGTA

Bsep CTGCCAAGGATGCTAATGCA CGATGGCTACCCTTTGCTTCT

CETP CAGATCAGCCACTTGTCCAT CAGCTGTGTGTTGATCTGGA

CutC AGRGTTHGATYMTGGCTCAG TGCTGCCTCCCGTAGGAGT

Cyp27a1 TCTGGCTACCTGCACTTCCT CTGGATCTCTGGGCTCTTTG

Cyp7a1 CAGGGAGATGCTCTGTGTTCA AGGCATACATCCCTTCCGTGA

Fmo1 AAACAAGCATAGCGGGTTTG ATCCGGTTTTGCGTTGATAG

Fmo2 AGCTGTGGTCTTCGAGGATG GGCAAGCTACACAAGCCTTT

Fmo3 GGAACTTGCACTTTGCCTTC TAGGAGATTGGGCTTTGCAC

Fmo4 CGGAGCAGCTCATTAAAAGG CTGAGTGAGCTCGTCCATGT

Fmo5 TGCCCTCACAAAGTGAAATG GCTGGCTGTCCACATACCTT

Ldlr GCATCAGCTTGGACAAGGTGT GGGAACAGCCACCATTGTTG

Rplp0 GGACCCGAGAAGACCTCCTT GCACATCACTCAGAATTTCAATGG

Srb-1 GTGCTGCTGGGGCTTGGAGG CACTGGTGGGCTGTCCGCTG

Abca1, ATP-binding cassette subfamily A member 1; Abcg5, ATP-binding cassette transporter G member 5; Actb, 
β-actin; ApoB, apolipoprotein B; Bsep, bile salt export pump; CETP, CETP cholesteryl ester transfer protein; CutC, 
choline trimethylamine-lyase Cyp27a1, sterol 27-hydroxylase; Cyp7a1, cholesterol 7α-hydroxylase; Fmo, flavin 
monooxygenase; Ldlr, low density lipoprotein receptor; Mttp, microsomal triglyceride transfer protein; Rplp0, 
ribosomal protein lateral stalk subunit P0; Srb-1, scavenger receptor class B type 1.
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(n=16-17 per group). Differences were assessed using one-way ANOVA followed by a Fisher’s LSD post-test. 
**P<0.01, compared with the ctrl group.
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Fig. S2. Butyrate downregulates gut microbial genes involved in lipopolysaccharide biosynthesis 
in APOE*3-Leiden.CETP mice. At the end of the study, the cecal content was collected and sequenced 
using metagenomics (n=10 per group). (A) The abundance of top 15 microbial phyla. (B) Top 30 significantly 
regulated KEGG pathway between the ctrl and butyrate groups. (C-E) Relative changes of the gut microbial 
genes involved TMA metabolic pathway between groups. (B-E) Comparisons between groups were per-
formed using Wilcoxon test. *P<0.05; **P<0.01, compared with the ctrl group. KEGG, Kyoto Encyclopedia 
of Genes and Genomes; KO, KEGG Ortholog; TMA, trimethylamine; TMAO, trimethylamine N-oxide.
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Fig. S3. Choline exerts greater effects on the gut microbial composition and function compared 
to butyrate in APOE*3-Leiden.CETP mice. (A and C) Linear discrimination analysis (LDA) effect size 
analysis was performed, and LDA scores calculated for differences in species-level abundance between 
groups. (B and D) Top 30 significantly regulated KEGG pathway between groups. (B and D) Comparisons 
between groups were performed using Wilcoxon test.
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Fig. S4. Choline and butyrate do not evidently alter plasma lipid levels in APOE*3-Leiden.CETP 
mice. (A-B) Fasting plasma triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels 
were measured throughout the experimental period, and plasma TG and HDL exposure (mM x weeks) 
throughout the experimental period was calculated. Data are represented as mean±SEM (n=16-17 per 
group). Differences were assessed using one-way ANOVA followed by a Fisher’s LSD post hoc test. *P<0.05; 
**P<0.01, compared with the ctrl group; #P<0.05, ##P<0.01, compared to the butyrate group.
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Fig. S5. Choline and butyrate have no impact on atherosclerotic lesion composition in APOE*3-
Leiden.CETP mice. At the end of the study, atherosclerotic lesion composition was evaluated. To quantify 
the contents of collagen (A), smooth muscle cells (B) and macrophages (C) within the lesion, the valve area 
in the aortic root was stained with Picrosirius red (PSR), anti-α-smooth muscle cell actin (α-SMC actin) 
antibody and anti-MAC3 antibody, respectively. (D-F) The square root (SQRT) of the atherosclerotic lesion 
area was plotted against plasma TG exposure, total cholesterol (TC) exposure and HDL-C exposure during 
the 16-week treatment period, and linear regression analyses were performed. Data are represented as 
mean±SEM (n=13-16 per group). Differences were assessed using one-way ANOVA followed by a Fisher’s 
LSD post hoc test.
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