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Abstract
Viral metagenomics is increasingly applied in clinical diagnostic settings for 
detection of pathogenic viruses. While several benchmarking studies have been 
published on the use of metagenomic classifiers for abundance and diversity 
profiling of bacterial populations, studies on the comparative performance of the 
classifiers for virus pathogen detection are scarce. In this study, metagenomic 
data sets (n  = 88) from a clinical cohort of patients with respiratory complaints 
were used for comparison of the performance of five taxonomic classifiers: 
Centrifuge, Clark, Kaiju, Kraken2, and Genome Detective. A total of 1144 positive 
and negative PCR results for a total of 13 respiratory viruses were used as gold 
standard. Sensitivity and specificity of these classifiers ranged from 83 to 100% 
and 90 to 99%, respectively, and was dependent on the classification level and 
data pre-processing. Exclusion of human reads generally resulted in increased 
specificity. Normalization of read counts for genome length resulted in a minor 
effect on overall performance, however it negatively affected the detection of 
targets with read counts around detection level. Correlation of sequence read 
counts with PCR Ct-values varied per classifier, data pre-processing (R2  range 
15.1–63.4%), and per virus, with outliers up to 3 log10  reads magnitude beyond 
the predicted read count for viruses with high sequence diversity. In this 
benchmarking study, sensitivity and specificity were within the ranges of use for 
diagnostic practice when the cut-off for defining a positive result was considered 
per classifier.

Keywords:
viral metagenomics;  bioinformatics;  pathogen detection;  next-generation 
sequencing
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1. Introduction

In the era of next-generation sequencing (NGS), clinical metagenomics, the analysis 
of all microbial genetic material in clinical samples, is being introduced in diagnostic 
laboratories and revolutionizing the diagnostics of infectious diseases  [1,2,3,4]. As 
opposed to running a series of pathogen targeted diagnostic PCR assays to identify 
suspected pathogens, one single metagenomic run enables the detection of all 
potential pathogens in a clinical sample  [5,6]. The use of this method, also known 
as shotgun high-throughput sequencing, has resulted in the detection of several 
pathogens missed by current routine diagnostic procedures [1,7]. For a large part the 
clinical application of metagenomic sequencing for pathogen detection has focused 
on patients with encephalitis [1,8,9,10,11,12]. However, patients with clinical syndromes 
suspected from an infectious disease but with negative conventional test results are 
increasingly considered as candidates for metagenomic testing. With sequencing 
costs decreasing and the significance of detection of unexpected, novel viruses 
being underscored by the currently pandemic SARS-CoV-2  [13], metagenomics is 
increasingly moving towards implementation in diagnostic laboratories.

Performance testing is typically part of the implementation procedure in diagnostic 
laboratories to ensure the quality of diagnostic test results. Accurate bio informatic 
identification of viral pathogens depends on both the classification algorithm and the 
database [14,15,16]. Metagenomic sequencing in the past has been mainly  oriented at 
profiling of bacterial genomes in the context of microbiome comparisons in research 
settings, and most bioinformatic tools currently available have been designed for 
that specific purpose [17,18]. Some of the previously bacterial oriented classifiers are 
now being used for other domains, including viruses. However, viral metagenomics 
for pathogen detection has specific challenges such as the low abundancy of viral 
sequences for some targets, and incomplete or inaccurate reference sequences. 
The high diversity of viral sequences due to the high mutation rate of RNA viruses 
further complicates accurate detection and identification  [19]. While the number of 
 benchmarking studies published on the use of metagenomic  classifiers for bacterial 
abundancy profiling is increasing, studies on the performance of  classifiers for virus 
pathogen detection remain scarce. Publications on the performance of the compu-
tational analysis of viral metagenomics are usually limited to in silico analysis of 
artificial sequence data  [14,20,21] or mock samples  [22,23]. Though both sensitivity 
and specificity can be deduced when using simulated datasets, they usually do not 
represent the complexity of data sets from clinical samples which typically contain 
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sequences from wet lab reagents that have been referred to as the ‘kitome’ [22,24,25]. 
These factors can affect the sensitivity and specificity of the overall procedure and 
may result in incorrect diagnoses. In contrast, performance studies that use real-
world samples are usually hindered by the huge number of negative metagenomic 
findings in the absence of gold standard results for validation. Therefore, the perfor-
mance parameters typically reported are recall (sensitivity), precision (positive pre-
dictive value), and F1 (the harmonic mean of recall and precision); while specificity is 
usually not assessed because negative findings by metagenomics are poorly defined.

Here, we perform a comparison of five taxonomic classifiers: Centrifuge  [26], 
Clark  [18], Kaiju  [27], Kraken 2  [28], and Genome Detective  [29]. The classifiers were 
tested using metagenomic shotgun sequencing data obtained from a cohort of 
chronic obstructive pulmonary disease patients (COPD) with a clinical exacerbation 
and therefore suspected of a respiratory infection. For these samples, 1144 PCR test 
results were used as gold standard to infer both sensitivity and specificity of the 
classifiers. For each classifier, we present appropriate benchmark scores for virus 
classification in the diagnostic setting.

2. Materials and Methods

2.1. Clinical Samples and PCR Results
Clinical respiratory samples were used to obtain metagenomic data sets. In total 88 
nasal washings were taken from 63 patients with COPD suspected for respiratory 
infection as previously described  [30]. Each sample was tested using a respiratory 
PCR panel resulting in 1144 real-time positive and negative PCR results for 13 viral 
respiratory targets as previously described [30]. The respiratory viruses addressed by 
this respiratory panel and cohort prevalence are shown in Table 1.

2.2. Metagenomic Next-Generation Sequencing (mNGS)
The metagenomic datasets used for comparison were generated as described 
before  [30]. In short, clinical samples were spiked with equine arteritis virus (EAV) 
and phocine herpesvirus 1 (PhHV-1), as internal positive controls for RNA and 
DNA detection per sample, throughout the entire workflow. Negative and positive 
washings were used as respectively environmental and positive run controls. 
Subsequently, extraction of nucleic acids was performed using the Magnapure 96 



91Performance of five metagenomic classifiers for virus pathogen detection

DNA and Viral NA Small volume extraction kit on the MagnaPure 96 system (Roche, 
Basel, Switzerland). Library preparation was performed utilizing the NEBNext Ultra 
II Directional RNA Library prep kit for Illumina (New England Biolabs, Ipswich, MA, 
USA) using single, unique adaptors and a protocol optimized for processing RNA and 
DNA simultaneously in a single tube [25]. Sequencing was performed on an Illumina 
NextSeq 500 sequencing system (Illumina, San Diego, CA, USA) at GenomeScan 
BV (Leiden, The Netherlands), obtaining approximately 10 million 150 bp paired-end 
reads per sample.

2.3. Pre-Processing of Data
To exclude variability based on pre-processing procedures, the identical procedure 
was followed prior to analysis of the sequence data by all classifiers in the current 
comparison. Illumina 150 bp paired-end sequence reads were demultiplexed by 
standard Illumina software followed by trimming, adapter clipping, and filtering of 
low-complexity reads using Trimmomatic  [v. 0.36]  [31]. This was performed for all 
classifiers, regardless of quality filtering options that have been previously used in 
combination with specific classifiers in literature. Human reads were excluded after 
mapping them to the human genome GRCh38  [32] using Bowtie2 with standard 
settings  [33]. Unmapped reads were used for further analysis for the classification 
tests excluding human reads.

2.4. Metagenomic Classifiers
Bioinformatic metagenomics tools designed for taxonomic classification were 
selected for benchmarking based on the following criteria: applicable for viral 
metagenomics for pathogen detection; available either as download or webserver; 
and it is either widely used or showed potential of diagnostics implementation in the 
future. Some tools considered were excluded due to lack of support or details on 
how to use the tool, or non-functioning webservers. An overview of characteristics 
of the selected classifiers can be found in Table 2.
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Table 1.  Overview of respiratory PCR panel targets and their test results.

PCR 
target 
viruses

Family Genus Species Alternative 
naming

# PCR 
positive 
samples

# PCR 
negative 
samples

PCR 
Ct-values

(range)

HRV Picorna- 
viridae

Enterovirus Rhinovirus A, B, C, 
Enterovirus D

14 74 19-38

PIV1, 
PIV3

Paramyxo-
viridae

Respiro-virus Human respiro-
virus 1

Human 
parainfluenza 
virus 1

- 88 -

Human respiro-
virus 3

Human 
parainfluenza 
virus 3

2 86 26-36

PIV2, 
PIV4

Paramyxo-
viridae

Ortho-
rubulavirus

Human orthorubu-
lavirus 2

Human 
parainfluenza 
virus 2

- 88 -

Human orthorubu-
lavirus 4

Human 
parainfluenza 
virus 4

1 87 24

INF Ortho myxo-
viridae

Alpha-
influenzavirus

Influenza A virus
Influenza B virus

3
-

85
88

29-36
-

ACoV Corona- 
viridae

Alpha-
coronavirus

Human  
coronavirus NL63
Human  
coronavirus 229E

2
-

86
88

32
-

BCoV Corona- 
viridae

Beta corona-
virus

Human corona-
virus HKU1, 
Beta coronavirus 1;  
Human corona virus 
OC43

2 86 27

HMPV Pneumo- 
viridae

Metapneu-
movirus

Human  
metapneumo-virus

- 88 -

RSV Pneumo- 
viridae

Orthopneu-
movirus

Human  
orthopneumo-virus

- 88 -

Total Total PCR results: 
1,144 
(13 targets tested 
in 88 samples)

24 1,120 19-38
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Table 2. Overview of characteristics of the classifiers evaluated.

Centrifuge [26] Clark [18] Kaiju [27] Kraken 2 [28] Genome
Detective [29]

License Open source Open source Open source Open source Commercial/
free to use 
web application

Version 1.0.4 1.2.6.1 1.7.3 2.0.8-beta 1.126

Sequencing 
technology 
compatibility

Short/long reads Short/long reads Short/long reads Short/long reads Short reads 
(long reads 
experimentally)

Pre-processing No No No No Yes

Type of 
alignment

NT NT AA NT NT/AA 
(DIAMOND [38])
including de novo 
assembly

Algorithm 
characteristics

Exact matches 
of 22 bp with 
target with 
default 5 labels 
per sequence, 
LCA optional

Exact matches 
of 31 bp with 
target with 
highest number 
of hits

Maximum exact 
matches (MEM) 
of AA, up to 5 
mismatched 
optional*. 
LCA in case of 
multiple hits

Exact matches of 
35 bp. 
LCA in case of 
multiple hits

Combined results 
of NT and AA 
hits based on 
scoring. 
LCA in case of 
multiple hits

Database 
(compression)

Compressed 
index NT
database of  
only unique 
sequences

Compressed 
index NT 
database of 
only unique 
sequences

No compression, 
AA database

Compressed 
index NT 
database

No compression, 
viral subset 
of Swiss-Prot 
UniRef90 protein 
database

NT; nucleotide, AA; amino acid; LCA, lowest common ancestor

* Greedy-5 mode was used in the current study

2.5. Reference Database
For comparison of classification performance, a single database was used as starting 
point for the classifiers Centrifuge, Clark, Kaiju, and Kraken 2: viral genomes from 
NCBI/RefSeq [34] (downloaded on 27 December 2020). Genome Detective was used 
as a service, and it uses its own database that was generated on 3 March 2020 
(version 1.130) by Genome Detective.

2.6. Metagenomic Classifiers and Characteristics

2.6.1. Centrifuge
Classification with Centrifuge (version 1.0.4)  [26] is based on exact matches of at 
least 22 base pair nucleotide sequences with the reference index, using  k-mers 
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of user-defined length. Centrifuge by default allows five classification labels per 
sequence read. For a realistic comparison, in the current study, this setting was 
adapted to maximum one label per sequence (the lowest common ancestor) to mimic 
results of Kraken2 and other classifiers where only one label per sequence read is 
given. Preceding classification, Centrifuge builds small reference indexes based on 
adapted versions of the Burrows–Wheeler transform (BWT)  [35] and the Ferragina–
Manzini (FM) index  [36] resulting in a compressed index of only unique genomic 
sequences.

2.6.2. Clark
Clark (version 1.2.6.1)  [18] is a taxonomic classifier based on reduced  k-mers using 
nucleotide-level classification. It uses a compressed index database containing 
unique target specific k-spectrum of target sequences. For the current comparison 
the default execution mode was used.

2.6.3. Kaiju
Kaiju (version 1.7.3)  [27] is a taxonomic classifier that assigns sequence reads using 
amino acid-level classification. Sequence reads are translated into six possible open 
reading frames and split into fragments according to the detected stop codons. 
Classification with Kaiju can be performed using two settings, both based on an 
adjusted backward alignment search algorithm of BWT [35]. For the current compar-
ison study, the greedy mode was used providing high sensitivity because it allows 
up to five mismatches to further increase the highest scoring matches. In this mode 
Kaiju assesses six possible ORF’s using the amino acid scores of Blosum62  [37] to 
obtain the highest scoring match.

2.6.4. Kraken 2
Kraken 2 (version 2.0.8-beta)  [28] is a classifier designed to improve the large 
memory requirements of the former version of Kraken  [17], resulting in a reduction 
of in general 85% of the size of the index database. Kraken 2 uses a probabilistic, 
compact hash table to map minimizers to the lowest common ancestors (LCA), and 
stores only minimizers from the reference sequence library in its index reference [28].

2.6.5. Genome Detective
Genome Detective [29] is a commercially available bioinformatic pipeline that includes 
the entire workflow from automated quality control, de novo assembly of reads and 
classification of viruses. After automated adapter trimming and filtering low-quality 
reads using Trimmomatic [31], viral reads are selected based on Diamond [38] protein 
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alignment using as reference protein sequences from Swissprot Uniref 90  [39]. 
Viral reads are sorted in buckets, after which all sequences in one bucket are de 
novo assembled into contigs using SPAdes  [40] or metaSPAdes  [41]. Subsequently, 
contigs are processed by BLASTx and BLASTn  [42] against databases containing 
NCBI Refseq  [34] sequences and some additional virus sequences. Potential hits 
 represented by the contigs are assigned to individual species using the Advanced 
Genome Aligner [43], and coverage the viral genomes is calculated. For analysis using 
Genome Detective sequence reads were first pre-processed with Trimmomatic  [31] 
manually, similar for other tools (see Pre-processing of data), prior to automated 
filtering by the Genome Detective pipeline.

2.7. Performance, Statistical Analysis, and ROC
Sensitivity and specificity were calculated for the classifiers based on the application 
of PCRs (designed for detection of 13 targets) for 88 samples with 24 PCR positive 
and 1120 PCR negative results. Receiver Operating Characteristic (ROC) curves were 
generated for results of classification at species, genus, and family levels, by varying 
the number of sequence-read counts used as cut-off for defining a positive result 
(resolution: 1000 steps from one read to the maximum number of sequence reads for 
each PCR target per sample). Area under the curve (AUC), the ROC distance to the 
closest error-free point (0,1, informedness) curve, positive and negative predictive 
values were calculated. Furthermore, correlation (R2) of sequence read counts with 
PCR cycle threshold (Ct) value were analyzed.

3. Results

3.1. Performance: Sensitivity, Specificity, and ROC
The performance of the selected taxonomic classifiers Centrifuge, Clark, Kaiju, 
Kraken 2, and Genome Detective for metagenomic virus pathogen detection was 
assessed using datasets from 88 respiratory samples with 24 positive and 1,120 
negative PCR results available as gold standard. To exclude variability based 
on different default databases provided with the classifiers, a single database of 
reference genome sequences was used in combination with a standardized dataset 
for all classifiers. Raw NGS reads were filtered and classified, both prior and after the 
exclusion of human sequence reads, and after exclusion of human reads combined 
with normalization of reads based on the target viral genome length. ROC curves 



96 Metagenomic sequencing in clinical virology: Chapter 5

are shown for all classifiers, for assignments at species, genus and family level for 
the NGS data in Figure 1, and Supplementary Table S1. Detection parameters (ROC 
distance to the upper left corner of the graph, sensitivity and selectivity, and AUC) 
at three taxonomic levels calculated for the NGS data, before and after exclusion 
of human reads, with or without normalization of assigned reads by corresponding 
genome sequence lengths are additionally shown in  Figure 2. Overall, sensitivity, 
specificity, and AUC ranged from 83 to 100%, 90 to 99%, and 91 to 98%, respec-
tively, and varied per level of taxonomic classification, per classifier, and with the 
exclusion of human reads prior to classification. Classification at species and genus 
levels tended to result in lower sensitivity and higher ROC distances, but higher 
selectivity when compared with family level classification, for most of the classi-
fiers evaluated. Extraction of human sequence reads prior to classification resulted 
in comparable sensitivity at all levels of assignment for all classifiers except CLARK 
for which sensitivity plummeted at species and genus levels. Selectivity was mainly 
increased after extraction of human reads, for classification at all levels, except 
for Kaiju and Kraken2, for which decreased selectivity values at family level were 
observed. Extraction of human reads reduced the differences in selectivity between 
the classifiers that were observed at genus and family level prior to extraction. 
The ROC distances were overall smallest, and the AUC highest, when using amino-
acid based classifier Kaiju, the latter at species and family levels and was compa-
rable with Kraken2 at genus level. Normalization of assigned read counts by corre-
sponding genome length resulted in minor changes in performance when consid-
ering 1 read as the threshold for defining positive results. Sensitivity was dramati-
cally reduced to 13–33% at species level after read normalization when a threshold 
of 10 reads was applied, while sensitivity was 75–88% without read normalization in 
combination with a threshold of 10 reads, (Supplementary Table S1). This indicates 
that normalization of reads can negatively affect the detection of targets with read 
counts around detection level.

Overall, Kaiju outperformed all classifiers when ROC distance, AUC, and sensitivity 
were considered, but had consistently lower selectivity values than Centrifuge and 
Genome Detective.

In this patient cohort, with an incidence of 21% (24/88 samples) of respiratory 
viruses, the positive and negative predictive values at species levels were 42–67% 
and 99–100%, respectively (see Supplementary Table S1).
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Figure 1.  ROC curves. 

Calculated based on reads of taxonomic assignment at three. taxonomic levels (species, genus, and 
family) by the five classifiers, based on PCR-targets, (a), without extraction of human reads and (b), after 
extraction of human reads, (c), after extraction of human reads and normalization of reads by corre-
sponding genome lengths (resolution of 1000 steps from one read to the maximum number of sequence 
reads for each PCR target per sample).
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3.2. Correlation Read Counts and Ct-Values
The correlation between sequence read counts at Ct-value for the corresponding 
PCR target viruses for all classifiers is shown in  Figure 3  and  Supplementary 
Table S2. Correlation (R2, %), linear regression slope and intercept varied per 
virus species, per taxonomic classifier, and was dependent on the extraction of 
human reads. Correlation ranged from 15.1% for CLARK (no exclusion of human 
reads, species level) to 62.7% for Kaiju-based classification at species level (after 
exclusion of human reads with normalization of assigned reads by corresponding 
genome sequence lengths). The most consistent results (when comparing R2  prior 
and after human reads exclusion, and after normalization) were demonstrated by 
Kaiju and Genome Detective with overall outperformance of Kaiju classifier at all 
classification levels (61.8–62.7% versus 42.3–43.9% for Centrifuge). Reads assigned 
to rhinoviruses were most common outliers in relation to Ct-value and varied up to 
3 log10 reads difference from the predicted read count (LR), possibly resulting from 
their high divergence within species. This was in contrast to read counts of other 
viruses (for example influenza viruses), which were closer to the predicted corre-
lation line. Extraction of human sequence reads resulted in an increase in R2  for 
CLARK classifier at species and family level, a decrease for Centrifuge and Kraken 
at all levels, and resulted in minor changes for amino acid-based classifiers Genome 
Detective and Kaiju at all levels. Decrease in absolute or relative number of total 
reads after pre-processing (extraction of human reads in combination with normal-
ization of assigned reads by corresponding genome lengths) led to a decrease in 
intercept values for all classifiers.

These data support that a more accurate taxonomic classification assists semi-quan-
titative performance of metagenomic classification tools.
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Figure 2.  Sensitivity, selectivity, AUC, and ROC distance. 

Calculated based on assignment at three taxonomic levels (species, genus, and family) by the five classi-
fiers for three types of pre-processing of the NGS datasets, a, without extraction of human reads and b, 
after extraction of human reads, c, after extraction of human reads and normalization of reads by corre-
sponding genome lengths.
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Figure 3.  Correlation between the number of sequence reads assigned (species level) and 
Ct-values of virus-specific PCRs for the five taxonomic classifiers evaluated, (a), without extrac-
tion of human reads and (b), after extraction of human reads, (c), after normalization of reads by corre-
sponding genome lengths.
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4. Discussion

In this study, we compared the performance of five taxonomic classification tools for 
virus pathogen detection, using datasets from well-characterized clinical samples. In 
contrast to previously reported comparisons with datasets from real samples, both 
sensitivity and specificity could be assessed using a unique set of 1144 PCR results 
as gold standard. A uniform database was created to exclude variability based on 
differences in availability of genomes in databases provided with the classifiers. 
In general, sensitivity and specificity were within ranges applicable to diagnostic 
practice. Exclusion of human reads generally resulted in increased specificity. 
Normalization of read counts for genome length negatively affected the detection 
of targets with read counts around detection level. The correlation of sequence read 
counts with PCR Ct-values was highest for viruses with relatively lower sequence 
diversity.

Previous studies have benchmarked metagenomic profilers, mainly for the use of 
bacterial profiling and DNA-to-DNA and DNA-to-protein classification methods 
were among the best-scoring methods in comparison with DNA-to-marker (16S) 
methods [22,27,44,45,46,47,48]. In a study with simulated bacterial datasets comparing 
the performance of CLARK, Kraken and Kaiju, sensitivity and precision were 75% 
and 95% and decreased when a lower number of reference genomes was available 
for the specific target  [27]. As the same reference database was used by all classi-
fiers in this study, the only determining factors would be the index database built 
from the reference database and the classification algorithm. DNA-to-DNA methods 
have been applied in hundreds of published microbiome studies (e.g., Kraken: 
1438 citations; Kraken 2: 204 citations, by March 2021, according to their official 
websites  [48]). Centrifuge was designed as a follow-up of Kraken with enhanced 
features, though misclassifications have also been reported in a comparison with 
simulated datasets  [22]. DNA-to-protein methods are generally more sensitive to 
novel and highly variable sequences due to lower mutation rates of amino acid 
compared to nucleotide sequences [22,27] as was seen in our study when classifying 
rhinoviruses by Kaiju. The difference was especially visible in genera with limited 
availability of genomes in reference databases [27].

Misclassification of human genomic sequence reads has been reported for most 
DNA classifiers [22]. Protein-based classifiers had higher misclassification ranges of 
human genome sequences (up to 15%), partially due to the larger number of target 
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sequences in their default databases  [22]. Inclusion of the human genome in the 
reference database, which is by default the case for Centrifuge and KrakenUniq [49] 
reduced the rate of misclassification to negligible  [22]. This finding is supported in 
our study, as exclusion of human sequence reads prior to classification reduced 
misclassifications for all classifiers. In general, reduction of false-positive hits can 
be achieved by assembly of sequences (for example, by Genome Detective), thus 
reducing the number of hits based on short nucleotide sequences used by  k-mer 
based methods. Inclusion of genome coverage of mapped reads, as adopted by 
Genome Detective and KrakenUniq [49], also can reduce false-positive hits.

One of the strengths of this study, the use of one single wet lab and sequencing 
procedure, in order to enable comparison of the bioinformatic analyses, is also a 
limitation of the study. The sensitivity and specificity results will likely vary when the 
classifiers are used in combination with a different wet lab methodology. Therefore, 
no conclusions can be drawn on the absolute numbers, sensitivity and specificity, of 
other workflows that include the classifiers, since every step in the entire workflow 
can influence the overall performance.

To our knowledge, a limited number of studies on the benchmarking of tools for 
viral metagenomics for pathogen detection have been published. In a Switzerland-
wide ring trial based on spiked plasma samples, median F1 scores ranged from 70 
to 100% for the different pipelines, though since the entire workflow was analyzed, 
and thus no conclusions on specific classifiers could be drawn [15]. A series of tools 
and programs were analyzed in a COMPARE virus proficiency test using a single in 
silico dataset  [14]. For Kraken discrepant classification results that were observed, 
this was likely due to differences in the databases used by the participants. A recent 
European benchmark of 13 bioinformatic pipelines currently in use for metagen-
omic virus diagnostics used datasets from clinical samples  [16] analyses using 
Centrifuge and Genome Detective software resulted in sensitivities of 93% and 87%, 
respectively.

In conclusion, sensitivity and specificity of the classifiers evaluated in this study was 
within the ranges that may be applied in clinical diagnostic settings. Performance 
testing for viral metagenomics for pathogen detection is intrinsically different from 
benchmarking of bacterial profiling and should incorporate parameters that are 
inherent to clinical diagnostic use such as specificity calculations, sensitivity for 
divergent viruses and variants, and importantly, a determined cut-off for defining a 
positive result for each workflow. Taking these factors into account during validation 
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and implementation of viral metagenomics for pathogen detection contributes to 
optimal performance and applicability in clinical diagnostic settings.
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