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6. Planckian Transport for a Holographic

Local Quantum Critical Metal in

Periodic Potentials

6.1. Attribution

This paper is to be published under the name T-linear resistivity, optical conductivity and Planck-
ian transport for a holographic local quantum critical metal in a periodic potential. and has been
submitted to arXiv, number 2211:05492.[213] Other contributing others to this paper are N. Chag-
net, S. Arend, J. Aretz, K. Grosvenor, M. Janse, O. Moors, J. Post, V. Ohanesjan, D. Rodriguez-
Fernandez, K. Schalm and J. Zaanen.

6.2. The Planckian Dissipation Mystery versus

Computational Holography

Are there states of matter that are governed by physical principles of a different kind from those
identified in the 20th century? This question arose in the study of strongly interacting electron
systems realized in condensed matter, starting with the discovery of superconductivity at a high
temperature in copper oxides. Their metallic states exhibit properties that appear to be impossible
to explain with the established paradigm explaining normal metals – the Fermi-liquid theory – and
these were accordingly called “strange metals” [43, 214].

An iconic signature is the linear-in-temperature electrical resistivity [42], an exceedingly simple
behavior that is at odds with transport due to the quasiparticle physics of normal metals. A linear
temperature dependence of the resistivity does occur naturally in conventional metals due to scat-
tering of the quasiparticles against thermal disorder of the lattice above the Debye temperature.
The problem in the cuprates and related systems is that the resistivity is linear all the way from the
lowest to the highest temperatures where it has been measured. One anticipates some powerful
principle of a new kind to be at work protecting this unreasonable simplicity.

The measured optical conductivities reveal at lower temperatures a Drude response [215–218], sig-
naling that the electrical conduction is controlled by a current relaxation time. Intriguingly, this
time is very close to the “Planckian dissipation” time scale τℏ = ℏ/(kBT ). Planck’s constant
ℏ plays a special role in dimensional analysis, as for instance the Planck scale of quantum grav-
ity. Since ℏ carries the dimension of action, τℏ is a time scale associated with the thermal physics
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6. Planckian Transport for a Holographic Local Quantum CriticalMetal in Periodic Potentials

property of dissipation, the conversion of work into heat [51, 219]. The case was made based on
DC data that this Planckian time is remarkably universal also involving a variety of non-cuprate
unconventional metals exhibiting the linear resistivity [38, 71, 220].

However, upon raising temperature further, in the “bad metal” regime above the Mott-Ioffe-Regel
bound optical conductivity studies show that the dynamical response changes drastically. Instead
of a Drude response, a mid-infrared resonance develops with a characteristic energy that appears to
increase with temperature, leaving a rather incoherent response at low energy [221]. Remarkably,
there is no sign of this radical reconfiguration of the dynamical response in the DC resistivity that
continues to be a perfectly straight line, seemingly controlled by τℏ.

The occurrence of this universality of electrical conduction poses quite a problem of principle.
On the one hand, considerable progress has been made in the understanding of dissipative phe-
nomena in terms of quantum thermalization, explaining it in terms of unitary time evolution and
the collapse of the wave function (e.g. [222]). An early result is the identification of τℏ as the char-
acteristic universal dimension for the dissipation time of non-conserved quantities associated with
densely many-body entangled quantum critical states [223] realized at strongly interacting bosonic
quantum phase transitions [48, 224].

This was very recently further clarified using both holographic duality (AdS/CFT correspon-
dence) as well as studies in the closely related SYK models that connect macroscopic transport
in such strange metals to microscopic quantum chaos. The central issue is that thermalization
leading to local equilibrium may proceed very rapidly in densely entangled systems compared to
quasiparticle systems. Using out-of-time-order correlators (OTOC’s) one can identify a quan-
tum Lyapunov time τλ characterizing the microscopic time associated with the onset of quantum
chaos that turns out to be bounded from below by τℏ. In strongly correlated strange metals this
microscopic time scale together with the chaos propagation “butterfly” velocity vB can set the nat-
ural scale for the charge/heat and momentum diffusivities controlling the dissipative properties of
the macroscopic finite temperature hydrodynamical fluid [225–227].

However, in ordinary metals electrical conduction is controlled by total momentum conservation,
as a ramification of translational invariance: any finite density system in the Galilean continuum
has to be a perfect conductor. A finite resistivity is therefore rooted in the breaking of translation
invariance. But how can this ever give rise to a universal resistivity controlled by τℏ? This is the core
of the mystery – all explanations we are aware off rely on accidental, fine tuning circumstances, e.g.
[52, 71, 228].

Holographic duality is now widely appreciated as a mathematical machinery that has a remark-
able capacity to shed light on general principles associated with densely entangled matter [61, 62,
71, 223], the “scrambling” that we just discussed being a case in point. It achieves this by dual-
izing the densely entangled quantum physics into a gravitational problem in one higher dimen-
sion that is computable with (semi-)classical General Relativity. However, this is only a relatively
easy mathematical affair for a homogeneous translationally invariant space. When one breaks the
spatial translation symmetry the Einstein equations become a system of highly non-linear partial
differential equations. If one wishes to have a full view on what holography has to say about trans-
port in the laboratory systems one has to confront this challenge. Invariably a very strong effective
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6.2. The Planckian DissipationMystery versus Computational Holography

potential due to the background of ions is present in the laboratory strange metals, and it is even
believed to be a necessary condition to obtain strongly correlated electron behavior [174, 229, 230].
But what has holography to tell about the effects of strong lattice potentials on strange metal trans-
port?

This can only be accomplished numerically. Although relatively efficient numerical relativity algo-
rithms are available, the computations are demanding. Proof of principle was delivered that it can
be done [118–120, 140, 231] and we set out to explore this more systematically. We focused specifi-
cally on the so-called Gubser-Rocha holographic strange metal [98]. This is unique in the regard
that it is characterized by “local quantum criticality” (a dynamical critical exponent z → ∞) as
well as a Sommerfeld entropy s ∼ T in the regime T ≪ µ, generic properties that appear to be
realized by the cuprate strange metals [223]. For comparison we also include results for the elemen-
tary Reissner-Nordström holographic strange metal. This also exhibits local quantum criticality,
but it has a (pathological) finite zero temperature entropy.

6.2.1. Main Observations and Summary of the Results

We consider a 2+1 dimensional strongly interacting strange metal holographically dual to the
Gubser-Rocha model in the presence of a harmonic square ionic lattice background encoded in
the chemical potential

µ(x, y) = µ0

(
1 +

A

2
(cos(Gx) + cos(Gy))

)
(6.1)

We numerically compute the full set of DC thermo-electrical transport coefficients — electrical
conductivity σ, thermal conductivity κ̄, the thermo-electrical coefficientα— up to very large po-
tentials (A ≃ 8) and temperatures as low as T ≃ 0.005µ. For stronger potentials we sometimes
resort to uni-directional 1D potentials to maintain numerical control. In addition, we also com-
pute the optical conductivities. Because of numerical difficulties we encountered this is limited to
intermediate potential strength (A ≲ 1− 2) and 1D lattices.

From this computational experiment we make three remarkable observations:

1. The DC electrical resistivity of the Gubser-Rocha metal becomes to good approximation
linear in temperature at low temperatures, see the upper left panel in Fig. 6.1. Strikingly,
we find the slope of this linear resistivity to saturate for an increasing potential strength
after correcting for a spectral weight shift. This suggests a connection with the universal
Planckian dissipation bound: using the optical conductivity to deconvolve this in a total
spectral weight and a current life time, the saturation value for the latter is close to τGR =
1
2πℏ/(kBT ) (see Fig. 6.13).

The electrical conductivity of the RN metal also saturates for large potential strength at
a roughly temperature independent value, although less perfect. The gross differences in
temperature dependencies of the GR and RN metals between the electrical conductivity
appear to reflect the different temperature dependencies of the entropies. We will discuss
below why this is not so. Despite first appearances, the thermoelectric (α) and heat (κ̄)
conductivities do not saturate at larger lattice potentials, but vanish as 1/A (see Fig. 6.12).
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Figure 6.1.: The thermoelectrical DC transport coefficients as functions of temperatureT in units
of the chemical potential µ for the Gubser-Rocha (GR, left column) and Reissner-
Nordström (RN, right column) metals in a 2D square lattice harmonic background
potential with wave vector G = 0.1

√
2µ and a strength 0 < A < 8. σ, α and κ̄ are

the electrical conductivity, thermo-electrical cross conductivity and the overall thermal
conductivity respectively. The electrical conductivity of the GR metal (top-left panel)
shows for all potentials a nearly linear in temperature resistivity (ρ = 1/σ ∼ T ) with
a slope that shows saturating behavior for large potentials.

2. We can separate out the convective overall transport from more microscopic diffusive trans-
port by considering the heat conductivity with zero electrical current κ = κ̄− Tα2/σ,
also known as the open boundary heat conductivity. Similarly, one can define an electri-
cal conductivity without heat transport σQ=0 = σ − Tα2/κ̄ that is a (non-perfect) proxy
for transport anchored in charge diffusion — it is proportional to charge diffusion, but its
thermodynamic scaling is also determined by crossterms with the convective part. These
are shown in Fig. 6.2. The σQ=0 is also (nearly) inversely proportional to temperature up
to the largest potentials, similar to the overall σ. Most importantly, however, we see that
for large potentials this diffusion-anchored contribution to the conductivity dominates the
transport (middle panels): up to ∼ 80% of the electrical currents is anchored in the dif-
fusive sector. Similarly, the diffusion-anchored open boundary thermal conductivity (κ,
lowest panels) accounts for almost the full heat conductivity κ̄ of Fig. 6.1 in the large po-
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Figure 6.2.: The electrical conductivity at zero heat currentσQ=0 shows that as the lattice strength
is increased the non-convective current anchored in charge diffusion becomes the
dominating conduction channel. At the largest lattice strength where A = 8, the
ratio of non-convective to convective transport σQ=0/σ reaches up to 80%, signalling
that momentum conservation is nearly completely destroyed. By definition, the frac-
tion σQ=0/σ is equal to the ratio κ/κ̄. The open boundary thermal conductivity
κ anchored in thermal diffusion is rather independent of the lattice strength, barely
changing after a moderate value ofA = 1 has been reached. Parameters are the same
as in Fig. 6.1.

tential regime. This signals that for the strongest potentials the system approaches closely
the incoherent metal regime addressed by Hartnoll [219] where there is no longer a sense of
momentum conservation; It is governed instead by a “hydrodynamics” that only relies on
energy- and charge conservation. A key observation is that this is the regime which displays
the “Planckian saturation” of the electrical resistivity highlighted above in Fig. 6.1. In other
words, this is the regime that should contain the clue behind the saturation phenomenon.

3. Computing the optical conductivities, we find for small lattice potential at the lowest tem-
perature a perfect Drude peak (left panel Fig. 6.3). Strikingly, upon raising temperature this
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Figure 6.3.: The DC resistivities for the small- (A = 0.15, left panel) and intermediate (A = 1.1,
right panel) lattice potential of the Gubser-Rocha metal are in both cases (nearly) linear
in temperature. However, in both cases the optical conductivity (insets) undergoes
radical changes when temperature increases. At the lowest temperatures in the small
potential case (left panel) this consists of a simple Drude peak that gradually turns
into an incoherent “flat top” low frequency response terminating at a developing “mid
IR peak”. The characteristic temperature where this happens decreases for increasing
potential strength. In the right panel, a full fledged mid IR peak has already developed
at a low temperatureT ∼ 0.015µ (left inset), while it is accompanied by a high energy
peak atω = csG = 1√

2
G that is identified to be the “Umklapped sound peak”. Upon

further raising temperature, the mid IR peak moves up in energy to eventually merge
with the sound peak (right inset).

evolves into a mid IR peak, reminiscent of what is seen in experiment. Although the dynam-
ical response shows such drastic changes, these remarkably do not imprint on the linearity
in temperature of the DC resistivity at all. This finding is repeated in the intermediate po-
tential case. There, the electrical DC resistivity can even stay linear-in-T through a second
change in relaxational dynamics from the mid-IR-peak regime to a fully incoherent metal.
Just within reach of our numerics, the spectrum at the lowest temperature (left inset) now
already displays the mid-IR peak, and we have good reasons to expect that at even lower tem-
peratures, outside of our numerical reach, a Drude response should still be present. There
is also a second peak at higher frequencies that can be identified with the “Umklapp copy”
of the sound mode at an energy ω = csGwhere cs is the speed of sound andG the lattice
wavevector (Section 6.6). Upon raising temperature the mid-IR peak moves to higher fre-
quency to eventually merge with the “Umklapped sound” peak, transitioning to a fully bad
incoherent metal regime (right inset), while the DC resistivity stays essentially linear-in-T
throughout.

These observations are reminiscent of the experimental observation that the linear-in-T DC
resistivity appears to be completely insensitive to the change from “good metal” to “bad
metal” behavior when temperature increases. This transition can be defined using the ab-
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solute value of the resistivity crossing the Mott-Ioffe-Regel limit but perhaps a better way
is to identify it through the dynamical response, associating the good metal regime with a
Drude response while the bad metal has the incoherent “mid IR peak” type of behavior as
in our computations.

To dissect these numerical results is an intensive exercise. We therefore provide an executive sum-
mary of the paper here. The reader interested in the details may proceed directly to Section 6.3 and
skip the remainder of this Introduction.

The Local Quantum Critical Strange Metals of Holography and Hydrodynamical

Transport

Transport in holographic strange metals is governed by hydrodynamics (Section 6.3). Holographic
strange metals originate in the quantum critical state of a non-trivial IR fixed point and the GR
metal is singled out as the one with the right scaling properties to reproduce both the local quan-
tum criticality and Sommerfeld entropy of the cuprate strange metals. The non-trivial fixed point
is of a special kind in that it still has an intrinsic correlation length ξ ∼ 1/µ ([232] and Appendix
6.B). Hydrodynamics has long been utilized to describe transport in such densely entangled crit-
ical states, and holography is no different. In the Galilean continuum hydrodynamics is governed
by (near) momentum conservation captured by the Navier-Stokes equations describing convective
currents, also called “coherent” in the condensed matter- and holographic communities. However,
there are also transport channels that are controlled by only diffusive (or “incoherent”) transport.
The overall electrical (σ) thermoelectric (α) and thermal (κ̄) transport coefficients are set by the
sum of both convective and diffusive transport channels. The open boundary thermal conductiv-
ity κ = κ̄ − Tα2/σ and the charge-without-heat transport σQ=0 = σ − Tα2/κ̄ can be used
to disentangle these. These zero out the dominant convective contribution. If Planckian dissipa-
tion occurs, the natural channel is this diffusive channel which can reflect universal microscopic
dynamics. The convective channel is controlled by the way translational symmetry is broken and
therefore unlikely to be universal. However, the convective channel dominates when translational
symmetry is only broken weakly, and Planckian dissipation is therefore most natural in systems
with strong translational symmetry breaking.

Convective Hydrodynamics in the Presence of a Weak Lattice Potential

The presence of a lattice potential plays an important role in cuprate strange metals and this is
the obvious way translational symmetry is broken. Placing the holographic strange metals in a
background lattice with a perturbatively small potential strength the nature of the linear response
of hydrodynamical transport is in fact familiar (Section 6.4). Hydrodynamic fluctuations must be
decomposed in Bloch modes that Umklapp at Brillouin zone boundaries. This holds for purely
diffusive as well as propagating modes. Well known is that the translational symmetry breaking by
the lattice makes momentum relax due to shear drag with a life time Γshear = ηG2/(ε + P ) (ε
andP being the energy density and pressure and η the shear viscosity). However, a careful analysis
reveals that the Umklapp potential gives rise to a mode coupling between this relaxational mode
and the Umklapped charge diffusion mode characterized by a relaxation rate Γcharge = DcG

2,
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6. Planckian Transport for a Holographic Local Quantum CriticalMetal in Periodic Potentials

whereDc is the charge diffusivity. For weak latticesA≪ 1 the result of this generic mode coupling
problem is an optical conductivity of the form (cf. Eq. (6.19) & Eq. (6.32)),

σ(ω) ∼ Ω− iω

(Γ− iω)(Ω− iω) + ω2
0

(6.2)

where ω0 is related to the strength of the mode coupling and Γ and Ω are combinations of Γshear
and Γcharge. Taking the DC limit gives an overall current relaxation rate ΓDC = Γ + ω2

0/Ω con-
trolled by two separate dissipative channels.

The above hydrodynamic analysis is only valid for lattice sizes a = G−1 greater than the earlier
emphasized retained correlation length ξ ≃ 1/µ of the IR fixed point or equivalently G ≪ µ
(Section 6.5). This length ξ ≃ 1/µ where hydrodynamics provides the better perspective on
transport than the quantum critical power law response set by the near horizon geometry as eluci-
dated by Hartnoll and Hofman [233]. In a lattice background this reflects itself in a strong change
in the transport properties when the lattice momentum G crosses this scale. The results in the
above are all associated with the hydrodynamical regime (G ≪ µ); for large lattice momenta
(G ≳ µ) the additional Umklapp contribution to the dissipation of the currents is strongly sup-
pressed (Fig. 6.11).

This Umklapp hydrodynamics can explain our observations at weak lattice potential (Section 6.6).
When |Γ−Ω| > 2ω0 the AC conductivity displays a single peak, explaining the low temperature
Drude-like result of Fig. 6.3. Only for the lowest temperatures is this a pure Drude peak controlled
by a single pole, however. In detail it originates in two diffusive poles, the Drude k = 0 sound
pole and the Umklapped charge diffusion pole; for each we fully understand their temperature
dynamics from the underlying hydrodynamic computation and the thermodynamical properties
of the holographic strange metal.

At higher temperatures (and/or at stronger lattices) generically |Γ − Ω| < 2ω0 and a real, prop-
agating part develops in modes controlling the AC conductivity. This pole collision explains the
emergence of the mid-IR-peak in the dynamical response – the numerical results are perfectly fit-
ted by this form.

The same two-relaxational-current response was identified in the context of a hydrodynamical
fluid coupled to the fluctuations of a damped pinned charge density wave [234]. Our discovery is
that Umklapp hydrodynamics gives the right temperature evolution necessary to have a mid-IR-
peak appear as temperatures increase.

As emphasized, the DC resistivity can remain linear throughout this transition. This can be ex-
plained by the fact that the scaling properties of the hydrodynamic parameters are inherited from
the underlying non-trivial quantum critical IR fixed point. For the GR strange metal both re-
laxation rates scale as T , whereas for the RN metal one scales as T 0 and the other as T 2. This
manifestation of the differing detailed expressions for both relaxation rates shows that a simple
interpretation of the scaling of the resistivity in terms of the entropy fails. Instead their scaling is
determined at a deeper level by the quantum critical IR fixed point.
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At intermediate lattice strengths a similar scenario can take place. Now the transport response
is determined by four modes, the two modes above and two Umklapped sound modes at Re
ω = ±csG. Upon raising temperature the pole responsible for the mid-IR peak moves up with
temperature to approach close to the Umklapped sound pole, such that it gets obscured and only
one peak remains in the AC conductivity (right inset of Fig. 6.3). From this temperature onward
the low frequency AC spectrum becomes roughly temperature independent. We can track this
in terms of the quasinormal modes (Fig. 6.9) although we can no longer rely on the perturbative
expansion to enumerate it. For a large part of this intermediate lattice regime, the DC resistivity is
still effectively captured by the expression σDC = ω2

p/(Γ + ω2
0/Ω), though one needs a careful

AC-fit to extract the values. Again, its temperature scaling is set by the non-trivial IR fixed point
and can remain unaffected by the change in dissipative dynamics in the AC conductivity.

The Incoherent Hydrodynamics at Large Lattice Potential

At large lattice potentials momentum is strongly broken and we enter in a qualitatively different
regime (Section 6.7). Observationally this is where the numerically extracted relaxation rate of
the DC conductivity of the GR metal saturates at about the Planckian value Γcorrected ≃ 2πT
(Fig. 6.13). Because momentum is strongly broken, the framework to understand whether this
can be verified is the one where transport is governed by only two conserved quantities, energy
and momentum [219]. Their fluctuations consist of two coupled diffusive modes with diffusion
constants that are not the same as they are in the homogeneous system. At strict T = 0, charge
and energy transport formally decouple and the electrical conductivity is governed by one of these
modes σ = χD+ with χ the charge susceptibility, while the thermal conductivity κ = cnD−
is governed by the other with cn is the specific heat at constant charge density. At low but finite
temperature they mix perturbatively, but are still dominated by their T = 0 scaling. From our
numerics we conclude thatD+ ∼ T−1 whereasD− ∼ T for the GR metal; similar behavior has
been established in homogeneous holographic strange metals with strong momentum relaxation
(GR metal in a Q-lattice) where the homogeneous geometry allows analytical solutions [235]. It
has been argued that the temperature dependence of the thermal diffusivity empirically defined
as DT ≡ κ/cn should be insensitive to the breaking of translations and reduces to one of the
incoherent diffusivities D− at low temperature and strong lattices. Moreover, it can be related
to microscropic chaos through a butterfly velocity v2B times a maximal Lyapunov rate λ = 2πT
that embodies Planckian dissipationDT = 1

2v
2
B/(2πT ) [225–227]. Provided we can extrapolate

from the homogeneous result that in the non-trivial IR fixed point of the GR metal in a strong
lattice the butterfly velocity still scales as v2B ∼ T 2, this is consistent with our findings. The puzzle
is the DC-conductivity and charge response. We conjecture that the Planckian relaxation set by
the maximal Lyapunov rate should still govern charge transport as well. Given that on dimensional
groundsD+ ∼ (v

charged
B )2/(2πT ), this can be only so if the butterfly velocity is not universal but

depends on the quantum numbers of the operators probing chaos; there are hints that this is true
[236–239]. If it can be shown that vcharged

B ∼ T 0 this could explain not only the observed linear-
in-T resistivity at strong lattice potentials in the GR metal, but also its saturation to the Planckian
value.

We will end with a short discussion in Section 6.8 of these results with a focus on the possible rele-
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6. Planckian Transport for a Holographic Local Quantum CriticalMetal in Periodic Potentials

vance to experiment. We also include a number of Appendices where we discuss various technical
details.

6.3. Holographic Strange Metals, Transport and

Translational Symmetry Breaking

In the absence of a lattice, the homogeneous finite density strange metals [61, 62, 71, 223] of holog-
raphy are characterized by a non-trivial IR fixed point. These are specified by a handful of anoma-
lous scaling dimensions: the dynamical critical exponent z, the hyperscaling violation dimension
θ and the charge exponent ζ , expressing the scaling of time with space, the scaling of the thermo-
dynamically relevant degrees of freedom with volume, and the running of the charge, respectively.
Experimental evidences suggest that the cuprates are “local quantum critical” [50, 240, 241], re-
ferring to z → ∞, while electronic specific heat measurements in the high temperature strange
metal regime exhibit a Sommerfeld entropy, s ≃ kBT/µ (see e.g. [242]) where µ is the chem-
ical potential taking the role of the Fermi energy. Though the notion that cuprate strange met-
als are explained by a non-trivial IR fixed point was put forth independently of holography, the
fixed point that shares the rough qualitative characteristics was first discovered using AdS/CFT.
Amongst the holographic strange metals this is the so-called Gubser-Rocha (GR) strange metal
[98], being the only holographic strange metal in the general classification that reconciles z → ∞
with Sommerfeld entropy. Within the larger class of holographic strange metals, the critical scal-
ing at the IR fixed point insists that the entropy should scale as s ∼ T (d−θ)/z . For z → ∞ and
d− θ finite the entropy should therefore be temperature independent, implying a zero tempera-
ture entropy. This is the case for the holographic strange metal dual to the Reissner-Nordström
black hole and the closely related SYK systems. The GR metal is characterized by a double scaling
limit such that z,−θ → ∞ while −θ/z = 1. This reconciles a low temperature Sommerfeld
entropy s ∼ T + . . . with local quantum criticality. For comparison we will also present results
for the Reissner-Nordström (RN) strange metal [61, 71, 156]. For a qualitative understanding of
our results nothing more than the thermodynamics of the fixed point are required (summarized
in Table I). The precise details RN and GR holographic strange metal and the duality map are
discussed in Appendix 6.A.

Scaling RN
θ = 0, z = ∞

GR
z,−θ = ∞

Entropy s/µ2 ∼ (T/µ)(d−θ)/z s/µ2 ∼ (T/µ)0 s/µ2 ∼ (T/µ)1

Charge Density * n/µ2 ∼ (T/µ)0 n/µ2 ∼ (T/µ)0

Table 6.1.: Scaling behavior in holographic strange metals of the entropy density s and the charge
densityn in terms of the chemical potentialµ and the temperatureT . The first column
highlights the general formula of holographic scaling geometries. The last two columns
focus on the two holographic models with local quantum criticality (z → ∞) of in-
terest in this paper: the Reissner-Nordström and the Gubser-Rocha model. (∗): For a
discussion on this, see section 4.2.4 of [71].
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6.3. Holographic StrangeMetals, Transport and Translational Symmetry Breaking

The motivation for this study is that all experimental strange metals are known to occur in the
presence of an excessively strong effective ionic background potential felt by the electron system,
the Mottness of the cuprates being case in point (see e.g., [174, 229, 230]). The commonality of
this lattice potential suggests an importance in observed systems of which the effects on the holo-
graphic strange metals have not yet been systematically investigated. We shall study the GR and the
RN AdS black holes dual to 2+1 dimensional strange metals where we break translations by either
a one dimensional or two-dimensional explicit periodic square ionic lattice potential encoded in
the local chemical potential

µ1D(x, y) = µ0

(
1 +A cos(Gx)

)
µ2D(x, y) = µ0

(
1 +

A

2
(cos(Gx) + cos(Gy))

)
(6.3)

The parametrization is such that the maximal deviation from the average is ±A in both cases.

The above explicit lattice condition appears as boundary conditions in the dual holographic grav-
itational description of the strange metal system in question. The difficulty is that studying such
explicit translational symmetry breaking is only possible numerically outside perturbation theory.
We solve the full set of spatially dependent Einstein-Maxwell-Dilaton equations of motion for the
GR and RN strange metals using the DeTurck gauge in a Newton-Raphson scheme [128, 129,
147]. A summary is given in Appendix 4.B. DC transport is computed by numerically solving for
the Stokes flow problem at the horizon [142, 143, 146, 243]. All numerical computations employ a
higher-order finite difference scheme where the radial coordinate is discretized on the Chebyshev-
Lobatto nodes (Appendix 6.A.3).

We treat the numerical data obtained as the outcome of an experiment. However, the framework
in which to analyze this data is known. As we already emphasized, the dense entanglement of the
quantum many body system described holographically by its dual gravity theory drives a very rapid
quantum thermalization. This implies that local equilibrium sets in very rapidly, which in turn im-
plies that, in the homogeneous background with no lattice, transport at macroscopic times and
lengths is governed by hydrodynamics. Different from the quasiparticles in Fermi-liquid metals, a
strange metal flows like water. It is a general hydrodynamical principle that it can be decomposed
in convective- (also called “coherent”) and diffusive (“incoherent”) flows. The former refers to the
motion of the fluid as a whole as protected by the conservation of total momentum in the transla-
tionally invariant homogeneous background. When the translational symmetry is weakly broken,
both are readily recognizable in the Drude model, which introduces by hand a momentum decay
rate Γmom.rel. = τ−1

mom.rel. as the largest relaxation time. For relativistic hydrodynamics appropriate
to strange metals where a linear dispersion relation of charged constituents induces an emergent
Lorentz symmetry the Drude conductivities are

σ(ω) =
n2

ϵ+ P

1

Γmom.rel.
+ σinc

α(ω) =
ns

ϵ+ P

1

Γmom.rel.
+ αinc

κ̄(ω) =
s2T

ϵ+ P

1

Γmom.rel.
+ κ̄inc (6.4)

123



6. Planckian Transport for a Holographic Local Quantum CriticalMetal in Periodic Potentials

Here n, s, ϵ, P of the convective terms are the charge, entropy, energy, and pressure density re-
spectively. The Lorentz symmetry also demands that the incoherent contributions are related to
each other by σinc = σQ, αinc = − µ

T σQ and κ̄inc = µ2

T σQ in terms of a transport coefficient
σQ.1

Writing σinc = T
µ2 κ̄inc, αinc = − 1

µ κ̄inc instead, this reveals that in a Galilean invariant system
where both c→ ∞ and µ = mec

2 + . . .→ ∞, only the incoherent heat contribution survives.
It is a highlight of non-relativistic finite temperature Fermi-liquid theory that such a diffusive heat
conduction is present even dealing with spin-less fermions, mediated by the Lindhard continuum.
This κ̄inc = cnDT , where the specific heat at constant density (equal to the specific heat at con-
stant volume) cn ∼ T , while the thermal diffusivity DT ≃ v2F τcol where τcol ≃ EF

kBT
τℏ; there-

fore κ̄inc ∼ 1/T as verified e.g. in the 3He Fermi liquid. In contrast in the non relativistic limit
ϵ+ P → µn ∼ nmc2 the electrical conductivity becomes purely convective and one recognizes
the familiar Drude weight expressed in the plasma frequency as ω2

p = ne2/m.

The incoherent contributions to transport are in principle measurable in the laboratory by zeroing
out the coherent part. This can be done by measuring heat transport in the absence of charge
transport (open boundary heat conductivity) κ or charge transport without heat, σQ=0 equal
to

κ = κ̄− Tα2

σ
,

σQ=0 = σ − Tα2

κ̄
. (6.5)

Note that in the Galilean limit when there is only an incoherent heat conductivity κ = κ̄inc.

These incoherent contributions are diffusive. The open boundary combinations Eq.(6.5) are
therefore a mixture of diffusive and convective transport. Nevertheless, it is useful and conven-
tional to define the charge and thermal diffusivities Dc ≡ σ/χ and DT ≡ κ/cn, where χ is the
charge susceptibility, and cn the heat capacity. In the remainder of this text, we will see that when
translational symmetry is strongly broken and the convective part is strongly suppressed, these
diffusivities are directly related to diffusion constants in transport. These “incoherent metal”
diffusivities and diffusion constants should not be confused with the well-known diffusion of
charge Dρ and energy Dπ in weak or vanishing translational symmetry breaking. As we shall
see in the Gubser-Rocha metal the latter are both linear-in-T at low temperature while they are
T -independent at low temperature in Reissner-Nordström. In the incoherent metal, in contrast,
we will see thatDT ∼ T whileDc ∼ T−1.

Will the Real Planckian Dissipating Channel Make Itself Known?

The point of this brief hydrodynamical exposition is to highlight the fundamental issue we address
in this article. The above illustrates that even in the simplest Drude hydrodynamics there are two

1There is one exception. If the translational symmetry breaking happens in only one of the spatial dimensions αinc and
κinc vanish [139]. In that particular case a subleading term in the numerator of the convective term precisely cancels
the incoherent term in the thermoelectric and heat conductivity.
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dissipative channels: the convective coherent Drude term encoding the way translational symme-
try is broken, and the incoherent term related to a diffusion of microscopic origin. For weak lat-
tice potentials, or more generally for weak translational symmetry breaking, the convective Drude
term is much larger than the incoherent term. With the conjecture that in strongly correlated crit-
ical points the shear viscosity is bounded by the entropy η ≥ s/4π, two of us, together with R.
Davison, proposed that in disordered strange metals the usual shear viscosity based momentum
relaxation rateΓmom.rel. ∼ η ∼ s can explain a linear-in-T resistivity for a system with Sommerfeld
entropy [106]. The connection between the resistivity and the entropy would explain the univer-
sality and the minimal viscosity would be the encoding of Planckian dissipation. Moreover, this
argument is also consistent with a Drude response in the optical conductivity. The counterargu-
ment is that this only holds in detail for marginal disorder. Relevant or irrelevant disorder would
significantly limit the regime of applicability of this argument [244, 245].

Taking a step back, it actually is difficult to argue that a universal phenomenon such as Planckian
dissipation should manifest itself through the convective channel, as this coherent channel will
generically depend on the details of translational symmetry breaking [225, 246]. The far more nat-
ural channel for Planckian dissipation would be the incoherent diffusive channel. But if one takes
this point of view, one can no longer use it to explain the universal linear-in-T DC resistivity in
strange metals. These all show strong Drude behavior in the optical conductivity, and the DC con-
ductivity is therefore set by the coherent response in the context of weak translational symmetry
breaking. It appears to be a Catch-22. Either a Planckian dissipation can set the universally ob-
served linear-in-T resistivity in strange metals, but then the AC conductivity ought to be Drude,
or weak translational symmetry breaking sets the resistivity, but then it is hard to see how it can be
universal.

We will resolve this conundrum by showing explicitly that in weak lattice near a non-trivial IR
fixed point, the thermodynamics of the fixed point together with a fixed-point-controlled scaling
of transport coefficients can set the DC resistivity in a universal sense, independent of the dissi-
pative channel shown in the AC conductivity. Qualitatively this is an extension of the Davison-
Schalm-Zaanen Γmom.rel. ∼ η ∼ s result. At the same time, for large lattice strengths the inco-
herent part becomes dominant and indeed shows universal Planckian dissipation as surmised by
Blake and others [225–227]. For good measure we state that there may still be a deeper way to also
understand the weak lattice results in terms of Planckian dissipation. Even though they appear
non-universal, the observed scaling, together with the way the Sommerfeld entropy is a natural
bounding behavior at low temperatures, leaves this possibility open.

6.4. Umklapp Hydrodynamics for Weak Lattice Potentials

As we emphasized, in the low frequency limit at macroscopic long wavelengths holography reduces
to hydrodynamics albeit with specific transport coefficients. A fundamental principle behind the
theory of hydrodynamics is local equilibrium. The state of the fluid can be described by a slowly
spatially varying energy-momentum tensorTµν(x) and in the presence of aU(1) charge, a current
Jµ(x). In turn the local equilibrium condition implies that one can also describe fluid behavior in
the presence of a slowly spatially varying external potential whether temperature T (x), pressure
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P (x), or chemical potential µ(x) [247–249], Suppose this background is periodic in the coordi-
nate x. The hydrodynamical problem of relevance is nothing else than that of a hydrodynamical
fluid like water that is flowing through a periodic “array” of obstacles weakly perturbing the flow,
characterized by a microscopic “lattice constant”. This is a rather unusual circumstance in stan-
dard hydrodynamics and we are not aware of any literature addressing the role of Umklapp in the
AC structure of the correlators, though a beginning was made in [250].

But it represents an elementary exercise, and the answer is readily understood. From elementary
solid state physics it is well known that a quantum mechanical wave function in a periodic back-
ground experiences Umklapp. This is purely a wave phenomenon and the principle therefore also
applies to classical waves as described by hydrodynamics. Both a quantum mechanical wave func-
tion and linearized hydrodynamic fluctuations around equilibrium are described by a differential
equation of the form

(∂t +M(x))ϕ(x) = 0 (6.6)

If M(x) is periodic M(x + 2πn
G ) = M(x), then ϕ(x) can be decomposed in Bloch waves

ϕ(x) = 1
2πG

∫ G/2
−G/2 dk

∑
n ϕn(k)e

i(k+nG)x. TakingM(x) = −M0∂
2
x+A cos(Gx) as canon-

ical example, one can solve Eq. (6.6) perturbatively inA. Definingϕn(k) = ϕ
(0)
n (k)+Aϕ

(1)
n (k)+

A2

2 ϕ
(2)
n (k) + . . ., the solution to first orderA is

ϕn(k) = ϕ(0)n (k) +
A

2G(G− 2k)M0
ϕ
(0)
n−1(k)−

A

2G(G+ 2k)M0
ϕ
(0)
n+1(k) + . . . (6.7)

This mixing between the different Bloch waves is Umklapp. In hydrodynamics these Umklapped
responses have already been observed several years ago in numerical computations of holographic
metals in explicit periodic lattices in [107, 120, 140]. Fig.4 in the article [140] shows an Umklapped
sound mode at ω = vsG in the optical conductivity with G the lattice momentum. However, a
full treatment has been lacking.

For U(1) charged relativistic hydrodynamics the fluctuation equations in the longitudinal sector
in a spatially constant background are the coupled equations [81]

 −iω ik 0
ikβ1 Dπk

2 − iω ikβ2
−Dn1

k2 ikβ3 Dn2
k2 − iω

 δϵ
δπx
δn

 = 0 (6.8)

Here δϵ, δn, δπx are the fluctuations in energy-, charge-, and longitudinal momentum density re-
spectively. The upper two-by-two block is the sound sector with β1 =

(
∂p̄
∂ϵ̄

)
n

. At finite density
this interacts with a charge diffusion mode in the bottom one-by-one block through the interac-
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tions β2 =
(
∂p̄
∂n̄

)
ϵ
, β3 = n̄

ϵ̄+p̄ and the diffusion constantDn1 . The diffusion constants equal

Dπ =

(
2

(
1− 1

d

)
η + ζ

)(
∂vx
∂πx

)
ϵ

=
2
(
1− 1

d

)
η + ζ

ϵ̄+ p̄
,

Dn1
= σQT̄

(
∂(µ̄/T̄ )

∂ϵ̄

)
n̄

= −σQ

(
∂n̄
∂T̄

)
µ̄
+ µ̄

T̄

(
∂n̄
∂µ̄

)
T̄(

∂n̄
∂µ̄

)
T̄

(
∂ϵ̄
∂T̄

)
µ̄
−
(
∂n̄
∂T̄

)
µ̄

(
∂ϵ̄
∂µ̄

)
T̄

,

Dn2
= σQT̄

(
∂(µ̄/T̄ )

∂n̄

)
ϵ̄

= σQ

(
∂ϵ̄
∂T̄

)
µ̄
+ µ̄

T̄

(
∂ϵ̄
∂µ̄

)
T̄(

∂n̄
∂µ̄

)
T̄

(
∂ϵ̄
∂T̄

)
µ̄
−
(
∂n̄
∂T̄

)
µ̄

(
∂ϵ̄
∂µ̄

)
T̄

.

(6.9)

In the last two equations, the last equality leads to a seemingly more complicated form, but each
of these derivatives is much simpler to compute. Barred quantities denote the (spatially constant)
equilibrium background, and η, ζ, σQ are the microscopic transport coefficients: the shear- and
bulk-viscosity and the momentum-independent contribution to the conductivity. As discussed,
the holographic models we consider have d = 2 with an underlying conformal symmetry for
which the equation of state ϵ̄ = 2p̄ implies that ζ = 0, β2 = 0 and β1 = c2s = 1/2; we will limit
our focus to conformal hydrodynamics in the remainder.

Placing such a system in a spatially varying chemical potential µ(x) = µ̄
(
1 +A cos(Gx)

)
the

Umklapp interactions follow from a re-derivation of the fluctuation equations in this background.
A detailed derivation for both conformal and non-conformal hydrodynamics and discussion with
a natural generalization to a two-dimensional latticeµ(x) = µ̄

(
1 + A

2 cos(Gx) + A
2 cos(Gy)

)
is given in a companion article [251]. In summary, to maintain equilibrium with spatially constant
temperature also requires a spatially varying charge densityn(x) = n̄+µ̄A

(
∂n̄
∂µ̄

)
T̄
cos(Gx)+. . .

and pressure p(x) = p̄+Aµ̄n̄ cos(Gx) + . . . to leading order inA. The exact equation of state
ϵ̄ = 2p̄ in a conformal fluid means the energy density follows the pressure. By viewing the lattice as
a small perturbation on the thermal equilibrium, we can express the perturbations in terms of the
chemical potential modulation and the thermodynamic susceptibilities of the background. These
corrections to the background are responsible for the Bloch decomposition and Umklapp interac-
tions mixing them. To first order in the lattice strengthA the three modes of the longitudinal sec-
tor2 mix with their six Umklapp copies. Our interest in this article is how this Umklapp affects the
response at low frequencies ω ≪ G and zero momentum k = 0. At k = 0 the un-Umklapped
charge diffusion mode decouples, and the remaining eight modes decompose into four parity-
odd-in-G ones and four parity-even modes. The latter include the k = 0 sound mode δπ(0), two
Umklapped sound modes built on δϵ(S) =

∫
dx sin(Gx)δϵ(x), δπ(C) =

∫
dx cos(Gx)δπ(x);

and one Umklapped charge diffusion mode built on δn(S) =
∫

dx sin(Gx)δn(x) that interact

2Substituting this spatially varying background into the defining conservation equations of hydrodynamics and expand-
ing in fluctuations, they no longer decompose in a longitudinal and transverse sector. It can be shown, however, that in
the presence of a orthogonal lattice the naively longitudinal sector along one of the lattice directions is self-contained.
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as
(∂t +M) · δϕ = R (6.10)

with

M =


0 1

2AGµ̄
1
2AGµ̄ − 3

2 iωAµ̄β3
− AGµ̄

(ϵ̄+p̄)αn
DρG

2 0 0

−2AGµ̄β2
3 0 0 −Gβ3

−3iωAµ̄β3 0 G
2β3

DπG
2

 (6.11)

and

δϕ =


δπ

(0)
x

δn(S) − β3δϵ
(S)

β3δϵ
(S)

δπ
(C)
x

 , R =


n̄

µ̄Aβ3
DρG
αn

−µ̄Aβ3DρG
αn

µ̄A
(
α−1
n + n̄2

(ϵ̄+p̄)c2s

)
 δĒx (6.12)

where we have defined Dρ = Dn2
the charge diffusion constant and where we used the coef-

ficient αn ≡ T̄
(
∂(µ̄/T̄ )
∂n̄

)
ϵ̄

which entered the definition of Dn2 . It is purely thermodynamic
and has a universal scaling behavior determined by the scaling of entropy, as we will later high-
light. We have added to our system a perturbatively small time-varying electric field δEx(t) =
−δĒxe−iωt which will externally source a longitudinal current δJx. This term will also enter
the hydrodynamic system as an extra term in the current constitutive relation through ∂xµ →
∂xµ+ δEx(t).

We can now therefore linearize the constitutive relation

δJx = nδvx − σQ

[
∂x(δµ− µ

T
δT ) + δEx

]
(6.13)

for the current density defined as

δJx(t) =

(
∂Jx

∂ϕ

)⊺

· δϕ(t) + σQδĒxe
−iωt

with
(
∂Jx

∂ϕ

)⊺

=

(
β3, −µ̄ADρG

2
β3, µ̄A

DρG

4n̄αn
, µ̄A

(
β3 +

1
2n̄αn

))
.

(6.14)

We make use of the dynamical system (6.10), to obtain the time-evolution of the dynamical fields
δϕ(ω) =

(
−iωI4 +M(ω)

)−1 ·
(
δϕ(t = 0) +RδĒx

)
. Since we have turned on the external

electric field, we are not interested in explicitly sourcing any of the hydrodynamical variables and
therefore we set δϕ(t = 0) as an initial condition such that δϕ(ω) ∝ δĒx and by extension so
will be δJx. Finally, the optical conductivity can be computed as [251]

σ(ω) =
δJx

δĒx
. (6.15)
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The inverse (−iωI4+M)−1 is dominated by the vanishing of its determinant. These zeroes show
up as poles in the conductivity. Expanding the determinant to orderA2, there are four poles at

ω1 = −i(Γη + Γd) +O(A4) ,

ω2 = −i(DρG
2 − Γd) +O(A4) ,

ω± = ± G√
2

[
1− µ̄2A2β2

3 +O(A4)
]
− i

1

2

[
DπG

2 − Γη +O(A4)
]
+O(G3)

(6.16)

with

Γd ≡ A2 µ2

2(ϵ̄+ p̄)Dραn
,

Γη ≡ 2µ̄2A2β2
3DπG

2 = 2A2 µ̄2n̄2

(ϵ̄+ p̄)2
DπG

2 (6.17)

At low frequency ω ≪ csG, the contribution from the two sound poles ω± should be negligible
in the conductivity. By expanding the expression (6.15) as a quadruple Laurent series

σ(ω) = σ0 +
∑

i=1,2,±

Zi
ω − ωi

(6.18)

and truncating the two sound modes, one finds that it takes the form3

σno sound(ω) = σ0 +
Z1

ω − ω1
+

Z2

ω − ω2
= σ0 + Zeff

Ω− iω

(Γ− iω)(Ω− iω) + ω2
0

(6.19)

with

Ω =

O(1)︷ ︸︸ ︷
DρG

2 −

O(A2)︷ ︸︸ ︷
2D2

ρG
2Γd +O(G3)+O(A4) ,

Γ = 2D2
ρG

2Γd + Γη +O(G3) +O(A4) ,

ω2
0 = DρG

2Γd

[
1− 2D2

ρG
2 +O(G3)

]
+O(A4) ,

Zeff/ω
2
p = 1 + 4µ̄2A2β2

3D
2
πG

2 −DρΓd

[
4 +Dρ(Dρ − 4Dπ)G

2
]
+O(G3, A4),

σ0 = σQ +O(A4) ,
(6.20)

where the plasmon frequency is ω2
p = n̄2

ϵ̄+p̄ .

The form Eq. (6.19) is well known from studying the hydrodynamics of decaying charge density
waves or other unstable superfluids [221, 234, 252–258]. This is not surprising as the underlying

3An attempt to formally decouple the sound modes by taking the limit c2s → ∞ requires that Γη ∼ 1
c2s

and will
therefore shift the poles. The truncated Laurent expansion keeps the poles in the right location.
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physics is that of two damped currents cross-coupled with an interaction ω0 (see Appendix 6.F).
Both a decaying (i.e. damped) pseudo-Goldstone boson, as well as an Umklapp hydrodynamics
interaction belong to this class.

Given an appropriate temperature scaling of Γ,Ω, ω0 or equivalently Z1,2, ω1,2 it was already
proposed that such a conductivity could explain the emerging mid-IR peak at high temperature
in the cuprates. We will argue below that this Umklapp hydrodynamics in an holographic AdS2
metal with Sommerfeld specific heat provides precisely the right scaling.

6.5. The Applicability of Hydrodynamics and the Imprint of

Local Quantum Criticality

Despite the fact that the interplay between holography and hydrodynamics has been formidable, it
is not a given that a hydrodynamical understanding as given above applies directly to holographic
strange AdS2 metals in explicit lattices. Even though holography describes strongly coupled sys-
tems which implies a large hydrodynamical regime, this regime is finite as has been emphasized in
several recent articles [259–263], and bounded byω = 2π∆T where∆ is the scaling dimension of
the lowest irrelevant operator from the strange metal fixed point. This argument against hydrody-
namics can be sharpened by the fact that momentum dependent longitudinal DC-conductivities
at zero frequency σ(ω = 0, k ̸= 0) vanish [264].4 This is an unavoidable consequence of U(1)
current conservation: ω → 0 impliesG · J = 0. Naively considering Umklapp as the mixing of
the σ(ω, 0) and σ(ω, k = G), would argue that the amplitude of the mixed-in Umklapp wave is
thus very small. This is illustrated by a memory matrix computation [233, 264]. The momentum-
dependent density correlation functionGJtJt in a homogeneous AdS2 metal, which is the oper-
ator to consider for our choice of lattice, scales as a function of the temperature as

ImGhomogeneous
JtJt (ω = 0, k) ∼ T 2νk + . . . ,

νk =
1 + η̂

2
√
2 + η̂

√
10 + η̂ + 4(2 + η̂)k̄2 − 8

√
1 + (2 + η̂)k̄2

(6.21)
where η̂ ≡ −θ/z characterizes the near-AdS2 region and k̄ ≡ k

µλ is a wavevector renormalization
that correctly rescales to the emergent near horizon AdS2 geometry in a lattice [140, 264]. For GR
η̂ = 1 and for RN, η̂ = 0 while in both cases, λ = 1. This scaling of GJtJt follows from a
near-far matching method in the AdS2 bulk which shows that a generic Green’s function takes
the form

G =
A+BG
C +DG

(6.22)

4Recall that momentum-dependent conductivities at finite momentum need not be in the hydrodynamic regime. Within

hydrodynamics, longitudinal diffusive conductivities obeying σ(ω, k) =
iωDχ

iω −Dk2
give an exactly vanishing DC

conductivity at finite momentum, but a finite DC conductivity at zero momentum obeying Einstein’s relation σ =
Dχ.
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withA,B,C,D purely real and G the AdS2 Green’s function [93]

G(ω, k) ∝ T 2νk
Γ (1− νk) Γ

(
1
2 + νk − iω

2πT

)
Γ (1 + νk) Γ

(
1
2 − νk − iω

2πT

) (6.23)

The imaginary part of the density correlator is proportional to the imaginary part of the AdS2
correlator as ImGJtJt ∼ ImG. Though this scaling as a function of the temperature is exact,
it ignores the possibility that there can still be a large amplitude as a function of the other param-
eters. This is in fact what happens when one extrapolates the exact answer for the momentum-
dependent transverse conductivity σ⊥(ω, k) to the hydrodynamic regime k ≪ µ [265]. The
momentum dependent current-current correlation function in an AdS2 metal behaves as

GJ⊥J⊥(ω, k) = − k2G(ω)
ω2 + k2

2r0
G(ω)

(6.24)

Although the scaling is indeed captured by the Hartnoll-Hofman result Eq. (6.21) one also sees
that for small k the hydrodynamic pole at ω = −iDk2 becomes far more important than the
(ω/T )2ν -suppression. For k ≤ µ the hydrodynamic pole captures the physics far better than the
AdS2 power-law.

As is clear from the mathematical expressions this is not a sharp transition, but a smooth crossover.
Nevertheless there is a clear transition between dominant physics regimes (AdS2 vs hydrodynam-
ics) that can be made visible through the holographic dynamics. A finite momentum conductivity
is better viewed as the response when the system is placed in a fixed spatially oscillating but static
electric field background. The spatial oscillation imprints a lattice structure in the finite density
system. The conventional RG perspective is that this lattice is irrelevant in the RG. This is the
physics behind the power-law dependence on temperature in Eq. (6.21). The AdS2 fixed points
of the holographic metals that we study, either RN or GR, are so-called semi-local quantum liq-
uids [232], however. This means that while for T < µ the two-point correlation function dis-
plays power-law behavior between two time-like separated points, it is exponentially suppressed
between two space-like separated points. This exponential suppression is so strong that two points
separated spatially by a distance |x| ≳ 1

µ have no causal contact [232]. In momentum space this
implies that the coupling between modes with k ≲ µ is exponentially small. This decoupling
means that for modes k ≲ µ or equivalently a spatially oscillating but static electric field with
G ≤ µ the RG-flow becomes strongly suppressed once T decreases below µ. One can think of
it as that the d-dimensional RG-flow at T = µ decomposes into individual RG-flows for each
momentum mode. Recalling that in holography the radial direction encodes the RG-flow, we can
visualize this. In Fig. 6.4 we plot the charge/current density as a function of location for a mod-
ulated chemical potential. For a lattice momentum G ≫ µ the lattice irrelevancy towards the
IR is uninterrupted. However for an oscillating chemical potential with periodicity G ≪ µ, the
RG flow “halts” around the AdS radius value r ∼ µ corresponding to T ∼ µ. For such values of
G≪ µ the lattice thus remains quite strong in the IR and certainly much stronger than one would
naively expect. The way to understand this is that precisely in this regime it is the proximity of the
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Figure 6.4.: A holographic visualization of the cross-over in response functions between G > µ
(left) andG < µ (right). Plotted is the bulk electric fieldFtz (whose boundary value is
dual to the charge density) in the presence of a 1D spatially varying chemical potential
µ(x) = µ0+A cos(Gx) as a function of position and the AdS radial direction z. For
G > µ (G = 4µ) one sees the lattice amplitude decrease smoothly as one moves from
the AdS boundary to the horizon at z = 1. For G < µ (G = 0.05µ) on the other
hand, one sees that the RG flow is much slower and “halts” around z ∼ 0.5. This
is due to the exponential suppression of the coupling between different momentum
modes at the AdS2 IR fixed point. The results are for a RN black hole atT/µ = 0.15.

hydrodynamic pole that dominates the response rather than the RG scaling suppression. Ulti-
mately the RG wisdom does holds for any lattice perturbation and even forG≪ µ the lattice will
eventually turn irrelevant in the IR (Sec 3.4 in [140]), and scaling again becomes the pre-eminent
physical effect but this only happens at the lowest of temperatures.

For Umklapp hydrodynamics this is relevant because it implies that the regime where the hydro-
dynamics results capture the physics is appreciable. Below we shall verify that near an AdS2 fixed
point Umklapp hydrodynamics is the better way of understanding the physics forG < µ, whereas
AdS2 Hartnoll-Hofman scaling is the better way forG > µ. For the sake of clarity, we emphasize
that strictly speaking at a mathematical level both can be, and often are, valid simultaneously as is
evidenced by (6.24). However, the physical response is generically dominated by one or the other,
and relying on only one of them is not sufficient.

There is a second reason why hydrodynamics is the more appropriate perspective for G ≪ µ.
A more precise analysis of the momentum-dependent density correlator in an AdS2 metal shows
that it has multiple characteristic scaling contributions [264]

ImGhomogeneous
JtJt (ω = 0, k) ∼ c−T

2νk + c0T
2ν0

k + c+T
2ν+

k (6.25)
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with the additional scaling exponents

ν0k =
1 + η̂

2

√
1 + 4k̂2

ν+k =
1 + η̂

2
√
2 + η̂

√
10 + η̂ + 4(2 + η̂)k̄2 + 8

√
1 + (2 + η̂)k̄2 (6.26)

For k = G≪ µ as one needs for Umklapp between ImGhomogeneous
JtJt (0, k′) for k′ = 0,±G, all

these three exponents take values that are very close to each other. For such small differences in the
exponents there is observationally no clean scaling regime. For low lattice strengths A this is the
reason that the observed weak lattice DC conductivities in Fig. 6.3 do not scale exactly inversely-
linear-in-T as noted in the Introduction. Through Umklapp, the lattice DC conductivity is related
to the homogeneous density correlator (which we will review in more details in the next section)

σDC,lattice ∼

(
lim
ω→0

ImGhomogeneous
JtJt (ω, k)

ω

)−1

∼ 1

c−T 2νk−1 + c0T 2ν0
k−1 + c+T 2ν+

k −1
.

(6.27)
Fig. 6.5 shows that the deviation from linearity is exactly due to the contribution of the additional
exponents.

6.6. DC vs Optical conductivities in explicit lattice

(holographic) strange metals from Umklapp

Having argued that hydrodynamics should dominate the response in holographic strange metals,
we now exploit our ability to do computational experiments to confirm that Umklapp hydrody-
namics applies when such holographic strange metals are placed in an explicit periodic lattice with
a small amplitude A. Then we shall describe the surprising phenomenological conclusions for
electrical DC and optical electrical conductivity.

To verify the applicability of Umklapp hydrodynamics in AdS2 metals, we can study the location
of the poles in linear response functions. Fig. 6.6 shows the poles in the optical conductivity σ(ω)
in a GR strange metal in a 1D ionic lattice background µ(x) = µ0(1 + A cos(Gx)). There
are multiple poles on the negative imaginary axis and two poles with real part at the location ω =
±vsG. The latter are the ones already noted by [107, 120, 140] and identified as Umklapped sound
modes [140]. That Umklapp is at work is confirmed by tracing the behavior of the poles as a
function of temperature. Compare the behavior of the two poles on the negative imaginary axis
closest to the origin to the analytically computed values Eqs. (6.16) , we see that the match is very
good; see Fig. 6.7. Moreover, if one also studies the response functions at finite momentumk, then
one observes the characteristic Umklapp level repulsion at the edge of Brillouin zone k = G/2
(Fig. 6.6).
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Figure 6.5.: The DC conductivity of the GR metal in a weak lattice potential A = 0.05
is not perfectly inversely linear-in-T. This is due to subleading scaling contri-
butions computable from the AdS2 fixed point. Shown is a three parame-
ter fit of the DC conductivity for c−, c0, c+ to the functional form σDC =

1/
(
c−T

2νG−1 + c0T
2ν0

G−1 + c+T
2ν+

G−1
)

at low temperature with νG, ν0G, ν
+
G

given by Eq. (6.21) and Eq. (6.26), with k = G, for G/µ = 0.1. The values of the
exponents νG, ν0G, ν

+
G at this wave vector are 1.00015, 1.0198 and 2.53, respectively.

Therefore according to this fit, one expects the exponent νG to be the dominating one
only at temperatures T/µ < O(10−50).

6.6.1. Low Temperatures: Drude Transport

We have claimed Umklapp Hydrodynamics explains the remarkable finding summarized in Fig. 6.3
that the DC conductivity of a strange metal in a weak lattice remains linear-in-temperature while
the mechanism governing the AC-response appears to change. We can now show this.

The DC conductivity from Umklapp Hydrodynamics to lowest order in the lattice strength A
equals

σDC =
Zeff

Γ +
ω2

0

Ω

+ σQ =
ω2
p

Γη + Γd︸ ︷︷ ︸
O(A−2)

+σoffset + σQ︸ ︷︷ ︸
O(1)

+O(A2) (6.28)

where, in the last equality, the first term is the leading order and the offset term σoffset comes from
the higher order terms in Eqs. (6.20). The first contribution in the DC from the sound part of
the Laurent expansion (6.18) only comes at order O(A2) and is therefore negligible here. These
expressions already suggest that two physical mechanisms are at play in the DC result. At first sight
this may appear contradictory to the conventional explanation of weak lattice DC conductivity in
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Figure 6.6.: Umklapp hydrodynamics. The left panel shows the presence of both the Drude (up-
per) pole and the Umklapped charge diffusion (lower) pole and associated zero in the
complex frequency plane at kx = 0. The right panel shows the motion of both poles
as a function of longitudinal momentumkx. The Umklapp is confirmed by matching
this motion to the diffusion coefficients of the un-Umklapped hydrodynamics com-
puted in Eqs. (6.24). The inset shows the level splitting near the Brillouin zone bound-
ary at k = G/2. The results are computed in the GR black-hole lattice at T/µ =
0.1, G/µ = 0.1 with a 1D ionic lattice potential µ(x) = µ

(
1 + 0.05 cos(Gx)

)
.

The deviation at low k finds its origin in the next order level splitting in umklapp
which our formula does not account for, similar to the level splitting near the Bril-
louin zone.

terms of Drude momentum relaxation σ =
ω2

p

Γmom.rel.
. The momentum relaxation rate Γmom.rel. can

be computed in the memory matrix formalism [233, 266] to equal

Γmom.rel. =
g2G2

(ϵ̄+ p̄)
lim
ω→0

Im⟨OO⟩(ω, k = G)

ω
(6.29)

where O(G) is the operator that breaks translation invariance with coupling g. In the case of
an ionic lattice with a cosine potential as we consider, there are two operators O(G) = J t, one
inserted at wavevector G and one at −G each with coupling strength g = µ̄A/2. Therefore the
memory matrix momentum relaxation rate for the ionic lattice is

Γmom.rel. =
µ̄2A2G2

2(ϵ̄+ p̄)
lim
ω→0

ImGJtJt(ω, k = G)

ω
. (6.30)

Inserting its correlation function computed in a homogeneous background into (6.30) one in fact
finds the exact same answer as computed by Umklapp hydrodynamics Γmom.rel. = Γη + Γd (see
Appendix 6.D for a derivation of this result). Theoretically this can be understood through the
observation that there are two possible dissipative channels in hydrodynamics. There is sound
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Figure 6.7.: The motion of the poles as one increases temperature. As the temperature is increased
further the Drude pole eventually collides with the Umklapped charge diffusion pole
and gains a real part. At low temperatures where a perturbative Umklapp analysis is
valid the behavior of the poles can be understood from the un-Umklapped hydrody-
namic analysis. Note that the imaginary part of the charge diffusion pole scales as T 1

in the GR lattice, while it scales asT 0 in RN. Results are in the GR and RN 1D lattices
withG/µ = 0.08 and potential strengthsA = 0.07 andA = 0.12, respectively.

attenuation controlled by the shear viscosity η (and bulk viscosity ζ) and there is charge diffusion
controlled by the microscopic conductivity σQ. Both are at the same order in the lattice strength
Γd,η ∼ A2. This is the expansion parameter in the memory matrix computation and explains
why they both show up.

The phenomenologically important characteristic is the temperature scaling of the DC resistiv-
ity. Implicitly the lattice scaling implies a scaling with temperature as the effective lattice strength
should become irrelevant in the deep IR. This must be encoded explicitly in the scaling of bothΓη
andΓd, and not in the UV-strengthA. However, there is a priori no requirement that bothΓd and
Γη will scale the same as a function of T . Generically they ought not. However, in holographic
strange metals without a ground state entropy they do. For these systems at low temperatures

Γη ∼ η(T ) ∼ s ∼ T (d−θ)/z

Γd ∼ T 2

σQ(T )

(
T
∂s

∂T

)2

∼
(
d− θ

z

)2

T (d−θ)/z (6.31)

The derivation requires a mild assumption about the low temperature equation of state and is
given in Appendix 6.E. Thus for the GR strange metal Γη ∼ T and Γd ∼ T , whereas for the
RN metal which has a ground state entropy Γη ∼ T 0 but the first non-vanishing order for Γd is
Γd ∼ T 2. Over the range of validity, usually one of them will dominate, though it is conceivable
that one dissipative momentum relaxation process switches dominance with the other. If this
coincides with a change in scaling this would show up as a change of temperature scaling of the
DC resistivity.
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Two observations follow. The first is that despite the numerical results supporting the inference
from disordered translational symmetry breaking that the momentum relaxation rate scales as the
entropy, this is not true for the contribution from Γd.

The more important observation here and in the following is that which term dominates does not
matter. In holographic strange metals the momentum-relaxation rate is set at a deeper level by
the non-trivial locally quantum critical IR fixed point. As pointed out by Hartnoll-Hofman and
briefly reviewed in the previous Section 6.5, in the regime where Eq. (6.30) holds, the frequency
scaling enforced by local quantum criticality also sets the temperature scaling of the DC result. For
the RN strange metal it is onlyΓη that is responsible for this, whereas in the Gubser-Rocha strange
metal both obey the appropriate scaling. Since Γη also scales asG2, whereas Γd does not, one can
tune the GR response to be dominated by Γd for G ≪ 2µ, and Γη to dominate for G ≫ 2µ.
This coincides with the applicability of hydrodynamics as we discussed in the previous section,
confirming a correlation with a physically observable change (see also section 6.6.4 below). This
very difference between Γη ∼ G2 and Γd ∼ G0 actually causes the order of importance to be
opposite in disordered systems. Because disorder can be viewed as an average over an infinite set
of lattices, in the decay rate in a disorder system Γdisorder ∼

∫
Gd−1dG(Γd + Γη) the Γη term

will generically dominate the integral [106]. Since Γη ∼ η ∼ s, this explains why in disordered
systems entropy does directly control the dissipation time scale in contrast to a lattice with a fixed
lattice momentumGL as we explained above.

Independent of the dissipative mechanism, both leading inAmomentum-relaxation ratesΓη and
Γd become vanishing small at low temperatures suggesting Drude transport. This is readily con-
firmed in the AC conductivity. Its real part displays a characteristic Drude peak. Mathematically,
however, the peak is not exactly a (half-)Lorentzian, but follows from the two-pole expression
Eq. (6.19).

6.6.2. Intermediate temperatures: a mid IR-peak in the optical response

We have just argued that the DC resistivity can remain the same while the physical regime con-
trolling dissipation changes, because it is set at a deeper level by the underlying AdS2 fixed point.
Though we have just noted this fact by analyzing the analytic expressions, it is in fact dramati-
cally made clear at an intermediate higher temperature, as we already summarized in the Intro-
duction.

In the regime of interest the conductivity computed from Umklapp hydrodynamics is controlled
by two poles. In the parametrization

σ(ω) = σQ + Z
Ω− iω

(Γ− iω)(Ω− iω) + ω2
0

(6.32)

these are the Drude and Umklapp charge diffusion poles at

ωDrude =
−i
2
(Γ + Ω) +

i

2

√
(Γ− Ω)2 − 4ω2

0 = −i(Γη + Γd) +O(A4) ,

ωUm.Ch.Diff. =
−i
2
(Γ + Ω)− i

2

√
(Γ− Ω)2 − 4ω2

0 = −i(DρG
2 − Γd) +O(A4) . (6.33)
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At low temperatures, the second pole (let alone the two already ignored Umklapped sound poles)
has a small effect. Increasing the temperature changes this fundamentally, however. Both poles
move as one increases the temperature. However, they do not move in unison. When the argu-
ment under the square root (Γ−Ω)2−4ω2

0 becomes negative, the poles collide. For temperatures
higher than the pole-collision temperature, the poles can now acquire a real part and move off the
imaginary axis symmetrically; see Fig. 6.8. Initially this “microscopic pole collision” has little ef-
fect on the optical conductivity. In a formal sense it slightly broadens the peak aroundω = 0 and
without an insight into the complex frequency response it is essentially indistinguishable from
a conventional Lorentzian Drude peak. However, as one increases temperature further and the
poles move further away from the imaginary frequency axis, the peak will split into two, symmet-
rically arranged aroundω = 0. For the positive half-lineω > 0 one would thus see a peak emerge
in the near IR whereas the DC value at ω = 0 continues to decrease.

This collision point is controlled by a combination of temperature, lattice strength and lattice
periodicity. Already at moderate lattice strengths, this emergence of the mid-IR peak in the AC
conductivity happens at temperaturesT < Tstrange where the DC response is still set by the critical
scaling behavior of the underlying AdS2 strange metal. In other words, despite the qualitatively
drastic change in the AC-vs-T conductivity, the DC-vs-T response is unaffected.

What is striking is that this emergence of mid-IR peak in the optical response as temperature in-
creases while the DC-resistivity stays linear in T is precisely what is observed in high Tc cuprates
and other strange metals as explained in the introduction. Given the earlier hypothesis reviewed
there that transport in the high Tc-cuprates is hydrodynamical, it is conceivable that this is the
explanation of this observed experimental finding.

The mechanism we just explained is tantalizing given its minimalistic nature. It is in fact ubiqui-
tous for any hydrodynamical fluid exposed to a microscopic Umklapp potential where the effective
potential strength is rising more rapidly than the momentum diffusivity. Notice that it does not
apply to a Fermi liquid in metallic background potentials. The onset of equilibration is set by the
quasiparticle collision time, but typically a substantial fraction of the centre of mass momentum
is absorbed by the Umklapp impeding the total momentum conservation required for hydrody-
namics including the mechanism in the above.

6.6.3. Intermediate Lattice Strength: Towards an Incoherent Metal

Our computational experiments on holographic strange metals can also provide us insight in what
happens at larger lattice strengths beyond the applicability of perturbative Umklapp hydrodynam-
ics. This is best quantified by tracking the behavior of the complex frequency poles in the AC con-
ductivities. In Fig. 6.9 we show typical quasinormal mode spectrum computed for lattice strength
A = 0.15. At low temperatures one finds that these are still dominated by the non-linear contin-
uation of the same two-pole structure as we identified for small A, i.e. the Drude and Umklapp
charge diffusion poles identified in Umklapp hydrodynamics.

What is notable, is that the pole collision has already happened at a lower temperature than for per-
turbatively small A. Qualitatively this is easy to understand in terms of the RG wisdom that the
lattice becomes irrelevant in the IR. If one starts with a strongerA in the UV, one is at a relatively
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Figure 6.8.: Emergence of mid-IR peak in the optical conductivity σ(ω) from pole collision. At
low temperatures the Umklapp has neglible consequences as the response is strongly
dominated by the conventional Drude pole. At intermediate temperatures the Umk-
lapp pole causes an additional broadening. When the temperature increases to the
point where the poles collide and gain a real part the peak still looks Drude to the eye
even though it arises from two poles symmetrically arranged on both sides of the real
axis. At even higher temperatures these two poles move so far apart that the peaks sep-
arate and a mid IR peak at finite ω appears in the optical response. For this figure the
parameters areA = 0.15, G = 0.08µ, the same as in Fig. 6.3.

stronger strength at a temperature T or vice versa one is at a comparable strength at a lower tem-
perature T . This may seem like semantics, but crucially the DC conductivity linear-in-T scaling
remains set by the local quantum critical IR fixed point, which is less affected by an increase inA.
As a result we can again observe in the AC conductivity a transition in the dissipative mechanism
as one increases T during which the resistivity stays essentially linear (Fig. 6.3 in the Introduc-
tion). The transition in this case is that from the mid-IR-peak regime to an incoherent metal. The
latter means that the low frequency AC response is no longer well described by the “two-coupled-
relaxational-current” formula. Other poles now also influence the AC response, especially the two
Umklapped sound modes. They feature prominently in the AC response; see Fig. 6.9.

Though the AC conductivity really shows the emergence of the incoherent metal regime at larger
T and the “two-coupled-relaxational-current” expressions fails, for most of the temperature range
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the DC limit ω → 0 is still well described by its asymptotic expression

σDC = σ0 +
Z

Γ +
ω2

0

Ω

(6.34)

With careful fitting of the optical conductivity as well as the complex location of the four poles,
one can fit the parameters Z, σ0,Γ,Ω, ω2

0 as well as the parameters of the two first Umklapped
sound poles as a function ofA and T . For the full 4-pole ansatz, see Section 6.C. In Fig. 6.10 we
show how the three parameters in the denominatorΩ,Γ andω0 evolve as function of temperature
for intermediate 0.1 < A < 0.8. One sees how these explain the observed DC conductivity quite
well. Given that the DC conductivity is so well captured by Eq. (6.34), one concludes that for
these potentials the DC conductivity is still limited by the momentum life time.

6.6.4. On the Applicability of Umklapp Hydrodynamics

We end this section with a brief check on our earlier argument in Section 6.5 that Umklapp hydro-
dynamics is the relevant perspective to understand strange metal transport in a weak/intermediate
lattice for G ≲ µ rather than Hartnoll-Hofman scaling. The intuitive argument is that momen-
tum dependent conductivities are strongly power-law suppressed as a function of T forG ≳ µ as
the RG flow is not “halted”. Umklapping conductivities that have such marginal weight should
have negligible observable effect. Fig. 6.11 shows that this insight is essentially correct. For a lattice
withG = 1.0µ,T/µ ≲ 0.35 andA = 1.0 the AC conductivity is Drude-like , and no transitions
to a mid-IR-peak or incoherent metal are seen. An illustration that formally Umklapp hydrody-
namics still applies is that one can still notice the now very highly suppressed Umklapped sound
peak. Even so, for G ≳ µ the better perspective is Hartnoll-Hofman scaling. Since G/µ is large
here, the various exponents in the resistivity described in Section 6.5 are not close and the lowest
exponent νG of Eq. (6.21) alone is enough to describe the DC conductivity at low temperatures.

6.7. Observations at Strong Lattice Potentials: Planckian

Dissipation and Incoherent Metals

6.7.1. The Remarkable Ubiquity of Planckian Dissipation

We now switch to analyzing our numerical results at large lattice potentialsA > 1. As we reviewed
in Section 6.3, for small lattice potentialsA < 1, Planckian dissipation is unlikely to be universal as
it will depend on the details of how translational symmetry is broken [226, 246]. At finite density
one must be in a regime where translation is broken strongly and long time transport is controlled
by another dissipative mechanism than translational symmetry breaking.

Performing this numerical experiment where we increase the lattice strength, one sees not only
a beautiful sharper linear-in-T resistivity, but also a saturating behavior in that the resistivity ap-
pears to become independent of the lattice strengthA, highlighted in the Introduction (Fig. 6.1).
Though the thermoelectric and heat conductivity also appear to saturate, they do not. Replotting
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Figure 6.9.: Optical conductivity (right) and the quasinormal mode spectra (left) for intermediate
lattice strength GR lattices for A = 1, G/µ = 0.1µ at three different temperatures.
Compared to smallA the pole collision (see section 6.6.2) has already happened even
at lowest T/µ = 0.02. As one increases T the Umklapped sound poles which stay
almost fixed at Re ω = ±csG = ± 1√

2
G (and others not shown) become more

important and their dominance in the AC conductivity signals the transition to an
incoherent metal regime.

the results as a function of the inverse lattice strength 1/A rather thanA, one sees that they asymp-
tote to zero as 1/A; see Fig. 6.12. One also notes that the electrical conductivity does not saturate
but turns over when inspected this precisely. However, we will argue that the dissipative process
does saturate. Increasing the lattice potentialAhas two effects, it changes the strength and possibly
mechanism of dissipation, but it can also shift degrees of freedom from lower to higher energy and
vice versa. In simple Drude language where σDC = ω2

p/Γ, increasing the lattice strength cannot
only affect Γ, but also the Drude weightω2

p . The Drude formula doesn’t necessarily apply at large
A, of course. Nevertheless, to focus on the dissipation we must also account for possible shifts
in the weight. Because the total weight of the optical conductivity is protected and conserved, a
more appropriate measure of the dissipation is to normalize the measured DC conductivity by
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Figure 6.10.: (a-c) The evolution of the phenomenological parameters Γ/µ,Ω/µ, ω0/Aµ as
present in the “two-coupled-relaxational-current” expression Eq. 6.32 as a function
of A and T/µ at G/µ = 0.12 in the 1D Gubser-Rocha model. These parameters
are extracted from a four-pole fit to the optical conductivity that includes the two
lowest-order Umklapped sound peaks which reside at Re ω ≈ ±csG. Both Ω/µ
and ω0/Aµ show little A-dependence, whereas Γ/µ depends strongly non-linearly
onA. In (a), the arrows labelled 1 and 2 point to the temperatures at which the pole
collision happens at A = 0.1 and A = 0.2, respectively. For the stronger lattices,
the pole collision has already happened at lower temperatures than we have access to
in our numerics. (d) Comparison of σTwo-Pole, the conductivity reconstructed from
only the “two-coupled-relaxational-current” part of the spectrum in figures to σDC ,
the observed DC conductivity. At larger values ofA, it becomes clear that one must
include more information, such as the Umklapped sound modes, in order to accu-
rately reconstruct the DC conductivity at all temperatures.
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Figure 6.11.: The AC conductivity of the GR model at G = 1.0µ and lattice strength A = 1.0
for a large temperature range. The low ω-response is of the Drude form for all values
and no transition to a mid-IR-peak or an incoherent metal is seen in contrast to lattice
momenta G < µ. The small rise at ω/µ = 1√

2
G
µ = 1√

2
is the Umklapped sound

mode which now has barely noticeable height at low temperatures. The inset shows
that the DC conductivity obeys leading order Hartnoll-Hofman scaling at low tem-
perature, which is expected to go as (T/µ)−2.05 at low temperatures.

the total weight
∫ Λ

0
dωσ(ω) and study the resultant rate Γ−1

corrected = σDC/
∫ Λ

0
dωσ(ω). Fig. 6.13

shows both the naive Drude rate Γ−1
bare = σDC/ω

2
p and the corrected rate. Indeed in terms of

the naive Drude rate even at the largestA the saturating behavior in the conductivity is not exact.
However, when corrected for a possible spectral shift, the relaxation rate does saturate. Not only
does this relaxation rate saturate, as Fig. 6.13 shows, it saturates to a value that is numerically close
to the Planckian dissipation rate Γcorrected ≃ 2π/τℏ = 2πT . To understand whether Planckian
dissipation is really occurring, we must resort to a different theoretical framework.

6.7.2. An Incoherent Metal Explained with Microscopic Scrambling

How to understand transport in a system where translation invariance is badly broken was dis-
cussed in detail by Hartnoll [219], and its connection with Planckian dissipation was set out in a
series of papers [225–227, 235, 267] in the context of systems with strong translational disorder.
The essence is that in this regime only energy and charge are the conserved currents that survive
at long distances. For this section we shall not just focus on the electrical conductivity but on the
full thermoelectric transport matrix(

J⃗

j⃗Q

)
=

(
σ αT
α κ̄

)(
E⃗

1
T ∇⃗T

)
(6.35)
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Figure 6.12.: (Left panel) Absence of exact saturation of the conductivities as a function of lattice
strength at fixed temperature in the 2D GR model is made quite clear when they are
plotted as a function of 1/A instead of A. The electrical conductivity σ reaches a
minimum and then starts to grow again at larger A, whereas the thermoelectric α
and heat conductivity κ̄ scale as 1/A rather than saturate. (Right panel) The open
boundary heat conductivity κ at first instances does appear to be independent of the
lattice strengthA for most of the computed values. However, at the largestA it does
show a downturn, asymptoting to κ̄ which vanishes as 1/A → 0. In this large A
regime, these asymptotesκ→ κ̄ andσQ=0 → σ indicate the increased dominance of
the diffusive channel. These results are for the 2D GR lattice with T = 0.06µ,G =
0.1

√
2µ.

with jiQ = 1
T (T

0i − µJ i). Here κ̄ = κ + Tα2

σ is the heat conductivity in the absence of
electric field, and κ is the heat conductivity in the absence of electric current (open boundary heat
conductivity). Fig. 6.1 shows the result for all conductivities for increasing lattice strength into the
incoherent regime, both in the Gubser-Rocha (sGR ∼ T + . . .) and in the Reissner-Nordström
AdS2 metal (sRN ∼ c0 + c1T + . . .). The conductivities are rescaled such that their dominant
power-law scaling with T is scaled out. In detail one observes also that the thermoelectric and
the heat conductivity conform sharper to the conjectured appropriate temperature scaling as A
increases, culminating again in a saturating behavior for largeA.

It is tempting to view this scaling of the thermoelectric conductivities as validating that the system
is dominated by a single common relaxation time that scales like the entropy at low temperatures,
even though it does not apply here asA is large. Single relaxation time Drude theory would suggest
that σ = ω2

p/Γ, α = s
nσ, and κ̄

T = s2

n2σ. If Γ ∼ s(T ) as naively guessed above, it is consistent
with the above observations. As we will now explain, and confirmed with counterexamples in
studies of strong translational disorder, this single relaxation time description is not correct.

To extract possible relaxation rates in an incoherent metal with strong translational symmetry
breaking, one posits constitutive relations for the two remaining currents and does a hydrody-
namic analysis. One finds that the DC conductivities are the zero frequency limit of the dynamics
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Figure 6.13.: The upper figures show the saturating behavior of the relaxation rate of the conduc-
tivity is not exact when inspected closely. However, the integrated optical conductiv-
ity FSum(Λ) =

∫ Λ

0
σ(ω)dω shows that the spectral weight increases with A. We

can account for this effect by normalising the Drude weight to this integrated spec-
tral weight. The resulting corrected relaxation rate Γ−1

corrected ≡ σDC/FSum(Λ) does
appear to show a saturating behavior compared to the bare rate Γ−1

bare = σDC/ω
2
p .

Furthermore, this rate is remarkably close to the Planckian value of 2πT/µ. From in-
spection a cut-off value Λ/µ = 0.4 is sufficient to account for all the spectral weight
in any Drude or Umklapped sound peaks. These results are taken in the 1D GR model
with T = 0.06µ,G = 0.12µ.

of two independent diffusive modes with diffusion constantsD+ andD−. These are

D+ +D− =
κ

cn
+
σ

χ
+
Tσ

cn

(
α

σ
−
(
∂s

∂n

)
T

)2

D+D− =
κ

cn

σ

χ
(6.36)

Here cn = T
(
∂s
∂T

)
n

is the specific heat at fixed charge density, χ =
(
∂n
∂µ

)
T

is the isothermal
charge compressibility, and the conductivities σ, κ are both the transport coefficients as well as
the DC values. One recognizes a charge diffusion and a heat/energy diffusion mode (the remnant
of sound in absence of a nearly conserved momentum), cross coupled through the combination

g ≡ Tσ
cn

(
α
σ −

(
∂s
∂n

)
T

)2

. If we are to make the case that a single dissipative mechanism dom-

inates, this cross-coupling is important, as in its absence, charge and energy diffusion are clearly
independent. Fig. 6.14 shows what the strength of this coupling is numerically. As was shown in
[227], this coupling behaves as g/σ ∼ T (z+d−θ)/z if the scaling of the homogeneous non-trivial
IR fixed point remains valid in the presence of strong translational symmetry breaking. For the
GR metal this means g ∼ T . Compared to σ/χ ∼ T−1 it is therefore small and can be treated
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perturbatively in the low temperature limit.

Solving for σ, κ in the limit where the terms in the cross coupling Tα2

cnσ
∼ T , Tαcn

(
∂s
∂n

)
∼ T and

Tχσ
cn

(
∂s
∂n

)2
T
∼ T are small compared to σ ∼ T−1, one finds5

σ

χ
= D+

1 + T

cnχ

(
α−D+χ

(
∂s
∂n

)
T

)2

D+(D− −D+)



κ

cn
= D−

1− T

cnχ

(
α−D+χ

(
∂s
∂n

)
T

)2

D+(D− −D+)


(6.37)

To lowest order in the temperature the electrical and heat conductivity are therefore determined by
independent diffusion constants; see Fig. 6.14. The electrical conductivity is determined byD+ ∼
T−1 and the heat conductivity byD− ∼ T . There is therefore no simultaneous explanation for
both conductivities in terms of universal Planckian dissipation. In holographic models with strong
translational disorder there are systems where both conductivities are set by Planckian dissipation
[225, 226]. This happens when the charge susceptibility is relevant. For irrelevant or marginal
charge susceptibility, the electrical conductivity is set by a different dissipative mechanism. The
Gubser-Rocha model with strong disorder belongs to this class [235], and so does our strong ionic
lattice model with χ ∼ T 0.

Despite the existence of two independent dissipative mechanisms, the heat conductivity can be
explained from Planckian dissipation. Very strongly coupled systems are similar to weakly cou-
pled dilute classical gases in that their macroscopic transport can be understood from microscopic
processes. For weakly coupled dilute gases this is through the Boltzmann equation summing
microscopic scattering; for ultrastrongly coupled systems this is through parameters of micro-
scopic scrambling as measured through the out-of-time-ordered correlation function C(t, x) =
⟨W (t, x)V (0)W (t, x)V (0)⟩T ∼ eλ(t−x/vB).6 In holographic systems this connection man-
ifests itself in that the OTOC is equivalent to computing the hydrodynamic response function
(of longitudinal sound) at imaginary ω and k [162]. The Lyapunov exponent λ and the butter-
fly velocity vB can then be read off from a skipped pole in the hydrodynamic dispersion relation

5Note that the coupling term Tχ
cn

(
∂s
∂n

)
T

= nT
(ϵ+P )

−
c2sµ

αns
contains the same thermodynamic factor as Γd. If the

temperature scaling in the strong lattice is the same as in the homogeneous system, this coupling scales as
nT

(ϵ+ P )
−

c2sµ

αns
∼ T since αn ∼ T−2 as was shown in Appendix 6.E. Numerics confirms that this is the case.

6This “ballistic“ OTOC expression applies to large N systems such as holographic and SYK systems. The more generic
answer is “diffusive” C(t, x) ∼ eλ(t−x2/vBt).
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Figure 6.14.: Left: The cross-coupling between the heat and electrical conductivity in the strongly

coherent regime is governed by the combination g = Tσ
cn

(
α
σ −

(
∂s
∂n

))2

respec-

tively at low temperatures. Clearly g decreases linear in temperature at low T , but
it also decreases with stronger lattice potential A. Right: As a consequence the dif-
fusivities at low T in a strong lattice become independent. Shown are the empirical
combinations Dσ ≡ σ

χ , DT = κ
cn
, DσQ=0

=
σQ=0

χ as a function of 1/A for fixed
T/µ = 0.05.

[162]. One finds that in holographic systems λ saturates the Maldacena-Shenker-Stanford unitar-
ity bound λ ≤ 2π/T . The butterfly velocity is more sensitive to the theory. On general grounds
it scales near (translationally invariant) quantum critical IR fixed points as v2B ∼ T 2−2/z . The
fact that both macroscopic transport and the scrambling parameters λ, vB are encoded in the
hydrodynamic response means that they are not unrelated. In particular the thermal diffusiv-

ity DT =
κ

cn
= E

v2B
λ

with E = 1
2 for AdS2 z → ∞ metals in strong disorder [226, 227,

267]. Since the natural units of diffusivity are v2τ , this is interpreted as Planckian dissipation with
τ = 1

λ = 1
2πT . The RN metal is a special case. As explained in [267], there the butterfly velocity

is controlled by a dangerously irrelevant operator instead of universal scaling. A careful compu-
tation reveals that for the RN strange metal vB ∼

√
T . Combined with Planckian dissipation

τ = 1
λ = 1

2πT , this explains the observed RN thermal diffusivityD− = κ
cn

= T 0 ∼ v2Bτ .

This result is established and confirmed in the many studies cited above on connecting scram-
bling to hydrodynamics for weak momentum relaxation or “homogeneous” momentum relax-
ation (so-called Q-lattices or disorder). We postulate that the same applies in the explicit strong
lattice systems studied here. This need not be, for computing the butterfly velocity vB in a non-
translationally invariant system is not straightforward (the Lyapunov exponent on the other hand
is universally λ = 2π/T [268]). At the same time the scaling we observe for strong lattice poten-
tials is the same as that which is observed for strong translational disorder. This is strong evidence
in favor of the argument that the same should apply here.

Within the framework of incoherent metals there is no universal explanation of the observed
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inverse-in-T scaling of the conductivity for the Gubser-Rocha metal. Its tantalizing behavior σ ∼
s(T )−1 or ratherσ ∼ 1

Γℏ
on the other hand does suggest that some type of universality is at work.

This is confirmed by the RN results. The obvious conjecture is thatD− = (v
(c)
B )2/λ where the

butterfly velocity v(c)B for charged objects differs from the butterfly velocity for neutral objects.
Some evidence that this can be the case is presented in [236–239]. If v(c)B were independent of
temperature, this would explain the observed incoherent metal phenomenology in the large lat-
tice GR and RN metals in terms of a single Planckian relaxation time, but differing scrambling
velocities. We leave this for future research.

6.7.3. Saturating Behavior and Planckian Dissipation

The diffusivities in the incoherent regime should be insensitive to the details of translational sym-
metry breaking. This is what allows them to expose universal dissipative physics. This resulting
explanation of universality in terms of microscopic scrambling also makes physical sense: the onset
of chaos is controlled by the short-range interactions and is not expected to be influenced signifi-
cantly by a background lattice. The data we present is obviously dependent on the lattice strength
A. For most values of A we are therefore not in the universal regime. However, as A increases to
the largest value we can observe in our numerical data, there is a saturating behavior in the electri-
cal conductivity that together with its sharper single power behavior argues strongly that we are
close to this universal incoherent limit. Such saturating behavior in the incoherent electrical con-
ductivity at large lattice strength was already noted in [269]. That study focused on the regime
where the dimensionless combinations µ

G → 0, AµG fixed and large. Here we focus on the regime
where both µ

G and Aµ
G are fixed and large with the latter parametrically larger.

We can use our numerical results to directly check these assertions. Rather than observing the
conductivities we do so for the diffusivities

Dσ =
σ

χ
, DT =

κ

cn
, DσQ=0

=
σQ=0

χ
(6.38)

We have introduced here a charge-without-heat diffusivity DσQ=0
=

σQ=0

χ as this is the appro-
priate counterpart to the heat-without charge open boundary thermal diffusivity DT ≡ κ/cn.
Fig. 6.14 shows indeed how the charge diffusivities Dσ , DσQ=0

not only both saturate, but also
become approximately equal. The latter shows indeed that we have entered the incoherent regime.
A more detailed depiction of the saturation is given in Fig. 6.15.

We have already shown in the Introduction that the crossover into the incoherent sector can also
be seen in the conductivities directly (Fig. 6.2). The open boundary thermal conductivity κ starts
to comprise more than 80% of the full heat conductivity. A stronger statement extrapolated from
the incoherent metal considerations is that the open boundary heat conductivityκ is rather insen-
sitive to momentum relaxation for any translational symmetry breaking potential irrespective of
its strength [227]. According to Fig. (6.12) this is indeed the case in the perturbative smallA case.
Upon pushing the potential to extremely large values we do observe that some changes inκ start to
arise. This is fully in the incoherent regime, where we can equateκ ≡ cnDT with one of the phys-
ical diffusion constants κ = cnD−. This diffusion constant also changes fromA-independent to
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Figure 6.15.: Electrical and thermal diffusivities as a function of T for various A. The T -
dependence shows how they become more single-power like at larger A. The A-
crosssection shows the saturation for largeA for the charge diffusivity, but an increas-
ing A dependence for the thermal diffusivity. These results are in the GR lattice at
G = 0.1µ.

slight decaying behavior, explaining the change in behavior in κ. We conclude that at least forDT

our computations confirm the universal nature of the diffusion constants.

6.8. Discussion: Is it Relevant for Condensed Matter

Physics?

We started this paper with just presenting the data as these rolled out of the computer. As such
these are highly suggestive. We focus in on a holographic strange metal that fulfills minimal condi-
tions that appear to be imposed by experiment: local quantum criticality (z → ∞) and a Fermi-
liquid like thermodynamics in the form of a Sommerfeld entropy (s ∼ T ). We then invoke a
lattice potential that may become very strong, again a minimal requirement suggested by experi-
ment. For a wavevector of the potential that is not too large (smaller than the inverse local length)
we find a resistivity that is to good approximation linear in temperature for a large range of poten-
tial strength. Ramping up the potential the slope of the linear resistivity saturates at a value that is
consistent with a Planckian (τℏ) current life time. Although the dynamical range in temperature
and potential strength is limited in our computations, we can track the temperature evolution of
the optical conductivity in the regime where the saturation is setting in. This temperature evo-
lution is also suggestive with regard to experiment: at low temperature we find a simple Drude
response that turns into an incoherent mid IR peak, and this gross change does not imprint on
the DC resistivity that stays linear. Taken together, this shines an unusual light on the three prob-
lems of principle in strange metal transport: (a) Why is the resistivity linear in temperature down
to the lowest temperatures? (b) Why is the empirically extracted current relaxation time so close to
the Planckian rate τℏ? (c) Why does the cross-over from good metal (Drude optical conductivity)
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to bad metal (the mid IR peak response) not affect the DC resistivity at all?

The question remains whether the resemblances between numerical observations from this holo-
graphic toy model and the complicated reality of the copper oxide electron systems are just a co-
incidence or whether they reveal a truly universal principle governing transport that supersedes
all the differences between them. To get a better understanding, we focused in on both the small-
and large lattice potential regimes. We showed that in the perturbative small potential regime the
transport behavior can be completely reconstructed on basis of the thermodynamics and transport
properties of the unbroken homogeneous system. This is based on hydrodynamical flow behavior
in the presence of a weak periodic potential and we discovered a generic principle governing linear
response: next to the usual shear drag, a mode coupling emerges with the Umklapped charge dif-
fusion mode. As we increase temperature the coupling between two relaxation modes can account
for a second new phenomenon: the two poles can collide and this explains the emerging mid-IR
peak in the AC conductivity. Even though the temperature dependence of the DC-resistivity is
formally set by the same thermodynamic quantities, the underlying non-trivial IR fixed point con-
strains these in such a way that the DC resistivity temperature scaling can be independent of the
dynamical change in the AC conductivity.

The large lattice potential regime on the other hand is where the resistivity slope saturates. Our
numerics indicate that this happens in the “incoherent metal” regime where momentum conser-
vation does not play any role. Accordingly, the temperature dependence of the resistivity should
be inversely proportional to the charge diffusivity. This charge diffusivity in the incoherent regime
D− ∼ T−1 should not be compared with the hydrodynamical charge diffusivity for weak or
zero momentum relaxation which scales as Dρ ∼ T . The thermal diffusivity DT ∼ T on the
other hand is essentially insensitive to the strength of the lattice potential. It scales similarly for
both small and large potential, though only at large potential can it be explained in terms of mi-
croscopic chaos anchored in a saturated Lyapunov bound Γ = λ = 2πT having a Planckian
magnitude. Although this is presently not well understood this is consistent with the analytical
findings in a homogeneous holographic strange metal with momentum relaxation (Q-lattice).

Although this does shed light on various aspects we do not claim a complete understanding of
our numerical results. The above suggests that there are quite different forms of physics at work
pending the strength of the potential. Nevertheless, we do find that the evolution of the transport
quantities is of a strikingly smooth kind. Another striking aspect is the contrast between the GR
and RN results in Fig. 6.1: the differences in temperature dependencies appear to be entirely linked
to the different temperature dependence of the entropy. The above analysis, where we can expose
the different origins in the weak and large lattice potential regime, does make clear that this con-
nection with entropy is almost certainly a coincidence, though we cannot exclude that some yet to
be identified greater universality may be at work linking the dissipative properties in the convective
and diffusive regimes together where entropy may play a crucial role.

To use this to explain the experimental observations, the critical holographic input is in the form
of the current being controlled by “generalized” hydrodynamics (including the incoherent metal)
that in turn requires (a) an existence of hydrodynamics up to microscopic length scales shorter than
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the lattice spacing, (b) thermodynamical behavior that is anchored in a non-trivial IR fixed point,
and (c) a saturation of the chaos bound (with a charge dependent butterfly velocity vcharge

B ).

In fact, the most critical question is whether experimental strange metal transport is governed
by hydrodynamics, and not by the usual quasiparticle transport. In this regard our finding that
hydrodynamics provides a most natural explanation for the temperature evolution of the DC and
AC charge response is encouraging: it is an elementary mechanism that offers a minimal and simple
explanation for this otherwise mysterious affair. However, to prove it one would like to mobilize
the mesoscopic transport devices of the kind that have proven successful in this regard observing
hydrodynamical flow behavior in graphene (e.g., [270]).

The next issue is, are the hydrodynamical modes surviving down to length scales of order of the mi-
croscopic lattice spacing 1/G? We found this to be a special property of the local quantum critical
holographic metals, but is this also at work in the cuprate strange metals? This is far from obvious.
Besides the Umklapped charge diffusion mode, we also saw the sharp and prominent Umklapped
sound peak in the optical conductivity when the potential becomes sizable. This relates directly
to a first discrepancy between our results for the optical conductivity and the experimental results
in the cuprates. We find that for the strongest potentials that our numerics can handle, the optical
response rather abruptly switches off at frequencies above the umklapped sound peak ( Fig. 6.9).
In experiment no sound peak is seen, and a power law (branch cut) tail is found instead, extend-
ing all the way up to µ ≃ 1 eV [217, 218, 271]. Our holographic results do not shed any light on
this matter, although one could imagine that perhaps an umklapped overdamped sound channel
could conspire to give rise to such a quasi-critical behavior. But the issue is whether the charge
diffusion hydro-mode that is responsible for the mid IR peak in holography may survive up to
large momenta in the experimental systems. Different from sound, this mode is non-convective
and perhaps less sensitive to translational symmetry breaking. Presently we have no answer to this
question. It could be interesting to study the optical conductivity of the cuprate metals experi-
mentally at high temperatures. The data in so far available are sketchy and it would be interesting
to find out what a systematical and high precision study would reveal regarding for instance the
way in which the mid IR peak depends on temperature. Alternatively the sound contribution
to the density-density response can been measured directly by EELS [50, 272], with the caveat
that sound is promoted to a plasmon in the presence of dynamical electromagnetism.This may be
hard, because the plasmon is damped stronger in strange metallic states than ordinary Fermi liq-
uids [273–276]. The results are at this moment inconclusive, and need to still be found consistent
with the AC optical conductivity.

Perhaps the most delicate issue relates to the connection with microscopic chaos. The connection
with Planckian dissipation requires a saturation of the Maldacena-Shenker-Stanford bound on
the Lyapunov exponent of the OTOC λ ≤ 2πT . It appears that a necessary condition for this to
happen is in the form ofdensemany body entanglement. One may argue that this is the secret of the
experimental strange metals: these are born from strongly interacting fermion systems at a finite
density and it may well be that the concomitant sign problem enforces dense entanglement in the
non-Fermi-liquids [223]. But this may not be a sufficient condition. The chaos bound is known
to saturate in matrix large N systems at strong coupling with a holographic dual as well as the
disorder averaged SYK models. These systems are characterized by dense matrix interactions.
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However, the Hubbard models that are the community standard as microscopic point of depar-
ture for the cuprate electrons are characterized by local interactions and the associated Hamiltoni-
ans correspond with rather sparse matrices. As with regard to the transport properties, the present
benchmark is in the form of finite temperature quantum Monte Carlo computations for the re-
sistivity [277]. The temperatures that can be reached are still quite high (≃ 1000 K) but arguably
approaching the linear resistivity regime. However, the outcomes are quite different from what
we find.

The Hubbard models are of course in their own way toy models, capturing the largest scales in the
problem but ignoring a lot of other physics. Could it be that long range interactions arising e.g.
from Coulomb interactions and/or phonon mediated interactions are crucial to support the rapid
scrambling near the Lyapunov bound given their non-local nature [278]? Could there be a direct
relation to SYK physics associated with the observation of spin glass physics [279, 280] , with the
obvious difficulty that this has only been observed in the spin striped 214 system?

At the least, holography inspires to ask quite unusual questions to experiment: it suggests a
physics that is tantalizingly different from the usual Fermi-liquid quasiparticle physics. Eventu-
ally, it should be possible by targeted experimentation to reach a verdict. This is not easy: the
cuprates have been subjected to unprecedented experimental scrutiny over the last 35 years but on
basis of the available information it is still impossible to decide the issue.

An example of this law-of-Murphy that insightful results may be the hardest to obtain experimen-
tally is the thermal transport. So much is clear that the thermal conductivity κ of the GR metal
acquires a universal temperature dependence that is up to very high lattice potentials independent
of the potential strength. Numerically we observe thatκ ∼ T 2. But this in gross contrast with the
thermal conductivity in a Fermi liquid, whereDT ∼ τc where τc ∼ 1/T 2 is the quasiparticle col-
lision time such thatκ ∼ 1/T [281]. There is a large difference of the orderT 3 in the temperature
dependence of the thermal conductivity between the holographic metal and a Fermi liquid!

This should be the smoking gun but why can this not be used? The reason is that at the high tem-
peratures where the strange metal is realized (> 100 K) the thermal transport is rather completely
dominated by the phonons. The phonon heat conduction short circuits the heat transport and it is
virtually impossible to extract the electronic contributions. The same problem is there for a mea-
surement a charge transport without heat σQ=0. Aside from the experimental hurdle of zeroing
out heat transport cleanly, the definition of σQ=0 = σ−Tα2/κ̄ implicitly refers to the electronic
component of the heat transport only.

Finally, there is one thermo-electrical transport coefficient that is readily available experimentally:
the Seebeck coefficient enumerating the thermopower. This is given by s = α/σ. According to
Fig. 6.1, α ∼ T 0 and σ ∼ 1/T , and we predict s ∼ T : although for different reason this is the
same temperature dependence generic for a Fermi-liquid (the Mott formula), this is indeed the
scaling that has been observed in cuprate strange metals , e.g. [282, 283].
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6.A. Appendix A: AdS RN and GR Black Holes

We will be interested in perturbations of both Reissner-Nordström and Gubser-Rocha black
holes.

6.A.1. Reissner-Nordström

The RN black holes start from the Einstein-Maxwell action

S =

∫
d4x

√
−g

[
L2

2κ2
(R− 2Λ)− L2

4e2
FµνF

µν

]
, (6.39)

with 2κ2 = e2 = L2 = 1 and Λ = −3. The equations of motion are

Rµν − Λgµν =
1

2

[
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

]
,

∇µF
µν = 0 .

(6.40)

These equations admit an electrically charged black hole solution, the AdS-Reissner-Nordström
(RN) solution in asymptotically AdS4 space-time, for which the metric and gauge field are given
by7

ds2 = gµνdx
µdxν =

1

z2

[
−f(z)dt2 + dz2

f(z)
+ dx2 + dy2

]
,

A = At(z)dt ,

(6.41)

where

f(z) = (1− z)

(
1 + z + z2 − µ2z3

4

)
, At(z) = µ(1− z). (6.42)

The radial coordinate z can be scaled such that the horizon is located at zh = 1 and the boundary
of the space-time is at z = 0. The temperature of the black hole can be computed by considering
the surface gravity of the horizon, and is given by

TRN =

∣∣∣∣f ′(zh)4π

∣∣∣∣ = 12− µ2

16π
(6.43)

7Sometimes, it is more convenient to make a change of variable z → 1− (1− r)2 [127].
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6.A.2. Einstein-Maxwell-Dilaton

For the dilatonic black holes, we depart from the Einstein-Maxwell-Dilaton action[98, 107]

S =
1

2κ2

∫
d4x

√
−g
[
R− Z(ϕ)

4
FµνF

µν − 1

2

(
∂µϕ

)2
+ V (ϕ)

]
. (6.44)

The potentialsZ, V are given by

Z(ϕ) = exp
(
ϕ/

√
3
)
, V (ϕ) =

6

L2
cosh

(
ϕ/

√
3
)
. (6.45)

The cosmological constant is given by Λ = −V (0)/2 = −3. Setting 2κ2 = L2 = 1, the
equations of motion for this system are given by

Rµν =
Z(ϕ)

2

[
Fµ

ρFνρ −
1

4
gµνF

2

]
+

1

2
∂µϕ∂νϕ+

1

2
gµνV (ϕ) ,

∇µ

[
Z(ϕ)Fµν

]
= 0 ,

□ϕ = V ′(ϕ) +
Z ′(ϕ)

4
F 2 ,

(6.46)

where we used that on-shell R = −2V (ϕ) +
1

2
(∂ϕ)2. This setup also has an analytic solution

which is given by a metric, gauge field and non-trivial scalar ϕ in the form of

ds2 = gµνdx
µdxν =

1

z2

[
−h(z)dt2 + 1

h(z)
dz2 + g(z)(dx2 + dy2)

]
A =

√
3Qzh(1 +Qzh)

zh

(1− z/zh)

1 +Qz
dt

ϕ =

√
3

2
log (1 +Qz)

(6.47)

where

h(z) =
(1− z/zh)

g(z)

[
1 + (1 + 3Qzh)

z

zh
+
(
1 + 3Qzh(1 +Qzh)

)( z

zh

)2
]
,

g(z) = (1 +Qz)3/2.

(6.48)

The parameter Q encodes the charge of the black hole. The chemical potential is given by µ =√
3Qzh(1 +Qzh)/zh. The near-horizon form of the potentials in equation (6.44) corresponds

to a scaling behavior of z,−θ → ∞, also identified by γ,−δ = 1/
√
3 in [102]. The temperature

here is given by

TGR =

∣∣∣∣h′(1)4π

∣∣∣∣ = 3
√
1 +Qzh
4πzh

. (6.49)
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6.A.3. Lattice Backgrounds

The translational symmetry of the black hole backgrounds is broken by applying a periodic ionic
lattice in the boundary field theory through the modulation of the chemical potential [118]. In the
gravitational theory, this corresponds to imposing a boundary condition on the gauge field

At(x, y, z = 0) = µ̄
(
1 +Ax cos(Gxx) +Ay cos

(
Gyy

))
. (6.50)

Ax,y parameterize the strength of the lattice, while Gx,y are the reciprocal lattice dimensions,
respectively. Our computational domain in (x, y) is chosen to always contain a whole number of
lattice periods, i.e. x ∼ x+2πnx/Gx, y ∼ y+2πny/Gy where nx, ny ∈ Z. Throughout this
work, we takeGx = Gy ≡ G andAx = Ay ≡ A0/2 in a 2D lattice andAx ≡ A0, Ay = 0 for
a 1D lattice.

This breaking of translational symmetry influences the solutions dramatically. The additional cur-
vature generated by the periodic lattice means that in principle all the off-diagonal components of
the metric as well as all components of the gauge field will become non-trivial.

For RN, the ansatz for the fields is adapted from reference [127]:

ds2 =
1

z2

(
−Qttf(z)η2t +Qxxη

2
x +Qyyη

2
y +

Qzz
f(z)

η2z

)
,

ηt = dt,

ηx = dx+Qxydy +Qxzdz,

ηy = dy +Qyzdz,

ηz = dz,

A = µ(1− z)Atdt

(6.51)

Our EMD ansatz looks similar and is given by

ds2 =
1

z2

(
−Qtth(z)η2t + g(z)

(
Qxxη

2
x +Qyyη

2
y

)
+
Qzz
h(z)

η2z

)
,

ηt = dt,

ηx = dx+Qxydy +Qxzdz,

ηy = dy +Qyzdz,

ηz = dz,

A =
µ(1− z)

1 +Qz
Atdt, ϕ =

3

2
log (1 + φQz) .

(6.52)

For both types of solutions, we are interested in stationary solutions, and therefore all func-
tions F =

{
Qij , Ai, φ

}
are functions of (x, y, z), each periodic in (x, y) with a periodicity

of Lx,y = 2πnx,y/Gx,y . The equations of motion in equation (6.40) and (6.46) form very
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complicated systems of non-linear partial differential equations in three dimensions, which in
general cannot be solved analytically. For numerical convenience, the DeTurck trick and another
gauge fixing term for the gauge field can be used to turn this set of equations into an elliptic
boundary value problem [127–129]. The UV boundary conditions on the radial coordinate come
from imposing an asymptotically AdS solution while imposing that the dilaton be a marginal
operator with no source, as was highlighted in [99]. The horizon boundary conditions arise from
requiring regularity at the horizon, which means that in a series expansion in powers of (z − 1)
we can relate each ∂zFi to all functions and their tangential derivatives at the horizon,8 together
with the condition thatQtt

∣∣
z=1

= Qzz
∣∣
z=1

.9

The boundary value problems are solved using a self-developed software package in C, using the
PETSc library [284, 285]. A Newton line-search algorithm employing second- and third order
finite difference schemes on rectangular grids is used to find solution to the non-linear problem.
The computational grids are either uniformly spaced or have the radial coordinate run over the
Chebyshev-Lobatto nodes for increased accuracy near the boundaries of the problem. Typical
grid sizes for the simulations run betweenNx×Ny×Nz = 40×40×60 to 80×80×120. For
convergence checks, the vanishing of the norm of the DeTurck vector provides a good measure
[129]. Due to the large number of degrees of freedom involved (O(107) for the largest lattices)
most of the numerical work was done using the ALICE cluster at Leiden University and the Dutch
national Cartesius and Snellius supercomputers with the support of SURF Cooperative.

6.A.4. DC Conductivity

The DC conductivity is computed by solving a Stokes flow problem on the black hole horizon
[142, 143, 146, 243]. Using a set of time-independent perturbations, one can show that the bulk
linear response problem of computing (thermo)electric DC conductivities can be reduced to a
linearised version of the Navier-Stokes equations for an auxiliary fluid that lives on a static black
hole horizon background. The equations take a similar form for both EMD and RN black holes,
and can be written as [142]

η(0)
(
−2∇j∇(ivj)+3vj∇jϕ

(0)∇iϕ
(0)
)
− dχ

(0)
ij Q

j − F
(0)
ij J

j =

ρ(0)
(
Ei +∇jw

)
+ Ts(0)

(
ζi −∇i

p

4πT

)
∂iQ

i = 0, ∂iJ
i = 0.

(6.53)

The superscript (0) indicates that these are background quantities evaluated at the horizon.
These are the values we extract from the numerical solutions to the background lattices described
above.10 The Stokes equations (6.53) is then a set of four equations for the four unknown func-
tions vx, vy, w, p. The currents Q, J and transport coefficients ρ(0), η(0), s(0), χ(0) can be

8If the change of coordinates in footnote 7 is used, this simplifies to ∂rFi = 0 ∀ i, as only even powers of r will appear
in the near-horizon expansion. This comes at the cost of accuracy near the horizon.

9This ensures a constant temperature across the (corrugated) horizon.
10For the RN black holes, one should take ϕ = 0, Z(ϕ) = 1, V (ϕ) = 6.
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written in terms of these four functions, the background horizon quantities and the induced
metric on the horizon h(0)ij [142]. Ei, ζi source the electric field and thermal gradient, and are
taken to be constant over the unit cell. The thermoelectric DC conductivities are then extracted
by evaluating (

J⃗

Q⃗

)
=

(
σ αT
ᾱT κ̄T

)(
E⃗

ζ⃗

)
, (6.54)

where J⃗ , Q⃗ are here the spatial averages of the solutions when evaluating equation (6.53). These
averaged values do not renormalise when lifted to the boundary to be interpreted in the field the-
ory. As a result, the thermoelectric conductivity matrix defined in equation (6.54) is that of the
field theory.

In previous works, e.g. [143], these equations have been used to study simpler systems that do not
fully break spatial translational symmetry or break it in a homogeneous way. That simplification
allows for a largely analytic treatment of these equations. The systems we are interested in do not
permit us such luxuries and therefore we have to solve this coupled linear PDE in two periodic
dimensions numerically. For this, we developed a package in Python which can solve coupled
(non-)linear partial differential equations for backgrounds as well as perturbations. This package is
rather flexible, in that it can make use of both (pseudo)spectral and arbitrary-order finite difference
methods to solve the equations. This package will be made available publicly at a later date.

6.B. Appendix B: Semi-local Criticality and an Induced IR

Length Scale

Semi-local quantum liquids can be defined by a “self-energy” that is either a power-law in fre-
quency Σ ∼ ω2ν(k) or exponential Σ ∼ exp

(
−kz/(z−1)

ωz−1

)
with z the dynamical critical expo-

nent. In the limit z → ∞ the latter reduces to the former [156]. Both ω and k are dimensionless
frequencies and momenta in units of the chemical potential µ. As emphasized in [232] the spatial
structure of such semi-local quantum liquids is that the spread of local perturbations decays very
rapidly and is bounded by an emergent length scale ξ ∝ µ−1.

Though the emergence of this semi-local physics is poorly understood from a conventional point
of view, its emergence bound is surprisingly clear from a dual holographic perspective. It is a direct
consequence of the existence of a maximal distance, xmax ∼ 1/ξµ that two light-rays emitted
from near the AdS black hole horizon can spread [232]. It implies that a local perturbation in the
IR can only originate from/influence a finite spatial region (in the UV variables).

This supplementary section shows how this maximal distance arises. A light-ray parametrized by
Xµ(τ) follows a null geodesic, i.e.

gµνẊ
µẊν = 0 . (6.55)
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Consider a generic z = ∞ metric

ds2 =

(
r

R

)− 2η
d

[
−µ2R2r2dt2 +

R2
2

r2
dr2 + µ2R2dxidx

i

]
(6.56)

The parameter η = − θ
z is the remnant of the hyperscaling violation exponent θ in the limit z →

∞ andR2 = R/
√
6 is the emergent AdS2 radius. For a geodesic emanating from the horizon we

can use the radial r coordinate as the affine parameter τ , and the physical gauge Xr = r. Then
solving the geodesic equationDτ Ẋ

µ = 0 subject to the null length constraint, one finds for the
motion in the transverse directions

Xi,±(r) = x
(0)
i ± viR2

µRv
tan−1

(
rv√

v2t − r2v2

)
. (6.57)

with v2 =
∑
i v

2
i . Two light-rays starting from the same point x(0)i one pointing to the left and

one to the right therefore arrive at the boundary (r = ∞) a distance 2 viv
R2

µR
1

tan(i) apart.

We are now interested in the intersection of two lightcones xi,+ and xi,−, which can be found
from

xi,+(r0;x
(0) = 0) = xi,−(r0;x

(0)) =⇒ r0 =
vt
v
sin

(
µRvx

(0)
i

2viR2

)
. (6.58)

After combining (6.57) with (6.58), we find that the maximal allowed distance is

x
(max)
1 =

R2

Rµ
π cos θ , x

(max)
2 =

R2

Rµ
π sin θ . (6.59)

where we have chosen the parametrization for the initial velocity components along (x1, x2) as
v1 = v cos θ , v2 = v sin θ ,where θ ∈ [0, π/2] is the initial angle, measured with respect to
the x1-axis.

The relative initial distance between the two geodesics ∆s reads

∆s =

√
x
(max)
1

2 + x
(max)
2

2 =
R2

Rµ
π , (6.60)

which is universal and does not depend on the initial conditions. It coincides with the result pre-
sented in [232].

In figure 6.16, we plot the causal structure for two light-rays separated by a certain initial distance.
For an initial separation larger than the critical distance, (6.59), both light-rays are not causally
connected anymore. To illustrate this, we have chosen as a dialing parameter the external time t.
After some computations, we get

t(xi) = − R2v

µRvt
cot

[
µRv

viR2

(
xi − x

(0)
i

)]
. (6.61)
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Figure 6.16.: Left figure: Causal structure for two light-rays separated at a relative distancex0 = π.
The x-axis corresponds to the x1(t), while the y-axis to the r(t) coordinate. The
external time has been taken as the dialing parameter, along the z-axis in the figure.
For the present purposes, we have considered no motion along the x2 direction, and
we have also set R2 = R = µ = 1. Right figure: Causal structures for three light-
cones as functions of

(
x1(t), x2(t)

)
. The z-axis corresponds to time, for which we

have set t = 1 as the time that the geodesics reach the boundary. Those geodesics
that start at any point within the disk of radius π will be causally connected, while
disconnected if otherwise.

which is plotted in the second figure in 6.16. From here, we highlight that any geodesic that starts
at an initial relative distance ∆s ≤ π, will be causally connected, whereas if ∆s > π, it will be
causally disconnected.

Based on (6.60) and on the fact that the 2-point correlation function G ∼ 1/ξm ∼ π, we con-
clude that the maximal correlation distance in Planckian dissipation is related to the existence of
this maximal causality distance in geodesic.
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6.C. Appendix C: Four-Pole Fitting Formula

The full 4-pole fitting formula that can fit the four poles nearest to the origin in the complex fre-
quency plane is given by the following nine-parameter formula

σ(ω) = σ0+Z
Ω− iω

(Ω− iω)(Γ− iω) + ω2
0

+(
Zs,1 + iZs,2

ω − (ωs,1 + iωs,2)
+ time-reversed

)
.

(6.62)

The weights and positions of the sound poles is constrained by time reversal symmetry, which
dictates that

σ∗(−ω∗) = σ(ω) . (6.63)

6.D. Appendix D: Memory Matrix Formalism

The correlation functions of the homogeneous GR and RN fluids are well described by the stan-
dard hydrodynamics of relativistic conformal fluids with U(1) charge (see [81]). To compute (6.30),
we simply need the correlatorGJtJt which is given by

GJtJt(ω, k) =
σQk

2

Dρk2 − iω
−

k2ω2
p

ω2 + iDπk2ω − c2sk
2
. (6.64)

This form quite readily shows how this dynamical response has both a convective part (sound)
and a dissipative part. At low frequencies, this correlator can be expanded as

GJtJt(ω, k) =
ω2
p

c2s
+
σQ
Dρ

+ iω

[
σQ
Dρk2

+ ω2
p

Dπ

c4s

]
+O(ω2) . (6.65)

The leading term is entirely real and will not contribute to the imaginary part. Therefore, we can
eventually obtain (6.30) as

Γmom.rel. =
µ̄2A2

2(ϵ̄+ p̄)Dραn
+
µ̄2A2Dπn̄

2

2c4s(ϵ̄+ p̄)2
G2 = Γd + Γη , (6.66)

where we recognize the quantities Γd,Γη introduced in (6.17).

6.E. Appendix E: Scaling of Hydrodynamical Relaxation

Rates

Consider an equation of state P (T, µ)/µ3 = a0 + a1(T/µ)
η̂+1 where η̂ = (d − θ)/z is the

generic effective dimension in the presence of a dynamical critical exponent z and hyperscaling vi-
olation exponent θ. This equation of state will be a valid approximation for the low-temperature
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regime of the holographic Einstein-Maxwell-Dilaton systems, such as RN and GR. Then, the
entropy and charge density one obtains from this pressure are s/µ2 = (η̂ + 1)a1(T/µ)

η̂ and
n/µ2 = 3a0 − (η̂ + 2)a1(T/µ)

η̂+1. We will now look at the momentum relaxation rate
(6.30) for a relativistic charged fluid such that the viscosity saturates the minimal viscosity bound
η = s/(4π) and we will take the EMD T-scalingσQ = σ̂Q(T/µ)

η̂+2 [286]. From the integrated
first law ϵ + P = sT + µn, we find ϵ = 2P for this choice such that we still have a conformal
system and therefore ζ = 0.

The relaxation rate has two contributions, oneG-dependent and oneG-independent, reminiscent
of our result (6.17), which we will by analogy name Γη and Γd. In the general non-conformal case
we have now introduced, these therefore take the form

Γη/µ = A2(G/µ)2
πa1(η̂ + 1)

6a0

(
T

µ

)η̂ (1− a1(η̂−2)
3a0

(T/µ)η̂+1
)2

(
1 + a1

a0
(T/µ)η̂+1

)3 ,

Γd/µ = A2 a
2
1(η̂ + 1)2

6a0σ̂Q

(
T

µ

)η̂ (η̂ + a1(η̂−2)
3a0

(T/µ)η̂+1
)2

(
1 + a1

a0
(T/µ)η̂+1

)3 .

(6.67)

The leading order of Γη can therefore be obtained as

Γη/µ ∼ A2(G/µ)2
πa1(η̂ + 1)

6a0

(
T

µ

)η̂
∼ A2(G/µ)2

π

2

s

n
. (6.68)

This shear drag contribution is therefore entirely determined by the entropy at low temperature.
The other contribution, Γd, is slightly less straightforward. When η̂ > 0, a similar behavior
arises

Γd/µ ∼ A2 a
2
1(η̂ + 1)2η̂2

6a0σ̂Q

(
T

µ

)η̂
∼ A2

2n/µ2

(
T
∂s

∂T

)2

σ−1
Q

(
T

µ

)2

. (6.69)

Therefore in this general case, which encompasses the GR case η̂ = 1, Γd and Γη have the same
temperature dependence although Γd is more sensible to the susceptibilities like the specific heat
T ∂s
∂T and the hydrodynamic transport coefficientσQ. A counterexample of this general rule how-

ever arises when η̂ = 0, as it is for the RN black hole for instance, where the leading order of Γd
vanishes and instead one must expand to second order to have

Γd/µ
η̂=0∼ A2 a41

3a30σ̂Q

(
T

µ

)2

. (6.70)

Finally, we can explain how this (T/µ)2 factor in (6.69) arises naturally from the αn factor in-
troduced in (6.9). To do so, consider the quantity DρΓd = A2 µ̄2

2(ϵ̄+p̄)αn
. We will relax here our

assumptions about the equation of state and only assume some Sommerfeld entropy s = γ(µ̄)T̄
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and n = n0(µ̄) at low temperature. The scaling ofDρΓd is therefore entirely determined by that
of α−1

n which can be determined using(
∂n̄

∂T̄

)
µ̄

=

(
∂s̄

∂µ̄

)
T̄

∼ γ′(µ̄)T̄ ,(
∂n̄

∂µ̄

)
T̄

∼ n′0(µ̄) ,(
∂ϵ̄

∂T̄

)
µ̄

= T̄

(
∂s̄

∂T̄

)
µ̄

+ µ̄

(
∂n̄

∂T̄

)
µ̄

∼
(
γ(µ̄) + µ̄γ′(µ̄)

)
T̄ ,(

∂ϵ̄

∂µ̄

)
T̄

= T̄

(
∂s̄

∂µ̄

)
T̄

+ µ̄

(
∂n̄

∂µ̄

)
T̄

∼ µ̄n′0(µ̄) + γ′(µ̄)T̄ 2 .

(6.71)

Then, we can plug these relations into Eqs. (6.9) and obtain

αn ∼
T̄ 2
(
γ(µ̄) + 2µ̄γ′(µ̄)

)
+ µ̄n′0(µ̄)

T̄
[
n′0(µ̄)

(
γ(µ̄) + µ̄γ′(µ̄)

)
T̄ − γ′(µ̄)T̄

(
µ̄n′0(µ̄) + γ′(µ̄)T̄ 2

)] ∼ µ̄

T̄ 2γ(µ̄)
. (6.72)

Therefore, given Sommerfeld entropy, we naturally get that DρΓd ∼ T 2. Provided then that
Dρ ∼ T , which is the case for the GR holographic metal, you recover the scaling Γd ∼ T .

6.F. Appendix F: Lorentz Oscillator Decoupling

Consider a system of modes coupled to one another in the following way

∂tJ1 + Γ1J1 + γ1J2 = E1 ,

∂tJ2 + Γ2J2 − γ2J1 = E2 ,
(6.73)

whereΓ1,2 are relaxation rates for the currents J1,2,E1,2 are explicit sourcing and γ1,2 couple the
two modes to one another. In matrix notation ∂tJa +MabJb = Ea, this leads to the following
evolution matrix

MLO =

(
Γ1 γ1
−γ2 Γ2

)
. (6.74)

We can then solve this dynamic system and obtain, in frequency space,

J1(ω) =
(Γ2 − iω)E1

(Γ1 − iω)(Γ2 − iω) + γ1γ2
,

J2(ω) =
γ2E1

(Γ1 − iω)(Γ2 − iω) + γ1γ2
,

(6.75)

where we have set E2 = 0 as we are only interested in externally sourcing one of the currents.
Critically, we will be interested in a total currentJ which overlaps with bothJ1 andJ2 through

J = σ0E1 + aJ1 + bJ2 (6.76)
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where σ0 is some explicit contribution by the external sourcing. Therefore, the conductivity asso-
ciated to this current is

σ = J/E1 = σ0 +
a (Γ2 − iω) + bγ2

(Γ1 − iω)(Γ2 − iω) + γ1γ2
. (6.77)

This form is very reminiscent of (6.19) with

Zeff = a , Ω = Γ2 +
b

a
γ2

Γ = Γ1 −
b

a
γ2 , ω2

0 = γ1γ2 −
b

a
γ2

[
Γ1 − Γ2 −

b

a
γ2

]
.

(6.78)

Let us now compare to the matrix M (6.11) describing the dynamical hydrodynamic system in
the small lattice expansion. From this system of 4 coupled fields, it is possible to decouple two by
taking the large speed of sound limit cs → ∞11 which formally just encodes the assumption that
the sound poles live far from the two poles close to origin. While this is a relatively simple limit to
illustrate the qualitative behavior of the isolated two pole sector, we must emphasize that this limit
will not reproduce quantitatively the mapping (6.20) exactly, and that is because there are higher
order effects of the coupling to the sound sector which should be more carefully disentangled.
It will be however a helpful illustration of the dynamics of the low frequency sector. The two
currents remaining J1,2 are then the momentum current density δπ(0)

x and the parity-odd charge
density δn(S).

The decoupled system then takes the form

M =

(
0 AGµ̄/2

− AGµ̄
(ϵ̄+p̄)αn

DρG
2

)
=

 0 AGµ̄/2

−2DρGΓd
Aµ̄

DρG
2

 , (6.79)

while the total current of interest isJ = σQEx+ω
2
pδπ

(0)
x − µ̄A

2 ω
2
pDρGδn

(S). Thus, we deduce
from this that Zeff = ω2

p while the effective momentum relaxation rates and effective couplings
are

Ω = DρG
2
[
1−DρΓd

]
,

Γ = (DρG)
2Γd ,

ω2
0 = DρG

2Γd

[
1− (DρG)

2 +D3
ρG

2Γd

]
.

(6.80)

As expected, there is a discrepancy between Eqs. (6.20) and Eqs. (6.80) which just highlights that
the limit cs → ∞ should be refined. However, this correctly predicts the leading order in A of
every coefficient and gives a very close, qualitative estimate of the corrections at the next order.

11To take this limit carefully, one needs to rescale the momentum modes δϵ(C), δπ
(C)
x by a factor of c2s beforehand.
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