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5. Quantization of the Gubser-Rocha

Model

5.1. Attribution

This paper has been previously published as a preprint on arXiv and has been submitted to
JHEP for publication, and is currently under editorial review, under the title ‘Quantization
and variational problem of the Gubser-Rocha Einstein-Maxwell-Dilaton model, conformal and
non-conformal deformations, and its proper thermodynamics.’, together with N. Chagnet and
K.Schalm.[99]

5.2. Introduction

One of the main insights holography has provided into the physics of strongly correlated systems
is the existence of previously unknown (large N ) non-trivial IR fixed points. These fixed points
are characterized by an emergent scaling symmetry of the Lifshitz form categorized by a dynamical
critical exponent z, a hyperscaling exponent θ, and a charge anomalous dimension ζ .

x→ λ1/zx , t→ λt , F → λ
d−θ
z F , ρ→ λ

d−θ+ζ
z ρ . (5.1)

HereF is the free energy density and ρ the charge density [93, 102, 200, 201]. Within these Lifshitz
fixed points those with z = ∞ are special. Such theories have energy/temperature scaling with
no corresponding spatial rescaling. These are therefore systems with exact local quantum critical-
ity. Phenomenologically this energy/temperature scaling without a corresponding spatial part is
observed in high Tc cuprates, heavy fermions and other strange metals, where this nomenclature
originates (see e.g. [202]). In holography z = ∞ IR fixed points correspond to an emergent AdS2
symmetry near the horizon of the extremal black hole. The two most well-known such solutions
are the plain extremal RN black hole and the extremal GR black hole [98]. The RN solution of
AdS-Einstein-Maxwell theory has been studied extensively primarily because it is the simplest such
model. Its simplicity also means it is too constrained to be realistic as a model of observed locally
quantum critical metals. Notably the RN has a non-vanishing ground-state entropy and emerges
from a d > 2-dimensional conformal field theory. The more realistic GR model arises from a
non-conformal strongly correlated theory, where one isolates the leading irrelevant deformation
from the IR fixed point. This “universal” subsector gives it a chance to be applicable to observed
local quantum critical systems. Moreover the groundstate now has vanishing entropy (to leading
order). In the gravitational description this leading (scalar) (IR)-irrelevant operator is encoded in
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5. Quantization of the Gubser-RochaModel

a dilaton field that couples non-minimally to both the Einstein-Hilbert action and the Maxwell
action. Even with its more realistic appeal, the more complex nature of the GR dynamics means
it has been studied less; some examples are [106–108, 203, 204].

In the course of these studies of non-minimally coupled EMD theories, it was noted in particular
that the proper holographic interpretation of the analytical Gubser Rocha (aGR) black hole so-
lution depends sensitively on the particular quantization [108, 204]. Within holography, relevant
and marginally relevant scalars allow for different quantization schemes. A relevant operator of di-
mension d

2 < ∆ < d always has a conjugate operator of dimension1 d
2−1 < ∆conj = d−∆ < d

2 ,
and one can choose whether one considers the original operator as the dynamical variable (stan-
dard quantization) or the conjugate operator (alternate quantization) or any intermediate linear
combination through a double-trace deformation [205, 206].

An additional complication results from the fact that the (static and isotropic) aGR solution is
a two-parameter solution depending on T and µ, whereas one expects a third independent pa-
rameter encoding the asymptotic source value of the dilaton field. A low-energy scalar can have a
sourced (or unsourced) vacuum-expectation value; this changes the energy of the ground-state and
hence should contribute to the thermodynamics. For minimally coupled scalars this was recently
elucidated in [207].

In this paper we will show that the correct way to interpret the aGR solution is as a two-parameter
subset of solutions within the three-parameter thermodynamic phase diagram. For essentially all
quantization schemes this constrains the source of the dilaton field in terms of the temperature and
chemical potential of the solution. Crucially this implies that derivatives of thermodynamic po-
tentials mix the canonical contribution with an additional contribution from the scalar response.
We will show this explicitly in Section 5.4.2. A proper understanding of the solution requires one
to carefully separate out this contribution.

It also turns out, however, that there is a specific quantization scheme where the dilaton corre-
sponds to an exactly marginal operator in the theory. This was previously noted for another set
of the EMD actions [204].2 In this special quantization choice the aGR solution corresponds to
a solution with no explicit source for the dilaton field. Within this special quantization scheme
one can deform the analytical solution to a nearby solution with a finite scalar source. We do so in
Section 5.5. We conclude with a brief discussion on the meaning of this newly discovered exactly
marginal deformation.

5.3. Setup

The GR black hole is a solution to the EMD action

Sbulk =
1

2κ2

∫
d4x

√
−g
[
R− Z(ϕ)

4
F 2 − 1

2
(∂ϕ)2 − V (ϕ)

]
, (5.2)

1The upper bound of ∆ would suggest ∆conj > 0 but requiring unitarity of the conjugate theory leads to a higher
bound.

2We thank Blaise Goutéraux for bringing this paper to our attention.
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5.3. Setup

where the potentials are given byZ(ϕ) = eϕ/
√
3 andV (ϕ) = −6 cosh

(
ϕ/

√
3
)

.3 This action is
a consistent truncation of d = 11 supergravity compactified onAdS4 × S7 [98]. The equations
of motion for this system are

Rµν =
Z(ϕ)

2

[
Fµ

ρFνρ −
1

4
gµνF

2

]
+

1

2
∂µϕ∂νϕ+

1

2
gµνV (ϕ) ,

∇µ

[
Z(ϕ)Fµν

]
= 0 ,

□ϕ = V ′(ϕ) +
Z ′(ϕ)

4
F 2 ,

(5.3)

where we used that, on-shell,R = 2V (ϕ) +
1

2
(∂ϕ)2. The static and isotropic metric ansatz that

is asymptotically AdS is

ds2 = gµνdx
µdxµ =

1

z2

[
−f(z)dt2 + g(z)

(
dx2 + dy2

)
+

dz2

f(z)

]
, (5.4)

where the coordinate z is the radial direction with z = 0 the AdS boundary (UV). The aGR
solution [98] is then given by

g(z) = (1 +Qz)3/2 ,

f(z) =
1− z/zh
g(z)

[
1 + (1 + 3Qzh)

z

zh
+
(
1 + 3Qzh + 3Q2z2h

)( z

zh

)2
]
,

At(z) = µj(z) =

√
3Qzh(1 +Qzh)

zh

1− z/zh
1 +Qz

,

ϕ(z) =

√
3

2
log [1 +Qz] ,

(5.5)

where zh is the horizon of this non-extremal black hole. From hereon we choose units where
2κ2 = 16πG = 1, such that the temperature, chemical potential and entropy-density of the
GR-black hole are

T = −f
′(z)

4π

∣∣∣∣
z=zh

=
3
√
1 +Qzh
4πzh

, s = 4πah = 4π
(1 +Qzh)

3/2

z2h
,

µ = At(z = 0) =
√

3Qzh(1 +Qzh)/zh ,

(5.6)

where ah =
√
gxx(zh)gyy(zh) is the area density of the horizon. Expressed in terms of the tem-

perature, it is easy to see that the entropy vanishes linearly s = 16π2

3
√
3
µT + . . . at low temperatures

with no remnant ground state entropy. Important in the remainder is (1) to recall that both the
temperature and the entropy can be read off from the near-horizon behavior of the metric alone.

3Note that the dilaton has dimension zero.
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5. Quantization of the Gubser-RochaModel

As local properties of the black hole they do not depend on the boundary conditions. (2) The
analytic solution depends on two parametersQ and zh. And (3) note that the metric gauge choice
is not of the Fefferman-Graham (FG) type in that the change in metric functions starts at order z
and not z3.

5.4. Regularization, boundary terms and choice of

quantization

5.4.1. Boundary action

We must add to the gravitational action (5.2) a boundary action. This is to regularize its on-shell
value as well as to make the variational principle well-defined. In the case of the scalar it also pre-
scribes the quantization of the scalar field. We will be using in this work a standard multi-trace
deformation of the Neumann boundary theory, which were generally described in [205, 206, 208]
and more specifically in EMD theories [204], with a boundary action of the form

Sbdy = −
∫
z=ϵ

d3x
√
−γ
[
2K + 4 + (3)Rγ

]
+ Sbdy,ϕ , (5.7)

HereNµ = −
√
gzz(0, 0, 0, 1) is an outward pointing spacelike unit normal vector defining the

hypersurface z = ϵ ≪ zh and γµν = gµν − NµNν is the induced metric on the surface. Fur-
thermore K ≡ γijKij is the trace of the extrinsic curvature Kij ≡ −γµi γνj∇(µNν) and (3)Rγ
the Ricci scalar curvature of the hypersurface (Latin symbols correspond to coordinates on the hy-
persurface while the greek symbols are those of the original manifold). The first three terms corre-
spond to the usual Gibbons-Hawking-York counterterms necessary to make the variational princi-
ple for the metric well-defined and also to regularize the Einstein-Hilbert-Cosmological Constant
part of the action on shell. In our coordinatization Eq. (5.4) the induced metric is flat on-shell. The
scalar part of the boundary term Sbdy,ϕ can take two forms depending on whether we consider
the standard quantization boundary theory where only the ϕ2 regularization term appears

S
(SQ)
bdy,ϕ =

∫
z=ϵ

d3x
√
−γΛϕ

2
ϕ2 , Λϕ = −1 , (5.8)

— here the value of Λϕ is set to regularize the boundary term arising from varying the bulk ac-
tion — or whether we consider a multi-trace deformation of the alternate quantization boundary
theory

S
(MT)
bdy,ϕ =

∫
z=ϵ

d3x
√
−γ
[
Λϕ
2
ϕ2 + ϕNµ∂µϕ

]
+ SF , Λϕ = 1 . (5.9)

The ϕNµ∂µϕ is a Legendre transform from Dirichlet to Neumann boundary conditions, which
also diverges at leading order and is the reason for the shift in Λϕ as we will see.4 The multi-
trace deformation SF is a finite contribution to the boundary action and will be described when

4Strictly speaking ϕNµ∂µϕ is a combination of a true Legendre transform JO = zλ−−λ+−1ϕ∂nz−λ−ϕ (see
Eq. (5.13)) and counterterms.
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5.4. Regularization, boundary terms and choice of quantization

the asymptotics of the solution are analysed. We will continue the derivation with the choice
Sbdy,ϕ = S

(MT)
bdy,ϕ while keeping in mind that a similar derivation can easily be done using in-

stead Sbdy,ϕ = S
(SQ)
bdy,ϕ, and we will invoke those results when necessary.

Varying the total action S = Sbulk + Sbdy to first order, a proper holographic interpretation
demands that one obtains a variation of the form [100]

δS =

∫
z=ϵ

d3x
√
−γ
[
1

2
Tµνδγ

µν + JµδAµ +Oφδφ

]
, (5.10)

where the terms multiplying the EMD fields are interpreted as the operators in the boundary CFT
whereTµν is the boundary stress tensor, Jµ the boundary current associated with the U(1) charge,
and Oφ the operator dual to a scalar which may be a non-linear function of the dilaton field. The
important point is that the action evaluated on the black hole solution is equated with (minus)
its Gibbs free energy density. The variation of the action (restricted to preserve isotropy) thus in-
cludes thermodynamic variations. The expression above makes clear that in addition to the tem-
perature and the chemical potential there ought to be a dependence of the Gibbs free energy on
an external (source) variation of (the boundary value of) the scalar field [207].

Performing this variation on Eqs (5.2) plus (5.7), we can write it as a bulk integral of an integrand
proportional to the equations of motion (5.3), that vanishes on-shell, and a remaining boundary
part. In the boundary part the normal derivatives of δγµν cancel due to the Gibbons-Hawking-
York term; there are no normal derivatives inAµ. Restricting to boundary indices we have5

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij

[
ϕNz∂zϕ+ Λϕϕ

2/2
]
+ TFij ,

Ji = −Z(ϕ)NzFzi ,
(5.11)

where TFij is the contribution from SF . The expression for Oφ requires a more detailed discus-
sion. Focusing on the variation in the dilaton ϕ in (5.10), we have

δSϕ =

∫
z=ϵ

d3x
√
−γ
[
Λϕϕδϕ+ ϕNz∂zδϕ

]
+ δSF . (5.12)

From its linearized equation of motion the dilaton has the following expansion in the near-
boundary region

ϕ(z) = αzλ− + βzλ+ +O(z3) , (5.13)

where λ± =
3

2
± 1

2

√
9 + 4m2 and m is the effective mass. In the GR model the effective mass

equals

m2 =
∂

∂ϕ2

[
V (ϕ) +

Z(ϕ)

4
F 2

]∣∣∣∣∣
ϕ=0,z→0

= −2 . (5.14)

This value of the mass − 9
4 < m2 < 1 − 9

4 = − 5
4 is in the regime where two different quanti-

zations are allowed, i.e. for this value of m both λ± > 0 and either α (standard) or β (alternate)
5The radial components of Tµν and Jµ vanish due to the projection on the hypersurface.
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5. Quantization of the Gubser-RochaModel

can be chosen as the source for the dual CFT operator with the other the response. One can also
choose a mixture of the two, corresponding to a multi trace deformation, as we shall elucidate
below.

The proper holographic normalization is most conveniently performed in a FG ansatz for the met-
ric

ds2 =
1

z2

[
−Htt(z)dt

2 +Hxx(z)dx
2 +Hyy(z)dy

2 + dz2
]
, (5.15)

where we require Anti-deSitter (AdS) aymptotics Hµν(z = 0) = 1 and use the equations of
motion (5.3) to constrain the near-boundary expansion ofHµν in terms of a small subset of degrees
of freedom. We will use this ansatz for the remainder of this section. Using that Nz(z) = −z,
and substituting (5.13) into (5.12), we can expand the variation w.r.t. the dilaton as

δSϕ =

∫
z=ϵ

d3x

[
Λϕ − 1

ϵ
αδα+ αδβ(Λϕ − 2) + βδα(Λϕ − 1) +O(ϵ)

]
+ δSF . (5.16)

As we claimed in (5.9), we must remove the leading divergence by imposing Λϕ = 1, leaving a
finite contribution

δSϕ =

∫
z=ϵ

d3x
[
−αδβ +O(ϵ)

]
+ δSF . (5.17)

For the standard quantization term (5.8), it is easy to see that a similar derivation leads to Λϕ =
−1.

One can modify the quantization by the addition of a multitrace deformation. This can in
general be encoded in the boundary action SF . Following [204, 208, 209], we choose SF =∫
d3x

√
−γϵdF(α) such that, ignoring the metric variation, δSF =

∫
d3x

√
−γϵdF ′(α)δα.

Without loss of generality we choose F of the form F(α) = a
2α

2 + b
3α

3 from here on. The
variation of the boundary action then becomes

δSϕ =

∫
z=ϵ

d3xα
[
−δβ + (a+ bα)δα

]
. (5.18)

We can therefore identify the VEV of the boundary scalar operator as Oφ = α while the source
of the operator is

JMT = −β + aα+
b

2
α2 . (5.19)

Once again, had we chosen the standard quantization boundary term, then we would have δSϕ =∫
d3xβδα such that Oφ = β and φ = α leading to the boundary condition JSQ = α.

We have now almost all the ingredients to compute the scalar contribution to the stress tensor, but
we still need to derive the variation ofSF w.r.t. the leading order of the boundary metric in order to
compute the termTFij , as was done before in [204]. Doing so, one simply findsTFij = γijϵ

dF(α).
It is interesting to note that the contribution SF can also be absorbed into corrections to the ϕ2
term as well as a ϕ3 term as

Sbdy =

∫
z=ϵ

d3x
√
−γ
[
−(2K + 4 + (3)Rγ) +

Λϕ + ϵa

2
ϕ2 + ϕNµ∂µϕ+

b

3
ϕ3
]
, (5.20)
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5.4. Regularization, boundary terms and choice of quantization

where Λϕ + ϵa is a renormalized ϕ2 coupling which will reproduce the α2 contribution of F , as
was done in e.g. [205, 210]. The ϕ3 coupling on the other end will reproduce theα3 contribution
of F . This way of writing the boundary action highlights why we concentrated on F of the form
F(α) = a

2α
2+ b

3α
3. Lower order inα terms are constant shifts variationally and can be absorbed

in a field redefinition – they are tadpoles. Any termαn for n > dwould lead to vanishing contri-
butions ϵn−d in the action – they are irrelevant deformations. The equality Λϕ = 1 remains true
in order to regularize δS.

In the presence of such a boundary action, the contribution TFij in the expression (5.11) simply
includes the ϕ2, ϕ3 contributions and leads to

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij

[
ϕNz∂zϕ+

Λϕ + ϵa

2
ϕ2 +

b

3
ϕ3
]
. (5.21)

We recognize the F -dependent part of the stress tensor which agrees with the direct method. It is
then immediate to compute the trace of the stress tensor

Ti
i =

α

2

(
3aα+ 2bα2 − 4β

)
= −α

2
(aα− 4JMT) , (5.22)

where in the last equality we used the boundary condition (5.19). This result points to the existence
of a line of critical points with a = 0 where the sourceless (JMT = 0 equivalent to the boundary
condition −β + aα + b

2α
2 = 0) deformation F is just marginal. This is equivalent to only

deforming the boundary theory through a ϕ3 term which indeed has dimension d and should
therefore be marginal.

For completeness we mention that in the case of the standard quantization the trace of the stress
tensor is simply Tii = αβ = βJSQ.

5.4.2. Choice of quantization and thermodynamics

In this subsection, we will derive the thermodynamics of a black hole solution in a general compat-
ible quantization choice. This goes beyond the analyses in [108, 204] where only the thermody-
namics of a marginal scalar were considered, i.e. the case of alternate quantization with a multitrace
deformation such that the stress tensor remains traceless. In view of extending the choice of possi-
ble theories to non-marginal ones, we will show that the thermodynamics space is extended from
a 2-parameter to a 3-parameter space, as also emphasized for Einstein-Scalar theory in [207].

Let us start with the constraint that a choice of solution imposes on the possible quantization
schemes. Indeed, while the choice of boundary terms in the action and therefore of the boundary
deformation is a priori agnostic of a given solution to the bulk equations of motion, we have seen
that the multi-trace deformation leads to a specific choice of boundary condition on the scalar
(5.19). Not every solution to the bulk equations of motion (5.3) are compatible with every possible
boundary condition, as was noted in [204, 211]. In the case of the metric corresponding to the
aGR solution (5.5), the scalar ϕ has the following falloffs

ϕ ∼ αz + (β − f ′(0)α/2)z2 = αz + (β − 3Qα/4)z2 , (5.23)
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5. Quantization of the Gubser-RochaModel

where we have related the values of ϕ′(0), ϕ′′(0) to the falloffs α, β in the FG ansatz (5.15). This
matching is made explicit in Section 5.8. Comparing with the full solution (5.5), we can therefore
equate α =

√
3Q/2 and β =

√
3Q2/8. Consider then alternate quantization deformed by an

arbitrary (relevant and marginal) multitrace deformation. In that case the source equals

JMT(Q) =

√
3Q

8

(
4a+ (

√
3b− 1)Q

)
. (5.24)

From this equation, we see there are a few distinct cases to consider

1. a = 0, b = baGR ≡ 1/
√
3: every instance of the 2-parameter aGR solution (5.5) is com-

patible with this choice and is sourcelessJ = 0. This is the sourceless marginal deformation
we previously mentioned and which was studied in [108, 204, 211]. From Eq. (5.22), we see
that this boundary theory has Tii = 0.

2. a = 0, b = 0: the quantization procedure is conventional alternate quantization. In this
case, since the solution (5.5) is not sourceless, we must impose a Neumann boundary con-
dition β = −J with fine-tuned source J(Q) = −

√
3Q2/8. The explicit source leads

to an explicitly broken conformal symmetry in the boundary. (A similar argument holds
for standard quantization with a Dirichlet boundary condition α = J . One would then
need to consider the boundary term Sbdy,ϕ = S

(SQ)
bdy,ϕ instead, and a fine-tuned source

J(Q) =
√
3Q/2. Also here the explicit source leads to an explicitly broken conformal

symmetry in the boundary.)

3. For all the other cases, one can look for explicitly sourced solutions J = J(Q, a, b) defined
in Eq. (5.24).6 This case is fundamentally similar to the case 2, with the explicit sourcing
leading to a non-zero trace of the boundary stress-tensor.

In the end, we see that the only natural sourceless description we have of the solutions (5.5) corre-
sponds to the marginal multi-trace deformation, case 1. The other cases, 2 and 3, are better under-
stood as explicitly sourced deformations where the source is fine-tuned to select a certain subset of
solutions at a fixedQ.

An important aspect is that even though a bulk solution may have different interpretations de-
pending on the quantization choices set out above, the thermodynamics does know about the
quantization choice. Let us consider the free energy of the solutions (5.5). Substituting the solu-
tion into the action, the free energy density Ω of the aGR black hole solution with compatible
boundary condition is given by

Sregularized
on−shell = −

∫
d3xΩ , so Ω = −

(
1

zh
+Q

)3

+
Q2

8

(
Q(1−

√
3b)− 3a

)
.

(5.25)
6If we insist on looking for solutions with J = 0, one of the couplings a or b must be fine-tuned e.g., b(Q) = 1√

3
(1−

4a/Q). As it was noted in [211], this means that fixinga, b to some constant will restrict the space of solutions to those
for which Q = 4a

1−
√
3b

. Allowing for a finite, albeit fine-tuned, source J = J(Q) leads to the same result and we
will choose this more natural point of view.
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5.4. Regularization, boundary terms and choice of quantization

Furthermore, the holographic dictionary tells us that the chemical potential and the temperature
of the boundary theory are given by (5.6). One might be inclined to use this to deduce a variation
of Ω in the 2-parameter grand canonical ensemble dΩ = −s1dT − ρ1dµ and derive from it the
thermodynamic entropy and charge density of the theory

s1 = −
(
∂Ω

∂T

)
µ

, ρ1 = −
(
∂Ω

∂µ

)
T

. (5.26)

However, we have seen from Eq. (5.10) that the free energy variation in the presence of an explicit
source should be corrected by a scalar contribution of the form (see also [207])

dΩ = −s2dT − ρ2dµ−OφdJ . (5.27)

This is the full 3-parameter thermodynamics of the system. The fact that the free energy (5.25) of
the aGR solution only depends onT andµ, and not on the value of the scalar source means that the
aGR solution should be seen as a 2-parameter constrained solution within this 3-parameter space.
This family of solutions is only a subset of all the possible ones for any given compatible quanti-
zation scheme. A direct corollary is that to explore only this analytical set of solutions, variations
of J, T, µ are not independent. Denoting J as the dependent variable, i.e. it is not independent
but is a function of both T and µ, then the grand canonical potential varies as

dΩ = −
(
s2 +Oφ

∂J(T, µ)

∂T

)
dT −

(
ρ2 +Oφ

∂J(T, µ)

∂µ

)
dµ (5.28)

if one constrains one’s considerations to aGR solutions only.

The precise relation of the VEV Oφ and the source J to the fall-off of the dilaton depends on
the quantization scheme as we have just reviewed. A choice of quantization is not a canonical
transformation, as shown by [207] in the standard quantization case for Einstein-Scalar theories.
Therefore the value of the free energy will depend on this choice. This is evident in the dependence
ona, b in Eq. (5.25). In the full 3-parameter space of solutions this quantization choice dependence
would only appear in the dilaton contribution part. In the constrained 2-parameter space of solu-
tions, it would appear to imply that now also the thermodynamic entropy s1 and charge density
ρ1 deduced from Eq. (5.26) depend on the quantization, as

s1 = 4π
(1 +Qzh)

3/2

z2h

[
1 +

Q2z3h
8(1 +Qzh)3

(
Q(1−

√
3b)− 2a

)]
,

ρ1 = µ
1 +Qzh
zh

[
1− Qz2h(2 +Qzh)

8(1 +Qzh)3

(
Q(1−

√
3b)− 2a

)]
.

(5.29)

This is strange, as the Bekenstein-Hawking entropy and the charge density – the VEV of the
sourced gauged field – are properties of the black hole solution and do not depend on the bound-
ary action which sets the quantization. Indeed they can be read off directly from the geometry
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5. Quantization of the Gubser-RochaModel

as

s2 = 4π
√
gxx(zh)gyy(zh) =

4π(1 +Qzh)
3/2

z2h
the area of the horizon of the black hole,

ρ2 = −∂zAt(z → 0) = µ
(1 +Qzh)

zh
the global U(1) charge.

(5.30)
The solution is of course that in the constrained system s1 and ρ1 are not the true entropy and
charge density, as they include the artificial contribution from varyingJ(T, µ) following from the
constraint to stay within the 2-parameter aGR solution space. It is then a rather straightforward
computation to connect Eqs. (5.29) and (5.30) through the variation of J expressed in Eq. (5.27).
To that end, we can remember that the source J is constrained by the boundary condition (5.24)
and that in our choice of quantization, we always have Oφ = α. In summary, the geometric
expressions for the entropy and charge of the aGR solution are always the correct ones. The dif-
ference from the quantities computed from the Gibbs potential can be attributed to the fact that
one considers a constrained system: the expression s1 = −

(
∂Ω
∂T

)
µ
= −

(
∂Ω
∂T

)
µ
−Oφ

(
∂J
∂T

)
µ

contains a term that is absent in the correct definition of the entropy s2 = −
(
∂Ω
∂T

)
µ,J

, and
similarly for ρ.

There is, however, the special case 1. When the deformation is purely marginal and sourceless –
a = 0 and b = 1√

3
– we can immediately infer that the variations of J = 0 will be trivial. In

that case, we will have s1 = s2 and ρ1 = ρ2. The way to understand this is that within the 3-
parameter space of possible solutions quantified by (T, µ, J) the 2-parameter aGR solution spans
a different subspace depending on the quantization choice for the dual boundary theory. Figure
5.1, illustrates how this difference of boundary interpretation between the alternate quantization
with sourceless marginal deformation of case 1 and the standard quantization of case 2 changes
the shape of the aGR solution manifold inside the thermodynamic space of sources {T, µ, J}.
This visualization allows us to see at a glance how the sourceless marginal deformation reduces to
a 2-charge thermodynamic space where 2-parameters of the solution naturally coincide with T, µ
while the standard quantization interpretation of the aGR solution induces some non-trivial pro-
jection when varying the Gibbs free energy w.r.t. T, µ. For the sourceless marginal deformation
the thermodynamics of the boundary thus simplifies greatly and will behave in a similar fashion
to the conformal fluid dual to the RN black hole solution.

To complete the argument above we shall construct numerical solutions to the equations of mo-
tion (5.3) in the next section that differ from the aGR solution in that they explore the third direc-
tion orthogonal to T, µ and analyse their various boundary interpretations.
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5.5. Deformed Gubser-Rocha black holes

Figure 5.1.: aGR solution manifold in the thermodynamic parameter space of source {T, µ, J}
for two specific choices of boundary interpretations (cases 1 and 2). The sourceless
marginal case has trivial source and is by itself a 2-charge submanifold while the stan-
dard quantization case has a constrained source which leads to the non-trivial correc-
tions in s1, ρ1.

5.5. Deformed Gubser-Rocha black holes

5.5.1. Numerically constructed solutions

The solutions that generically differ from (5.5) correspond to setting different boundary condi-
tions for the dilaton field. However, for each such new solution, its interpretation depends on the
quantization one considers, i.e. what the on-shell value of the action including boundary terms
reads.
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We will solve the GR equations of motion (5.3) numerically using the following parametrization

ϕ =

√
3

2
z ψ(z) , At(z) = µ j(z)at(z) , (5.31)

and with metric ansatz

ds2 =
1

z2

[
−f(z)Gtt(z)dt2 +

dz2

f(z)
Gzz(z) + g(z)G(z)

(
dx2 + dy2

)]
, (5.32)

where f(z), g(z), j(z) are held fixed to their expressions in the aGR solution (5.5) and ψ, at,
Gtt, Gzz, G are the dynamical fields. The radial coordinate z spans the range from the boundary
at z = 0 to the outer horizon at z = zh. The IR boundary conditions are chosen to have a single
zero horizon corresponding to a non-extremal black hole and to impose regularity at the horizon
for other fields (see e.g., [118]).7 The UV boundary conditions are chosen to impose AdS asymp-
totics for the metric components andAt(0) = µ. Parametrizing µ =

√
3Qzh(1 +Qzh)/zh as

in the aGR solution, the scalar boundary condition (5.19) can be rewritten in terms of the falloffs
of ψ as

ψ′(0) = − 2J√
3
+

(
a− 3Q

4

)
ψ(0) +

√
3b

4
ψ(0)2 . (5.33)

For simplicity, we will choose zh = 1 and the temperature of the solutions will therefore be en-
coded byQ = 3µ2

16π2T 2 . In holography, we would usually first fix the boundary theory of interest
by choosing a, b. Then every solution to the equations of motion would be labeled by (T, µ, J)
imposed through the boundary conditions. However in this section, we will be interested in how
a given set of solutions, labeled by (T, µ, ψ(0)), behaves in the various compatible boundary the-
ories. This is possible because the boundary condition we impose on the scalar is simply a way to
parametrize how we choose a bulk solution constrained to have a black hole in the interior. Every
boundary theory determined by a, b and the value of sourcing J compatible with the condition
(5.33) will provide a valid boundary description. We will focus on the boundary interpretations
in the next subsection. In many holographic studies ψ(0) is often used interchangeably with the
source J , but this is of course only true in standard quantization. We shall, however, be careful
to distinguish between the boundary value ψ(0) of the AdS scalar field and the source J of the
operator in the quantization choice dependent dual field theory.

Let us now briefly describe the effect of changing ψ(0) without referring to any specific bound-
ary theory. By looking at the aGR solution (5.5), we see that ψ(0) = Q ∼ (T/µ)−2 for this
family. Therefore, increasing ψ(0) is akin to lowering the temperature and vice versa. To con-
firm our intuition, we can compare solutions at fixed Q0 ∼ (T0/µ)

−2, and varying ψ(0), to
aGR solutions with ψ(0) = Q ̸= Q0 i.e., at different T/µ ̸= T0/µ. We will choose to fo-
cus on the gauge field At(z) and more specifically the component at(z) defined in (5.31). For-
mally, at(z) = At(z)/(µj(z, T0/µ)) for a fixed T0/µ. Since the aGR solution at a differ-

7The boundary conditions from regularity imply in particular that Gtt(zh) = Gzz(zh). This conveniently allows us
to set the temperature with the parameters Q and zh just like in the aGR solution in Eq. (5.6), as the temperature of
this generalised model is given by T = TGR

√
Gtt(zh)/Gzz(zh) = 3

√
1 +Qzh/4πzh.
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Figure 5.2.: Gauge field component at(z) as defined in (5.31) at T0/µ = 0.15 and for various val-
ues of ψ(0). We compare with the equivalent function aψ(0)=Qt of the aGR solution
at different temperaturesT/µ = 0.16 (purple) andT/µ = 0.14 (red). This illustrates
that qualitatively the effect of changing the dilaton boundary value has similarities to
changing the ratio T/µ.

ent temperature T/µ will have a gauge field At(z) = µj(z, T/µ), the correct field to com-
pare with will be aψ(0)=Qt (z, T/µ ̸= T0/µ) = j(z, T/µ)/j(z, T0/µ). We plot the profiles
a
ψ(0) ̸=Q0

t (z, T0/µ) in figure 5.2 and compare these to aψ(0)=Qt (z, T/µ > T0/µ) (purple) and
a
ψ(0)=Q
t (z, T/µ < T0/µ) (red). We see that indeed, starting from ψ(0) = Q0, as we increase

(decrease)ψ(0) withQ0 fixed, the solution becomes similar to the aGR solution at lower (higher)
T/µ.

5.5.2. The holographic dual of the one-parameter family of solutions in

different quantization choices

Having numerically constructed instances of this one-parameter deformation of fixed T/µ GR
black holes, each instance in turn has multiple holographic dual interpretations depending on the
quantization scheme. These are constrained by the compatibility condition (5.33). We will focus
on three specific choices:

1. the conformal symmetry preserving quantization a, J = 0 boundary theory for which we
can then label our solutions by b(ψ(0)) = 4√

3ψ(0)2

(
ψ′(0) + 3Q

4 ψ(0)
)

,

2. the standard quantization boundary theory with the label J = α = 3
2ψ(0),
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Figure 5.3.: Trace of the boundary stress tensor when varying the Dirichlet boundary condition
ψ(0). This can be interpreted as exploring boundaries with a = 0, J = 0 and varying
marginal coupling b (left) or as changing the source J = α in standard quantization
(right). aGR denotes the analytically known GR solution. (Left) We see that in this
case, Tij remains traceless regardless of bwhich is consistent with a marginal deforma-
tion and the result (5.22). (Right) In standard quantization, the trace is generically not
zero, but this can happen for specific boundary theories: sourcelessJ = 0– not visible
on the graph – and when Oφ = 0 – which happens at J/Q ≃ 1.4.

3. the alternate quantization boundary theory with a, b = 0 for which the label is now J =

−β = − 3
2ψ

′(0)− 3
√
3Q
8 ψ(0).

Using Eq. (5.11) we can compute the energy and the pressure of a solution in a specific quantization
scheme and construct the trace of the stress tensor Tii = −ϵ + 2P for each of these solutions.
For the choice 1, as we can see in Figure 5.3, the stress tensor remains traceless for any value of
b(ψ(0)), confirming the analytic result Eq. (5.22). This is what we expect from a CFT deformed
by a marginal operator. On the other hand, for the choice 2, we see that generically conformality
is broken and the stress tensor acquires a non zero trace. In this quantization scheme, this is also
true for the aGR solution, as we described in the case 2. There are two exceptions: the first one
is when J = 0 (but Oφ ̸= 0) – which is reminiscent of a Z2 spontaneously symmetry breaking
solution but here, the finite charge of the black hole actually always leads to an explicitly symmetry
broken (ESB) solution ϕ(z) ̸= 0. This case is outside the range of the plot Figure 5.3. The second
solution would happen around J/Q ≈ 1.4 such that Oφ = 0. These are consistent with what
we would have expected from Ti

i = αβ.

Each one of these new black hole solutions has a different thermodynamics compared to the aGR
solution.

A clean way to exhibit this is to show the boundary charge density ρ2, which for the choice 1 is
the same as the variation of the Gibbs free energy w.r.t. the chemical potential, i.e. in that case
ρ2 = ρ1. In Figure 5.4, we plot the charge density as a function of temperature for various values
of the marginal coupling b. It is clear from this figure that the charge density as a function of T/µ
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Figure 5.4.: Boundary charge density as a function of the temperatureT/µwhen imposing Dirich-
let boundary conditions, which we interpret as varying the boundary theory through
b. The charge density is normalized by Q2 in the left-hand plot and by its aGR value
defined in (5.30) in the right-hand plot. The qualitative behaviour of all these theories
is extremely similar to the aGR solution (left) but quantitatively differs as a function
of T/µ (right), showing the theories described are different.

is dependent on the choice of boundary theory and the deformed solution describes a different
state, even if the change is small.

To reiterate this last point, let us remember that a priori, the true charge density of the theory ρ2,
as well as the true entropy of the theory s2, only depend on the bulk solution – they are geomet-
ric quantities. Yet we now argue that different boundary theories have different thermodynamics.
The resolution of this apparent contradiction is that while the entropy and charge density of a
black hole solution only really depend on the bulk solution, how we explore the space of solutions
is dependent on the choice of quantization. As we mentioned in Section 5.5, the holographic in-
terpretation of black hole thermodynamics shows that we should label solutions by their sources
{T, µ, J} – and in the case of the sourceless solutions of the choice 1, b plays the role of the label
J . But different boundary theories have different notion of source J such that varying T and µ at
fixed J will mean different path in the space of bulk solutions labeled by {T, µ, ψ(0)}. In Figure
5.5, we illustrate this point by looking at the Bekenstein-Hawking entropy s2 as a function ofT/µ
– all solutions are normalized by the aGR entropy defined in (5.30). Both choices 1 and 3 are used
to label the solutions when varying the temperature, which can be done by imposing the bound-
ary condition (5.33) for each of the choices. The values of b(ψ(0)) and J = −β are chosen such
that solutions meet in pair at T/µ = 0.2. Upon lowering the temperature, we see that these pairs
split indicating that the bulk solutions they belong to are not the same anymore. A path at fixed
J = −β is therefore generically different than a path at fixed J = α or fixed b(ψ(0)).
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Figure 5.5.: Black hole entropy as a function of T/µ when keeping either the alternate quantiza-
tion source J = −β fixed (choice 3, orange gradient curves) or when keeping the label
b(ψ(0)) fixed (choice 1, blue gradient curves). The curves meet in pairs at T/µ – in-
dicating identical bulk solutions – and separate for other temperatures – indicating
different black hole solutions.

5.6. Conclusion

In this paper, we have clarified how the GR black hole thermodynamics works in the context of
holography and the appropriate quantization thereof. The well-known analytical solution (5.5)
of [98] covers only a 2-parameter subspace of the full 3-parameter thermodynamics of black hole
solutions to the action (5.2). The 2-parameter aGR black hole solution has been used widely as a
physically sound version of the z = ∞ AdS2 IR critical point that preserves the quantum criti-
cal properties but does so with a vanishing zero temperature entropy. It was already pointed out
[108] that an unusual quantization choice could preserve conformal thermodynamics and hence
stay within the analytically known 2-parameter family. This indicates the existence of a marginal
operator in this specific quantization scheme [204] and we have recovered this in our analysis. For
other quantization choices, the analytic solution has a fine tuned value for the source. To prove this
point we have numerically computed the solutions corresponding to different boundary values of
the dilaton. This fills out the full 3-parameter thermodynamic phase space. The filled out phase-
space therefore elucidates that other quantization choices are just as valid as the one we chose to
focus on. This had to be so, but the trade-off that one must make is to properly account for vari-
ous scalar contributions to the general thermodynamics of the theory in line with the findings in
[207].
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Because the GR action is a consistent truncation of d = 11 supergravity compactified on AdS4×
S7 and has ABJM theory as its known holographically dual CFT, in principle one should be able to
identify this marginal operator in the CFT. The fact that marginality is associated with a multitrace
deformation makes this not as straightforward as may seem. In particular as it originates naturally
in alternate quantization, it is likely that it is an operator which is only marginal in the large N
limit where the classical gravity description applies. We leave this for future research.

Our focus and interest is the use of the GR and other EMD models as phenomenological descrip-
tions of AdS2 fixed points, especially due to its resemblance to the experimental phenomenology
of strange metals. In this comparison, thermodynamic susceptibilities and (hydrodynamic) trans-
port play an important role. Our result here shows that in EMD models one must be precise in
the choice of boundary conditions and scalar quantization as they will directly affect the long-
wavelength regime of the dual boundary theory as well as correct the thermodynamics of any ex-
tension of the GR model. This is especially true for any boundary interpretation differing from
the pure marginal case of [108, 204], as was shown by [207] for Einstein-Scalar models and we have
shown here for the GR model. A proper understanding of the boundary conditions is necessary
both for the thermodynamics of the background and the hydrodynamic fluctuations on top of
that background.

5.7. Validity of the boundary action

In a previous version of this paper, we considered the boundary term introduced by [108] which
is of the form

S
(cϕ)
bdy,ϕ =

∫
z=ϵ

d3x
√
−γ
[
Λϕ
2
ϕ2 + cϕϕN

z∂zϕ

]
, Λϕ = 2cϕ − 1 , (5.34)

which matches our boundary terms for specific valuesS(cϕ=0)
bdy,ϕ = S

(SQ)
bdy,ϕ andS(cϕ=1)

bdy,ϕ = S
(MT)
bdy,ϕ

fora = 0, b = 0. The claim of [108] is that more general values of cϕ are also possible, which from
a renormalization point of view is an acceptable assumption. The only prescription one has for
boundary terms is to choose relevant and marginal ones (the irrelevant boundary terms contribute
as corrections in the cutoff ϵ and can be truncated) which respect the symmetries of the action.
However, choosing the boundary term (5.34) leads to

δ
(
Sbulk + S

(cϕ)
bdy,ϕ

)
=

∫
z=ϵ

d3x
√
−γ

[
(1− cϕ)βδα− cϕαδβ

]
=

∫
z=ϵ

d3x
√
−γ

(
−cϕα1/cϕ

)
δ
(
βα1−1/cϕ

) (5.35)

which generically differs from our result for the standard quantization or multi-trace deformation
where Oφ = α or β.

The question of the validity of such variational problem as Eq. (5.35) was raised before in e.g.
[212] for the simple case of a non-relativistic particle. Consider a particle with action S1 =∫ t2
t1

dt(−q̇2/2) to which one adds the total derivative term S2 =
[
1
2qq̇
]t2
t1

. The variation of the

109



5. Quantization of the Gubser-RochaModel

total action on-shell δ(S1 + S2) =
[
1
2qδq̇ −

1
2 q̇δq

]t2
t1

is of a similar form as the variation (5.35)
for cϕ = 1/2. The boundary condition required to make the boundary variation well-defined
is then to fix q̇/q = C at t = t1 and t = t2. However, in the case of S1, this is not a correct
boundary condition to impose. Since the bulk equation of motion is q̈ = 0 with solutions
q(t) = At+ B and q̇(t) = A, the quantity to fix is q̇q = A

At+B = 1
t+B/A which only depends

on the ratioB/A. Therefore, fixing it at t1 leaves no freedom to also fix it at t2. At the same time
the two boundary conditions at t1 and t2 do not select a unique solution. A direct check one
can do is whether for other values of the analogous cϕ, this problem remains. Taking for example
S2 =

[
1
3qq̇
]t2
t1

, the boundary condition to impose is now to fix q̇/q2 = A
(At+B)2 . Solving this

condition at the boundaries for values C1,2 now does lead to fully determined solutions, unlike
the previous case. However, the solutions are not unique, because the boundary conditions itself
have arbitrary constants C1,2. There are therefore multiple branches to the system of equations
AC1,2 = (At1,2 +B)2.

In holography only the UV boundary conditions are imposed in the exact same manner. The IR
boundary condition in a black hole spacetime is different. We simply require regularity of the scalar
at the event horizon. For cϕ = 1/n, n ∈ N∗, the question of whether the variational problem is
well-defined is then whether the UV boundary condition of fixing β

αn−1 = C is sufficient to pick
a unique solution once the IR boundary conditions are taken into account. It is quite straightfor-
ward to show that these are the same boundary conditions as the usual multi-trace deformation
boundary condition (5.24), forJ = 0 and specific choices of monomialFn = an

n α
n. From (5.19),

we see that for n > 1, the sourceless boundary condition for the deformation associated with Fn
is β
αn−1 = an

n−1 so the matching between boundary theories occurs forC = an
n−1 . Interestingly,

choosing the boundary value C is equivalent to choosing a deformation coupling constant with
(single-trace) scalar source J = 0. This is because the coupling constant an is really the same as a
source for the multi-trace operator On.

In Table 5.1 we look at n = 1, 2, 3,∞ and what type of multi-trace deformation they match.
For n ≥ 4 the higher order terms in F represent irrelevant operators and we shall not consider
them. The special cases n = 1 and n = ∞ i.e. cϕ = 1 and cϕ = 0 are the alternate and
standard quantization case of fixing α = J and β = −J . In the previous version of this article
we argued that the aGR solution quantized with boundary term (5.34) and cϕ = 1/3 could be
viewed as a marginal deformation withn = 3 andβ/α2 = 1

2
√
3

which according to our mapping
is equivalent to the case 1, as expected.

Moreover, and importantly, the on-shell values of the boundary actions (5.9) with monomial mul-
titrace deformations F = Fn and (5.34) are also equivalent through the mapping described in
Table 5.1. Indeed, we see that the difference between the boundary terms is

S
(MT)
bdy,ϕ(F = Fn)− S

(cϕ)
bdy,ϕ =

∫
z=ϵ

[
an
n
αn − (1− cϕ)αβ

]
=

∫
z=ϵ

[
an − C(n− 1)

] αn
n
,

(5.36)
where we injected the expansionϕ ∼ αz+βz2 and in the second equality, we used the boundary
condition β = Cαn−1 with cϕ = 1/n. We see that the difference (5.36) vanishes for the choice
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n Boundary condition Analog multi-trace choice
n = 1 β = C a = 0, b = 0, J = −C
n = 2 β

α = C a = C , b = 0, J = 0

n = 3 β
α2 = C a = 0, b = 2C , J = 0

n = ∞ α = C a = 0, b = 0, J = C

Table 5.1.: Matching between the boundary conditions obtained from the multi-trace deformation
boundary action (5.9) and those obtained from the boundary term (5.34).

C = an
n−1 and thus the actions are the same through the mapping described in Table 5.1. We can

conclude that as far the two roles of the boundary terms go – setting the boundary conditions of
the variational problem and specifying an on-shell value for the action – these boundary terms
yield the same answer for specific choices of the boundary theory. This explains how our previous
derivation based on (5.34) yielded the same results as the derivation based on (5.9) for sourceless
solutions. The on-shell action equivalence does not hold in generality, however. The boundary
term (5.34) fails to account for polynomial deformations F and therefore would miss out on the
most general theories of case 3.

5.8. Matching of metric gauge choices

In Eq. (5.13) we have expressed our scalar field UV expansion in the FG gauge choice for the metric
(5.15). In this section we will use r to denote this choice of radial coordinate. However, the aGR
solution (5.5) uses a different metric gauge choice (5.4). This means that the expansion of the scalar
fieldϕ = α̂z+ β̂z2+ . . . in the (5.4) coordinates is not directly identical to that given in Eq. (5.13).
They are related by solving dr2

r2 = dz2

z2f(z) . This relation is formally given by

log r(z)− log ϵ =

∫ z

ϵ

dx

x
√
f(x)

, with ϵ→ 0 . (5.37)

In the near-boundary regime, we will only be interested in the leading and subleading orders of this
relation – since we only want to see how the leading and subleading orders in the scalar expansion
mix – and we therefore expand f(z) = 1+ f ′(0)z+ . . ., where the analytical value of f is given
in Eq. (5.5). Doing so, we find

r(z) ∼ z − 3Qz2

4
+O(z3) . (5.38)

It is then straightforward to input this in the FG UV expansion

ϕ ∼ αr + βr2 ∼ αz +

(
β − 3Q

4
α

)
z2 , (5.39)

as was claimed in Eq. (5.23).
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