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2. AdS/CFT: The Holographic Duality

2.1. History of AdS/CFT

The AdS/CFT correspondence (also often called the holographic duality) has its roots in string
theory and the search for a theory of quantum gravity. The holographic principle, formulated by
‘t Hooft and refined by Susskind, made the identification between the information1 contained in
a volume of space-time, and their encoding on its boundary.[57, 58] The big discovery that turned
everybody’s heads was the discovery of the AdS/CFT correspondence by Maldacena [59]. The
correspondence was hinted at by the similarity in symmetry structure between certain string theory
models and supersymmetric Yang-Mills (SYM) theories in one lower dimension. To be precise,
Maldacena initially formulated the correspondence between a type IIB string theory living on an
AdS5 × S5 space-time and an N = 4, U(N) SYM theory living in one less dimension. That
explains the reason for the name ‘AdS-CFT’: it is a duality between on one side string theory, which
can have classical gravity as its low-energy limit, on a space-time with negative curvature, so-called
Anti-De Sitter space, and on the other side a conformal field theory. I will not go into details
of either string theory or conformal field theory in this work, but there are many resources out
there that discuss both in considerable depth, ranging from pedagogical introductions to reference
works.[60–64]

The discovery of the correspondence triggered a major response in the string theory community,
and it is commonly included as part of the second revolution in the field of string theory. It un-
earthed a deep connection between gravitational theories and conformal field theory. Soon after
the discovery, it was found that there were other examples of theories where there exists such a dual-
ity.[65, 66] These all have their own specific details, such as the geometry and type of string theory,
as well as the type of conformal field theory, but they all follow a very similar spirit of duality.

2.1.1. A More General Statement of the Duality

The statement of the duality for a general holographic correspondence is deceptively simple, and
was made precise by Gubser, Polyakov, Klebanov and Witten [67]. Imagine a pair of theories be-
tween which the duality applies. One is the ‘gravitational’ side, where the string theory lives on
some form of space-time with negative curvature. A technical aspect of those space-times is that
they all have a boundary. The other theory is a (conformal) quantum field theory with one less

1This uses the very abstract notion of ‘information’ as used in the field of information theory. It can be thought of as
essentially ‘degrees of freedom’ of some kind.
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2. AdS/CFT: The Holographic Duality

dimension than the gravitational theory. The conformal field theory, like all quantum field theo-
ries, has all of its information contained in its generating functional. In this generating functional,
we have the operators Oi that are present in the theory, coupled to their respective sources ji. As
such, the generating functional contains enough information to compute all n-point correlators
in the theory by taking functional field derivatives with respect to the sources. We will denote this
functional as ZQFT [ji]. On the other hand, we have a gravitational theory which is coupled to
extra fields ϕi, with boundary values ji, and an associated partition function Z[ϕi]

∣∣
ϕi→ji

. Then
the duality states that

ZQFT [ji] = Z[ϕi]
∣∣
ϕi→ji

. (2.1)

In other words, using the duality one way can encode for and compute operators in the quan-
tum field theory by having fields in the gravitational theory with the correct boundary behaviour.
Applying the duality the other way, which says we can understand the gravitational side by doing
computations in conformal field theory, is less relevant for the purposes of this thesis. This state-
ment is incredibly deep, and allows for investigation both ways. It is possible to learn more about
the QFT side by doing computations in the string theory side, but also the other way around.
However, we are now struck with the problem that the theories specified on either side are far
from easy to work with. A good example is the fields in the field theory: in the canonical example
of N = 4 SYM, the number of fields in the theoryN is very large. Making any computation can
be difficult, and how do we know to couple fields for these into the gravitational theory? The du-
ality luckily has a way to simplify this in a way that is also useful for the purposes of our condensed
matter aspirations.

2.1.2. Limits of the Duality

Crucial in the simplification that we desire is the fact that this duality is a weak-strong duality. This
is evident when computing exactly which limits can be taken in terms of coupling strengths and
numbers of degrees of freedom.[62] Since the string theory on the AdS side is hard to formulate
and even harder to compute anything with, we would like to make use of its low energy limit,
which is simpler. Let us take here the canonical example of AdS/CFT, to be precise the one where
N = 4 SYM theory with gauge group SU(N) and coupling gYM .[59] This is dual to type IIB
string theory with string length ls and coupling gs, which lives on AdS5 × S5 with AdS radius
L andN units of F(5) flux on S5.[61, 62] There duality maps the parameters gYM andN to the
parameters gs andL/ls on the string theory side, via[62]

g2YM = 2πgs 2g2YMN ≡ 2λ = L4/l4p, (2.2)

where we have defined λ as the ’t Hooft coupling g2YMN . The way we want to use the duality is
to be able to compute things on the gravity side, which we then want to be able to interpret on
the CFT side through the duality. For this, we want to get rid of as much stringiness as possible, as
loop corrections and string couplings make our lives difficult here. In order to accomplish this, we
will want the string coupling gs → 0, while having the length of the strings to be inconsequential
compared to the AdS radius, such that L4/l4p → ∞. Equation (2.2) then tells us that here we
want to take g2YM → 0, while simultaneously λ = g2YMN → ∞. In other words, for the gravity
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2.2. Renormalization Group and Geometry

to be classical2 we need to be in the limit of infinitely strong ’t Hooft coupling. This shows that
the duality is of the weak-strong nature: in order to be weakly coupled on the gravitational side,
we end up in the limit of matrix large-N in the CFT.[61] This will turn out to be both a blessing
and a curse: by going to the classical limit on the gravitational side, we are able to actually perform
the computations required to explore extremely strongly coupled systems that are normally far
out of reach of ordinary perturbative treatments on classical (though high-power) computers. For
condensed matter physics, the presence of large-N spoils a lot of the fun, because this is never
physically realised in any real world system and any significant claims will always have to be taken
with the grain of salt that there could be significant corrections stemming from an expansion in
1/N . For the rest of this work, we will stay in the large-N limit. This is in a sense the ‘weakest’
form of the duality from the sense that we get the easiest to handle gravitational physics, at the cost
of only being able access a very restricted parameter space in the conformal field theory.

2.2. Renormalization Group and Geometry

Perhaps of greatest interest from a condensed matter perspective is the way that the Renormal-
ization Group (RG) flow manifests itself. Dating back to the 1950’s, the idea of the RG and RG
flow was formulated from the desire to look at the physics of systems at different energy scales.[68,
69] The canonical way of thinking about renormalization in field theory is through the idea of a
beta function. One considers a coupling constant g and looks at the properties of that coupling
constant at different energy scalesµ. When the energy scale is decreased, and more and more of the
higher-energy modes of the theory are thrown out, the effective coupling strength of the theory
changes. This is what the beta function of the theory encodes, and this can be stated as

µ
∂g(µ)

∂µ
= β(g(µ)). (2.3)

When β(µ) = 0, the scale transformation has no effect on the coupling strength and the theory
is said to be scale-invariant. The magic now happens when we take a certain theory, and consider
a series of copies of this theory, each evaluated at a slightly different, ever lower energy scale µ.
The parameter µ then tells us at each point along its evolution how the physics of the theory be-
haves. We can imagine this now as an extra dimension of the theory: in essence we are adding a
new ‘energy scale’ coordinate to the space-time of our theory,3 and we can track how it evolves.
The realisation was made that this maps neatly to holographic physics, where the boundary rep-
resents the original theory. The theory living at the boundary is commonly called the ultraviolet
(UV) theory: no degrees of freedom have been integrated out yet, and it contains all the micro-
scopics. Going deeper into the interior of this space-time, renormalization effects start to kick in,
and the deeper you enter into the ‘bulk’ of the geometry, the more you let the RG flow continue
into the infra-red (IR) of the theory. Taking the example of the CFT, we know that in a CFT we
must have β(µ) = 0, as conformal field theories by have scale invariance as one of their defining

2Here the low-energy limit is technically supergravity, but in the setups we use we only have classical Einstein gravity,
without supersymmetry.

3This is not an exact ‘energy’ dimension, but thinking about it proves to be enlightening in many respects, e.g. in sec-
tion 6.5.
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2. AdS/CFT: The Holographic Duality

properties. The bulk geometry must therefore reflect the same scale invariance, which turns out to
be manifestly true for empty AdS space-time. The mathematics are of course more involved, but
these statements together with the requirement of having a ‘boundary’ for the space-time quite
naturally leads to an AdS-like space-time. This is schematically represented in figure 2.1.

This consideration of RG flow brings to light the important aspect that, in a sense, what the
AdS/CFT correspondence is doing is geometrizing the RG flow of the quantum field theory into
a dynamical gravitational bulk, which is sometimes abbreviated in the statement [61]

RG = GR. (2.4)

This provides a compelling reason to use the holographic duality: in physics, we are often inter-
ested in low-energy excitations that come from some microscopically detailed theory. The details
of how to map microscopics to low-energy excitations is highly non-trivial. RG is one of the canon-
ical ways to get the low-energy physics. These can prove to be very complicated, and there are a lot
of limitating factors to their applicability, such as strong coupling and dense entanglement in gen-
eral.[70] Holography turns the game on its head here. The RG scale is a fundamental dimension
of the space-time, and once a black hole solution has been found, we can interpret what the RG is
doing in the field theory simply by looking to a different radial slice of the bulk space-time, overall
a much more straightforward affair.

IR UV
RG Flow µ

Bulk AdSd+1

Boundary
Rd−1,1

Horizon

Figure 2.1.: The AdS space-time can be constructed by an RG flow, where each value of µ is a
successive point in the flow.

2.2.1. Finite Temperature

Any real condensed matter system exists at finite temperature, simply by the third law of thermody-
namics. This has to be taken into account when doing computations and one must be concerned
with finite temperature field theory in order to make accurate predictions. This is in general quite
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2.3. GPKWDictionary

tricky again, and once more holography offers a convenient way out. In the bulk space-time, we
can encode for a finite temperature field theory by placing a non-extremal black hole in the centre
of the space time. This modifies things. For example, the bulk scale invariance that was present
in the otherwise empty AdS space-time now no longer applies, as it is definitely possible to tell
how close to the black hole you are. This results in some more non-trivial RG flow. The resulting
flow is also rather pleasing: the black hole horizon turns out to correspond to a new infrared fixed
point in the RG flow, where the physics of the original theory have indeed been changed from
the ultraviolet scale invariant physics.[61] What is even more impressive is that these black holes
can encode not only for temperature, but they can also carry different charges, such as electric and
magnetic charge, which are crucial to condensed matter physics as they give rise to finite density
and magnetic fields in the boundary theory. This thesis always operates at finite temperature, and
therefore there will always be a non-extremal black hole of some type present in the centre of the
bulk space-time that is being considered.

2.3. GPKWDictionary

Now let us look at some specific examples, as the summary so far sounds intriguing, but it is not
yet a useful apparatus that can be used for performing computations. The interpretation and
use of many of the ingredients is expressed in what is commonly referred to as the dictionary,
which translates quantities between the boundary field theory and gravity sides of the duality. This
dictionary is named after Gubser, Polyakov, Klebanov and Witten.[67] Rather than just stating the
results, some of the results deserve a bit more attention.

2.3.1. Fields and Scaling Dimensions

Suppose we are in the large-N limit, where we should be able to use classical gravity in the bulk
geometry without quantum corrections as a dual to the field theory. If we have a single field ϕ
that we want to have include in the holographic dual, we have to find the solution to the Einstein
equations of motion of that field, under the condition that its boundary value

ϕ|Bdy → ji, (2.5)

as described above in section 2.1.1. To set things up, let us first look at the space-time itself.[71, 72]
We want to have a solution to Einstein’s equations, which can be derived by doing a functional
variation with respect to the curved metric from Einstein-Hilbert action

S =

∫
dd+2x

√
−g (R− 2Λ) , 2Λ = −d(d+ 1)

L2
(2.6)

where L is the AdS radius. Since we have d+ 2 dimensions in the bulk, the dual field theory will
live in d+1 dimensions. A metric which is a solution to the Einstein equations with negative cos-
mological constant is the aforementioned anti-De Sitter space-time, which can be parameterised
as

ds2AdS =
L2

z2

(
−dt2 + dz2 + dx⃗2

)
, (2.7)
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2. AdS/CFT: The Holographic Duality

wheredx⃗2 = dx21+dx
2
2+. . . runs over all purely spatial dimensions of the theory. The isometries

of this AdS space-time turn out to be identical to those of a d + 1 dimensional conformal field
theory – exactly what we expect from the way the duality was described in section 2.2.[60]

Let us assume now that the scalar field has a massm, and that it is perturbatively coupled into the
system, i.e., we assume a fixed background metric and we do not consider the back-reaction of the
scalar onto the metric. The contribution to the action of the scalar field is given by

Sϕ =

∫
dd+2x

√
−g 1

2

(
(∇ϕ)2 +m2ϕ2

)
, (2.8)

from which we can deduce that the scalar then obeys the equation of motion(
∇2 −m2

)
ϕ(x) = 0. (2.9)

We can use separation of variables to propose a plane-wave solution in the non-holographic direc-
tion, but leave the holographic direction as a general function of r. Under this assumption the
equation of motion expands to

∂2rϕ− d

r
∂rϕ+

(
ω2 − k2 − (mL)2

r2

)
ϕ = 0. (2.10)

This equation has a solution in the form of Bessel functions.[73] When looking at the r → 0
behaviour, which is the direction of the boundary, the series expansion at small r has two distinct
sectors, namely

ϕ ∼ ϕAr
d+1−∆ (1 + . . .) + ϕBr

∆ (1 + . . .) , (2.11)

where . . . are higher powers of r and ϕA,B are integration constants. ∆ are the solutions to

∆(∆− d− 1) = (mL)
2
. (2.12)

Depending on the value of ∆, one of these fields will be the dominant contribution in the region
near the boundary, and the other one will be subdominant. The accepted terminology in the
field for these terms is leading and subleading, respectively. Typically, the dominant term actually
diverges near the boundary, and is called the non-normalisable mode.4

Let us now assume that ϕA is the leading component, and ϕB is the subleading one. It is exactly
the leading component that is the one dual to the source of the operator in the side of the field
theory. When evaluating the boundary action coming from equation 2.8, this will turn out to
reduce to [74]

Sϕ,r→0 ∼
∫
dd+1x

√
−g̃ (ϕAϕB) . (2.13)

4I will not cover the subtleties such as the appearance of logarithmic terms in these expansions.
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2.3. GPKWDictionary

Making the identification of ϕA with its source j, we are still left wondering what the operator
ϕB is.5 If we now remember the generating functional and the partition function, we know that
we can use it in order to compute expectation values:

⟨O⟩ ∼ δ

δj
Z[j]

∣∣
j=0

. (2.14)

Comparing this to equation (2.13), this gives us the identification with the vacuum expectation
value (VEV)

⟨O⟩CFT ∼ ϕB . (2.15)

This example glosses over some of the more subtle points here. One is that in the case of for ex-
ample the stress tensor, the expectation values might be naively divergent. This can be addressed
by instead putting these sources at some ϵ > 0 away from the boundary, and then adding coun-
terterms which kill any divergent behaviour, after which we can safely send ϵ→ 0 and recover the
renormalised boundary values.[75]. Another is what might when both modes are normalisable.
This turns out to allow for an admixture of boundary conditions into what we call the source
and the response. This actually turned out to have important consequences in several parts of this
thesis, for probe fermions in chapter 4 and for background space-time geometries and the thermo-
dynamic interpretation thereof in chapter 5.

Subtleties aside, we can identify two-point functions in momentum space by[74]

G(k) =
ϕB(k)

ϕA(k)
. (2.16)

From the point of view of condensed matter physics, we always prefer to use the retarded Green’s
function to study the two-point properties of our system. This can be achieved by imposing in-
falling boundary conditions on the scalar field, meaning that towards late times, the wave in the
field theory will be travelling towards and eventually (partially) falling into the black hole hori-
zon.

All this together gives us an entry in the dictionary, where we look to compute the solutions to the
gravitational equations of motion, and then pull this through the duality to the boundary field
theory by properly identifying source and response components. In this simple example we only
looked at two-point functions, but one can look at any n-point function in general.

There are many more entries in the dictionary. Another interesting quality is how gauge fields
and symmetries interact. The general identification here is that global symmetries in the bound-
ary will correspond to local symmetries in the boundary. This is for example made explicit when
considering a U(1) gauge field in the boundary. The corresponding local U(1) symmetry is dual
to a global U(1) symmetry in the boundary. In general, a gauge field will correspond to the con-
served current that is associate with the related global symmetry. A more comprehensive, but by
no means complete, overview can be found in table 2.1 below.[61]

5There are some exact factors of r to be taken into account, but these are not essential to the schematic discussion here.
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2. AdS/CFT: The Holographic Duality

Field Theory Gravity

LargeN Classical gravity
Operator O with dimension ∆ Field ϕwith massm
Source of operator O Leading behaviour of ϕ
Vacuum expectation value ⟨O⟩ Subleading behaviour of ϕ
Global symmetry Local symmetry
Stress tensor Gravitons
2-form current 2-form field
Finite temperature Non-extremal black hole
Finite chemical potential Charged black hole
Free energy Value of Euclidean on-shell action

...
...

Table 2.1.: Some basic dictionary entries which feature in this thesis.

2.3.2. Black Hole Thermodynamics

Mentioned before was that black holes in the interior of the space-time are able to encode for finite
temperature in the boundary CFT. This is actually tightly linked to discoveries by Bekenstein and
Hawking in the 1970’s that black holes carry entropy and can emit thermal radiation.[76, 77] The
laws we are familiar with in our normal everyday thermodynamics have their own parallels in the
form of the laws of black hole thermodynamics. Like the first, second, and third law of ordinary
thermodynamics, there are laws of black hole thermodynamics where we can identify black hole
quantities like surface area and surface gravity with entropy and temperature, respectively.

The black holes in these curved space-times allow for a wide variety of interesting phenomena,
unlike their closely related cousins that live in flat space. The applicability of the ‘no-hair’ theorem
is an example of this: in flat space, it is not possible for black holes to have any kind of structure
on the horizon.[78] Instead, they are uniquely determined by the parameters charge, mass and
angular momentum, which are just global quantum numbers, without any more structure. This
no-go theorem does not hold in negatively curved space-time and therefore we can have all kinds
of ‘hair’ on our black holes, such as scalars that can even acquire some spatial modulation.[79]
Another example is black hole evaporation. Astrophysical black holes in flat space evaporate over
time.6 A peculiar property of AdS space-time is that it takes only a finite time for massless objects,
for example photons from Hawking radiation, to go from the centre of AdS space all the way to
the boundary. This is in stark constrast to geodesics of massive particles, which will never reach the
boundary in finite proper time. If one then assumes that any energy that these photons could carry
is reflected back from the boundary into the interior of the space-time, eventually the reflected
radiation will end up in thermal equilibrium with the radiation emitted by the black hole. As
such the black holes can form an equilibrium state.[80] Therefore unlike in flat space, stationary

6For astrophysical black holes this happens extremely slowly, even on cosmological timescales.
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2.4. Holographic Applications to CondensedMatter Physics

black holes in AdS can exist and we can understand their dual to be some very late-time field theory
in full local thermal equilibrium.[61]

2.3.3. Top-Down vs Bottom-Up

One of the open problems in the field of holography is that while it is conjectured that the
AdS/CFT correspondence holds quite generally, we only have a limited number of examples
where the duality is known to be exact. In order to understand fully what system we are describ-
ing and that the duality remains valid, we can start to play mathematical tricks with these known
exact correspondences, such as dimensional Kaluza-Klein reductions. Together with convenient
limits we can have a good idea what the conformal field theory is on the field theory side of the
duality, while ending up in a gravitational theory that is more manageable than full-blown type
IIB string theory, just to give an example. A side effect of this is that almost invariably, Kaluza-
Klein reductions which get rid of some dimensions give rise to extra dilatonic scalar fields that
get coupled into the gravitational side.[61] This general framework is known as the top-down
approach to AdS/CFT. It is not always the most convenient approach to take, as the actions can
either be difficult to deal with or in our case uninteresting from a condensed matter point of view.
This is for example due to those extra scalars. The holographic dictionary in table 2.1 has some
relevant entries such as the free energy and chemical potential, but these scalars have no good in-
terpretation and they certainly do not turn up explicitly in real-world condensed matter systems.
From the top-down approach, it can be very hard or impossible to get the exact ingredients in
terms of fields and operators that you would like to describe on the condensed matter side.

The bottom-up approach attempts to remedy this problem by taking a different point of view
of the duality. It treats the duality as a more phenomenological tool by simply choosing some ele-
ments that have in top-down models been shown to have a certain dual interpretation and building
an action from that and trusting that the correspondence will still apply. The downside of this is
that while we can compute quantities like retarded Green’s functions and vacuum expectation
values this way, there is no way of finding out what the exact Hamiltonian is of the theory dual
to the gravitational action we have posed. As a result, the duality can now not be used to find
the physics of a specific boundary theory, but it can give generalities about the physics of strongly
coupled field theories. In this work, most of the models presented are of the bottom-up variety,
as the translational symmetry breaking that we employ does not follow naturally from top-down
constructions.

2.4. Holographic Applications to Condensed Matter Physics

The stage is now set, we have a way of posing our problem and a large number of questions that
we would like to address. Let us see how the holographic duality can aid us in this. While the
statement of the duality is clear, and the weak-strong nature of it is appealing for the purposes of
performing computations, there is some more machinery to discuss.
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2.4.1. Hydrodynamics

It turns out that the duality can encode for real-world physics in some surprising ways. What we
are often interested in, as mentioned earlier, is the long-wavelength, low energy limit of the physics
of the boundary theory. This can be achieved by doing what boils down to a gradient expansion,
assuming that the only fluctuations that play a role are small and slow. Degrees of freedom are
always slow when they correspond to conserved or nearly conserved quantities. Quantities that
are not conserved for any perturbation in them will dissipate and thermally equilibrate quickly,
without much of a chance to propagate over wavelengths. On the other hand, conserved quan-
tities obey many continuity equations, which prevents them from doing exactly this, and instead
perturbations will propagate for a long time or undergo some diffusion process in order to return
to local equilibrium.[81] The gradient expansion of the theory into these slow modes is often syn-
onymous with the hydrodynamics of the theory if they are the only slow modes in the theory. This
is a more general consideration than what we would typically call hydrodynamics, after all it does
not concern the flow of a real-world physical fluid like water flowing around in our field theory.
Instead, the hydrodynamics we are concerned with would describe a relativistic fluid.7 This is a
powerful machinery, and it is able to include relevant effects such as (perturbative) ionic lattices
and external electric and magnetic fields.

The applications to holography are quite easy to state and is related to a by now somewhat famous
result. For a relativistic fluid, the stress tensor is given by

Tµν = (E + P )uµuν + Pgµν +Πµν (2.17)

whereE,P are the internal energy and pressure anduµ is the fluid velocity.[81] The first two terms
describe ideal hydrodynamics. Πµν is the interesting part, the part where the derivative expansion
comes into play. This can be a complicated term, but crucially it contains a set of constants that
are known as transport coefficients such as the shear viscosity and bulk modulus of the fluid we are
considering. However, these are a priori just a set of coefficients without a particular value: they
represent the microscopic behaviour of the theory, and while their presence may be universal, their
values are anything but that.[81]

This is where we can again use holography. In the gravitational dual, it is possible to compute some
of these transport coefficients directly. This is one of the ways in which we can learn a lot about
the field theory by looking at the gravitational side. While we will be considering only linear fluc-
tuations in hydrodynamics, the mapping between gravity and hydrodynamics goes much deeper,
showing that the Navier-Stokes equations can actually be found from the Einstein equations.[83,
84]

A particularly famous result that is related to this is the computation of the shear viscosity.[85,
86] The first-order terms in the gradient expansion of equation (2.17) will for example contain
the shear viscosity, η. For example, to first order, the hydrodynamic constitutive relations in the

7There are other ways of constructing hydrodynamics, for example in a non-boost invariant setting, which do not feature
in this work.[82]
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Landau frame are given by [81]

Tµν = Euµuν + P∆µν − ησµν − ζ∆µν∂λu
λ +O(∂2), (2.18)

where ∆ is a projector with the flat space metric

∆ = ηµν + uµuν , (2.19)

ζ is the bulk viscosity and σµν is the transverse traceless symmetric tensor [81]

σµν = ∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂µu

µ

)
. (2.20)

For AdS black holes at zero density, it actually turns out that this shear viscosity is related to the
zero-frequency scattering cross-section of the black hole. This in turn can be expressed in terms of
the area and volume of the black hole and therefore also the entropy of the black hole by the laws
of black hole thermodynamics. When including geometric factors, this yields the ratio

η

s
=

1

4π

ℏ
kB

. (2.21)

This ratio of viscosity to entropy is known as the minimal viscosity, as it is conjectured to be a
lower bound on the viscosity of a strongly interacting field theory.[85] Remarkably, this bound also
seems to hold at finite density. Most strongly interacting materials found in nature are nowhere
near this bound though. Only the quark-gluon plasma, which was studied in detail around the
same time as the minimal viscosity was discovered, has a surprisingly small value for this ratio, even
though it does not have ingredients like the large-N of holography.[87] A charitable interpretation
can see this as a hint that holography can indeed tell us useful things about the real world.

2.4.2. Conductivities from Holography: Real-time Information

Holography is not only limited to computing hydrodynamic transport coefficients. One of the
more technically useful aspects of holography is that it gives access to real-time information about
the dual system. This is in stark contrast to typical field theoretical results, where it is often neces-
sary to work in imaginary time to make computations feasible. Finite temperature is then encoded
in the radius of the time circle in imaginary time. That in itself is not a problem, but the difficulties
come when trying to translate back into real time, as that is what we observe. The Wick rotation
that has to take place is technically very challenging, and often means that it is impossible to get
anything but the most general scaling dimensions out.[88] Holography is in this aspect very differ-
ent. Since temperature is already encoded in the thermodynamics of the black hole8, it turns out
that computing real-time properties of field theory involve driving the holographic system out of

8The temperature equals radius in imaginary time still shows up in black hole physics too. For the Schwarzschild solution
in flat space for example, one can rotate to a Euclidean space-time, where the temperature is found from the radius of
the time circle is fixed in order to avoid a conical singulartiy in this space-time. This is a more ad-hoc argument than
the original derivation of black hole temperatures, but it is an interesting connection.
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equilibrium, and looking at the real-time evolution. This gets us real-time field theory observables
without having to resort to any Wick rotations.[71]

For the sake of illustration, let us consider the electrical AC conductivity of the field theory. We
can choose to take a static black hole in equilibrium and apply a time-dependent electric fieldE(t)
to it. This will in general drive the black hole out of equilibrium. Let us assume that this field is
oscillating at some finite real frequencyω. This electric field is assumed to be a small perturbation,
which does not back-react on the initial black hole background. The electric fieldE is then induces
a current response J , and their proportionality is the conductivity σ:

J(ω) = σ(ω)E(ω). (2.22)

In a conformal field theory at zero density, on dimensional grounds this conductivity takes the
form

σ(ω) ∼ ωd−2, (2.23)

where d are the number of transverse spatial dimensions. Since we typically consider AdS4, our
boundary will have d = 2 transverse dimensions and hence σ becomes exactly frequency inde-
pendent.[61]

That is a fairly trivial result, and we do not need to rely on any holographic computation to find
this out. At finite temperature, one can no longer rely on dimensional analysis. Nevertheless,
the holographic computation of this result at finite temperature is rather straightforward at zero
chemical potential and it is a good starting point to show the power of holography. In order to
compute the conductivity, we will make use of linear response theory.[88] In linear response, we
know that we can find the conductivity from the retarded Green’s function via

σ(ω) =
1

iω
GRJJ(ω). (2.24)

The retarded Green’s function is that of the current operator, which is defined by

GRJJ(ω) = −i
∫
dtdxeiωtΘ(t)

〈[
J(t, x), J(0, x)

]〉
. (2.25)

Θ(t) is the step function that takes care of the time ordering here such that t > 0. In a previ-
ous chapter, we encountered exactly how to compute Green’s functions by considering leading
and subleading behaviours of a field theory. In this case, we now need to consider a black hole in
order to do the computation at finite temperature. As we are at zero density, this will be the AdS-
Schwarzschild black hole, which can be parameterised by only its horizon radius which sets its tem-
perature after scaling out some other parameters such as the AdS radius and Newton’s constant.
In order to find the conductivity, we need the bulk dual of the current. What we now need to do is
find the Green’s function that is related to turning on a perturbative electric fieldEx = Ftx. For
a spatially homogeneous electric field, in terms of the gauge field this will correspond to turning
on a component Axdx which in Fourier space will have behaviour like Ax = ax(r)e

−iωt. The
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exact boundary behaviour can be extracted by carefully looking at the near-boundary expansion,9

which will find that the expansion forAx goes as [61]

Ax ∝ a0x +
a1x
r

+ · · · , (2.26)

where a0,1x are the leading and subleading behaviours near the boundary, respectively. One can
solve for the equations of motion, and the condition for the retarded Green’s function is fixed by
choosing the infalling boundary conditions.[71] The solution10 will have

a0x = c, a1x = iωc (2.27)

for some constant c. Using the dictionary to extract the Green’s function from holography, we
can find that for any temperature

σ(ω) =
1

iω
GRJJ(ω) =

1

iω

a1x
a0x

= 1. (2.28)

This is exactly the result is found for the zero-density CFT, since it has no dependence on fre-
quency.[64] More importantly though, there is no dependence on temperature either, which one
might not have expected. At zero temperature, there is no scale in the CFT, so there cannot be
any identifiable features at some ω, as this would indeed be an indication of some scale. However,
temperature is a scale in the theory, as it can be combined with kB for example to create an energy
scale. It is then surprising that the introduction of this scale does not appear to have any effects.
[61]

2.5. Finite Density: The Reissner-Nordström Black Hole

Zero density is not the most interesting system though. Apart from some very fine-tuned systems,
such as graphene at exact charge neutrality, this is not a system we are likely to see appear in exper-
iments.[89] Luckily going to finite chemical potential in holography is a rather simple affair, and
it does not require the development of a lot of new machinery. The star player in respect has long
been the Reissner-Nordström black hole. This black hole can be constructed as a compactifica-
tion of some 11-dimensional M -theory, which we will not go into the details of.[90, 91] For our
purposes, the starting point will be the Einstein-Maxwell action

S =

∫
d4x

√
−g

(
1

2κ2

[
R− 2

Λ

L2

]
− 1

4e2
FµνF

µν

)
, (2.29)

whereF = dA is the field strength for theU(1) gauge fieldA. We will always use the units where
2κ2 = 16πG = 1, e = 1,Λ = −3, L = 1. Note that here, in contrast to the scalar example
that was discussed in the section above, this gauge field is coupled in to gravitation action in the

9For the gauge field no holographic renormalisation is necessary/
10See box 7.3 [61]
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full action, as such the back-reaction of the gauge field on the metric is taken into account. The
equations of motion that arise can with some manipulation be written as

Rµν + 3gµν =
1

2

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
,

∇µF
µν = 0.

(2.30)

This set of equations admits a black hole solution with a finite charge with AdS4 asymptotics. The
black hole can be written using a metric

ds2RN =
z2+
z2

(
−f(z)dt2 + 1

f(z)
dz2 + dx2 + dy2

)
A = Atdt = µ

(
1− z

z+

)
dt

(2.31)

The emblackening factor f(z) for Reissner-Nordström is given by [90, 92]

f(z) =

(
1− z

zh

)(
1 +

z

zh
+

z

zh

2
− µ2z3

4z3h

)
. (2.32)

The emblackening factor has two roots at z+, z−, which are the locations of the outer and inner
horizon at finite temperature respectively. At zero temperature these collapse to a double root. We
will only be considering finite temperature here, and therefore we will treat our space-time as if it
ends at zh ≡ z+. We will always be able to rescale the horizon radius such that zh = 1, for both
ease of notation and later numerical convenience.

However, there are some scenarios where keeping the horizon radius explicit is useful, for example
when computing thermodynamic susceptibilities, as was done in section 6.7. Most observables
that are directly computed are typically given or found in units of horizon radius as that is often
a free parameter in the solutions. This has a deeper root in the diffeomorphism invariance that
is encountered in the gravity side. For practical purposes, that means that all the parameters we
referring to, whether they are radii, expectation values, or other objects, have to be phrased with
reference to some scale. In the dual boundary, zh has no natural meaning, but there we can express
all dimensionfull quantities in terms of the chemical potential.11 When we state for example that
we take the parameterµ = 2, that is shorthand forµ = 2zh. The boundary of the AdS space-time
is located at z = 0 in this parametrization.

2.5.1. Scaling Properties of Reissner-Nordström

Another key property of the RN black hole is its particular near-horizon geometry. If we depart
from the metric as presented in equation (2.31), we can take the horizon to be located at z = 1. In

11In relevant condensed matter systems, such as the cuprates, the typical size of µ is about 1 eV. In natural units, this
corresponds to a temperature of about 104K .Room temperature would be on the order of T = 3×10−2µ, to give
a sense of scale.
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a series expansion around z = 1, the emblackening factor will expand as

f(z) ≈ f ′(1)(z − 1) +
1

2
f ′′(1)(z − 1)2 + . . . , (2.33)

where black hole thermodynamics tells us (see equation (2.40) below) that f ′(1) ∝ T . At T = 0
then, we can find after a rescaling of the radial coordinate that the near-horizon geometry up to
some constant factors can be written as

ds2 =
1

ξ2

(
−dt2 + dξ2

)
+ dx2 + dy2. (2.34)

This geometry is now no longer AdS4, but rather AdS2 ×R2 in coordinates (t, ξ)× (x, y).12 A
similar metric can still be found by making the right choices of coordinate substitutions in a series
expansion inT forT/µ≪ 1.[71, 93] What is interesting here is the symmetries of this AdS2×R2

space-time. In empty AdS4, there is a global scaling symmetry

(t, x, y, z) → λ(t, x, y, z). (2.35)

In this AdS2 ×R2 case there is a symmetry that goes as

(t, ξ) → λ(t, ξ), (x, y) → (x, y). (2.36)

When writing this in terms of a dynamical critical exponent z, which is associated with a scaling

t→ λt, x→ λ
1
z x, (2.37)

it can be seen that this AdS2 × R2 near-horizon geometry corresponds to a z → ∞ system. In
other words, the spatial dimensions completely decouple from the temporal and radial dynamics.
This is exactly the local quantum criticality that is seen in the strange metal.[50, 90] This local
quantum criticality is a feature of the near-horizon geometry, and therefore only of the lowest
energy scales that enter in the problem, near the end of the RG flow. In the UV of the theory this
symmetry is not present, and therefore this is an emergent property of the system. This peculiar
fact, that the RN black hole turns out to have an emergent quantum critical sector, is one of the
reasons that the string theory community has been looking to it as a point of departure for looking
at interesting condensed matter systems such as the strange metal. This emergent quantum critical
sector is unique and not found in any conventional condensed matter theory, however it turns out
to be one of the most natural and simple to find things when doing holography.[61]

2.5.2. Thermodynamics of Reissner-Nordström

The RN black hole is dual to a quantum field theory at both finite temperature and chemical
potential. For this solution, it is possible to evaluate the Euclidean on-shell action IE , which ac-
cording to the dictionary in table 2.1 yields the thermodynamic potential

Ω = TIE . (2.38)
12Or, in general, AdS2 ×Rd when starting from AdSd+2.
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From this it is possible to compute all thermodynamical quantities such as entropy and compress-
ibilities in terms of derivatives of this free energy.[94–96] As luck would have it, in the Reissner-
Nordström black hole some of these quantities can actually be evaluated directly from the near
boundary behaviour or horizon integrals through standard dictionary entries without having to
compute the entire free energy and compute derivatives. This is especially useful in numerical set-
tings, where computing and finding the derivatives of the free energy by integrating the on-shell
action can be very challenging. Rescaling all observables to the chemical potential µ13 and one can
find out that there is also a finite charge density

ρ

µ2
= −∂zAt

∣∣∣∣
z=0

=
1

µ
. (2.39)

The temperature of the black hole can be evaluated by evaluating the surface gravity of the black
hole and is given by [76, 77]

T

µ
=

∣∣f ′(1)∣∣
4π

=
12− µ2

16πµ
. (2.40)

The black hole entropy, which via black hole thermodynamics can be related to black hole surface
area, is given by

s =
S

µ2
=

4π

µ2
. (2.41)

This formula for the entropy may seem innocuous, but there is some important physics in it. As
can be deduced from equation (2.40), the zero-temperature limit corresponds to µ→

√
12. One

of the characteristics of the RN black hole is that the zero temperature limit has a finite horizon
area.[92] Since the entropy is proportional to the horizon area, this means that the entropy is still
finite even at zero temperature. For condensed matter systems, which we are interested in, this is
a large complication, as they have no entropy at T = 0.14 Naturally, one should feel sceptic of
the results coming out of RN for this very reason. This does not mean though that everything
coming out of this model is useless. In reality, what it means is that we should be keeping an eye
open to places where this might become an important factor and either adapt our interpretations
accordingly, or alternatively switch to other types of black hole solutions where this issue does
not appear. The more cynical view is that this is a fundamental sickness of the AdS-Reissner-
Nordström black hole for the purposeses of condensed matter physics and a strong argument for
the use of other black hole solutions such as the Gubser-Rocha black hole of section 2.6, which is
why it has been used for the majority of chapters 5 and 6.[98, 99]

Regarding the energy density and pressure, we can compute these via the expectation value of
the stress-energy tensor

〈
Tµν
〉

of the field theory by standard holographic renormalization tech-
niques. In this particular case, that is done by constructing

T̃µν = 2
(
Kµν −Khµν

)
− 4hµν , (2.42)

13For the sake of simplicity, I have not written down the black hole in terms of its charge Q, which is the more usual
starting point, but rather already in terms of µ. These two quantities are of course related, and can be expressed in
terms of each other.

14Zero-temperature entropy does arise sometimes, for example in frustrated systems, but these are not in the scope of this
thesis.[97]
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where hµν is the induced metric at a slice at a constant radial z = ϵ away from the boundary,
Kµν and K are extrinsic curvature and its trace, respectively, and µ, ν run over the non-radial
indices (t, x, y). The constant −4 arises from the Gibbons-Hawking-York counterterm.[75, 100]
When appropriate counterterms are taken into consideration, in the limit ϵ → 0 the following
expression becomes finite, yielding us the stress tensor

〈
Tµν
〉
= lim
ϵ→0

1

ϵ
T̃µν . (2.43)

Evaluating this in the homogeneous Reissner-Nordström black hole this gives

−T tt = 2T xx = 2T yy = 2 +
µ2

2
. (2.44)

This means that the corresponding internal energy and pressure are given by

E

µ3
=

2P

µ3
=

1

µ3

(
2 +

µ2

2

)
. (2.45)

Note from this that this is a conformal system as the trace of the stress tensor vanishes〈
Tµµ

〉
= E − 2P = 0. (2.46)

2.6. Einstein-Maxwell-Dilaton Theory

The Reissner-Norström black holes that have been discussed so far are ubiquitous in AdS/CFT,
as they are just about the simplest system that can provide a finite chemical potential. The ease of
computations in the system has been the main driver for its popularity. The thermodynamics of
the RN states are however rather problematic, as there is no condensed matter system we could
want to describe that has the property of finite ground-state entropy. In this sense, the RN black
hole is only one of a much larger family of black holes which can have different types of near-IR
scaling behaviours.

A part of this family of black holes can conveniently be explored by coupling a dilatonic field
into the theory.[61, 101, 102] Dilatons are rather general in holography, as mentioned above in
section 2.3.3. These dilatonic fields are dynamical and back-react onto the geometry, but more
important is the way in which they couple to the Maxwell sector. A generic EMD Lagrangian
where a single dilaton field ϕ is coupled in can be written as

LEMD = R− Z(ϕ)

4
FµνF

µν − 1

2
∇µϕ∇µϕ− V (ϕ). (2.47)

There are here two coupling functions, Z(ϕ) and V (ϕ). V is the potential for the scalar, which
also includes the cosmological constant in its series expansion, V (0) = 2Λ.
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Often, V (ϕ) can take the form of a sum of exponentials, sometimes balanced to form hyperbolic
geometric functions. The coupling function Z(ϕ) presents a modification of the coupling con-
stant of the Maxwell sector in the theory. This changes the effective value of the charge density in
the system, as through the holographic dictionary

ρCFT = Z(ϕ)F tz
∣∣∣∣
z=0

. (2.48)

Compare this to the Einstein-Maxwell setup that was used for the RN black holes, whereZ(ϕ) =
1. A crucial difference with the RN black hole is in the low-temperature IR geometry. Where for
RN we are left with a finite-size extremal black hole that carries a large amount of zero-temperature
entropy, the general EMD black holes can have horizons that keep shrinking all the way to zero
temperature, giving the entropy a temperature dependence

S ∼ Tα, α > 0. (2.49)

The form of the potentials V,Z is generically what determines the scaling properties of the solu-
tions.[101, 102] The dilaton takes on a large value at the horizon, and therefore in order to under-
stand the horizon scaling we only need to consider what the leading near-horizon behaviours of
the potentials are.[102] In typical top-down cases, the exponentials scale near the horizon like

Z ∼ eϕ, V ∼ e−ϕ. (2.50)

But, as we have seen before, in holography we are not bound by only exact top-down constructions,
and we are able to take other values for the parameters. The potentials are typically parametrized
by the factors γ, δ as

Z = eγϕ, V = V0e
−δϕ. (2.51)

The scaling analysis in these theories is a bit more complicated than in the Reissner-Nordström
case. In standard coordinates, the metric of the deep IR at zero temperature can be described as

ds2 ∼ r−2θ/d

(
−r2zdt2 + r2dx⃗2 +

1

r2
dr2
)
. (2.52)

Here the coordinate r ranges from the interior r = 0 to the boundary r = ∞. The parameter
z is one we have encountered above – this is the same dynamical critical exponent as before. The
parameter θ is the hyperscaling violation exponent.[103–105] In a very rough description, a theory
with parameters (z, θ) will display scaling of the thermodynamical observables as if the theory
has dynamical critical exponent z but lives in d − θ dimensions.[104] The choices made for the
coupling exponents γ, δ can be mapped onto resulting values of z, θ.[102] It is important that
in the presence of θ ̸= 0, the near-IR theory is no longer scale-invariant, but rather it is scale-
covariant, with under the scale transformation[104]

t→ λzt, x⃗→ λx⃗, r → λr. (2.53)

The metric then transforms as
ds2 → λ2θ/dds2. (2.54)
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There are several interesting ideas that we can consider for θ, z. For example, θ = d − 1 can
be thought of as describing the physics of a system near its Fermi surface, which is always has a
lower dimensionality than the dimensionality of the theory.[104] For reasons that will become
clear soon, the most interesting value in relation to the strange metal is the rather peculiar choice
of z,−θ → ∞.

2.6.1. The Gubser-Rocha Conformal-to-AdS2 Metal

When considering the thermodynamics of these EMD systems, we can find that the entropy will
scale with temperature as

S ∼ T (d−θ)/z. (2.55)

If we wish to describe a strange metal, we would ideally like to consider an entropy that scales as
temperature like

S ∼ T 1. (2.56)

This is the well-known Sommerfeld entropy, also experimentally observed in strange metals.[52]
To take full advantage of the power of holography we would want to do this in a setting where we
are locally quantum critical.[50] In other words, that means z → ∞. These two ideas can only
both be satisfied in the limit

z,−θ → ∞, such that
−θ
z

= 1. (2.57)

A hyperscaling violation exponent of minus infinity is rather strange, and definitely is hard to
think about in terms of an effective dimensionality of a problem. Nevertheless, it is a well-defined
limit.[101, 102] It has been shown that these models can reproduce the linear-in-T resistivity of
strange metals as well.[106] To be more exact, these systems correspond to the choice γ = −δ =
1/

√
3 in term of the coupling exponents. That means we have that the following couplings

Z(ϕ) = eϕ/
√
3, V (ϕ) = 2Λ cosh

(
ϕ√
3

)
. (2.58)

This choice of potential is consistent with what was discussed earlier, as it is only the leading expo-
nential behaviour that is relevant in the IR, so only one of the exponential terms in the hyperbolic
cosine will be of relevance there. This potential has the added benefit of having the property that

V ′(ϕ)

∣∣∣∣
ϕ=0

= 0, (2.59)

which allows for proper AdS asymptotics.[102] This system turns out to have an analytical solution
in the form of a black-brane solution.[98, 107] The metric, scalar and gauge profiles of this solution
can be parametrized in terms of the charge Q of the black hole for a horizon radius of zH = 1
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as
ds2 =

1

z2

(
−f(z)dt2 + 1

f(z)
dz2 + g(z)(dx2 + dy2)

)
,

ϕ =

√
3

2
log (1 +Qz) ,

A =
√
3Q(1 +Q)

1− z

1 +Qz
dt.

(2.60)

The two functions f, g are given by

f(z) =
(1− z)

g(z)

(
1 + (1 + 3Q)z + (1 + 3Q(1 +Q))z2

)
g(z) = (1 +Qz)

3/2
.

(2.61)

The chemical potential is given by µ =
√
3Q(1 +Q). In contrast to the RN solution, from a

simplicity standpoint the preferred parameter for this theory is Q, as the expressions in terms of
the chemical potential, though equally valid, are simply horrible to read. Nonetheless, in a similar
fashion to RN we will prefer to think of observables and parameters in units of chemical potential,
as that is a scale we can make reference to when looking at physical experiment. Black hole charge
itself does not have a physically relevant measure. The thermodynamics of this state are given by

T =
3
√
1 +Q

4π
⇒ T

µ
=

√
3

4π
√
Q
. (2.62)

The entropy is again given by the horizon area

S = 4π

∫ √
h = 4π (1 +Q)

3/2 ⇒ S

µ2
= 4π

√
1 +Q

3Q
, (2.63)

and the charge density is 15

ρ = µ (1 +Q) ⇒ ρ/µ2 =

√
1 +Q√
3Q

(2.64)

As can be expected, the temperature dependence of the thermodynamical observables is clearly
different from those in the Reissner-Nordström black hole. It is easiest to think in the parameter
Q. The temperature scales as

T/µ ∼ Q−1/2, (2.65)

so at low temperatureQ is large. The entropy similarly scales as

S/µ2 ∼ Q−1/2 (2.66)

in the large-Q regime, so indeed we have that

S

µ2
∼ T

µ
(2.67)

15The factor Z(ϕ) mentioned earlier in equation (2.52) is absent, as Z(ϕ(z = 0)) = Z(0) = 1.

38



2.6. Einstein-Maxwell-Dilaton Theory

at low temperatures T/µ ≪ 1. The scaling at large T is different, as for large T we have that the
parameterQ is small, and therefore

S/µ2 =
4π

√
1 +Q

3Q
∼ 1/Q ∼ T 2. (2.68)

The charge density also shows two different regimes. For largeQ the charge density scales as

ρ/µ2 ∼ Q0 ∼ T 0, (2.69)

while for smallQ the constant term dominates in the numerator, meaning that

ρ/µ2 ∼ Q−1/2 ∼ T 1. (2.70)

The stress tensor in this system requires a bit more consideration. The full discussion of this has
been the subject of one of the papers that make up this thesis, as given in chapter 5. Other ref-
erences that have dealt with this topic have overlooked certain subtle points in relation to near-
boundary expansions of the analytical solution when considering quantization choices.[108, 109]
The resulting stress tensor including counterterms is now expressed as

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij

[
cϕϕN

z∂zϕ+ Λϕϕ
2/2
]
, (2.71)

whereNµ is the outward-pointing unit normal vector. The coefficients are then fixed to be

Λϕ = 2cϕ − 1, cϕ =
1

3
. (2.72)

The first of these is easy to understand, as both terms can contribute to cancelling the lowest-order
divergence. The argument for choosing cϕ = 1/3 is more subtle, but essentially boils on choosing
the scalar to be a marginal operator in the theory. The resulting thermodynamics are that of a one-
charge theory, rather than the generic two-charge that would arise from coupling in a scalar to the
boundary theory. The full details can be found in chapter 5. The resulting expressions for the
stress energy tensor are rather simple,

−T tt = 2T xx = 2T yy = 2(1 +Q)3. (2.73)

Hence the energy and pressure can be expressed as

E

µ3
=

2P

µ3
=

2

µ3
(1 +Q)

3
=

2

3
√
3

(
1 +

1

Q

)3/2

. (2.74)

where again we recover a conformal theory.

2.6.2. DC Conductivity in the Gubser-Rocha Model

The DC conductivity of this system is formally divergent. The system is translationally invariant,
so momentum is conserved and there is no resistance in the system to a DC perturbation. There is
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a large amount of spectral weight contained in a δ-peak located at the origin. An important result
was found in massive gravity variations on the RN and GR model where momentum is no longer
conserved.[106, 110–112] Massive gravity is a slightly peculiar construction, where a frame-fixing
occurs due to the introduction of a reference metric. This breaks diffeomorphism invariance, and
as a result the graviton acquires a mass. Massive modes propagating in the bulk space-time now
only have a finite lifetime, so this causes linear momentum to be able to decay in the system. Since
momentum is now no longer conserved, this renders the DC conductivity finite. Spectacularly, in
the GR model when momentum is indeed not conserved, the resistivity acquires a dependence

ρDC ∝ T +O(T 2). (2.75)

This is a phenomenal result, and we might expect to be able to find this in other systems where
conservation of momentum is removed through more realistic methods, as massive gravity, though
holographically a sound theory, has little bearing on the physics in the lab. In particular, one could
break translations into an (ionic) lattice, which has indeed been shown to have similar effects in
terms of breaking momentum conservation.[110, 111] This is the theme of this thesis.

2.7. Breaking Translational Symmetry

The allusion to massive gravity models just made aside, all results so far have got one thing in com-
mon, and that is that all models are perfectly translationally invariant, momentum is still perfectly
conserved. The two transverse directions (x, y) do not contain any structure at all. Of course in
actual physical systems, this is not the case. For Drude-like transport, which is observed in even the
strange metals at low frequency, the source of momentum dissipation is not something as holo-
graphic and weird as a ‘massive gravity’ construction. Instead, we know very well that translational
and rotational symmetries of space-time are broken into some crystal lattice.[113] There are several
ways to break translational symmetry in holography. The computationally more straightforward
ones are models that break translational symmetry in a homogeneous way, which means that the
differential equations that describe the systems are only dependent on the radial coordinate and
any dependence on the transverse coordinates is engineered to be absent.[114–117] This again is a
very particular construction, and if we are to do an honest job using holography to model physical
systems in the presence of a crystal lattice we should have an actual lattice present. This requires
a periodic modulation that captures both the rotational and translational properties of a crystal
lattice. The way to really achieve that is to let go of the simple radial-only models and turn the
problem of solving for the bulk geometry into a set of partial differential equations, that now can
also depend explicitly on the transverse coordinates as well as the radial coordinate. This type of
symmetry breaking is often called inhomogeneous symmetry breaking, and it is of this type that
the remainder of this thesis explores the intriguing consequences.
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