
Translational symmetry breaking in holographic strange
metals
Balm, F.A.

Citation
Balm, F. A. (2023, May 16). Translational symmetry breaking in holographic
strange metals. Casimir PhD Series. Delft-Leiden. Retrieved from
https://hdl.handle.net/1887/3618303
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3618303
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3618303


1. Theory of Condensed Matter

In the early 1900’s, the advent of the quantum revolution shone a new light on many of the open
problems of physics at the time. An especially relevant example for this thesis is the conduction
of electrons in metals. With the discovery of the electron at the end of the 19th century, Drude
proposed a simple model for the conduction of electrons through solids. In this model, resistivity
originates from a classical ideal gas of electrons scattering off each other like pinballs[1, 2]. The
success of this theory was remarkable: both DC and AC electrical conductivity at room temper-
ature are well described. The failings of this theory on the other hand provided a great challenge
to the physics community. For example, transport properties at low temperature as well as heat
capacities do not agree with experimental results at all. The eventual resolution of these problems
have earned it its place as a starting point for modern physics education, as exemplified by its status
as the subject of the very first chapter of esteemed textbooks like Ashcroft & Mermin[3]. In itself,
it serves as an example of how the theory condensed matter physics has evolved over the past cen-
tury. In relation to this thesis it will form a convenient point of departure from which to develop
some of the ideas and challenges faced in condensed matter physics today, and how the the work
contained in this thesis attempts to tackle them. In particular, I will present the case for the use
of the holographic duality to study condensed matter systems, since some recent remarkable re-
sults from our research should attract the attention of the theoretical physics community at large
to investigate classes of problems that are largely out of reach of conventional condensed matter
physics theory.

1.1. Drude Transport

The Drude model of transport is a very straightforward textbook system, with which any physics
student should be familiar. The full theory, as well as the subtleties related to the Sommerfeld
improvements to the model, have been described in detail in many excellent resources[3]. The
Drude model departs from the assumption that in a piece of metal the current density of electrons
J⃗ flowing through it can be expressed by

J⃗(t) = n e v⃗(t), (1.1)

where n is the number density of carriers, e is the charge per carrier and v⃗ is the velocity of each
of the carriers. Assume now that an electron is scattered at a time t = 0 somewhere in the metal
under the influence of a constant uniform electric field E⃗. At that point in time, it acquires some
randomized velocity v⃗0 due to the collision. After the collision, the electric field acts with a con-
stant force F⃗ = eE⃗ on the electron, meaning that its velocity at a time t after the collision is given
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1. Theory of CondensedMatter

by

v⃗(t) =

∫ t

0

F⃗ (t′)

m
dt′ = v⃗0 +

eE⃗t

m
. (1.2)

In order to get the macroscopic behaviour, we have to perform an average over all particles in the
system. It is assumed that this initial velocity v⃗0 is uniformly randomly distributed such that the
average value vanishes

⟨v⃗0⟩ = 0. (1.3)

Hence this term drops out when taking the average

〈
v⃗(t)

〉
=
eE⃗τ

m
(1.4)

The relaxation time τ here is defined as the average time since a collision ⟨t⟩ ≡ τ . The classical
result for a constant (DC) electric field is then that

J⃗ = σDCE⃗ =
ne2τ

m
E⃗, (1.5)

whereσDC is the DC conductivity. At room temperature this prediction works well when putting
in estimates for number density and electron charge and mass.

E⃗

Figure 1.1.: The Drude model departs from considering classical pinballs moving randomly under
the influence of an electric field.

We can generalise the applied electric field to a general time-dependent force. In this case, we first
express the electrical current J⃗ in terms of the momentum P⃗ of the electrons by

J⃗(t) =
neP⃗ (t)

m
. (1.6)

Under the assumption that the electrons have some average scattering rate τ and are subject to
some average force F⃗ (t) due to oscillating fields, by considering the probability of scattering in a
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1.1. Drude Transport

small time window dt and the effect of the force during that time, the differential equation gov-
erning the average momentum of the electrons can be written as

dP⃗ (t)

dt
= − P⃗ (t)

τ
+ F⃗ (t). (1.7)

Important here is that in the absence of F⃗ (t), we get a damping of P (t), as the solution will go
like

P⃗ (t) = P⃗ (0)e−t/τ . (1.8)
In other words, if the electrons are not being driven, their average momentum will decay exponen-
tially in time. The rate of the momentum relaxation will be intricately linked to the conductivity.
Assume for example that the field is being driven at a fixed frequency ω, and that we are in a late-
time system where the momentum also oscillates with this same frequency. Going to frequency
space in equation (1.7), we can deduce that the frequency-dependent conductivity is given by

σ(ω) =
ne2τ

m

1

1− iωτ
. (1.9)

The real part of this forms a Lorentzian in frequency space centred at ω = 0 with width 1/τ .

In general, the presence of a Drude-like conductivity requires there to be a mechanism for momen-
tum to decay. If it does not decay, it would mean that it lives forever, and the relaxation time would
become infinite. As a result the conductivity would be infinite: all particles keep moving at ever
increasing speeds, forever accelerated by the electric field, as they are never scattered. That would
for example be the situation in the limit of a dilute Fermi gas in the Galilean continuum. In the
real world though, there are many mechanisms through which momentum can decay. This is for
example possible through Umklapp scattering, where an electron can dump a specific amount of
momentum into the lattice, as well as through interaction with disorder in the lattice. Overall lin-
ear momentum of the whole system is still conserved, but appears to decay in the purely electronic
part of the system. This is illustrated in figure 1.2.

1.1.1. Thermopower

As mentioned above, there are some areas where Drude theory does not work well, the ther-
mopower is one of these. Consider what happens when a temperature gradient is applied to an
electronic system. From elementary thermal physics, we know that electrons start moving from
the hot side towards the cold side as a result along the direction of heat flow. This creates an electric
field, as electrons are removed on the hot side and are transported to the cold side. We can define
the thermopowerQ as the ratio of induced electric field to temperature gradient [3]

E⃗ = Q∇⃗T. (1.10)

If we assume for now to be in a one-dimensional wire with spatial coordinate x, we can find that
the average thermal velocity v⃗Q is given by [3]

vQ =
1

2

(
v(x− vτ)− v(x+ vτ)

)
, (1.11)
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1. Theory of CondensedMatter

k⃗1

k⃗2

k⃗1 + k⃗2

G⃗

k⃗f Γ

Figure 1.2.: Simple model showing Umklapp scattering for phonons. Through some process two
phonons with momenta k⃗1, k⃗2 scatter to form a third phonon with k⃗1 + k⃗2, but as
this is outside the first BZ this can be folded back by a lattice vector G⃗, such that k⃗f ̸=
k⃗1 + k⃗2, meaning momentum gets lost.

or in other words, the average velocity that is induced by the temperature is given by the difference
in velocities of electrons to the left and right of the point x. If there is a temperature gradient
∇⃗T , these two velocities will be different, with the side with higher temperature having a greater
velocity than the side of lower temperature. The factor 1/2 comes in because roughly 1/2 of the
electrons will be moving in the +x direction and the other half in the −x direction. In a three-
dimensional material, this will essentially apply equally in all three dimensions, where after some
grinding of equations we can find that

v⃗Q =
τ

6

d
(
v2
)

dT
∇⃗T. (1.12)

From equation (1.4) above, we know that the electrons acquire an average velocity from the DC
electric field which is given by

v⃗E = −eE⃗t
m

. (1.13)

In a steady state the overall velocity which is a sum of the thermal and electrical velocity must be
exactly zero, which means that

v⃗E + v⃗Q = 0. (1.14)

Using the formulas above, the Drude model then predicts thatQ is given by

Q = − cv
3ne

, (1.15)
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1.2. Beyond Classical Theory

where cv is the heat capacity at constant volume. This seems like a reasonable classical estimate, and
one can wonder how this compares to real world physics. This is where the issues start: when one
takes the classical kinetic theory result that cv = 3nkB/2, this goes enormously wrong: the value
of the thermopower is overestimated by a factor 100 in electronic materials. The Drude model as
it is presented here offers a clear picture of a classical view of conductivity, where resistivity can be
phrased in terms of quantities like the collision time and the number density of charge carriers.
As hinted at by the introduction, it is quantum physics that comes to the rescue here, and the
resolutions of some of these issues are in a way a precursor to the issues that are faced in condensed
matter physics today.

1.2. Beyond Classical Theory

With the knowledge of today, one can make the educated guess that it is the classical assumptions
made in describing the electrons that are at the root of this problem. Instead, one should consider
the electrons to be identical quantum mechanical particles. Furthermore, it is rash to ignore all the
other interactions that are present in a real-world system, such as coulomb interactions between
the conduction electrons for example.

1.2.1. A Better Electron Gas

In the time that Drude wrote down his theory, there was no clear picture of what had to be used as
the distribution functions in the metals he was aiming to describe. Following arguments from ki-
netic theory, assuming an ideal classical gas of electrons would give rise to the Maxwell-Boltzmann
distribution, which for a gas of particles moving in one dimension can be written as

f(v)dv =

√
m

2πkBT
e−mv

2/2kBT , (1.16)

where kB is Boltzmann’s constant. At a fixed temperature, it is clear to see that the distribution
has an e−αv

2

behaviour, which supposes that the vast majority of velocities drawn from this distri-
bution will lie between v2 = 0 and v2 = 4kBT/m. The shape of this distribution function has
important consequences for some of the properties that we can compute about theoretical metals.
In particular, as we saw before, when Drude calculated the thermopower, the specific heat that is
found with this distribution is wrong by a very large factor. But if you suppose it must just be
some wrong factor in the thermal transport, seeing that the electrical transport worked well, then
it is all the more surprising that the Lorentz ratio between thermal and electrical conductivities as
found in the Wiedemann-Franz law [4] matched rather closely to experimental results. This turns
out to be a fortuitous coincidence, as we will soon see.

With the advent of quantum theory, it was realised that the Pauli exclusion principle must be ap-
plied to the electrons we are concerned with, as the underlying statistics that govern fermionic
particles are antisymmetric in nature. This has far-reaching consequences: we cannot have multi-
ple fermionic particles occupying the same state. Even in the ground state there are many fermions
pushed to higher energy modes. Any undergraduate will have seen how this leads to characteristic
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1. Theory of CondensedMatter

quantities that belong to a free electron gas, such as the Fermi energy and momentum and further
derived quantities such as Fermi velocity and temperature. I will just highlight the Fermi velocity
here: in a metal it turns out to be of the order of 1% the speed of light even at very low tempera-
tures. This is in stark contrast to what is expected for the Maxwell-Boltzmann result, as that finds
that the average thermal velocity would approach zero as the temperature approaches zero. At
room temperature, the Fermi velocity is around two orders of magnitude greater than the velocity
that Drude assumed in his original calculations.

For problems involving fermionic particles one should therefore not make use of the Maxwell-
Boltzmann, but rather the Fermi-Dirac distribution

f(v)dv ∝ 1

e
ϵ(v)−µ0

kBT + 1
, (1.17)

where ϵ is the energy and v is the speed of the electron. This distribution has distinctly different
features, especially the relationship with between v and µ0. For ϵ (v) ≪ µ0, this exponential
is negligibly small and f(v)dv ≈ 1. On the other side, when ϵ (v) ≫ µ0, the value of the
exponential is large and therefore f(v)dv is exponentially suppressed. The width of this transition
is set by the temperature, T . For low temperature it is very abrupt, and for high temperature it
becomes much more gradual. This is shown in figure 1.3. However, because the total integrated
number of states that is described by the distribution must be the same at both low and high
temperature, it must be spread out up to much higher velocities to account for all possible states.

Low T

High T

0

0.5

1.0

Figure 1.3.: Difference between the low and high temperature behaviour of the Fermi-Dirac distri-
bution. At high temperature a significant number of states above the chemical poten-
tial are occupied, whereas in the zero-temperature limit the transition becomes a step
function.

Let us now revisit the matter of the thermopower as a good example, making only the simple
change of going from the Maxwell-Boltzmann distribution to the Fermi-Dirac distribution.1The
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1.2. Beyond Classical Theory

resulting expression for the thermopower is now augmented by an extra factor kBT
EF

, which in
many ordinary metals is of order 10−2, which accounts for the factor that was missing from the
Drude calculation from before.[3] Regarding the Lorentz ratio, it turns out there was another fac-
tor 10−2 overestimation, namely in the specific heat, indeed coincidentally cancelling each other
out.

1.2.2. Towards Field Theory

This simple, semiclassical fix is a step in the right direction. One can wonder what happens
whether a full, honestly quantum-mechanical treatment of a free electron gas would be able to
capture all of the physics that is present in real metals. This is of course not the case: the interac-
tions that are neglected in the free electron gas play an important role. Even more so, at no point
in this discussion has the ionic lattice that makes up the metal itself been taken into account. This
adds even more complexity, not to mention the interplay between the dynamics of the two.

One of the first steps further is to go beyond the world of simple quantum mechanics, and enter
into a realm where it is possible to address more than just single particles. For example, if you
wish to write own a wave function in quantum mechanics to deal with more than one particle
that obeys fermionic statistics, you have to deal with fully anti-symmetrized wave functions. For
a small number of particles, say (a, b) in positions (1, 2), this is still tractable:

|Ψ⟩ = 1√
2

(∣∣a(1)〉 ∣∣b(2)〉− ∣∣b(1)〉 ∣∣a(2)〉). (1.18)

Problems quickly arise when we need to deal with more particles: the number of terms will grow
as 2n particles. In a macroscopic piece of material there are on the order of n ≈ O

(
1023

)
atoms

in the game. The resulting number of terms, 210
23

is such an unimaginably huge number that
it will consist of O(1022) digits. In terms of computer bits, this corresponds to about as much
digital data as exists in the entire world, and that is only to write down the number of states itself
- let alone writing down any of the individual states. To say that it is not a number that can easily
be handled is understating it. A further problem is that quantum mechanics is not often very well
equipped to deal with a non-fixed number of particles. A different approach is clearly needed. The
answer comes in terms of field theory, where instead of single-particle degrees of freedom, we are
instead dealing with a continuum of degrees of freedom, where we can think of the elementary
low-level excitations as ‘particles’. I will not discuss the beauty and many subtleties of (quantum)
field theory here.[5]

1This requires some justification. Modifying only the probability distribution is only a part of the story if you are to
do a proper quantum treatment. Quantum mechanics itself needs to somehow be included: this is nothing more
than ‘classical pinballs’ but with a different velocity distribution. This semiclassical approach does give some satisfying
results, and is sometimes good enough to get a decent theoretical prediction. A more detailed discussion can be found
in [3].
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1. Theory of CondensedMatter

1.3. (Broken) Symmetry

One of the central tenets in the description of physical systems is the concept of symmetry and
what happens when symmetries are broken. It is an immensely powerful principle, not merely
simplifying some mathematical expressions, but allowing us to disentangle the physical character-
istics of a system into distinct components that are governed by different principles, separated by
their symmetries, and the (conserved) quantities that are associated with each of them.

1.3.1. Noether’s Theorem

Noether’s theorem is perhaps one of the most famous ways in which symmetry manifests itself.
For a classical system, Noether’s theorem states that continuous symmetries of the Lagrangian
of a system correspond to conserved quantities. That is, if we can make a transformation in the
system that leaves the Lagrangian unchanged, there must be some sort of conserved quantity as-
sociate with that transformation. This has some well-known results associated with it, such as
time-translational invariance being responsible for conservation of energy, spatial translational in-
variance providing conservation of momentum, and rotational invariance corresponding to the
conservation of angular momentum.[6]

In classical field theory, the idea is analogous, only instead of conserved quantities, we get conserved
currents. If we consider a Lagrangian in 4 dimensions that does not explicitly depend on the space-
time coordinates xµ, then the symmetry is encoded in the conservation of the stress-energy tensor
Tµν , which can be evaluated as

T ν
µ =

(
∂L

∂(∂νϕ)

)
∂µϕ− δνµ. (1.19)

The conservation of energy and momentum can then be expressed as

∂νT
ν

µ = 0. (1.20)

For quantum field theories, the situation is again very similar, and the role of Noether’s theorem
is played by the Ward identities in the theory.[5]

1.3.2. Landau Theory and Symmetry Breaking

While it is important to be able to idenfity conserved quantities, it is when symmetries are broken
that things get really interesting. This is clearly seen in Landau theory.[7] Without going into any
microscopic details of any theory we are dealing with, not making any reference to what physics
governs these microscopics, we will depart from a simple model with a free energy given some
scalar order parameter φ. For the sake of simplicity, let us only take temperature as an external
parameter.

F(T, φ) = A(T )φ2 +B(T )φ4. (1.21)

The coefficients A,B are the ones that now fully determine the behaviour of this system. The
form of equation (1.21) dictates that there will always be a local extremum at F(0) = 0. We will
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1.3. (Broken) Symmetry

always takeB > 0 here, such that the free energy is at least bounded from below. The interesting
part is fully dependent onA. Schematically, there are two distinct regimes for what this free energy
may look like, see figure 1.4.

φ

F
A(T ) > 0

A(T ) < 0

Figure 1.4.: The free energy for the two different scenarios forA(T ). ForA(T ) < 0, two minima
are present away where φ ̸= 0, while there is a local maximum at φ = 0.

If we depart from the phase whereA(T ) > 0, thenφ = 0 is the minimum of the free energy and
the system will have that as its ground state. Imagine now that lowering the temperature changes
the sign ofA(T ) to be negative. WhenA(T ) < 0, there will always be some range of values of φ
where

F(φ ̸= 0) < F(0), (1.22)

which means that a phase exists with a non-zero order parameter which is at a lower free energy
compared to F(φ = 0). In this particular example, the minima exist at

φ± = ±
√

−A
2B

. (1.23)

Therefore, the system will undergo a phase transition to a new phase where the order parameter
φ takes on the value that minimizes F . But that is not the whole story. From the explicit form of
the model, it is clear to see that there is a manifest symmetry under the transformation φ→ −φ.
This means that there is a priori no preference for the system to end up the minimum at φ+ over
the one at φ− and vice versa. In the end, the system will, by some process or another, pick one of
the two spontaneously2. This is the essence of spontaneous symmetry breaking: the free energy
preserves in this case the Z2 symmetry of the order parameter φ → −φ. Without imposing
a preference of one over the other the system will nonetheless end up in a state that breaks this
symmetry spontaneously.

2One could argue that no matter the system, at some point even Heisenberg’s uncertainty principle will always bring the
system out of the unstable maximum at φ = 0.
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1. Theory of CondensedMatter

1.3.3. Continuous Spontaneous Symmetry Breaking

The example above is the prototypical example of discrete spontaneous symmetry breaking. The
concept of spontaneous symmetry breaking becomes even more physically interesting if the sym-
metry that relates the equivalent states is continuous. The standard example for this is the complex
order parameter ϕ, with a similar (real-valued) free energy to equation (1.21):

F (ϕ) = a|ϕ|2 + b|ϕ|4 . (1.24)

The system depends only on the magnitude of the scalar ϕ. Again we assume that the constant b
in front of the highest-power term of ϕ is always positive. For a > 0 there is a stable minimum
at ϕ = 0, but for a < 0, the point at ϕ = 0 becomes an unstable maximum, as illustrated in
figure 1.5. We can take advantage of the symmetry and write the complex scalar in terms of its
magnitude and phase

ϕ = |ϕ| exp(iθ). (1.25)

We can see that the value of the free energy is independent of the phase θ of the scalar. In figure 1.5,
this means that there is now a circle at finite magnitude of ϕ that minimizes the free energy, there
is a continuousU(1) symmetry between all these states.

−1
0

1 −1

0

1−1

−0.5

0

Re ϕ
Im ϕ

F (ϕ)

Figure 1.5.: Mexican hat potential for a = −2, b = 1.

The theory will have to pick some particular value of the phase θ to settle in, for which there is no
particular preferential value. Here Goldstone’s theorem comes into play. [8] This theorem states
that for every generator of a continuous symmetry that is spontaneously broken, an extra massless
scalar particle is added to the spectrum of the theory, the so-called Goldstone boson. These Gold-
stone bosons pop up in many places, the most important for our purposes is in crystalline solids.
One can regard there the existence of the crystal lattice as a spontaneous symmetry breaking of
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1.4. Superconductivity

translationally invariant, isotropic, homogeneous space-time. The Goldstone bosons that pop up
there we know more commonly as the phonons of the lattice.

Instead of spontaneous symmetry breaking, a theory can also be subject to explicit symmetry
breaking. For example, one can start with a free-particle Hamiltonian, which is translationally
invariant, and then add a periodic potential term to it. This modifies the theory, but now it is not
only the states of the theory themselves that will break some symmetry: it is the Hamiltonian itself
that is no longer translationally invariant. There is not such a neat theorem relating explicit sym-
metry breaking to appearing particles like there is for spontaneous symmetry breaking, but they
can conspire and give rise to different effects.[9] For example, a symmetry is both spontaneously
and explicitly broken, the boson that is generated by the spontaneous symmetry breaking now
acquires a finite mass.

1.4. Superconductivity

All of the ideas discussed before come together in the theory describing superconductors. In su-
perfluids, a globalU(1) symmetry is sponteneously broken. Superconductors are in a way similar,
but there it is the U(1) gauge redundancy that is broken3 sponanteously. The first superconduc-
tors were discovered by Heike Kamerlingh Onnes at Leiden at the start of the twentieth century,
and the subject and its related puzzles continue to bring new and interesting questions more than
a century later.[10] At first superconductivity had been observed only at temperatures very close
to zero Kelvin. Advances towards the end of the 20th century saw the advent of the high-Tc super-
conductors, which in the 1980’s and 1990’s pushed the maximum temperature of the supercon-
ducting transition up from O(10) Kelvin into the much more accessible cooling range of liquid
nitrogen through ceramic compounds such as Lanthanum-Strontium-Copper-Oxides (LSCO)
and Bismuth-Strontium-Calcium-Copper-Oxides (BSCCO).[11–15]

1.4.1. BCS Theory

In the first decades after the discovery of superconductivity, as it was found to be present in more
and more materials, a theoretical explanation for the phenomenon was still sorely lacking. The
very first microscopic theory came due to Bardeen, Cooper and Schrieffer.[16] Their insight was
that an attractive interaction between fermions on other sides of the Fermi surface, no matter how
small, has the effect of pair formation into what are now known as Cooper pairs.4All manner of
methods have since been developed to understand the physics of BCS theory, and for a concise
introduction I will defer to reference [17].

3Which is again subtle and different from symmetry breaking as discussed before, as this generates massive bosons out of
the photons rather than introduce new massless degrees of freedom. Regardless, symmetry breaking is still a key player
here.

4The nature of the attractive interaction is one that for many intents and purposes can be left somewhat undetermined
for quite a long time when considering BCS theory. One of the more conventional options is to consider the (screened)
coulomb interaction in the solid in the presence of phonons. This can then be treated in perturbation theory to get
to an effective interaction, which can be attractive. There is also the method of canonical transformations, which is
described in detail in [18].
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1. Theory of CondensedMatter

Another interesting aspect of BCS theory is the ground state that is assumed by the theory. In
terms of creation, this is often written as

|ΨBCS⟩ ∝
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ . (1.26)

Hereuk, vk are some complex parameters, whose magnitudes must add to unity. This is a surpris-
ingly simple waveform —instead of a complicated mixture of creation and annihilation operators
concerning many different pairings on the Fermi surface, it turns out that the BCS state in mo-
mentum space is just a simple product state of pairs of created fermions. The importance of this
statement will become clear later.

1.4.2. Challenges in Superconductivity

The BCS theory of superconductivity briefly displayed above works well for some compounds.
Eliashberg theory, which in some sense can be seen as an extension of BCS theory in which retar-
dation effects and dynamical interactions have been taken into account, works especially well for
e.g. elemental superconductors.[19–21] One of the fundamental points of BCS superconductors
is that the only symmetry that is broken is the U(1) gauge symmetry, where the superconductor
globally picks an (unobservable) phase spontaneously. The resulting order parameter is therefore
highly symmetric. This preservation of symmetry is far from universal. In many systems of su-
perconductors, additional symmetries are observed to be broken, and the symmetry of the pair-
ing interaction can take the form of p-, d- or even f -wave symmetries. BCS theory is simply not
equipped to deal with these more complicated symmetry breaking patterns. For example in the
case of cuprate superconductors, iron pnictides, and many others, BCS theory simply fails.[21–
23] These superconductors where the pairing interaction is not of BCS type are therefore known
in general as unconventional superconductors.

Another commonly5 appearing characteristic in these unconventional superconductors is that it
appears the correlations that appear in them are strong, much stronger than might be expected.
Cuprate superconductors, especially those that are doped with holes, display this characteris-
tic.[24] Some of these cuprate compounds have transition temperatures that exceed 100 Kelvin
—much more than could ever be expected from a BCS superconductor.[25] One of the biggest
outstanding questions in condensed matter theory exactly concerns describing the high tempera-
ture superconductors, and finding out why the temperature of their transition is so high. Many
attempts have been made, but ultimately none so far have passed all the tests required in order
to be accepted as ‘the’ theory of high-temperature superconductivity.[26, 27] But in spite of the
attention it has received, it is perhaps not the most burning question in the cuprates from a
fundamental physics point of view.

1.4.3. Hole Doped Cuprates

In the past decades, more than200different cuprate superconducting compounds have been iden-
tified.[28] What they have in common is their general crystal structure, which consists of one or

5But not necessarily.
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1.5. StrangeMetals

more copper-oxide planes stacked on top of one another separated by layers of other atoms, such
as Bismuth, Yttrium, Strontium, Calcium and more. In their undoped state, many of them fall
into the category of Mott Insulators. In a quick-and-dirty classical way, Mott Insulators can be
thought of as a material where the electrons in the conduction band get stopped in a ‘traffic jam’
due to strong lattice forces. The real story is of course rather more complex, but for present pur-
poses it will suffice, and indeed strong potentials are the name of the game in the cuprates.[29] A
whole world of phases opens up when these materials are doped, for example by changing the oxy-
gen content, or by substitution of elements. Both the electron-doped and the hole-doped regions
of the phase diagram are host to a plethora of interesting physical phenomena going on; we will
be focused here solely on the hole-doped side.[28, 30]

While the details of all the different non-stoichiometric compounds created in this way are of
course different, the phase diagram that can be mapped out of them follows some very general
trends. This phase diagram, which is presented schematically in figure 1.6, contains much more
than just Mott Insulators. In fact, although it is ‘unconventional’, the d-wave superconductor at
the bottom is perhaps one of the least mysterious parts of this diagram, and it is rather the rest
of the diagram that deserves much more attention. First of all, the Mott Insulator forms an anti-
ferromagnetic state at small hole and electron doping, persisting up to a doping of a few percent.
The superconductivity is only present at rather high doping, and is only truly ‘high Tc’ in a some-
what small doping range around its maximum, the point of optimal doping. On the left of the
superconducting dome is located the pseudogap phase.[31] This phase is rather mysterious and its
transition temperature is rather hard to pin down exactly.[32] What can be said about it is that
many of the different experimental techniques that are available, starting with nuclear magnetic
resonance spectroscopy, have now confirmed that parts of the Fermi surface appear to become
gapped far above the superconducting transition temperature.[21, 33] On the very highly doped
side of the phase diagram, the situation becomes somewhat boring, and the materials return to
being ordinary metals.

Many of the most interesting puzzles in the cuprates come together right in the centre wedge of
the phase diagram, where strange metal phase resides.

1.5. Strange Metals

The strange metal has earned its name because it is quite literally a metal that behaving in a strange
way. This normal-state region of the cuprate superconductors is really anything but that, and has
several properties that display this general strangeness. The first and perhaps most striking charac-
teristic is found in the in-plane resistivity6, which near optimal doping above the superconducting
transition scales linearly with temperature [36–38]

ρab ∼ ρ0 + bT. (1.27)

6The residual resistivity at zero temperature, indicated by ρ0 is not generically zero, but there are some systems where it
does appear to vanish.[35] Rather, it is the constant linear slope that marks the linear-in-T behaviour.
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Figure 1.6.: Schematic phase diagram of cuprate superconductors on the hole-doped side. At
zero doping the Mott insulator state is located. The pseudogap phase persists some-
times up to room temperature at low doping. When the doping is less than the
optimal doping popt, this is referred to as underdoped, more doping is called over-
doped. There is much that is not shown in this figure, such as possible charge
density wave orderings and other phenomena.[34] T ∗, Tc, TN are the pseudogap,
superconducting transition, and Neél temperatures respectively. This picture has
been edited fromhttps://commons.wikimedia.org/wiki/File:Cuprates_

phasedigagram_en.svg under the CC BY-SA 3.0 license.

This was seen already quite early on in the cuprate superconductors [39, 40].7 In some cases, this
linear-in-temperature regime extends to far above room temperature. There are several reasons
why this is interesting. First of all, the linear-in-T behaviour is not what is expected from a metal-
lic phase: going by standard Landau Fermi Liquid theory, one expects the resistivity to instead
scale as T 2 at low temperatures.[41] One typically expects the resistivity to saturate at a finite tem-
perature, to what is called the Mott-Ioffe-Regel limit.[42] Another strange feature is that many of
the cuprates blow right through that limit. The compound is still metallic, but conducts much
worse than should be expected, hence this is often called ‘bad metallic’ behaviour.

This is only the start of the conundrum of the strange metal. This linear-in-T behaviour persisting
over such a large range of temperature is an indication that there should be some very strong,
universal principle underlying the physics of these systems. At the heart of this seems to be the
hint that electronic interactions in the cuprates are strong, so strong that traditional perturbative
methods are not able to capture the physics of these systems adequately. This is most sharply seen
in the lack of quasiparticles, which seem to disappear in the strange metal, as well as the Hall angle,

7It is important to recognise that the ‘goodness’ of the linear-in-T resistivity does depend on doping, and it is very near
optimal doping that the best linearity is often observed.[40]
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1.5. StrangeMetals

does not behave as expected in a quasiparicle Fermi liquid.[43–47]

There is some evidence that right in the middle of the superconducting dome, at zero temper-
ature, there is located a quantum critical point.[48] The scale invariance that is generated from
the quantum phase transition, along with the suggestive characteristic wedge-shape of the strange
metal region, seem to suggest that the strange metal might have some underlying quantum crit-
icality. The nature of a possible quantum critical point is still a matter of debate in the physics
community, as it is not sure what is actually happening at this point, and there is no good theory
of what the order parameter might be that is undergoing the phase transition.[43, 49] The very
high temperatures up to which the strange metal regime extends are also at odds with the idea of
a single quantum critical point as the reason for all the strange behaviour.

Regardless of whether the quantum critical point actually exists, there are indications that there
is some kind of quantum critical behaviour is going on. For example, measurements of the dy-
namic charge response χ′′(q, ω) seem to suggest that there is a special kind of quantum critical
behaviour going on that completely decouples the spatial from the temporal dynamics.[50] The
optical conductivity also shows interesting behaviour. Optical measurements show that there ap-
pears to be a very good Drude-like response at low frequency. One can describe a Drude response
in terms of a width and a momentum relaxation rate. The Drude weight appears to be remarkably
temperature-independent, but the Drude width appears to be set by some universal ‘Planckian’
time scale[51, 52]

τ = A
ℏ

kBT
, (1.28)

whereA is someO(1) prefactor. In the typical Drude formula,

σ(ω) =
ω2
pτ

1− iωτ
, (1.29)

in the DC limit ω → 0, we recover that the resistivity goes as

ρ ∼ 1

ω2
pτ
. (1.30)

The Drude weight ω2
p , which is related to carrier density, is constant at low temperature and the

relaxation time τ ∼ T−1 (or equivalently, relaxation rate Γ ∼ T ). Together, this makes a very
straightforward way to make the resistivity go linearly with temperature, ρ ∼ T . This is just
a set of observations though, and there is currently no good theory that unifies and explains all
observations in a coherent way.

1.5.1. Strong Coupling Issues and the Fermion Sign Problem

The strange metal puts current state-of-the-art condensed matter theory on the spot. We require
a theory where we do not think in that well-ingrained notion of quasiparticles that we as physi-
cists are so familiar with, as the perturbative treatment that they are built on does not work in
the presence of strong coupling. Common theories like the regular Fermi liquid, which works so
well in normal metals, simply do not apply. The strange metal and in strongly correlated electron
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systems are simply put obscured by their eponymous strong electonic couplings. If the couplings
are weak, typically some kind of perturbation theory can be used, where the coupling strengthλ is
a small parameter. There are some ways of investigating strong coupling theories, and the strong
interaction of hadrons has long provided a reason for high-energy theorists to try to explore it, but
there is no good way of treating strongly coupled condensed matter systems in general. We will
explain why.

So what can be done in order to describe the strange metal, if not analytically then at least numer-
ically? One of the problems mentioned in section 1.2.2 was the size of the Hilbert space, which
grows exponentially with the number of particles in the system. After all, Moore’s Law predicts
an exponential increase of our computing capabilities, and has been working well for decades now.
One might hazard a guess that we are getting to a point of just letting the largest computers in the
world loose on the problem and simply brute forcing an answer numerically.

Sadly, this is just a pipe dream. For example, the two-dimensional Hubbard model has often been
proposed as the number one model that will with enough long-range hoppings be able to capture
the relevant physics. In a Monte-Carlo setting at finite doping8, each of the configurations that
needs to be considered carries with it an overall sign, depending on the exact realisation of the spins
of the electrons in the system. The problem comes from the fact that to calculate an observable,
one must average over a number of configurations. However, in order to get good statistics in
a Monte-Carlo problem, observables need to be computed as an average of many configurations.
The problem here is then that the number of configurations needed get to get acceptable error bars
on the observables increases exponentially when going to lower temperature.[53] This growth is
so fast, that it is simply impossible to make a large enough system.

Other approaches run into similar issues. Take for example the tensor networks, and DMRG in
particular. [54, 55] Instead of having to deal with the entire Hilbert space, they rely on methods
to somehow reduce the big 210

23

Hilbert space down to the realm of what computers can handle.
This is typically done by using some heuristic to decide on a number of states to keep. For some
theories, this is easy. If the theory is gapped somewhere, it is safe to assume that the dynamics
relevant to the ground state will not involve states above the gap scale.[54] This does not apply in
the strange metal though. In the end, all numerical approaches always have to face that the number
of states the Hilbert space needs to be reduced. In conventional, weakly coupled systems we can
make some assumptions about entanglement for example, namely, that the ground state will take
on some simple, product-state like form. This often works, and when thinking in terms of tensor
networks this allows us to write the state as a product of complex matrices at different sites, each
of which have some size χ called the bond dimension. It turns out the bond dimension can be
interpreted to tell a lot about entanglement in the system. If a system has no entanglement at all,
it is just a pure product of complex numbers (matrices of sizeχ = 1) at the different sites, and it is
only necessary to keep a minuscule part of the complete Hilbert space available for the lowest lying
excited states. With increased entanglement, the size of the matrices that are needed to describe the
entire state grows exponentially. Eventually, when the state is maximally entangled, we need again
to take into account a large part of the Hilbert space. In the doped Hubbard model, it can be shown

8In the particle-hole symmetric case the problem is sign-free, however that is a well-known and well-studied case. This
lucky simplification is not however true away from the exact symmetric point.
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that one does need to keep a very large amount of states in the matrices in order to get reliable results
- supporting the idea that dense entanglement can play a vital role in understanding the physics of
this.[56] Therefore, it seems reasonable to want to be able to deal with densely entangled systems
if one really wishes to describe the strange metal.

1.6. New Territory

The conclusions drawn from the previous section should all point in one direction. If we want
to be able to describe the physics of the strange metal, we must deal with dense entanglement,
strong correlations, strong lattice potentials, local quantum criticality and more, perhaps all at
once, while not running into exponentially difficult computations.

From the unlikely realms of string theory and quantum gravity comes here a brilliant surprise:
a duality that allows us to consider and compute theories at strong coupling, densely entangled,
without running into fermion sign problems or exponentially large Hilbert spaces, where all the
information is neatly encoded in black holes and curved space-times. This ‘holographic duality’
is at the very core of this thesis; it is using holography that all are computed and interpreted. In
chapter 2, we will take a closer look at what this holographic duality encompasses and to what effect
it has been used in this thesis. Chapter 3 will mainly focus on the definitions and conventions that
are being used in the holographic lattices that are used throughout the thesis, and will outline the
numerical procedures used to compute them.

The rest of the chapters will use and explore the holographic lattices in several different ways.
Chapter 4 will deal with holographic probe fermions. By solving the Dirac equation in curved
space-time, it is possible to compute the spectral function of strongly coupled fermions in the
presence of very strong translational symmetry breaking. This indeed seems like it would have im-
mediate connections to the properties of fermions in for example cuprate strange metals, where
experiments like angle-resolved photoemission can measure this spectral function, however there
are some important caveats, which will be discussed.

Chapter 5 is a rather technical chapter, but one that has played an important part, as it is concerns
a realisation that we had made that many groups that use the so-called Gubser-Rocha model mis-
interpret or overlook certain aspects of the model, especially in relation to the thermodynamical
quantities that can be derived from this model. Furthermore, a correct interpretation of the model
involving an exactly marginal scalar is convenient for use in the final chapter.

The most central paper of this thesis is chapter 6. In it, the Gubser-Rocha model for the holo-
graphic strange metal is subjected to both a 1D and 2D ionic lattices, with a wide range of lattice
strengths. We then look at AC electrical and DC thermoelectrical conductivities to explore the
precise mechanisms of transport in these lattices. Some highly intriguing results will be shown,
including but not limited to a linear-in-temperature resistivity, the experimentally observed mid-
infrared peaks in the optical conductivity, and a resistivity that appears to saturate to a relaxation
rate set by a Planckian timescale.

Together, these chapters will form a succinct overview of uses of the holographic duality with an
eye towards condensed matter physics and the strange metal.
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