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Foreword

In this thesis, I will discuss holographic strange metals and what happens in such a system when
translational symmetry is broken. This thesis is split along the middle into two distinct parts. In
chapters 1 through 3, I will give an overview of some of the theory and background as an intro-
duction on the topic, as well as an opportunity to provide some clarity on the specific systems and
conventions used. Chapters 4 through 6, comprise three papers on which I have been an author re-
lated to aspects of transport and linear response phenomena that can be computed numerically in
holographic strange metals. Let the reader beware that due to the nature of the different projects,
this means that some information might seem duplicated between these chapters and the intro-
duction. This is mostly not the case, as progressive insights have refined and adapted our notations
and conventions over the years, and these sections are therefore kept as explicit as possible for the
sake of accuracy.
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1. Theory of Condensed Matter

In the early 1900’s, the advent of the quantum revolution shone a new light on many of the open
problems of physics at the time. An especially relevant example for this thesis is the conduction
of electrons in metals. With the discovery of the electron at the end of the 19th century, Drude
proposed a simple model for the conduction of electrons through solids. In this model, resistivity
originates from a classical ideal gas of electrons scattering off each other like pinballs[1, 2]. The
success of this theory was remarkable: both DC and AC electrical conductivity at room temper-
ature are well described. The failings of this theory on the other hand provided a great challenge
to the physics community. For example, transport properties at low temperature as well as heat
capacities do not agree with experimental results at all. The eventual resolution of these problems
have earned it its place as a starting point for modern physics education, as exemplified by its status
as the subject of the very first chapter of esteemed textbooks like Ashcroft & Mermin[3]. In itself,
it serves as an example of how the theory condensed matter physics has evolved over the past cen-
tury. In relation to this thesis it will form a convenient point of departure from which to develop
some of the ideas and challenges faced in condensed matter physics today, and how the the work
contained in this thesis attempts to tackle them. In particular, I will present the case for the use
of the holographic duality to study condensed matter systems, since some recent remarkable re-
sults from our research should attract the attention of the theoretical physics community at large
to investigate classes of problems that are largely out of reach of conventional condensed matter
physics theory.

1.1. Drude Transport

The Drude model of transport is a very straightforward textbook system, with which any physics
student should be familiar. The full theory, as well as the subtleties related to the Sommerfeld
improvements to the model, have been described in detail in many excellent resources[3]. The
Drude model departs from the assumption that in a piece of metal the current density of electrons
J⃗ flowing through it can be expressed by

J⃗(t) = n e v⃗(t), (1.1)

where n is the number density of carriers, e is the charge per carrier and v⃗ is the velocity of each
of the carriers. Assume now that an electron is scattered at a time t = 0 somewhere in the metal
under the influence of a constant uniform electric field E⃗. At that point in time, it acquires some
randomized velocity v⃗0 due to the collision. After the collision, the electric field acts with a con-
stant force F⃗ = eE⃗ on the electron, meaning that its velocity at a time t after the collision is given

1



1. Theory of CondensedMatter

by

v⃗(t) =

∫ t

0

F⃗ (t′)

m
dt′ = v⃗0 +

eE⃗t

m
. (1.2)

In order to get the macroscopic behaviour, we have to perform an average over all particles in the
system. It is assumed that this initial velocity v⃗0 is uniformly randomly distributed such that the
average value vanishes

⟨v⃗0⟩ = 0. (1.3)

Hence this term drops out when taking the average

〈
v⃗(t)

〉
=
eE⃗τ

m
(1.4)

The relaxation time τ here is defined as the average time since a collision ⟨t⟩ ≡ τ . The classical
result for a constant (DC) electric field is then that

J⃗ = σDCE⃗ =
ne2τ

m
E⃗, (1.5)

whereσDC is the DC conductivity. At room temperature this prediction works well when putting
in estimates for number density and electron charge and mass.

E⃗

Figure 1.1.: The Drude model departs from considering classical pinballs moving randomly under
the influence of an electric field.

We can generalise the applied electric field to a general time-dependent force. In this case, we first
express the electrical current J⃗ in terms of the momentum P⃗ of the electrons by

J⃗(t) =
neP⃗ (t)

m
. (1.6)

Under the assumption that the electrons have some average scattering rate τ and are subject to
some average force F⃗ (t) due to oscillating fields, by considering the probability of scattering in a

2



1.1. Drude Transport

small time window dt and the effect of the force during that time, the differential equation gov-
erning the average momentum of the electrons can be written as

dP⃗ (t)

dt
= − P⃗ (t)

τ
+ F⃗ (t). (1.7)

Important here is that in the absence of F⃗ (t), we get a damping of P (t), as the solution will go
like

P⃗ (t) = P⃗ (0)e−t/τ . (1.8)
In other words, if the electrons are not being driven, their average momentum will decay exponen-
tially in time. The rate of the momentum relaxation will be intricately linked to the conductivity.
Assume for example that the field is being driven at a fixed frequency ω, and that we are in a late-
time system where the momentum also oscillates with this same frequency. Going to frequency
space in equation (1.7), we can deduce that the frequency-dependent conductivity is given by

σ(ω) =
ne2τ

m

1

1− iωτ
. (1.9)

The real part of this forms a Lorentzian in frequency space centred at ω = 0 with width 1/τ .

In general, the presence of a Drude-like conductivity requires there to be a mechanism for momen-
tum to decay. If it does not decay, it would mean that it lives forever, and the relaxation time would
become infinite. As a result the conductivity would be infinite: all particles keep moving at ever
increasing speeds, forever accelerated by the electric field, as they are never scattered. That would
for example be the situation in the limit of a dilute Fermi gas in the Galilean continuum. In the
real world though, there are many mechanisms through which momentum can decay. This is for
example possible through Umklapp scattering, where an electron can dump a specific amount of
momentum into the lattice, as well as through interaction with disorder in the lattice. Overall lin-
ear momentum of the whole system is still conserved, but appears to decay in the purely electronic
part of the system. This is illustrated in figure 1.2.

1.1.1. Thermopower

As mentioned above, there are some areas where Drude theory does not work well, the ther-
mopower is one of these. Consider what happens when a temperature gradient is applied to an
electronic system. From elementary thermal physics, we know that electrons start moving from
the hot side towards the cold side as a result along the direction of heat flow. This creates an electric
field, as electrons are removed on the hot side and are transported to the cold side. We can define
the thermopowerQ as the ratio of induced electric field to temperature gradient [3]

E⃗ = Q∇⃗T. (1.10)

If we assume for now to be in a one-dimensional wire with spatial coordinate x, we can find that
the average thermal velocity v⃗Q is given by [3]

vQ =
1

2

(
v(x− vτ)− v(x+ vτ)

)
, (1.11)

3



1. Theory of CondensedMatter

k⃗1

k⃗2

k⃗1 + k⃗2

G⃗

k⃗f Γ

Figure 1.2.: Simple model showing Umklapp scattering for phonons. Through some process two
phonons with momenta k⃗1, k⃗2 scatter to form a third phonon with k⃗1 + k⃗2, but as
this is outside the first BZ this can be folded back by a lattice vector G⃗, such that k⃗f ̸=
k⃗1 + k⃗2, meaning momentum gets lost.

or in other words, the average velocity that is induced by the temperature is given by the difference
in velocities of electrons to the left and right of the point x. If there is a temperature gradient
∇⃗T , these two velocities will be different, with the side with higher temperature having a greater
velocity than the side of lower temperature. The factor 1/2 comes in because roughly 1/2 of the
electrons will be moving in the +x direction and the other half in the −x direction. In a three-
dimensional material, this will essentially apply equally in all three dimensions, where after some
grinding of equations we can find that

v⃗Q =
τ

6

d
(
v2
)

dT
∇⃗T. (1.12)

From equation (1.4) above, we know that the electrons acquire an average velocity from the DC
electric field which is given by

v⃗E = −eE⃗t
m

. (1.13)

In a steady state the overall velocity which is a sum of the thermal and electrical velocity must be
exactly zero, which means that

v⃗E + v⃗Q = 0. (1.14)

Using the formulas above, the Drude model then predicts thatQ is given by

Q = − cv
3ne

, (1.15)

4



1.2. Beyond Classical Theory

where cv is the heat capacity at constant volume. This seems like a reasonable classical estimate, and
one can wonder how this compares to real world physics. This is where the issues start: when one
takes the classical kinetic theory result that cv = 3nkB/2, this goes enormously wrong: the value
of the thermopower is overestimated by a factor 100 in electronic materials. The Drude model as
it is presented here offers a clear picture of a classical view of conductivity, where resistivity can be
phrased in terms of quantities like the collision time and the number density of charge carriers.
As hinted at by the introduction, it is quantum physics that comes to the rescue here, and the
resolutions of some of these issues are in a way a precursor to the issues that are faced in condensed
matter physics today.

1.2. Beyond Classical Theory

With the knowledge of today, one can make the educated guess that it is the classical assumptions
made in describing the electrons that are at the root of this problem. Instead, one should consider
the electrons to be identical quantum mechanical particles. Furthermore, it is rash to ignore all the
other interactions that are present in a real-world system, such as coulomb interactions between
the conduction electrons for example.

1.2.1. A Better Electron Gas

In the time that Drude wrote down his theory, there was no clear picture of what had to be used as
the distribution functions in the metals he was aiming to describe. Following arguments from ki-
netic theory, assuming an ideal classical gas of electrons would give rise to the Maxwell-Boltzmann
distribution, which for a gas of particles moving in one dimension can be written as

f(v)dv =

√
m

2πkBT
e−mv

2/2kBT , (1.16)

where kB is Boltzmann’s constant. At a fixed temperature, it is clear to see that the distribution
has an e−αv

2

behaviour, which supposes that the vast majority of velocities drawn from this distri-
bution will lie between v2 = 0 and v2 = 4kBT/m. The shape of this distribution function has
important consequences for some of the properties that we can compute about theoretical metals.
In particular, as we saw before, when Drude calculated the thermopower, the specific heat that is
found with this distribution is wrong by a very large factor. But if you suppose it must just be
some wrong factor in the thermal transport, seeing that the electrical transport worked well, then
it is all the more surprising that the Lorentz ratio between thermal and electrical conductivities as
found in the Wiedemann-Franz law [4] matched rather closely to experimental results. This turns
out to be a fortuitous coincidence, as we will soon see.

With the advent of quantum theory, it was realised that the Pauli exclusion principle must be ap-
plied to the electrons we are concerned with, as the underlying statistics that govern fermionic
particles are antisymmetric in nature. This has far-reaching consequences: we cannot have multi-
ple fermionic particles occupying the same state. Even in the ground state there are many fermions
pushed to higher energy modes. Any undergraduate will have seen how this leads to characteristic

5



1. Theory of CondensedMatter

quantities that belong to a free electron gas, such as the Fermi energy and momentum and further
derived quantities such as Fermi velocity and temperature. I will just highlight the Fermi velocity
here: in a metal it turns out to be of the order of 1% the speed of light even at very low tempera-
tures. This is in stark contrast to what is expected for the Maxwell-Boltzmann result, as that finds
that the average thermal velocity would approach zero as the temperature approaches zero. At
room temperature, the Fermi velocity is around two orders of magnitude greater than the velocity
that Drude assumed in his original calculations.

For problems involving fermionic particles one should therefore not make use of the Maxwell-
Boltzmann, but rather the Fermi-Dirac distribution

f(v)dv ∝ 1

e
ϵ(v)−µ0

kBT + 1
, (1.17)

where ϵ is the energy and v is the speed of the electron. This distribution has distinctly different
features, especially the relationship with between v and µ0. For ϵ (v) ≪ µ0, this exponential
is negligibly small and f(v)dv ≈ 1. On the other side, when ϵ (v) ≫ µ0, the value of the
exponential is large and therefore f(v)dv is exponentially suppressed. The width of this transition
is set by the temperature, T . For low temperature it is very abrupt, and for high temperature it
becomes much more gradual. This is shown in figure 1.3. However, because the total integrated
number of states that is described by the distribution must be the same at both low and high
temperature, it must be spread out up to much higher velocities to account for all possible states.

Low T

High T

0

0.5

1.0

Figure 1.3.: Difference between the low and high temperature behaviour of the Fermi-Dirac distri-
bution. At high temperature a significant number of states above the chemical poten-
tial are occupied, whereas in the zero-temperature limit the transition becomes a step
function.

Let us now revisit the matter of the thermopower as a good example, making only the simple
change of going from the Maxwell-Boltzmann distribution to the Fermi-Dirac distribution.1The
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1.2. Beyond Classical Theory

resulting expression for the thermopower is now augmented by an extra factor kBT
EF

, which in
many ordinary metals is of order 10−2, which accounts for the factor that was missing from the
Drude calculation from before.[3] Regarding the Lorentz ratio, it turns out there was another fac-
tor 10−2 overestimation, namely in the specific heat, indeed coincidentally cancelling each other
out.

1.2.2. Towards Field Theory

This simple, semiclassical fix is a step in the right direction. One can wonder what happens
whether a full, honestly quantum-mechanical treatment of a free electron gas would be able to
capture all of the physics that is present in real metals. This is of course not the case: the interac-
tions that are neglected in the free electron gas play an important role. Even more so, at no point
in this discussion has the ionic lattice that makes up the metal itself been taken into account. This
adds even more complexity, not to mention the interplay between the dynamics of the two.

One of the first steps further is to go beyond the world of simple quantum mechanics, and enter
into a realm where it is possible to address more than just single particles. For example, if you
wish to write own a wave function in quantum mechanics to deal with more than one particle
that obeys fermionic statistics, you have to deal with fully anti-symmetrized wave functions. For
a small number of particles, say (a, b) in positions (1, 2), this is still tractable:

|Ψ⟩ = 1√
2

(∣∣a(1)〉 ∣∣b(2)〉− ∣∣b(1)〉 ∣∣a(2)〉). (1.18)

Problems quickly arise when we need to deal with more particles: the number of terms will grow
as 2n particles. In a macroscopic piece of material there are on the order of n ≈ O

(
1023

)
atoms

in the game. The resulting number of terms, 210
23

is such an unimaginably huge number that
it will consist of O(1022) digits. In terms of computer bits, this corresponds to about as much
digital data as exists in the entire world, and that is only to write down the number of states itself
- let alone writing down any of the individual states. To say that it is not a number that can easily
be handled is understating it. A further problem is that quantum mechanics is not often very well
equipped to deal with a non-fixed number of particles. A different approach is clearly needed. The
answer comes in terms of field theory, where instead of single-particle degrees of freedom, we are
instead dealing with a continuum of degrees of freedom, where we can think of the elementary
low-level excitations as ‘particles’. I will not discuss the beauty and many subtleties of (quantum)
field theory here.[5]

1This requires some justification. Modifying only the probability distribution is only a part of the story if you are to
do a proper quantum treatment. Quantum mechanics itself needs to somehow be included: this is nothing more
than ‘classical pinballs’ but with a different velocity distribution. This semiclassical approach does give some satisfying
results, and is sometimes good enough to get a decent theoretical prediction. A more detailed discussion can be found
in [3].

7



1. Theory of CondensedMatter

1.3. (Broken) Symmetry

One of the central tenets in the description of physical systems is the concept of symmetry and
what happens when symmetries are broken. It is an immensely powerful principle, not merely
simplifying some mathematical expressions, but allowing us to disentangle the physical character-
istics of a system into distinct components that are governed by different principles, separated by
their symmetries, and the (conserved) quantities that are associated with each of them.

1.3.1. Noether’s Theorem

Noether’s theorem is perhaps one of the most famous ways in which symmetry manifests itself.
For a classical system, Noether’s theorem states that continuous symmetries of the Lagrangian
of a system correspond to conserved quantities. That is, if we can make a transformation in the
system that leaves the Lagrangian unchanged, there must be some sort of conserved quantity as-
sociate with that transformation. This has some well-known results associated with it, such as
time-translational invariance being responsible for conservation of energy, spatial translational in-
variance providing conservation of momentum, and rotational invariance corresponding to the
conservation of angular momentum.[6]

In classical field theory, the idea is analogous, only instead of conserved quantities, we get conserved
currents. If we consider a Lagrangian in 4 dimensions that does not explicitly depend on the space-
time coordinates xµ, then the symmetry is encoded in the conservation of the stress-energy tensor
Tµν , which can be evaluated as

T ν
µ =

(
∂L

∂(∂νϕ)

)
∂µϕ− δνµ. (1.19)

The conservation of energy and momentum can then be expressed as

∂νT
ν

µ = 0. (1.20)

For quantum field theories, the situation is again very similar, and the role of Noether’s theorem
is played by the Ward identities in the theory.[5]

1.3.2. Landau Theory and Symmetry Breaking

While it is important to be able to idenfity conserved quantities, it is when symmetries are broken
that things get really interesting. This is clearly seen in Landau theory.[7] Without going into any
microscopic details of any theory we are dealing with, not making any reference to what physics
governs these microscopics, we will depart from a simple model with a free energy given some
scalar order parameter φ. For the sake of simplicity, let us only take temperature as an external
parameter.

F(T, φ) = A(T )φ2 +B(T )φ4. (1.21)

The coefficients A,B are the ones that now fully determine the behaviour of this system. The
form of equation (1.21) dictates that there will always be a local extremum at F(0) = 0. We will
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1.3. (Broken) Symmetry

always takeB > 0 here, such that the free energy is at least bounded from below. The interesting
part is fully dependent onA. Schematically, there are two distinct regimes for what this free energy
may look like, see figure 1.4.

φ

F
A(T ) > 0

A(T ) < 0

Figure 1.4.: The free energy for the two different scenarios forA(T ). ForA(T ) < 0, two minima
are present away where φ ̸= 0, while there is a local maximum at φ = 0.

If we depart from the phase whereA(T ) > 0, thenφ = 0 is the minimum of the free energy and
the system will have that as its ground state. Imagine now that lowering the temperature changes
the sign ofA(T ) to be negative. WhenA(T ) < 0, there will always be some range of values of φ
where

F(φ ̸= 0) < F(0), (1.22)

which means that a phase exists with a non-zero order parameter which is at a lower free energy
compared to F(φ = 0). In this particular example, the minima exist at

φ± = ±
√

−A
2B

. (1.23)

Therefore, the system will undergo a phase transition to a new phase where the order parameter
φ takes on the value that minimizes F . But that is not the whole story. From the explicit form of
the model, it is clear to see that there is a manifest symmetry under the transformation φ→ −φ.
This means that there is a priori no preference for the system to end up the minimum at φ+ over
the one at φ− and vice versa. In the end, the system will, by some process or another, pick one of
the two spontaneously2. This is the essence of spontaneous symmetry breaking: the free energy
preserves in this case the Z2 symmetry of the order parameter φ → −φ. Without imposing
a preference of one over the other the system will nonetheless end up in a state that breaks this
symmetry spontaneously.

2One could argue that no matter the system, at some point even Heisenberg’s uncertainty principle will always bring the
system out of the unstable maximum at φ = 0.
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1. Theory of CondensedMatter

1.3.3. Continuous Spontaneous Symmetry Breaking

The example above is the prototypical example of discrete spontaneous symmetry breaking. The
concept of spontaneous symmetry breaking becomes even more physically interesting if the sym-
metry that relates the equivalent states is continuous. The standard example for this is the complex
order parameter ϕ, with a similar (real-valued) free energy to equation (1.21):

F (ϕ) = a|ϕ|2 + b|ϕ|4 . (1.24)

The system depends only on the magnitude of the scalar ϕ. Again we assume that the constant b
in front of the highest-power term of ϕ is always positive. For a > 0 there is a stable minimum
at ϕ = 0, but for a < 0, the point at ϕ = 0 becomes an unstable maximum, as illustrated in
figure 1.5. We can take advantage of the symmetry and write the complex scalar in terms of its
magnitude and phase

ϕ = |ϕ| exp(iθ). (1.25)

We can see that the value of the free energy is independent of the phase θ of the scalar. In figure 1.5,
this means that there is now a circle at finite magnitude of ϕ that minimizes the free energy, there
is a continuousU(1) symmetry between all these states.

−1
0

1 −1

0

1−1

−0.5

0

Re ϕ
Im ϕ

F (ϕ)

Figure 1.5.: Mexican hat potential for a = −2, b = 1.

The theory will have to pick some particular value of the phase θ to settle in, for which there is no
particular preferential value. Here Goldstone’s theorem comes into play. [8] This theorem states
that for every generator of a continuous symmetry that is spontaneously broken, an extra massless
scalar particle is added to the spectrum of the theory, the so-called Goldstone boson. These Gold-
stone bosons pop up in many places, the most important for our purposes is in crystalline solids.
One can regard there the existence of the crystal lattice as a spontaneous symmetry breaking of
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1.4. Superconductivity

translationally invariant, isotropic, homogeneous space-time. The Goldstone bosons that pop up
there we know more commonly as the phonons of the lattice.

Instead of spontaneous symmetry breaking, a theory can also be subject to explicit symmetry
breaking. For example, one can start with a free-particle Hamiltonian, which is translationally
invariant, and then add a periodic potential term to it. This modifies the theory, but now it is not
only the states of the theory themselves that will break some symmetry: it is the Hamiltonian itself
that is no longer translationally invariant. There is not such a neat theorem relating explicit sym-
metry breaking to appearing particles like there is for spontaneous symmetry breaking, but they
can conspire and give rise to different effects.[9] For example, a symmetry is both spontaneously
and explicitly broken, the boson that is generated by the spontaneous symmetry breaking now
acquires a finite mass.

1.4. Superconductivity

All of the ideas discussed before come together in the theory describing superconductors. In su-
perfluids, a globalU(1) symmetry is sponteneously broken. Superconductors are in a way similar,
but there it is the U(1) gauge redundancy that is broken3 sponanteously. The first superconduc-
tors were discovered by Heike Kamerlingh Onnes at Leiden at the start of the twentieth century,
and the subject and its related puzzles continue to bring new and interesting questions more than
a century later.[10] At first superconductivity had been observed only at temperatures very close
to zero Kelvin. Advances towards the end of the 20th century saw the advent of the high-Tc super-
conductors, which in the 1980’s and 1990’s pushed the maximum temperature of the supercon-
ducting transition up from O(10) Kelvin into the much more accessible cooling range of liquid
nitrogen through ceramic compounds such as Lanthanum-Strontium-Copper-Oxides (LSCO)
and Bismuth-Strontium-Calcium-Copper-Oxides (BSCCO).[11–15]

1.4.1. BCS Theory

In the first decades after the discovery of superconductivity, as it was found to be present in more
and more materials, a theoretical explanation for the phenomenon was still sorely lacking. The
very first microscopic theory came due to Bardeen, Cooper and Schrieffer.[16] Their insight was
that an attractive interaction between fermions on other sides of the Fermi surface, no matter how
small, has the effect of pair formation into what are now known as Cooper pairs.4All manner of
methods have since been developed to understand the physics of BCS theory, and for a concise
introduction I will defer to reference [17].

3Which is again subtle and different from symmetry breaking as discussed before, as this generates massive bosons out of
the photons rather than introduce new massless degrees of freedom. Regardless, symmetry breaking is still a key player
here.

4The nature of the attractive interaction is one that for many intents and purposes can be left somewhat undetermined
for quite a long time when considering BCS theory. One of the more conventional options is to consider the (screened)
coulomb interaction in the solid in the presence of phonons. This can then be treated in perturbation theory to get
to an effective interaction, which can be attractive. There is also the method of canonical transformations, which is
described in detail in [18].
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1. Theory of CondensedMatter

Another interesting aspect of BCS theory is the ground state that is assumed by the theory. In
terms of creation, this is often written as

|ΨBCS⟩ ∝
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ . (1.26)

Hereuk, vk are some complex parameters, whose magnitudes must add to unity. This is a surpris-
ingly simple waveform —instead of a complicated mixture of creation and annihilation operators
concerning many different pairings on the Fermi surface, it turns out that the BCS state in mo-
mentum space is just a simple product state of pairs of created fermions. The importance of this
statement will become clear later.

1.4.2. Challenges in Superconductivity

The BCS theory of superconductivity briefly displayed above works well for some compounds.
Eliashberg theory, which in some sense can be seen as an extension of BCS theory in which retar-
dation effects and dynamical interactions have been taken into account, works especially well for
e.g. elemental superconductors.[19–21] One of the fundamental points of BCS superconductors
is that the only symmetry that is broken is the U(1) gauge symmetry, where the superconductor
globally picks an (unobservable) phase spontaneously. The resulting order parameter is therefore
highly symmetric. This preservation of symmetry is far from universal. In many systems of su-
perconductors, additional symmetries are observed to be broken, and the symmetry of the pair-
ing interaction can take the form of p-, d- or even f -wave symmetries. BCS theory is simply not
equipped to deal with these more complicated symmetry breaking patterns. For example in the
case of cuprate superconductors, iron pnictides, and many others, BCS theory simply fails.[21–
23] These superconductors where the pairing interaction is not of BCS type are therefore known
in general as unconventional superconductors.

Another commonly5 appearing characteristic in these unconventional superconductors is that it
appears the correlations that appear in them are strong, much stronger than might be expected.
Cuprate superconductors, especially those that are doped with holes, display this characteris-
tic.[24] Some of these cuprate compounds have transition temperatures that exceed 100 Kelvin
—much more than could ever be expected from a BCS superconductor.[25] One of the biggest
outstanding questions in condensed matter theory exactly concerns describing the high tempera-
ture superconductors, and finding out why the temperature of their transition is so high. Many
attempts have been made, but ultimately none so far have passed all the tests required in order
to be accepted as ‘the’ theory of high-temperature superconductivity.[26, 27] But in spite of the
attention it has received, it is perhaps not the most burning question in the cuprates from a
fundamental physics point of view.

1.4.3. Hole Doped Cuprates

In the past decades, more than200different cuprate superconducting compounds have been iden-
tified.[28] What they have in common is their general crystal structure, which consists of one or

5But not necessarily.
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more copper-oxide planes stacked on top of one another separated by layers of other atoms, such
as Bismuth, Yttrium, Strontium, Calcium and more. In their undoped state, many of them fall
into the category of Mott Insulators. In a quick-and-dirty classical way, Mott Insulators can be
thought of as a material where the electrons in the conduction band get stopped in a ‘traffic jam’
due to strong lattice forces. The real story is of course rather more complex, but for present pur-
poses it will suffice, and indeed strong potentials are the name of the game in the cuprates.[29] A
whole world of phases opens up when these materials are doped, for example by changing the oxy-
gen content, or by substitution of elements. Both the electron-doped and the hole-doped regions
of the phase diagram are host to a plethora of interesting physical phenomena going on; we will
be focused here solely on the hole-doped side.[28, 30]

While the details of all the different non-stoichiometric compounds created in this way are of
course different, the phase diagram that can be mapped out of them follows some very general
trends. This phase diagram, which is presented schematically in figure 1.6, contains much more
than just Mott Insulators. In fact, although it is ‘unconventional’, the d-wave superconductor at
the bottom is perhaps one of the least mysterious parts of this diagram, and it is rather the rest
of the diagram that deserves much more attention. First of all, the Mott Insulator forms an anti-
ferromagnetic state at small hole and electron doping, persisting up to a doping of a few percent.
The superconductivity is only present at rather high doping, and is only truly ‘high Tc’ in a some-
what small doping range around its maximum, the point of optimal doping. On the left of the
superconducting dome is located the pseudogap phase.[31] This phase is rather mysterious and its
transition temperature is rather hard to pin down exactly.[32] What can be said about it is that
many of the different experimental techniques that are available, starting with nuclear magnetic
resonance spectroscopy, have now confirmed that parts of the Fermi surface appear to become
gapped far above the superconducting transition temperature.[21, 33] On the very highly doped
side of the phase diagram, the situation becomes somewhat boring, and the materials return to
being ordinary metals.

Many of the most interesting puzzles in the cuprates come together right in the centre wedge of
the phase diagram, where strange metal phase resides.

1.5. Strange Metals

The strange metal has earned its name because it is quite literally a metal that behaving in a strange
way. This normal-state region of the cuprate superconductors is really anything but that, and has
several properties that display this general strangeness. The first and perhaps most striking charac-
teristic is found in the in-plane resistivity6, which near optimal doping above the superconducting
transition scales linearly with temperature [36–38]

ρab ∼ ρ0 + bT. (1.27)

6The residual resistivity at zero temperature, indicated by ρ0 is not generically zero, but there are some systems where it
does appear to vanish.[35] Rather, it is the constant linear slope that marks the linear-in-T behaviour.
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1. Theory of CondensedMatter

Figure 1.6.: Schematic phase diagram of cuprate superconductors on the hole-doped side. At
zero doping the Mott insulator state is located. The pseudogap phase persists some-
times up to room temperature at low doping. When the doping is less than the
optimal doping popt, this is referred to as underdoped, more doping is called over-
doped. There is much that is not shown in this figure, such as possible charge
density wave orderings and other phenomena.[34] T ∗, Tc, TN are the pseudogap,
superconducting transition, and Neél temperatures respectively. This picture has
been edited fromhttps://commons.wikimedia.org/wiki/File:Cuprates_

phasedigagram_en.svg under the CC BY-SA 3.0 license.

This was seen already quite early on in the cuprate superconductors [39, 40].7 In some cases, this
linear-in-temperature regime extends to far above room temperature. There are several reasons
why this is interesting. First of all, the linear-in-T behaviour is not what is expected from a metal-
lic phase: going by standard Landau Fermi Liquid theory, one expects the resistivity to instead
scale as T 2 at low temperatures.[41] One typically expects the resistivity to saturate at a finite tem-
perature, to what is called the Mott-Ioffe-Regel limit.[42] Another strange feature is that many of
the cuprates blow right through that limit. The compound is still metallic, but conducts much
worse than should be expected, hence this is often called ‘bad metallic’ behaviour.

This is only the start of the conundrum of the strange metal. This linear-in-T behaviour persisting
over such a large range of temperature is an indication that there should be some very strong,
universal principle underlying the physics of these systems. At the heart of this seems to be the
hint that electronic interactions in the cuprates are strong, so strong that traditional perturbative
methods are not able to capture the physics of these systems adequately. This is most sharply seen
in the lack of quasiparticles, which seem to disappear in the strange metal, as well as the Hall angle,

7It is important to recognise that the ‘goodness’ of the linear-in-T resistivity does depend on doping, and it is very near
optimal doping that the best linearity is often observed.[40]
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1.5. StrangeMetals

does not behave as expected in a quasiparicle Fermi liquid.[43–47]

There is some evidence that right in the middle of the superconducting dome, at zero temper-
ature, there is located a quantum critical point.[48] The scale invariance that is generated from
the quantum phase transition, along with the suggestive characteristic wedge-shape of the strange
metal region, seem to suggest that the strange metal might have some underlying quantum crit-
icality. The nature of a possible quantum critical point is still a matter of debate in the physics
community, as it is not sure what is actually happening at this point, and there is no good theory
of what the order parameter might be that is undergoing the phase transition.[43, 49] The very
high temperatures up to which the strange metal regime extends are also at odds with the idea of
a single quantum critical point as the reason for all the strange behaviour.

Regardless of whether the quantum critical point actually exists, there are indications that there
is some kind of quantum critical behaviour is going on. For example, measurements of the dy-
namic charge response χ′′(q, ω) seem to suggest that there is a special kind of quantum critical
behaviour going on that completely decouples the spatial from the temporal dynamics.[50] The
optical conductivity also shows interesting behaviour. Optical measurements show that there ap-
pears to be a very good Drude-like response at low frequency. One can describe a Drude response
in terms of a width and a momentum relaxation rate. The Drude weight appears to be remarkably
temperature-independent, but the Drude width appears to be set by some universal ‘Planckian’
time scale[51, 52]

τ = A
ℏ

kBT
, (1.28)

whereA is someO(1) prefactor. In the typical Drude formula,

σ(ω) =
ω2
pτ

1− iωτ
, (1.29)

in the DC limit ω → 0, we recover that the resistivity goes as

ρ ∼ 1

ω2
pτ
. (1.30)

The Drude weight ω2
p , which is related to carrier density, is constant at low temperature and the

relaxation time τ ∼ T−1 (or equivalently, relaxation rate Γ ∼ T ). Together, this makes a very
straightforward way to make the resistivity go linearly with temperature, ρ ∼ T . This is just
a set of observations though, and there is currently no good theory that unifies and explains all
observations in a coherent way.

1.5.1. Strong Coupling Issues and the Fermion Sign Problem

The strange metal puts current state-of-the-art condensed matter theory on the spot. We require
a theory where we do not think in that well-ingrained notion of quasiparticles that we as physi-
cists are so familiar with, as the perturbative treatment that they are built on does not work in
the presence of strong coupling. Common theories like the regular Fermi liquid, which works so
well in normal metals, simply do not apply. The strange metal and in strongly correlated electron
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systems are simply put obscured by their eponymous strong electonic couplings. If the couplings
are weak, typically some kind of perturbation theory can be used, where the coupling strengthλ is
a small parameter. There are some ways of investigating strong coupling theories, and the strong
interaction of hadrons has long provided a reason for high-energy theorists to try to explore it, but
there is no good way of treating strongly coupled condensed matter systems in general. We will
explain why.

So what can be done in order to describe the strange metal, if not analytically then at least numer-
ically? One of the problems mentioned in section 1.2.2 was the size of the Hilbert space, which
grows exponentially with the number of particles in the system. After all, Moore’s Law predicts
an exponential increase of our computing capabilities, and has been working well for decades now.
One might hazard a guess that we are getting to a point of just letting the largest computers in the
world loose on the problem and simply brute forcing an answer numerically.

Sadly, this is just a pipe dream. For example, the two-dimensional Hubbard model has often been
proposed as the number one model that will with enough long-range hoppings be able to capture
the relevant physics. In a Monte-Carlo setting at finite doping8, each of the configurations that
needs to be considered carries with it an overall sign, depending on the exact realisation of the spins
of the electrons in the system. The problem comes from the fact that to calculate an observable,
one must average over a number of configurations. However, in order to get good statistics in
a Monte-Carlo problem, observables need to be computed as an average of many configurations.
The problem here is then that the number of configurations needed get to get acceptable error bars
on the observables increases exponentially when going to lower temperature.[53] This growth is
so fast, that it is simply impossible to make a large enough system.

Other approaches run into similar issues. Take for example the tensor networks, and DMRG in
particular. [54, 55] Instead of having to deal with the entire Hilbert space, they rely on methods
to somehow reduce the big 210

23

Hilbert space down to the realm of what computers can handle.
This is typically done by using some heuristic to decide on a number of states to keep. For some
theories, this is easy. If the theory is gapped somewhere, it is safe to assume that the dynamics
relevant to the ground state will not involve states above the gap scale.[54] This does not apply in
the strange metal though. In the end, all numerical approaches always have to face that the number
of states the Hilbert space needs to be reduced. In conventional, weakly coupled systems we can
make some assumptions about entanglement for example, namely, that the ground state will take
on some simple, product-state like form. This often works, and when thinking in terms of tensor
networks this allows us to write the state as a product of complex matrices at different sites, each
of which have some size χ called the bond dimension. It turns out the bond dimension can be
interpreted to tell a lot about entanglement in the system. If a system has no entanglement at all,
it is just a pure product of complex numbers (matrices of sizeχ = 1) at the different sites, and it is
only necessary to keep a minuscule part of the complete Hilbert space available for the lowest lying
excited states. With increased entanglement, the size of the matrices that are needed to describe the
entire state grows exponentially. Eventually, when the state is maximally entangled, we need again
to take into account a large part of the Hilbert space. In the doped Hubbard model, it can be shown

8In the particle-hole symmetric case the problem is sign-free, however that is a well-known and well-studied case. This
lucky simplification is not however true away from the exact symmetric point.
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that one does need to keep a very large amount of states in the matrices in order to get reliable results
- supporting the idea that dense entanglement can play a vital role in understanding the physics of
this.[56] Therefore, it seems reasonable to want to be able to deal with densely entangled systems
if one really wishes to describe the strange metal.

1.6. New Territory

The conclusions drawn from the previous section should all point in one direction. If we want
to be able to describe the physics of the strange metal, we must deal with dense entanglement,
strong correlations, strong lattice potentials, local quantum criticality and more, perhaps all at
once, while not running into exponentially difficult computations.

From the unlikely realms of string theory and quantum gravity comes here a brilliant surprise:
a duality that allows us to consider and compute theories at strong coupling, densely entangled,
without running into fermion sign problems or exponentially large Hilbert spaces, where all the
information is neatly encoded in black holes and curved space-times. This ‘holographic duality’
is at the very core of this thesis; it is using holography that all are computed and interpreted. In
chapter 2, we will take a closer look at what this holographic duality encompasses and to what effect
it has been used in this thesis. Chapter 3 will mainly focus on the definitions and conventions that
are being used in the holographic lattices that are used throughout the thesis, and will outline the
numerical procedures used to compute them.

The rest of the chapters will use and explore the holographic lattices in several different ways.
Chapter 4 will deal with holographic probe fermions. By solving the Dirac equation in curved
space-time, it is possible to compute the spectral function of strongly coupled fermions in the
presence of very strong translational symmetry breaking. This indeed seems like it would have im-
mediate connections to the properties of fermions in for example cuprate strange metals, where
experiments like angle-resolved photoemission can measure this spectral function, however there
are some important caveats, which will be discussed.

Chapter 5 is a rather technical chapter, but one that has played an important part, as it is concerns
a realisation that we had made that many groups that use the so-called Gubser-Rocha model mis-
interpret or overlook certain aspects of the model, especially in relation to the thermodynamical
quantities that can be derived from this model. Furthermore, a correct interpretation of the model
involving an exactly marginal scalar is convenient for use in the final chapter.

The most central paper of this thesis is chapter 6. In it, the Gubser-Rocha model for the holo-
graphic strange metal is subjected to both a 1D and 2D ionic lattices, with a wide range of lattice
strengths. We then look at AC electrical and DC thermoelectrical conductivities to explore the
precise mechanisms of transport in these lattices. Some highly intriguing results will be shown,
including but not limited to a linear-in-temperature resistivity, the experimentally observed mid-
infrared peaks in the optical conductivity, and a resistivity that appears to saturate to a relaxation
rate set by a Planckian timescale.

Together, these chapters will form a succinct overview of uses of the holographic duality with an
eye towards condensed matter physics and the strange metal.
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2. AdS/CFT: The Holographic Duality

2.1. History of AdS/CFT

The AdS/CFT correspondence (also often called the holographic duality) has its roots in string
theory and the search for a theory of quantum gravity. The holographic principle, formulated by
‘t Hooft and refined by Susskind, made the identification between the information1 contained in
a volume of space-time, and their encoding on its boundary.[57, 58] The big discovery that turned
everybody’s heads was the discovery of the AdS/CFT correspondence by Maldacena [59]. The
correspondence was hinted at by the similarity in symmetry structure between certain string theory
models and supersymmetric Yang-Mills (SYM) theories in one lower dimension. To be precise,
Maldacena initially formulated the correspondence between a type IIB string theory living on an
AdS5 × S5 space-time and an N = 4, U(N) SYM theory living in one less dimension. That
explains the reason for the name ‘AdS-CFT’: it is a duality between on one side string theory, which
can have classical gravity as its low-energy limit, on a space-time with negative curvature, so-called
Anti-De Sitter space, and on the other side a conformal field theory. I will not go into details
of either string theory or conformal field theory in this work, but there are many resources out
there that discuss both in considerable depth, ranging from pedagogical introductions to reference
works.[60–64]

The discovery of the correspondence triggered a major response in the string theory community,
and it is commonly included as part of the second revolution in the field of string theory. It un-
earthed a deep connection between gravitational theories and conformal field theory. Soon after
the discovery, it was found that there were other examples of theories where there exists such a dual-
ity.[65, 66] These all have their own specific details, such as the geometry and type of string theory,
as well as the type of conformal field theory, but they all follow a very similar spirit of duality.

2.1.1. A More General Statement of the Duality

The statement of the duality for a general holographic correspondence is deceptively simple, and
was made precise by Gubser, Polyakov, Klebanov and Witten [67]. Imagine a pair of theories be-
tween which the duality applies. One is the ‘gravitational’ side, where the string theory lives on
some form of space-time with negative curvature. A technical aspect of those space-times is that
they all have a boundary. The other theory is a (conformal) quantum field theory with one less

1This uses the very abstract notion of ‘information’ as used in the field of information theory. It can be thought of as
essentially ‘degrees of freedom’ of some kind.
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2. AdS/CFT: The Holographic Duality

dimension than the gravitational theory. The conformal field theory, like all quantum field theo-
ries, has all of its information contained in its generating functional. In this generating functional,
we have the operators Oi that are present in the theory, coupled to their respective sources ji. As
such, the generating functional contains enough information to compute all n-point correlators
in the theory by taking functional field derivatives with respect to the sources. We will denote this
functional as ZQFT [ji]. On the other hand, we have a gravitational theory which is coupled to
extra fields ϕi, with boundary values ji, and an associated partition function Z[ϕi]

∣∣
ϕi→ji

. Then
the duality states that

ZQFT [ji] = Z[ϕi]
∣∣
ϕi→ji

. (2.1)

In other words, using the duality one way can encode for and compute operators in the quan-
tum field theory by having fields in the gravitational theory with the correct boundary behaviour.
Applying the duality the other way, which says we can understand the gravitational side by doing
computations in conformal field theory, is less relevant for the purposes of this thesis. This state-
ment is incredibly deep, and allows for investigation both ways. It is possible to learn more about
the QFT side by doing computations in the string theory side, but also the other way around.
However, we are now struck with the problem that the theories specified on either side are far
from easy to work with. A good example is the fields in the field theory: in the canonical example
of N = 4 SYM, the number of fields in the theoryN is very large. Making any computation can
be difficult, and how do we know to couple fields for these into the gravitational theory? The du-
ality luckily has a way to simplify this in a way that is also useful for the purposes of our condensed
matter aspirations.

2.1.2. Limits of the Duality

Crucial in the simplification that we desire is the fact that this duality is a weak-strong duality. This
is evident when computing exactly which limits can be taken in terms of coupling strengths and
numbers of degrees of freedom.[62] Since the string theory on the AdS side is hard to formulate
and even harder to compute anything with, we would like to make use of its low energy limit,
which is simpler. Let us take here the canonical example of AdS/CFT, to be precise the one where
N = 4 SYM theory with gauge group SU(N) and coupling gYM .[59] This is dual to type IIB
string theory with string length ls and coupling gs, which lives on AdS5 × S5 with AdS radius
L andN units of F(5) flux on S5.[61, 62] There duality maps the parameters gYM andN to the
parameters gs andL/ls on the string theory side, via[62]

g2YM = 2πgs 2g2YMN ≡ 2λ = L4/l4p, (2.2)

where we have defined λ as the ’t Hooft coupling g2YMN . The way we want to use the duality is
to be able to compute things on the gravity side, which we then want to be able to interpret on
the CFT side through the duality. For this, we want to get rid of as much stringiness as possible, as
loop corrections and string couplings make our lives difficult here. In order to accomplish this, we
will want the string coupling gs → 0, while having the length of the strings to be inconsequential
compared to the AdS radius, such that L4/l4p → ∞. Equation (2.2) then tells us that here we
want to take g2YM → 0, while simultaneously λ = g2YMN → ∞. In other words, for the gravity
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to be classical2 we need to be in the limit of infinitely strong ’t Hooft coupling. This shows that
the duality is of the weak-strong nature: in order to be weakly coupled on the gravitational side,
we end up in the limit of matrix large-N in the CFT.[61] This will turn out to be both a blessing
and a curse: by going to the classical limit on the gravitational side, we are able to actually perform
the computations required to explore extremely strongly coupled systems that are normally far
out of reach of ordinary perturbative treatments on classical (though high-power) computers. For
condensed matter physics, the presence of large-N spoils a lot of the fun, because this is never
physically realised in any real world system and any significant claims will always have to be taken
with the grain of salt that there could be significant corrections stemming from an expansion in
1/N . For the rest of this work, we will stay in the large-N limit. This is in a sense the ‘weakest’
form of the duality from the sense that we get the easiest to handle gravitational physics, at the cost
of only being able access a very restricted parameter space in the conformal field theory.

2.2. Renormalization Group and Geometry

Perhaps of greatest interest from a condensed matter perspective is the way that the Renormal-
ization Group (RG) flow manifests itself. Dating back to the 1950’s, the idea of the RG and RG
flow was formulated from the desire to look at the physics of systems at different energy scales.[68,
69] The canonical way of thinking about renormalization in field theory is through the idea of a
beta function. One considers a coupling constant g and looks at the properties of that coupling
constant at different energy scalesµ. When the energy scale is decreased, and more and more of the
higher-energy modes of the theory are thrown out, the effective coupling strength of the theory
changes. This is what the beta function of the theory encodes, and this can be stated as

µ
∂g(µ)

∂µ
= β(g(µ)). (2.3)

When β(µ) = 0, the scale transformation has no effect on the coupling strength and the theory
is said to be scale-invariant. The magic now happens when we take a certain theory, and consider
a series of copies of this theory, each evaluated at a slightly different, ever lower energy scale µ.
The parameter µ then tells us at each point along its evolution how the physics of the theory be-
haves. We can imagine this now as an extra dimension of the theory: in essence we are adding a
new ‘energy scale’ coordinate to the space-time of our theory,3 and we can track how it evolves.
The realisation was made that this maps neatly to holographic physics, where the boundary rep-
resents the original theory. The theory living at the boundary is commonly called the ultraviolet
(UV) theory: no degrees of freedom have been integrated out yet, and it contains all the micro-
scopics. Going deeper into the interior of this space-time, renormalization effects start to kick in,
and the deeper you enter into the ‘bulk’ of the geometry, the more you let the RG flow continue
into the infra-red (IR) of the theory. Taking the example of the CFT, we know that in a CFT we
must have β(µ) = 0, as conformal field theories by have scale invariance as one of their defining

2Here the low-energy limit is technically supergravity, but in the setups we use we only have classical Einstein gravity,
without supersymmetry.

3This is not an exact ‘energy’ dimension, but thinking about it proves to be enlightening in many respects, e.g. in sec-
tion 6.5.
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2. AdS/CFT: The Holographic Duality

properties. The bulk geometry must therefore reflect the same scale invariance, which turns out to
be manifestly true for empty AdS space-time. The mathematics are of course more involved, but
these statements together with the requirement of having a ‘boundary’ for the space-time quite
naturally leads to an AdS-like space-time. This is schematically represented in figure 2.1.

This consideration of RG flow brings to light the important aspect that, in a sense, what the
AdS/CFT correspondence is doing is geometrizing the RG flow of the quantum field theory into
a dynamical gravitational bulk, which is sometimes abbreviated in the statement [61]

RG = GR. (2.4)

This provides a compelling reason to use the holographic duality: in physics, we are often inter-
ested in low-energy excitations that come from some microscopically detailed theory. The details
of how to map microscopics to low-energy excitations is highly non-trivial. RG is one of the canon-
ical ways to get the low-energy physics. These can prove to be very complicated, and there are a lot
of limitating factors to their applicability, such as strong coupling and dense entanglement in gen-
eral.[70] Holography turns the game on its head here. The RG scale is a fundamental dimension
of the space-time, and once a black hole solution has been found, we can interpret what the RG is
doing in the field theory simply by looking to a different radial slice of the bulk space-time, overall
a much more straightforward affair.

IR UV
RG Flow µ

Bulk AdSd+1

Boundary
Rd−1,1

Horizon

Figure 2.1.: The AdS space-time can be constructed by an RG flow, where each value of µ is a
successive point in the flow.

2.2.1. Finite Temperature

Any real condensed matter system exists at finite temperature, simply by the third law of thermody-
namics. This has to be taken into account when doing computations and one must be concerned
with finite temperature field theory in order to make accurate predictions. This is in general quite
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tricky again, and once more holography offers a convenient way out. In the bulk space-time, we
can encode for a finite temperature field theory by placing a non-extremal black hole in the centre
of the space time. This modifies things. For example, the bulk scale invariance that was present
in the otherwise empty AdS space-time now no longer applies, as it is definitely possible to tell
how close to the black hole you are. This results in some more non-trivial RG flow. The resulting
flow is also rather pleasing: the black hole horizon turns out to correspond to a new infrared fixed
point in the RG flow, where the physics of the original theory have indeed been changed from
the ultraviolet scale invariant physics.[61] What is even more impressive is that these black holes
can encode not only for temperature, but they can also carry different charges, such as electric and
magnetic charge, which are crucial to condensed matter physics as they give rise to finite density
and magnetic fields in the boundary theory. This thesis always operates at finite temperature, and
therefore there will always be a non-extremal black hole of some type present in the centre of the
bulk space-time that is being considered.

2.3. GPKWDictionary

Now let us look at some specific examples, as the summary so far sounds intriguing, but it is not
yet a useful apparatus that can be used for performing computations. The interpretation and
use of many of the ingredients is expressed in what is commonly referred to as the dictionary,
which translates quantities between the boundary field theory and gravity sides of the duality. This
dictionary is named after Gubser, Polyakov, Klebanov and Witten.[67] Rather than just stating the
results, some of the results deserve a bit more attention.

2.3.1. Fields and Scaling Dimensions

Suppose we are in the large-N limit, where we should be able to use classical gravity in the bulk
geometry without quantum corrections as a dual to the field theory. If we have a single field ϕ
that we want to have include in the holographic dual, we have to find the solution to the Einstein
equations of motion of that field, under the condition that its boundary value

ϕ|Bdy → ji, (2.5)

as described above in section 2.1.1. To set things up, let us first look at the space-time itself.[71, 72]
We want to have a solution to Einstein’s equations, which can be derived by doing a functional
variation with respect to the curved metric from Einstein-Hilbert action

S =

∫
dd+2x

√
−g (R− 2Λ) , 2Λ = −d(d+ 1)

L2
(2.6)

where L is the AdS radius. Since we have d+ 2 dimensions in the bulk, the dual field theory will
live in d+1 dimensions. A metric which is a solution to the Einstein equations with negative cos-
mological constant is the aforementioned anti-De Sitter space-time, which can be parameterised
as

ds2AdS =
L2

z2

(
−dt2 + dz2 + dx⃗2

)
, (2.7)
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2. AdS/CFT: The Holographic Duality

wheredx⃗2 = dx21+dx
2
2+. . . runs over all purely spatial dimensions of the theory. The isometries

of this AdS space-time turn out to be identical to those of a d + 1 dimensional conformal field
theory – exactly what we expect from the way the duality was described in section 2.2.[60]

Let us assume now that the scalar field has a massm, and that it is perturbatively coupled into the
system, i.e., we assume a fixed background metric and we do not consider the back-reaction of the
scalar onto the metric. The contribution to the action of the scalar field is given by

Sϕ =

∫
dd+2x

√
−g 1

2

(
(∇ϕ)2 +m2ϕ2

)
, (2.8)

from which we can deduce that the scalar then obeys the equation of motion(
∇2 −m2

)
ϕ(x) = 0. (2.9)

We can use separation of variables to propose a plane-wave solution in the non-holographic direc-
tion, but leave the holographic direction as a general function of r. Under this assumption the
equation of motion expands to

∂2rϕ− d

r
∂rϕ+

(
ω2 − k2 − (mL)2

r2

)
ϕ = 0. (2.10)

This equation has a solution in the form of Bessel functions.[73] When looking at the r → 0
behaviour, which is the direction of the boundary, the series expansion at small r has two distinct
sectors, namely

ϕ ∼ ϕAr
d+1−∆ (1 + . . .) + ϕBr

∆ (1 + . . .) , (2.11)

where . . . are higher powers of r and ϕA,B are integration constants. ∆ are the solutions to

∆(∆− d− 1) = (mL)
2
. (2.12)

Depending on the value of ∆, one of these fields will be the dominant contribution in the region
near the boundary, and the other one will be subdominant. The accepted terminology in the
field for these terms is leading and subleading, respectively. Typically, the dominant term actually
diverges near the boundary, and is called the non-normalisable mode.4

Let us now assume that ϕA is the leading component, and ϕB is the subleading one. It is exactly
the leading component that is the one dual to the source of the operator in the side of the field
theory. When evaluating the boundary action coming from equation 2.8, this will turn out to
reduce to [74]

Sϕ,r→0 ∼
∫
dd+1x

√
−g̃ (ϕAϕB) . (2.13)

4I will not cover the subtleties such as the appearance of logarithmic terms in these expansions.
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Making the identification of ϕA with its source j, we are still left wondering what the operator
ϕB is.5 If we now remember the generating functional and the partition function, we know that
we can use it in order to compute expectation values:

⟨O⟩ ∼ δ

δj
Z[j]

∣∣
j=0

. (2.14)

Comparing this to equation (2.13), this gives us the identification with the vacuum expectation
value (VEV)

⟨O⟩CFT ∼ ϕB . (2.15)

This example glosses over some of the more subtle points here. One is that in the case of for ex-
ample the stress tensor, the expectation values might be naively divergent. This can be addressed
by instead putting these sources at some ϵ > 0 away from the boundary, and then adding coun-
terterms which kill any divergent behaviour, after which we can safely send ϵ→ 0 and recover the
renormalised boundary values.[75]. Another is what might when both modes are normalisable.
This turns out to allow for an admixture of boundary conditions into what we call the source
and the response. This actually turned out to have important consequences in several parts of this
thesis, for probe fermions in chapter 4 and for background space-time geometries and the thermo-
dynamic interpretation thereof in chapter 5.

Subtleties aside, we can identify two-point functions in momentum space by[74]

G(k) =
ϕB(k)

ϕA(k)
. (2.16)

From the point of view of condensed matter physics, we always prefer to use the retarded Green’s
function to study the two-point properties of our system. This can be achieved by imposing in-
falling boundary conditions on the scalar field, meaning that towards late times, the wave in the
field theory will be travelling towards and eventually (partially) falling into the black hole hori-
zon.

All this together gives us an entry in the dictionary, where we look to compute the solutions to the
gravitational equations of motion, and then pull this through the duality to the boundary field
theory by properly identifying source and response components. In this simple example we only
looked at two-point functions, but one can look at any n-point function in general.

There are many more entries in the dictionary. Another interesting quality is how gauge fields
and symmetries interact. The general identification here is that global symmetries in the bound-
ary will correspond to local symmetries in the boundary. This is for example made explicit when
considering a U(1) gauge field in the boundary. The corresponding local U(1) symmetry is dual
to a global U(1) symmetry in the boundary. In general, a gauge field will correspond to the con-
served current that is associate with the related global symmetry. A more comprehensive, but by
no means complete, overview can be found in table 2.1 below.[61]

5There are some exact factors of r to be taken into account, but these are not essential to the schematic discussion here.
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Field Theory Gravity

LargeN Classical gravity
Operator O with dimension ∆ Field ϕwith massm
Source of operator O Leading behaviour of ϕ
Vacuum expectation value ⟨O⟩ Subleading behaviour of ϕ
Global symmetry Local symmetry
Stress tensor Gravitons
2-form current 2-form field
Finite temperature Non-extremal black hole
Finite chemical potential Charged black hole
Free energy Value of Euclidean on-shell action

...
...

Table 2.1.: Some basic dictionary entries which feature in this thesis.

2.3.2. Black Hole Thermodynamics

Mentioned before was that black holes in the interior of the space-time are able to encode for finite
temperature in the boundary CFT. This is actually tightly linked to discoveries by Bekenstein and
Hawking in the 1970’s that black holes carry entropy and can emit thermal radiation.[76, 77] The
laws we are familiar with in our normal everyday thermodynamics have their own parallels in the
form of the laws of black hole thermodynamics. Like the first, second, and third law of ordinary
thermodynamics, there are laws of black hole thermodynamics where we can identify black hole
quantities like surface area and surface gravity with entropy and temperature, respectively.

The black holes in these curved space-times allow for a wide variety of interesting phenomena,
unlike their closely related cousins that live in flat space. The applicability of the ‘no-hair’ theorem
is an example of this: in flat space, it is not possible for black holes to have any kind of structure
on the horizon.[78] Instead, they are uniquely determined by the parameters charge, mass and
angular momentum, which are just global quantum numbers, without any more structure. This
no-go theorem does not hold in negatively curved space-time and therefore we can have all kinds
of ‘hair’ on our black holes, such as scalars that can even acquire some spatial modulation.[79]
Another example is black hole evaporation. Astrophysical black holes in flat space evaporate over
time.6 A peculiar property of AdS space-time is that it takes only a finite time for massless objects,
for example photons from Hawking radiation, to go from the centre of AdS space all the way to
the boundary. This is in stark constrast to geodesics of massive particles, which will never reach the
boundary in finite proper time. If one then assumes that any energy that these photons could carry
is reflected back from the boundary into the interior of the space-time, eventually the reflected
radiation will end up in thermal equilibrium with the radiation emitted by the black hole. As
such the black holes can form an equilibrium state.[80] Therefore unlike in flat space, stationary

6For astrophysical black holes this happens extremely slowly, even on cosmological timescales.
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black holes in AdS can exist and we can understand their dual to be some very late-time field theory
in full local thermal equilibrium.[61]

2.3.3. Top-Down vs Bottom-Up

One of the open problems in the field of holography is that while it is conjectured that the
AdS/CFT correspondence holds quite generally, we only have a limited number of examples
where the duality is known to be exact. In order to understand fully what system we are describ-
ing and that the duality remains valid, we can start to play mathematical tricks with these known
exact correspondences, such as dimensional Kaluza-Klein reductions. Together with convenient
limits we can have a good idea what the conformal field theory is on the field theory side of the
duality, while ending up in a gravitational theory that is more manageable than full-blown type
IIB string theory, just to give an example. A side effect of this is that almost invariably, Kaluza-
Klein reductions which get rid of some dimensions give rise to extra dilatonic scalar fields that
get coupled into the gravitational side.[61] This general framework is known as the top-down
approach to AdS/CFT. It is not always the most convenient approach to take, as the actions can
either be difficult to deal with or in our case uninteresting from a condensed matter point of view.
This is for example due to those extra scalars. The holographic dictionary in table 2.1 has some
relevant entries such as the free energy and chemical potential, but these scalars have no good in-
terpretation and they certainly do not turn up explicitly in real-world condensed matter systems.
From the top-down approach, it can be very hard or impossible to get the exact ingredients in
terms of fields and operators that you would like to describe on the condensed matter side.

The bottom-up approach attempts to remedy this problem by taking a different point of view
of the duality. It treats the duality as a more phenomenological tool by simply choosing some ele-
ments that have in top-down models been shown to have a certain dual interpretation and building
an action from that and trusting that the correspondence will still apply. The downside of this is
that while we can compute quantities like retarded Green’s functions and vacuum expectation
values this way, there is no way of finding out what the exact Hamiltonian is of the theory dual
to the gravitational action we have posed. As a result, the duality can now not be used to find
the physics of a specific boundary theory, but it can give generalities about the physics of strongly
coupled field theories. In this work, most of the models presented are of the bottom-up variety,
as the translational symmetry breaking that we employ does not follow naturally from top-down
constructions.

2.4. Holographic Applications to Condensed Matter Physics

The stage is now set, we have a way of posing our problem and a large number of questions that
we would like to address. Let us see how the holographic duality can aid us in this. While the
statement of the duality is clear, and the weak-strong nature of it is appealing for the purposes of
performing computations, there is some more machinery to discuss.
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2.4.1. Hydrodynamics

It turns out that the duality can encode for real-world physics in some surprising ways. What we
are often interested in, as mentioned earlier, is the long-wavelength, low energy limit of the physics
of the boundary theory. This can be achieved by doing what boils down to a gradient expansion,
assuming that the only fluctuations that play a role are small and slow. Degrees of freedom are
always slow when they correspond to conserved or nearly conserved quantities. Quantities that
are not conserved for any perturbation in them will dissipate and thermally equilibrate quickly,
without much of a chance to propagate over wavelengths. On the other hand, conserved quan-
tities obey many continuity equations, which prevents them from doing exactly this, and instead
perturbations will propagate for a long time or undergo some diffusion process in order to return
to local equilibrium.[81] The gradient expansion of the theory into these slow modes is often syn-
onymous with the hydrodynamics of the theory if they are the only slow modes in the theory. This
is a more general consideration than what we would typically call hydrodynamics, after all it does
not concern the flow of a real-world physical fluid like water flowing around in our field theory.
Instead, the hydrodynamics we are concerned with would describe a relativistic fluid.7 This is a
powerful machinery, and it is able to include relevant effects such as (perturbative) ionic lattices
and external electric and magnetic fields.

The applications to holography are quite easy to state and is related to a by now somewhat famous
result. For a relativistic fluid, the stress tensor is given by

Tµν = (E + P )uµuν + Pgµν +Πµν (2.17)

whereE,P are the internal energy and pressure anduµ is the fluid velocity.[81] The first two terms
describe ideal hydrodynamics. Πµν is the interesting part, the part where the derivative expansion
comes into play. This can be a complicated term, but crucially it contains a set of constants that
are known as transport coefficients such as the shear viscosity and bulk modulus of the fluid we are
considering. However, these are a priori just a set of coefficients without a particular value: they
represent the microscopic behaviour of the theory, and while their presence may be universal, their
values are anything but that.[81]

This is where we can again use holography. In the gravitational dual, it is possible to compute some
of these transport coefficients directly. This is one of the ways in which we can learn a lot about
the field theory by looking at the gravitational side. While we will be considering only linear fluc-
tuations in hydrodynamics, the mapping between gravity and hydrodynamics goes much deeper,
showing that the Navier-Stokes equations can actually be found from the Einstein equations.[83,
84]

A particularly famous result that is related to this is the computation of the shear viscosity.[85,
86] The first-order terms in the gradient expansion of equation (2.17) will for example contain
the shear viscosity, η. For example, to first order, the hydrodynamic constitutive relations in the

7There are other ways of constructing hydrodynamics, for example in a non-boost invariant setting, which do not feature
in this work.[82]
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Landau frame are given by [81]

Tµν = Euµuν + P∆µν − ησµν − ζ∆µν∂λu
λ +O(∂2), (2.18)

where ∆ is a projector with the flat space metric

∆ = ηµν + uµuν , (2.19)

ζ is the bulk viscosity and σµν is the transverse traceless symmetric tensor [81]

σµν = ∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂µu

µ

)
. (2.20)

For AdS black holes at zero density, it actually turns out that this shear viscosity is related to the
zero-frequency scattering cross-section of the black hole. This in turn can be expressed in terms of
the area and volume of the black hole and therefore also the entropy of the black hole by the laws
of black hole thermodynamics. When including geometric factors, this yields the ratio

η

s
=

1

4π

ℏ
kB

. (2.21)

This ratio of viscosity to entropy is known as the minimal viscosity, as it is conjectured to be a
lower bound on the viscosity of a strongly interacting field theory.[85] Remarkably, this bound also
seems to hold at finite density. Most strongly interacting materials found in nature are nowhere
near this bound though. Only the quark-gluon plasma, which was studied in detail around the
same time as the minimal viscosity was discovered, has a surprisingly small value for this ratio, even
though it does not have ingredients like the large-N of holography.[87] A charitable interpretation
can see this as a hint that holography can indeed tell us useful things about the real world.

2.4.2. Conductivities from Holography: Real-time Information

Holography is not only limited to computing hydrodynamic transport coefficients. One of the
more technically useful aspects of holography is that it gives access to real-time information about
the dual system. This is in stark contrast to typical field theoretical results, where it is often neces-
sary to work in imaginary time to make computations feasible. Finite temperature is then encoded
in the radius of the time circle in imaginary time. That in itself is not a problem, but the difficulties
come when trying to translate back into real time, as that is what we observe. The Wick rotation
that has to take place is technically very challenging, and often means that it is impossible to get
anything but the most general scaling dimensions out.[88] Holography is in this aspect very differ-
ent. Since temperature is already encoded in the thermodynamics of the black hole8, it turns out
that computing real-time properties of field theory involve driving the holographic system out of

8The temperature equals radius in imaginary time still shows up in black hole physics too. For the Schwarzschild solution
in flat space for example, one can rotate to a Euclidean space-time, where the temperature is found from the radius of
the time circle is fixed in order to avoid a conical singulartiy in this space-time. This is a more ad-hoc argument than
the original derivation of black hole temperatures, but it is an interesting connection.
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equilibrium, and looking at the real-time evolution. This gets us real-time field theory observables
without having to resort to any Wick rotations.[71]

For the sake of illustration, let us consider the electrical AC conductivity of the field theory. We
can choose to take a static black hole in equilibrium and apply a time-dependent electric fieldE(t)
to it. This will in general drive the black hole out of equilibrium. Let us assume that this field is
oscillating at some finite real frequencyω. This electric field is assumed to be a small perturbation,
which does not back-react on the initial black hole background. The electric fieldE is then induces
a current response J , and their proportionality is the conductivity σ:

J(ω) = σ(ω)E(ω). (2.22)

In a conformal field theory at zero density, on dimensional grounds this conductivity takes the
form

σ(ω) ∼ ωd−2, (2.23)

where d are the number of transverse spatial dimensions. Since we typically consider AdS4, our
boundary will have d = 2 transverse dimensions and hence σ becomes exactly frequency inde-
pendent.[61]

That is a fairly trivial result, and we do not need to rely on any holographic computation to find
this out. At finite temperature, one can no longer rely on dimensional analysis. Nevertheless,
the holographic computation of this result at finite temperature is rather straightforward at zero
chemical potential and it is a good starting point to show the power of holography. In order to
compute the conductivity, we will make use of linear response theory.[88] In linear response, we
know that we can find the conductivity from the retarded Green’s function via

σ(ω) =
1

iω
GRJJ(ω). (2.24)

The retarded Green’s function is that of the current operator, which is defined by

GRJJ(ω) = −i
∫
dtdxeiωtΘ(t)

〈[
J(t, x), J(0, x)

]〉
. (2.25)

Θ(t) is the step function that takes care of the time ordering here such that t > 0. In a previ-
ous chapter, we encountered exactly how to compute Green’s functions by considering leading
and subleading behaviours of a field theory. In this case, we now need to consider a black hole in
order to do the computation at finite temperature. As we are at zero density, this will be the AdS-
Schwarzschild black hole, which can be parameterised by only its horizon radius which sets its tem-
perature after scaling out some other parameters such as the AdS radius and Newton’s constant.
In order to find the conductivity, we need the bulk dual of the current. What we now need to do is
find the Green’s function that is related to turning on a perturbative electric fieldEx = Ftx. For
a spatially homogeneous electric field, in terms of the gauge field this will correspond to turning
on a component Axdx which in Fourier space will have behaviour like Ax = ax(r)e

−iωt. The
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2.5. Finite Density: The Reissner-Nordström Black Hole

exact boundary behaviour can be extracted by carefully looking at the near-boundary expansion,9

which will find that the expansion forAx goes as [61]

Ax ∝ a0x +
a1x
r

+ · · · , (2.26)

where a0,1x are the leading and subleading behaviours near the boundary, respectively. One can
solve for the equations of motion, and the condition for the retarded Green’s function is fixed by
choosing the infalling boundary conditions.[71] The solution10 will have

a0x = c, a1x = iωc (2.27)

for some constant c. Using the dictionary to extract the Green’s function from holography, we
can find that for any temperature

σ(ω) =
1

iω
GRJJ(ω) =

1

iω

a1x
a0x

= 1. (2.28)

This is exactly the result is found for the zero-density CFT, since it has no dependence on fre-
quency.[64] More importantly though, there is no dependence on temperature either, which one
might not have expected. At zero temperature, there is no scale in the CFT, so there cannot be
any identifiable features at some ω, as this would indeed be an indication of some scale. However,
temperature is a scale in the theory, as it can be combined with kB for example to create an energy
scale. It is then surprising that the introduction of this scale does not appear to have any effects.
[61]

2.5. Finite Density: The Reissner-Nordström Black Hole

Zero density is not the most interesting system though. Apart from some very fine-tuned systems,
such as graphene at exact charge neutrality, this is not a system we are likely to see appear in exper-
iments.[89] Luckily going to finite chemical potential in holography is a rather simple affair, and
it does not require the development of a lot of new machinery. The star player in respect has long
been the Reissner-Nordström black hole. This black hole can be constructed as a compactifica-
tion of some 11-dimensional M -theory, which we will not go into the details of.[90, 91] For our
purposes, the starting point will be the Einstein-Maxwell action

S =

∫
d4x

√
−g

(
1

2κ2

[
R− 2

Λ

L2

]
− 1

4e2
FµνF

µν

)
, (2.29)

whereF = dA is the field strength for theU(1) gauge fieldA. We will always use the units where
2κ2 = 16πG = 1, e = 1,Λ = −3, L = 1. Note that here, in contrast to the scalar example
that was discussed in the section above, this gauge field is coupled in to gravitation action in the

9For the gauge field no holographic renormalisation is necessary/
10See box 7.3 [61]
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full action, as such the back-reaction of the gauge field on the metric is taken into account. The
equations of motion that arise can with some manipulation be written as

Rµν + 3gµν =
1

2

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
,

∇µF
µν = 0.

(2.30)

This set of equations admits a black hole solution with a finite charge with AdS4 asymptotics. The
black hole can be written using a metric

ds2RN =
z2+
z2

(
−f(z)dt2 + 1

f(z)
dz2 + dx2 + dy2

)
A = Atdt = µ

(
1− z

z+

)
dt

(2.31)

The emblackening factor f(z) for Reissner-Nordström is given by [90, 92]

f(z) =

(
1− z

zh

)(
1 +

z

zh
+

z

zh

2
− µ2z3

4z3h

)
. (2.32)

The emblackening factor has two roots at z+, z−, which are the locations of the outer and inner
horizon at finite temperature respectively. At zero temperature these collapse to a double root. We
will only be considering finite temperature here, and therefore we will treat our space-time as if it
ends at zh ≡ z+. We will always be able to rescale the horizon radius such that zh = 1, for both
ease of notation and later numerical convenience.

However, there are some scenarios where keeping the horizon radius explicit is useful, for example
when computing thermodynamic susceptibilities, as was done in section 6.7. Most observables
that are directly computed are typically given or found in units of horizon radius as that is often
a free parameter in the solutions. This has a deeper root in the diffeomorphism invariance that
is encountered in the gravity side. For practical purposes, that means that all the parameters we
referring to, whether they are radii, expectation values, or other objects, have to be phrased with
reference to some scale. In the dual boundary, zh has no natural meaning, but there we can express
all dimensionfull quantities in terms of the chemical potential.11 When we state for example that
we take the parameterµ = 2, that is shorthand forµ = 2zh. The boundary of the AdS space-time
is located at z = 0 in this parametrization.

2.5.1. Scaling Properties of Reissner-Nordström

Another key property of the RN black hole is its particular near-horizon geometry. If we depart
from the metric as presented in equation (2.31), we can take the horizon to be located at z = 1. In

11In relevant condensed matter systems, such as the cuprates, the typical size of µ is about 1 eV. In natural units, this
corresponds to a temperature of about 104K .Room temperature would be on the order of T = 3×10−2µ, to give
a sense of scale.
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2.5. Finite Density: The Reissner-Nordström Black Hole

a series expansion around z = 1, the emblackening factor will expand as

f(z) ≈ f ′(1)(z − 1) +
1

2
f ′′(1)(z − 1)2 + . . . , (2.33)

where black hole thermodynamics tells us (see equation (2.40) below) that f ′(1) ∝ T . At T = 0
then, we can find after a rescaling of the radial coordinate that the near-horizon geometry up to
some constant factors can be written as

ds2 =
1

ξ2

(
−dt2 + dξ2

)
+ dx2 + dy2. (2.34)

This geometry is now no longer AdS4, but rather AdS2 ×R2 in coordinates (t, ξ)× (x, y).12 A
similar metric can still be found by making the right choices of coordinate substitutions in a series
expansion inT forT/µ≪ 1.[71, 93] What is interesting here is the symmetries of this AdS2×R2

space-time. In empty AdS4, there is a global scaling symmetry

(t, x, y, z) → λ(t, x, y, z). (2.35)

In this AdS2 ×R2 case there is a symmetry that goes as

(t, ξ) → λ(t, ξ), (x, y) → (x, y). (2.36)

When writing this in terms of a dynamical critical exponent z, which is associated with a scaling

t→ λt, x→ λ
1
z x, (2.37)

it can be seen that this AdS2 × R2 near-horizon geometry corresponds to a z → ∞ system. In
other words, the spatial dimensions completely decouple from the temporal and radial dynamics.
This is exactly the local quantum criticality that is seen in the strange metal.[50, 90] This local
quantum criticality is a feature of the near-horizon geometry, and therefore only of the lowest
energy scales that enter in the problem, near the end of the RG flow. In the UV of the theory this
symmetry is not present, and therefore this is an emergent property of the system. This peculiar
fact, that the RN black hole turns out to have an emergent quantum critical sector, is one of the
reasons that the string theory community has been looking to it as a point of departure for looking
at interesting condensed matter systems such as the strange metal. This emergent quantum critical
sector is unique and not found in any conventional condensed matter theory, however it turns out
to be one of the most natural and simple to find things when doing holography.[61]

2.5.2. Thermodynamics of Reissner-Nordström

The RN black hole is dual to a quantum field theory at both finite temperature and chemical
potential. For this solution, it is possible to evaluate the Euclidean on-shell action IE , which ac-
cording to the dictionary in table 2.1 yields the thermodynamic potential

Ω = TIE . (2.38)
12Or, in general, AdS2 ×Rd when starting from AdSd+2.
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2. AdS/CFT: The Holographic Duality

From this it is possible to compute all thermodynamical quantities such as entropy and compress-
ibilities in terms of derivatives of this free energy.[94–96] As luck would have it, in the Reissner-
Nordström black hole some of these quantities can actually be evaluated directly from the near
boundary behaviour or horizon integrals through standard dictionary entries without having to
compute the entire free energy and compute derivatives. This is especially useful in numerical set-
tings, where computing and finding the derivatives of the free energy by integrating the on-shell
action can be very challenging. Rescaling all observables to the chemical potential µ13 and one can
find out that there is also a finite charge density

ρ

µ2
= −∂zAt

∣∣∣∣
z=0

=
1

µ
. (2.39)

The temperature of the black hole can be evaluated by evaluating the surface gravity of the black
hole and is given by [76, 77]

T

µ
=

∣∣f ′(1)∣∣
4π

=
12− µ2

16πµ
. (2.40)

The black hole entropy, which via black hole thermodynamics can be related to black hole surface
area, is given by

s =
S

µ2
=

4π

µ2
. (2.41)

This formula for the entropy may seem innocuous, but there is some important physics in it. As
can be deduced from equation (2.40), the zero-temperature limit corresponds to µ→

√
12. One

of the characteristics of the RN black hole is that the zero temperature limit has a finite horizon
area.[92] Since the entropy is proportional to the horizon area, this means that the entropy is still
finite even at zero temperature. For condensed matter systems, which we are interested in, this is
a large complication, as they have no entropy at T = 0.14 Naturally, one should feel sceptic of
the results coming out of RN for this very reason. This does not mean though that everything
coming out of this model is useless. In reality, what it means is that we should be keeping an eye
open to places where this might become an important factor and either adapt our interpretations
accordingly, or alternatively switch to other types of black hole solutions where this issue does
not appear. The more cynical view is that this is a fundamental sickness of the AdS-Reissner-
Nordström black hole for the purposeses of condensed matter physics and a strong argument for
the use of other black hole solutions such as the Gubser-Rocha black hole of section 2.6, which is
why it has been used for the majority of chapters 5 and 6.[98, 99]

Regarding the energy density and pressure, we can compute these via the expectation value of
the stress-energy tensor

〈
Tµν
〉

of the field theory by standard holographic renormalization tech-
niques. In this particular case, that is done by constructing

T̃µν = 2
(
Kµν −Khµν

)
− 4hµν , (2.42)

13For the sake of simplicity, I have not written down the black hole in terms of its charge Q, which is the more usual
starting point, but rather already in terms of µ. These two quantities are of course related, and can be expressed in
terms of each other.

14Zero-temperature entropy does arise sometimes, for example in frustrated systems, but these are not in the scope of this
thesis.[97]
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2.6. Einstein-Maxwell-Dilaton Theory

where hµν is the induced metric at a slice at a constant radial z = ϵ away from the boundary,
Kµν and K are extrinsic curvature and its trace, respectively, and µ, ν run over the non-radial
indices (t, x, y). The constant −4 arises from the Gibbons-Hawking-York counterterm.[75, 100]
When appropriate counterterms are taken into consideration, in the limit ϵ → 0 the following
expression becomes finite, yielding us the stress tensor

〈
Tµν
〉
= lim
ϵ→0

1

ϵ
T̃µν . (2.43)

Evaluating this in the homogeneous Reissner-Nordström black hole this gives

−T tt = 2T xx = 2T yy = 2 +
µ2

2
. (2.44)

This means that the corresponding internal energy and pressure are given by

E

µ3
=

2P

µ3
=

1

µ3

(
2 +

µ2

2

)
. (2.45)

Note from this that this is a conformal system as the trace of the stress tensor vanishes〈
Tµµ

〉
= E − 2P = 0. (2.46)

2.6. Einstein-Maxwell-Dilaton Theory

The Reissner-Norström black holes that have been discussed so far are ubiquitous in AdS/CFT,
as they are just about the simplest system that can provide a finite chemical potential. The ease of
computations in the system has been the main driver for its popularity. The thermodynamics of
the RN states are however rather problematic, as there is no condensed matter system we could
want to describe that has the property of finite ground-state entropy. In this sense, the RN black
hole is only one of a much larger family of black holes which can have different types of near-IR
scaling behaviours.

A part of this family of black holes can conveniently be explored by coupling a dilatonic field
into the theory.[61, 101, 102] Dilatons are rather general in holography, as mentioned above in
section 2.3.3. These dilatonic fields are dynamical and back-react onto the geometry, but more
important is the way in which they couple to the Maxwell sector. A generic EMD Lagrangian
where a single dilaton field ϕ is coupled in can be written as

LEMD = R− Z(ϕ)

4
FµνF

µν − 1

2
∇µϕ∇µϕ− V (ϕ). (2.47)

There are here two coupling functions, Z(ϕ) and V (ϕ). V is the potential for the scalar, which
also includes the cosmological constant in its series expansion, V (0) = 2Λ.
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2. AdS/CFT: The Holographic Duality

Often, V (ϕ) can take the form of a sum of exponentials, sometimes balanced to form hyperbolic
geometric functions. The coupling function Z(ϕ) presents a modification of the coupling con-
stant of the Maxwell sector in the theory. This changes the effective value of the charge density in
the system, as through the holographic dictionary

ρCFT = Z(ϕ)F tz
∣∣∣∣
z=0

. (2.48)

Compare this to the Einstein-Maxwell setup that was used for the RN black holes, whereZ(ϕ) =
1. A crucial difference with the RN black hole is in the low-temperature IR geometry. Where for
RN we are left with a finite-size extremal black hole that carries a large amount of zero-temperature
entropy, the general EMD black holes can have horizons that keep shrinking all the way to zero
temperature, giving the entropy a temperature dependence

S ∼ Tα, α > 0. (2.49)

The form of the potentials V,Z is generically what determines the scaling properties of the solu-
tions.[101, 102] The dilaton takes on a large value at the horizon, and therefore in order to under-
stand the horizon scaling we only need to consider what the leading near-horizon behaviours of
the potentials are.[102] In typical top-down cases, the exponentials scale near the horizon like

Z ∼ eϕ, V ∼ e−ϕ. (2.50)

But, as we have seen before, in holography we are not bound by only exact top-down constructions,
and we are able to take other values for the parameters. The potentials are typically parametrized
by the factors γ, δ as

Z = eγϕ, V = V0e
−δϕ. (2.51)

The scaling analysis in these theories is a bit more complicated than in the Reissner-Nordström
case. In standard coordinates, the metric of the deep IR at zero temperature can be described as

ds2 ∼ r−2θ/d

(
−r2zdt2 + r2dx⃗2 +

1

r2
dr2
)
. (2.52)

Here the coordinate r ranges from the interior r = 0 to the boundary r = ∞. The parameter
z is one we have encountered above – this is the same dynamical critical exponent as before. The
parameter θ is the hyperscaling violation exponent.[103–105] In a very rough description, a theory
with parameters (z, θ) will display scaling of the thermodynamical observables as if the theory
has dynamical critical exponent z but lives in d − θ dimensions.[104] The choices made for the
coupling exponents γ, δ can be mapped onto resulting values of z, θ.[102] It is important that
in the presence of θ ̸= 0, the near-IR theory is no longer scale-invariant, but rather it is scale-
covariant, with under the scale transformation[104]

t→ λzt, x⃗→ λx⃗, r → λr. (2.53)

The metric then transforms as
ds2 → λ2θ/dds2. (2.54)
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There are several interesting ideas that we can consider for θ, z. For example, θ = d − 1 can
be thought of as describing the physics of a system near its Fermi surface, which is always has a
lower dimensionality than the dimensionality of the theory.[104] For reasons that will become
clear soon, the most interesting value in relation to the strange metal is the rather peculiar choice
of z,−θ → ∞.

2.6.1. The Gubser-Rocha Conformal-to-AdS2 Metal

When considering the thermodynamics of these EMD systems, we can find that the entropy will
scale with temperature as

S ∼ T (d−θ)/z. (2.55)

If we wish to describe a strange metal, we would ideally like to consider an entropy that scales as
temperature like

S ∼ T 1. (2.56)

This is the well-known Sommerfeld entropy, also experimentally observed in strange metals.[52]
To take full advantage of the power of holography we would want to do this in a setting where we
are locally quantum critical.[50] In other words, that means z → ∞. These two ideas can only
both be satisfied in the limit

z,−θ → ∞, such that
−θ
z

= 1. (2.57)

A hyperscaling violation exponent of minus infinity is rather strange, and definitely is hard to
think about in terms of an effective dimensionality of a problem. Nevertheless, it is a well-defined
limit.[101, 102] It has been shown that these models can reproduce the linear-in-T resistivity of
strange metals as well.[106] To be more exact, these systems correspond to the choice γ = −δ =
1/

√
3 in term of the coupling exponents. That means we have that the following couplings

Z(ϕ) = eϕ/
√
3, V (ϕ) = 2Λ cosh

(
ϕ√
3

)
. (2.58)

This choice of potential is consistent with what was discussed earlier, as it is only the leading expo-
nential behaviour that is relevant in the IR, so only one of the exponential terms in the hyperbolic
cosine will be of relevance there. This potential has the added benefit of having the property that

V ′(ϕ)

∣∣∣∣
ϕ=0

= 0, (2.59)

which allows for proper AdS asymptotics.[102] This system turns out to have an analytical solution
in the form of a black-brane solution.[98, 107] The metric, scalar and gauge profiles of this solution
can be parametrized in terms of the charge Q of the black hole for a horizon radius of zH = 1
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as
ds2 =

1

z2

(
−f(z)dt2 + 1

f(z)
dz2 + g(z)(dx2 + dy2)

)
,

ϕ =

√
3

2
log (1 +Qz) ,

A =
√
3Q(1 +Q)

1− z

1 +Qz
dt.

(2.60)

The two functions f, g are given by

f(z) =
(1− z)

g(z)

(
1 + (1 + 3Q)z + (1 + 3Q(1 +Q))z2

)
g(z) = (1 +Qz)

3/2
.

(2.61)

The chemical potential is given by µ =
√
3Q(1 +Q). In contrast to the RN solution, from a

simplicity standpoint the preferred parameter for this theory is Q, as the expressions in terms of
the chemical potential, though equally valid, are simply horrible to read. Nonetheless, in a similar
fashion to RN we will prefer to think of observables and parameters in units of chemical potential,
as that is a scale we can make reference to when looking at physical experiment. Black hole charge
itself does not have a physically relevant measure. The thermodynamics of this state are given by

T =
3
√
1 +Q

4π
⇒ T

µ
=

√
3

4π
√
Q
. (2.62)

The entropy is again given by the horizon area

S = 4π

∫ √
h = 4π (1 +Q)

3/2 ⇒ S

µ2
= 4π

√
1 +Q

3Q
, (2.63)

and the charge density is 15

ρ = µ (1 +Q) ⇒ ρ/µ2 =

√
1 +Q√
3Q

(2.64)

As can be expected, the temperature dependence of the thermodynamical observables is clearly
different from those in the Reissner-Nordström black hole. It is easiest to think in the parameter
Q. The temperature scales as

T/µ ∼ Q−1/2, (2.65)

so at low temperatureQ is large. The entropy similarly scales as

S/µ2 ∼ Q−1/2 (2.66)

in the large-Q regime, so indeed we have that

S

µ2
∼ T

µ
(2.67)

15The factor Z(ϕ) mentioned earlier in equation (2.52) is absent, as Z(ϕ(z = 0)) = Z(0) = 1.
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at low temperatures T/µ ≪ 1. The scaling at large T is different, as for large T we have that the
parameterQ is small, and therefore

S/µ2 =
4π

√
1 +Q

3Q
∼ 1/Q ∼ T 2. (2.68)

The charge density also shows two different regimes. For largeQ the charge density scales as

ρ/µ2 ∼ Q0 ∼ T 0, (2.69)

while for smallQ the constant term dominates in the numerator, meaning that

ρ/µ2 ∼ Q−1/2 ∼ T 1. (2.70)

The stress tensor in this system requires a bit more consideration. The full discussion of this has
been the subject of one of the papers that make up this thesis, as given in chapter 5. Other ref-
erences that have dealt with this topic have overlooked certain subtle points in relation to near-
boundary expansions of the analytical solution when considering quantization choices.[108, 109]
The resulting stress tensor including counterterms is now expressed as

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij

[
cϕϕN

z∂zϕ+ Λϕϕ
2/2
]
, (2.71)

whereNµ is the outward-pointing unit normal vector. The coefficients are then fixed to be

Λϕ = 2cϕ − 1, cϕ =
1

3
. (2.72)

The first of these is easy to understand, as both terms can contribute to cancelling the lowest-order
divergence. The argument for choosing cϕ = 1/3 is more subtle, but essentially boils on choosing
the scalar to be a marginal operator in the theory. The resulting thermodynamics are that of a one-
charge theory, rather than the generic two-charge that would arise from coupling in a scalar to the
boundary theory. The full details can be found in chapter 5. The resulting expressions for the
stress energy tensor are rather simple,

−T tt = 2T xx = 2T yy = 2(1 +Q)3. (2.73)

Hence the energy and pressure can be expressed as

E

µ3
=

2P

µ3
=

2

µ3
(1 +Q)

3
=

2

3
√
3

(
1 +

1

Q

)3/2

. (2.74)

where again we recover a conformal theory.

2.6.2. DC Conductivity in the Gubser-Rocha Model

The DC conductivity of this system is formally divergent. The system is translationally invariant,
so momentum is conserved and there is no resistance in the system to a DC perturbation. There is
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a large amount of spectral weight contained in a δ-peak located at the origin. An important result
was found in massive gravity variations on the RN and GR model where momentum is no longer
conserved.[106, 110–112] Massive gravity is a slightly peculiar construction, where a frame-fixing
occurs due to the introduction of a reference metric. This breaks diffeomorphism invariance, and
as a result the graviton acquires a mass. Massive modes propagating in the bulk space-time now
only have a finite lifetime, so this causes linear momentum to be able to decay in the system. Since
momentum is now no longer conserved, this renders the DC conductivity finite. Spectacularly, in
the GR model when momentum is indeed not conserved, the resistivity acquires a dependence

ρDC ∝ T +O(T 2). (2.75)

This is a phenomenal result, and we might expect to be able to find this in other systems where
conservation of momentum is removed through more realistic methods, as massive gravity, though
holographically a sound theory, has little bearing on the physics in the lab. In particular, one could
break translations into an (ionic) lattice, which has indeed been shown to have similar effects in
terms of breaking momentum conservation.[110, 111] This is the theme of this thesis.

2.7. Breaking Translational Symmetry

The allusion to massive gravity models just made aside, all results so far have got one thing in com-
mon, and that is that all models are perfectly translationally invariant, momentum is still perfectly
conserved. The two transverse directions (x, y) do not contain any structure at all. Of course in
actual physical systems, this is not the case. For Drude-like transport, which is observed in even the
strange metals at low frequency, the source of momentum dissipation is not something as holo-
graphic and weird as a ‘massive gravity’ construction. Instead, we know very well that translational
and rotational symmetries of space-time are broken into some crystal lattice.[113] There are several
ways to break translational symmetry in holography. The computationally more straightforward
ones are models that break translational symmetry in a homogeneous way, which means that the
differential equations that describe the systems are only dependent on the radial coordinate and
any dependence on the transverse coordinates is engineered to be absent.[114–117] This again is a
very particular construction, and if we are to do an honest job using holography to model physical
systems in the presence of a crystal lattice we should have an actual lattice present. This requires
a periodic modulation that captures both the rotational and translational properties of a crystal
lattice. The way to really achieve that is to let go of the simple radial-only models and turn the
problem of solving for the bulk geometry into a set of partial differential equations, that now can
also depend explicitly on the transverse coordinates as well as the radial coordinate. This type of
symmetry breaking is often called inhomogeneous symmetry breaking, and it is of this type that
the remainder of this thesis explores the intriguing consequences.
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The effort of breaking translational symmetry inhomogeneously in holographic condensed matter
systems goes back over a decade. The basic idea rather simple. Translational symmetry breaking is
introduced explicitly by modulating one of the source terms of the field theory. There are different
setups with different fields being sourced, and there are many things that can be computed, but
first let us focus on the generics, how the translational symmetry is broken and what the general
improvements in the works related to this thesis have been to various existing setups in order to
get more accurate results. [107, 111, 114, 118–124]

Now let us finally break the translational symmetry, but keep the setup static, without any time de-
pendence. While we can in principle use holography to compute non-stationary, time-dependent
black holes, this is technically extremely challenging, not to mention in the presence of transla-
tional symmetry breaking.[125] As mentioned before, the static solution is thought to describe
late-time locally thermally equilibrated states.

3.1. Spatial Modulation

The first real calculations using holographic lattices were done by Horowitz, Santos and Tong,
where they took Reissner-Nordström and imposed a lattice in two different ways, first by modu-
lating the the source term of an extra backreacted scalar field, and also by modulating the chemical
potential.[118, 120] The modulation of the chemical potential is what comes closest to reproducing
an actual ‘ionic lattice’, where regions of high and low chemical potential are spatially distributed,
and have regions of low and high charge density associated with them, without the need for extra
scalar fields.

The procedure to do this increases in complexity the more dimensions get their translational sym-
metry broken. I will first state the most general ansatz that is used for two-dimensional lattices.
After this, I will show an example computation for a one-dimensional lattice in RN without extra
scalars, as this simplifies the setup considerably and allows for the highlighting of some important
points.

3.1.1. Bidirectional Lattices

The lattices presented in this thesis have translational symmetry broken in either one or two di-
rections in the boundary. The mechanism by which this was imposed is general in both RN and
GR black holes. It is possible to have a wide variety of extra phenomena take place, for example
pseudoscalars that spontaneously break translational symmetry.[119, 121, 126] However, research
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3. Numerical Holography and Lattices

projects started in these directions were never brought to a satisfying conclusion, and are there-
fore not included in this thesis. In this work, only the chemical potential, set by At(z = 0), is
modulated explicitly.

3.1.2. RN Lattice Model

The action and equations of motion for the full Reissner-Nordström setup are given by

S =

∫
d4x

√
−g
(
R− 2Λ− 1

4
FµνF

µν

)
. (3.1)

with associated Einstein and Maxwell equations

Rµν + 3gµν =
1

2

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
,

∇µF
µν = 0.

(3.2)

Since time-reversal symmetry is not broken, it is possible to find solutions to the equations of
motion where 8 fields are coupled together: the time component of the gauge field, the diagonal
metric terms, and the spatial-radial off-diagonal metric terms. Other terms, such as the spatial
terms of the gauge field, do not couple in as these would present themselves as effective magnetic
fields in the electromagnetic field strength tensor. We do not break time reversal symmetry in our
lattice, which means that these modes decouple. There is still some gauge freedom stemming from
diffeomorphism invariance, which expresses itself in the Einstein equations by yielding constraint
equations rather than dynamical equations for some of its components. These gauge freedoms will
need to be fixed, more on which will follow in section 3.1.3. In general then we need to therefore
solve for all 8 fields non-linearly simultaneously in order to obtain a fully back-reacted solution.

The metric is most conveniently parameterized via

ds2 =
1

z2

(
−Qttf(z)η2t +Qxxη

2
x +Qyyη

2
y +

1

f(z)
Qzzdz

2

)
,

ηt = dt,

ηx = dx+Qxydy +Qxzdz,

ηy = dy +Qyzdz,

(3.3)

accompanied by the gauge field
A = µ̄(1− z)atdt (3.4)

.

The function f(z) is kept fixed here to be equal to that in equation (2.32)

f(z) = (1− z)

(
1 + z + z2 − µ2z3

4

)
. (3.5)
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3.1. SpatialModulation

In principle, these functions Qij , aµ, φ can be functions of x, y and z, where we do not allow
time dependence in order to maintain the static black hole. Translational symmetry breaking is
wired in as follows. We will always restrict to rectangular lattice setups1, where we assume that
there are two independent periodicities going on in both of the transverse directions where we
identify the coordinates

x ∼ x+ Lx, y ∼ y + Ly. (3.6)
All of the functionsQij , aµ, φwill therefore be assumed to have the same periodicity. For purely
spontaneous translational symmetry breaking considerations this is all that is done, although one
must be careful to pick a period which is compatible with the preferred wave vector of the instabil-
ity. In the case of explicit modulation we choose the chemical potential to be also some periodic
function with the same period, however we can choose freely how to fill this in. In practice, we
always use a single harmonic potential in one or two directions to fill the periodic domain, but it
is possible to have multiple periods of the explicit potential in the domain. This means that the
time component of the gauge field can go like

at(x, y, z = 0) = µ̄
(
1 +Ax cos (Gxx) +Ay cos

(
Gyy

))
. (3.7)

In order to satisfy periodic boundary conditions, this must mean that

Lx,y =
2πNx,y
Gx,y

. (3.8)

The resulting Einstein equations, when the ansatz is plugged in, is to not mince words a complete
mess. There are many hundreds or thousands of terms following from all the different combi-
nations of derivatives and non-linearities.2 In the presence of any kind of translational symme-
try breaking there is no analytical non-perturbative solution, and therefore the equations of mo-
tion (3.2) have to be evaluated numerically. In order to properly numerically evaluate this problem,
we want to be able to phrase this as a boundary value problem. Two of the boundaries, namely
in the x and y directions are straightforward, as periodic boundary conditions will impose con-
ditions on the fields and their derivatives at the points of identification over the entire range of
z. The boundary conditions on both ends of the radial direction require a bit more thought. At
the boundary we want to impose AdS asymptotics —we are doing AdS/CFT after all —possibly
supplemented by our explicit translational symmetry breaking term. At the horizon it is regularity
of the fields, as well as the requirement of constant temperature across the black hole horizon that
yields enough boundary conditions for a well-posed boundary value problem.

To give a quick summary, at the boundary we can impose that only the diagonal metric fields are
equal to 1, which recovers AdS asymptotics

Qij,i=j
∣∣
z=0

= 1, Qij,i ̸=j
∣∣
z=0

= 0. (3.9)
1Note that the ansatz presented above is slightly less general than the one presented in [127], but is much more straight-

forward to deal with in the case of rectangular lattices. The reduced complexity of the ansatz also makes it easier for
computer algebra software to handle the very large equations that come out when the equations of motion are applied
to this ansatz.

2Anecdotally, these equations can become so big that when compiled into C-code, simply cannot handle the sheer size
and errors out.
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3. Numerical Holography and Lattices

along with a gauge field
µ̄at
∣∣
z=0

= µ(x, y) (3.10)

The chemical potential µ(x, y) is what can set our explicit ionic lattice, via

µ(x, y) = µ̄ at(x, y) = µ̄
(
1 +Ax cos(Gxx) +Ay cos

(
Gyy

))
. (3.11)

The boundary conditions at the horizon at z = 1 follow from regularity and can be found im-
posing a series expansion on the equation of motion after gauge fixing3 in powers of z − 1 and
requiring that each of the terms in the series expansions vanish. This will give a set of in general
non-linear boundary equations of the form

∂zFi
∣∣
z=1

= g
({
Fj , ∂xFj , ∂yFj

})
, (3.12)

or in other words, boundary conditions can be found for the radial derivatives of all the fields F
in the ansatz in terms of all the other fields and their tangential derivatives on the horizon. This is
then supplemented by the condition

Qtt
∣∣
z=1

= Qzz
∣∣
z=1

(3.13)

which encodes for the surface gravity and therefore temperature to be constant across the black
hole horizon.

3.1.3. DeTurck Method

There is one major thing missing from the equations before they can be solved. The Einstein
equations are hyperbolic-elliptical, which poses problems for any numerical effort.[128, 129] The
problem that has been posed throughout section 3.1 so far ostensibly has the form of a boundary
value problem. This type of problem, especially in a non-linear setting, lends itself very well to
numerical approaches when the problem is elliptic. This is due to the fact that the eigenvalues
of the principal symbol of an elliptic problem all have the same sign, and therefore it is possible
to use relaxation-like approaches, where we start from an initial guess and let the system ‘settle’
into the true solution. The Einstein equations as we posed them are not elliptic.[128] Instead, due
to gauge freedom, it is only elliptic for the physical degrees of freedom. The way this problem is
phrased leaves some room for gauge freedom, which presents itself as an invariance under coor-
dinate reparametrization. The exact phrasing and solution to this problem have been described
in great detail.[129] The main message to take away is that we want to fix this gauge invariance in
our equations, which would render the equations for all fields elliptic. This is one by using the
DeTurck method, also known as the DeTurck trick.[130] The equation of motion for the gauge
field in the explicit lattice does not require a gauge fix, as typically radial gauge az = 0 is chosen.

The problem is in essence that we can decompose any perturbation to a solution to the equations
of motion into a pure gauge and a transverse part. The principal symbol acting on the pure gauge
mode actually annihilates it. This makes the equations for the gauge degrees of freedom into some

3See sections 3.1.3.
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3.1. SpatialModulation

kind of lower-order constraint equations in this system. The fix comes by picking a particular
vector ξµ, the DeTurck vector, which is defined by

ξλ = gµν
(
Γλµν − Γ̄λµν

)
. (3.14)

Here Γ̄λµν is the Christoffel symbol for some reference metric, which is a known solution to the
Einstein equations. Choosing a gauge then can be done by for example choosing ξµ = 0. This
is still a constraint equation. However, we can be even smarter about this, and generate what is
called the Harmonic Einstein equations. First we define the harmonic Ricci tensor as

RHµν = Rµν −∇(µξν), (3.15)

which we insert into the equations of motion by simply takingRµν → RHµν . This turns the set of
equations into a manifestly elliptic one. It turns out that finding a solution to the harmonicized
equations of motion will then simultaneously take care of solving the original equations of motion
as well as the gauge condition. Additionally, finding a solution and showing that its DeTurck
vector vanishes guarantees that the solution is not a Ricci soliton.[128]

3.1.4. Thermodynamics of the Lattices

Assuming that a solution to the equations of motion has been found, the first thing that is pos-
sible to do is to evaluate the thermodynamics of the phase. The procedure is essentially the same
as outlined in section 2.5. The difference now is that the components of the metric and gauge
field are now not analytically known, but instead we have to work with numerical values and their
numerical derivatives. We can perform a near-boundary expansion up to order z3, and use the
equations of motion to constrain several of the terms that appear in the boundary expansion. Us-
ing the expansions we can find the expressions that are summarized in table 3.1. The field theory

〈
T tt
〉
/µ̄3 =

(
−2− µ̄2

2 + 1
2∂

3
zQtt

)∣∣
z=0

,〈
T xx
〉
/µ̄3 =

(
1 + µ̄2

4 + 1
2∂

3
zQxx

)∣∣
z=0

,〈
T yy
〉
/µ̄3 =

(
1 + µ̄2

4 + 1
2∂

3
zQyy

)∣∣
z=0

,

ρ/µ̄2 = (at − ∂zat) /µ̄
∣∣
z=0

,

µ/µ̄ = at
∣∣
z=0

,

S/µ̄2 = 4π
√
QxxQyy/µ̄

2
∣∣
z=1

.

Table 3.1.: Observables in the RN Lattice in terms of the UV expansions of the fields in the ansatz,
where values per unit cell can be obtained by averaging over the unit cell in the transverse
directions.
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is still conformal, provided one uses the correct prescription in GR models explained in chapter 5,
as the trace of the stress tensor still vanishes:〈

T tt + T xx + T yy

〉
∝
(
∂3zQtt + ∂3zQxx + ∂3zQyy

)∣∣∣∣
z=0

= 0, (3.16)

which can be found as a constraint for the third-order components from the near-boundary ex-
pansion of the equations of motion. The accuracy to which this holds can be used as a convergence
check, since a well-converged solution will have equation (3.16) vanish to some good accuracy.

3.2. Solutions to the Unidirectional Lattice

Numerical solutions to this differential equation problem need to deal with another problem: the
equations are not well defined at the horizon and boundary, as some coefficients of the equations
scale as z−4 as z → 0. Therefore, simply putting it in a black-box algorithm like Mathematica’s
NDSolve is unlikely to provide useful results, as it will attempt to evaluate the equations of mo-
tion so close to the boundary that this results in an incredibly stiff problem. One option is to make
an explicit series expansion to some finite cut-off and integrating from there.[131] This method was
used in many early constructions of numerical holography, and can be improved by going either to
a high order in series expansion or making the cut-off very small. This has some disadvantages, as
explicitly constructing the power expansion required to get high accuracy becomes quite cumber-
some especially when the boundary starts to have one or two transverse spatial dimensions. Due
to the nature of the Einstein equations these are simply big expansions, and take a long time to
compute even with modern computer algebra systems.

The alternative is to discretise the problem on a structured grid, where there is one set of grid points
located at the boundary, and another some finite δz away from it. On this grid, we can then solve
the problem with finite-difference methods. On the boundary and horizon, we will then only
evaluate the boundary conditions. The Dirichlet and Robin boundary conditions presented in
section 3.1 are finite on those points. Using a high-enough order in the finite difference scheme
makes the divergence at δz not too extremely high, not as divergent as required for (adaptive)
black-box routines.

The iterative scheme used needs to depart from some ansatz for the solution. It does not necessarily
need to be a solution to the equations of motion in some way, but it needs to be ‘close enough’
to the true solution we are trying to arrive at. The parameters in this scenario are the chemical
potential, µ, lattice vector Gx and lattice strength Ax. As I have set the horizon radius zh = 1,
the temperature is then set by the chemical potential to be

T

µ̄
=

12− µ̄2

16πµ̄
. (3.17)

Convenient as a starting point for the iterative scheme is often to pick the Reissner-Nordström
background at the temperature we desire, or otherwise a known numerical solution at parameters
close to the ones we desire. Note that in the translationally invariant RN solution, the parameter
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3.2. Solutions to the Unidirectional Lattice

Gx does not have any significance.4 The solutions for small lattice strength Ax will be close to the
analytical Reissner-Nordström solution. The resulting lattices are shown in figure 3.1
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Figure 3.1.: This is an example of a bulk picture of the unidirectional lattice. This particular profile
is of the bulk electric field Ftz = −∂zAt. The parameters here are T = 0.15µ,
G = 4µ, Ax = 0.1.

3.2.1. Numerical Convergence of Holographic Lattices

Testing the validity of an ansatz and the code used to compute the numerical solutions is often
one of the most important and yet one of the most easy to overlook parts of writing code. This
is especially true in an academic setting, where the desire to get results sometimes outweighs the
‘proper’ procedure of testing the code thoroughly before using it in production. Furthermore,
it can be possible for the code, even if it is not wrong, to give answers that reach unsatisfactory
levels of precision at certain parameters. In the holographic lattices, this can for example be caused
by low temperatures or large gradients in the problem. Therefore, it is crucial that there are tools
available that can be used not only as sanity checks, but also to prove that a given solution to a
problem is satisfactory. In this case there are several tools available. The most useful ones are the

4This makes for a good check to see if observables are correctly implemented, as the translationally invariant solution
should have no mind of any finite Gx whatsoever.
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trace of the stress-energy tensor and the DeTurck vector. In the case of the trace of the stress-
energy tensor, it is good practice to have the trace vanish to a much greater accuracy than each
of its individual components. The DeTurck vector can be shown to be a purely spatial quantity
and therefore it is enough to check that its norm ξ2 = ξµξµ ⩾ 0 vanishes, rather than having
to compute whether each component vanishes independently. In order for precision to be un-
der control, these will need to display some key properties, most importantly that it should show
that the knobs we can tune that we expect to increase accuracy actually do so. The unidirectional
lattice was the primary inspiration for the Python code, which was written to be a very general
n-dimensional (non-)linear PDE solver. As it is written in Python it is not extremely fast, however
what it lacks in speed it makes up for in flexibility. It is most suited to two-dimensional differential
equations, so that is why the unidirectional lattice together with the radial direction is a good test
for its performance. This convergence is shown in figure 3.2. Unsurprisingly, increasing the num-
ber of points in the lattice as well as the differentiation order increases the precision. The DeTurck
vector shows a similar picture in figure 3.3. The difference between the lowest and higher-order fi-
nite difference approximations is large, and the diminishing returns between difference order 6
and higher becomes even more apparent, to the point that beyond 40 × 80 points there is no
benefit to the higher-order differentiations any more.

Figure 3.2.: Convergence of the trace of the boundary stress energy tensor as a function of total
number of grid points in the problem. For this particular case, the convergence is done
at a fixed low temperature and lattice vector as T = 0.01µ , G = 0.05µ, Ax = 0.2,
andNz = 1.5×Nx. The individual components of Tµν areO(1).

3.2.2. Bidirectional Lattice

The bidirectional lattice has a lot more degrees of freedom to solve for, as there are nowNy times
more points in the grid, as well as 15 functions up from 6. In order to tackle this problem, it was
necessary to write code in a compiled language. We opted for C, where we were able to use the
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3.3. Einstein-Maxwell-Dilaton lattices

Figure 3.3.: Convergence of the L2 norm of the ξ2 over the whole grid. The rate of convergence
changes from approximately N−1 to N−6 when increasing the differentiation order
from 2 to 6. Again, this is done at a fixed low temperature and lattice vector as T =
0.01µ,G = 0.05µ, Ax = 0.2, andNz = 1.5×Nx.

PETSc library which is suited to run on computing clusters and supercomputers. We can still
perform the same convergence checks, however the flexibility of the code is now more limited.
In practice, this means that switching differentiation order, which was simply a parameter in the
previous code, is now more complicated. The difficulty lies in constructing the Jacobian matrix.
This matrix needs to not only couple many fields, but also be consistent in a distributed-memory
scheme. While the positions where entries need to be placed is easy to describe an symbolically
calculate in a program like Mathematica, this is not easily done in pure C. Therefore, based on the
1D results, the order-4 derivatives seem like a good choice. They offer much higher accuracy, but
do not increase memory usage by too much, as the number of entries of the matrix per row scales
as differentiation order squared due to the mixed derivatives that appear in the expressions. This is
clearly seen in figures 3.2 and 3.3. The extra cost in terms of memory use and time it takes to solve
makes order 6 and above not worth the trouble.

3.3. Einstein-Maxwell-Dilaton lattices

The Gubser-Rocha black hole that was discussed before in section 2.6 can also be generalised to
include translational symmetry breaking effects. The steps that have to be taken to go from the
translationally invariant black branes to the EMD lattices is very reminiscent of those necessary
to go from the RN black hole to its lattice counterparts.[107] The setup is very similar to the RN
ansatz, albeit with one extra field, namely the scalar. In the Gubser-Rocha lattices, we only have
access to explicit translational symmetry breaking through the chemical potential, and there are no
spontaneous symmetry breaking transitions that we are aware of. The general bidirectional lattice
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black hole will have a metric ansatz that looks like

ds2 =
1

z2

(
−Qttf(z)η2t + g(z)

(
Qxxη

2
x +Qyyη

2
y

)
+

1

f(z)
Qzzdz

2

)
,

ηt = dt

ηx = dx+Qxydy +Qxzdz,

ηy = dy +Qyzdz.

(3.18)

The gauge field and scalar field will take the form

A = Atdt = µ
(1− z)

1 +Qz
at(x, y, z),

ϕ =

√
3

2
log
(
1 +Qzφ(x, y, z)

)
.

(3.19)

The rest of the argument goes much the same way. The boundary conditions are given by an
asymptotically AdS boundary and the horizon boundary conditions again arise from a series ex-
pansion near the horizon. More tricky, as highlighted in chapter 5, is the boundary condition of
the scalar. The boundary condition at z = 0 that has been employed here is

3Qφ+ 4∂zφ− 3Qφ2 = 0 (3.20)

which corresponds to an unsourced scalar in mixed cϕ = 1/3 quantisation. This is different from
earlier approaches, where the boundary condition do not maintain key properties like conformal-
ity of the stress energy tensor in the presence of an explicit lattice.[99]

It will come as no surprise that the derivation of the stress energy tensor and other thermodynamic
observables goes in much the same way as the RN black holes the entropy and charge density are
easy, as they are given by

S/µ̄2 = 4π
√
(1 +Q)3QxxQyy/µ̄

2,
∣∣
z=1

,

ρ/µ̄2 =
(
(1 +Q)at − ∂zat

)
/µ̄
∣∣
z=0

.
(3.21)

The stress tensor now acquires components not only from the third derivative of the metric fields,
but also from the source and VEV of the scalar field through the ϕ-dependent terms in equa-
tion (2.71). The full expressions are too long to be included here, but the general structure follows
that of table 3.1. Using the near-boundary expansions we can deduce that the trace of this does
indeed vanish, giving us always conformal matter, as in the homogeneous case.

3.4. Computing Perturbations

Thermodynamics of the black hole states are good first observables, as they can readily be evaluated
from black hole backgrounds by simply reading off certain components. As mentioned before, it is
quantities like (thermo)electrical conductivities that we really would like to be able to work with.
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In general, many of the quantities that are relevant to physical experiment, such as momentum
susceptibilities, conductivities, viscosities and much more can be expressed in terms of two-point
functions in the field theory. The procedure to do this is fairly standard, but nonetheless requires
a great deal of numerical effort in order to extract worthwhile information at physically interesting
parameters. The principle is again the same as in section 2.4.2. Some of the components of the
metric and gauge field are perturbed without back-reaction. The equations of motion are then ex-
panded to linear order which gives access to two-point functions in the field theory. The difficulty
comes mainly because of the nature of the problem. Not only are the fields at finite frequency and
momentum complex-valued, which generally restricts the number of useful numerical solvers and
preconditioning routines that exist for the problem5, but the problem is also a linear rather than
non-linear one. While this removes the need to make many solutions and updates, it does mean
that to get a good solution the differential equation we need to solve with higher accuracy, as we
cannot rely on the guarantee that if we make a ‘good enough’ update step we still get to a good
solution as is the case in the non-linear case. Instead, we need to make sure that we get the solu-
tion correct directly. This is in general a tricky thing, and here I present only the overview to show
how these techniques are all connected. Many of the results in this section only make sense in the
context of a particular lattice setup but the methods will carry over onto other setups too.

3.4.1. Optical Conductivities in the Homogeneous Reissner-Nordström

Black Hole

The translationally invariant RN black hole forms a good starting point for these considerations.
The quintessential example is the electrical conductivity, which is why it featured prominently for
pure AdS in section 2.4.2. What is new here is that at finite chemical potential, there are multiple
modes that start to couple in to the electrical conductivity. In particular, if we perturb the gauge
field by

Ax = δAx(z)e
−iωt (3.22)

we can see that this couples to metric perturbations

gxt = δhxt(z)e
−iωt, gxz(z) = δhxz(z)e

−iωt. (3.23)

There is a lucky coincidence here as it is possible to make a gauge choice to be in radial gauge
to make hxz vanish, and by combining the other two equations of motion the problem can be
reduced to a single second order ordinary differential equation forAx(z). The resulting equation
in terms of the chemical potentialµ, the emblackening factor f(z) and the parameter γ as [132]

(fδA′
x)

′ +
ω2

f
δAx −

4µ2z2

γ2
δAx = 0. (3.24)

This equation does not have a simple analytical solution, and is only able to be solved numerically.
Boundary conditions come from sourcing the (perturbative) electric field ftx = ∂tAx along with

5It is possible to phrase the problem in terms of coupling of real fields by expanding the real and imaginary parts separately,
but that doubles the number of fields and equations in the problem which severely hinders performance.
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insisting on computing the retarded Green’s function, as this is the physically most relevant one.
If we take out an oscillating factor

Ax(z) = f(z)−4πiω/T Ãx(z), (3.25)

then infalling boundary conditions can be imposed by requiring Ãx to be a series expansion in
(z − 1). This gives us the retarded Green’s function. In general setups, this then gives the same
kind of boundary condition expansions as in the lattice, where we can fix the first-order expansion
coefficient at the horizon in terms of the horizon values. The conductivity is given by

σ(ω) =
A′
x

iωAx

∣∣∣∣
z=0

. (3.26)

Since the equation is linear, we can then fix the boundary condition at the boundary to simply
be Ax(z = 0) = 1, as we only fix the ratio of coefficients in the expansion at the horizon, and
not the value itself.6 Equation (3.26) then takes care that only the ratio of subleading to leading
component is read off, not the actual value of the solution which is rather arbitrary.
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Figure 3.4.: AC conductivity of the RN black hole at finite frequency for different temperatures.
Notice how in the high-frequency limit ω ≳ µ, the optical conductivity approaches
the zero-density CFT limit σ(ω) = 1.

The resulting conductivity can be seen at different temperatures in figure 3.4. Spectral weight is
transferred from ω < 1 to ω ≳ 1 when temperature is lowered, and a depletion of the con-
ductivity appears to happen for low frequency. The intensity of this depletion increases for lower
temperature. Note that the ω = 0 value is divergent due to translational symmetry of the so-
lution. This can also be checked in Kramers-Kroning consistency, which indeed produces a 1/ω

6There are many other methods of computing conductivities, such as shooting methods and other bulk matching pro-
cedures. However, since we have access to a general way of computing partial differential equations through the solver
I have developed, it is much more convenient to phrase this in the same framework as the earlier backgrounds and the
lattice conductivities as well.
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behaviour for ω → 0.[133, 134] This kind of result can actually be seen in real condensed mat-
ter systems, for example in graphene, which also has a dip below ω = µ but recovers a constant
σ(ω) = 1 at high frequency, as expected for a 2 + 1 dimensional CFT.

3.4.2. Finite Momentum Correlators

Of course, there is more to transport than just computing the electrical conductivity. Maintaining
the fluid analogy, the current-current correlator should be governed by several poles, for example
a sound mode in the longitudinal sector and a shear mode in the transverse sector. However, it
is not possible to identify these in the homogeneous model unless we go to finite momentum of
the correlator, as we require the vector momentum in order to define transverse and longitudinal
directions. At k = 0, only modes in the spin zero-sector can appear. The general ansatz for the
pertubation at finite frequency and momentum is

gµν = g(0)µν + εhµν(z)e
−i(ωt−kxx−kyy) +O(ε)2,

Aµ = A(0)
µ + εbµ(z)e

−i(ωt−kxx−kyy) +O(ε)2.
(3.27)

g(0) andA(0) are the background values of the metric and gauge field that have already been com-
puted. If we enter this ansatz into the equation of motions (3.2), at first order inεwe will get a linear
set of coupled differential equations for the perturbations in the presence of a fixed background.
Using the translationally invariant Reissner-Nordström background, the perturbations will not
in general have any more dependence on the transverse directionsx, y other than in the oscillating
exponential. As the background is rotationally invariant, we can freely pick k⃗ = kx̂, ky = 0.
In this case now, the modes hty, hxy, hzy, by are odd under parity y → −y and will therefore
decouple from the rest of the perturbations which are even under parity. The even-parity modes
will be the fields that couple in the longitudinal sector, and the odd-parity modes correspond to
transverse sector.[135] There is a rather large amount of gauge freedom left in the equations at the
moment, stemming from diffeomorphism invariance and U(1) gauge symmetry of the Maxwell
field. Common choices to fix the gauge are the radial gauge, which simply sets [135]

hµz = bz = 0. (3.28)

Another popular gauge choice is DeDonder and Lorenz gauges, where [136]

∇µ
(
h̄µν = 0

)
, ∇µbµ = 0, (3.29)

where h̄ is the trace-reversed perturbation metric

h̄µν = hµν −
1

2
Tr(h)g(0)µν . (3.30)

This is in principle a general ansatz for computing any perturbation we wish. When sourcing the
correct components of hµν , one can for example compute correlators

GTµνTµν (ω, k) ∼
〈
hµνhµν

〉
. (3.31)
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In the case of the homogeneous RN black hole things simplify tremendously, and it is possible to
make some clever combination of fields into what are called the master field equations.[135, 137,
138] This however is rather specific and does not apply whenever a lattice is in play. Therefore, I
will not expand in great detail on this procedure in here. Instead, let us stay focused on electrical
conductivity. The choice of transverse or longitudinal sector will come from our choice of electric
field. The source of the electric field turns out to be the value of the bx,y perturbations at the
boundary

Ex = ftx
∣∣
z=0

, Ey = fty
∣∣
z=0

(3.32)

while the responses are
Jx = fzx

∣∣
z=0

, Jy = fzy
∣∣
z=0

(3.33)

where fµν is the field strength tensor at first order in the perturbation parameter ε. This corre-
sponds to picking

Ex = iωbx(z = 0), Ey = iωby(z = 0). (3.34)

For the electrical conductivity, the correlators are computed

GJiJj (ω, k) =
∂zb

i(ω, k, z)

bj(ω, k, z)

∣∣∣∣
z=0

. (3.35)

The conductivity then we need to keep in mind that at finite momentum, we need to subtract the
real part of the zero-frequency limit of the correlator in order to remove certain contact-like terms
[81, 139]

σ(ω, k) =
G(ω, k)− ReG(ω, k → 0)

iω
. (3.36)

In the translationally invariant situation, we expect two things depending on the direction of k
with respect to E. In the longitudinal channel, where k⃗ ∥ E⃗, we expect to see a sound-like re-
sponse, with a corresponding sound peak at some ω = vsk where vs is the sound velocity. This
kind of response is shown in figure 3.5a. There is also a diffusion pole which causes some momen-
tum dissipation nearω = 0, but in the specific case of longitudinal conductivity this is suppressed
by a factor ω2/k2. In the transverse case, where k⃗ ⊥ E⃗, we expect to see a diffusion pole appear.
At low k⃗/µ this will form a weak source of momentum relaxation. As a result, we expect a small
Drude peak to form in the low-frequency regime. This is shown in figure 3.5b.

3.4.3. Lattice Conductivities

In the presence of a lattice, either uni- or bidirectional, this story changes in essence very little.
Again we can write the perturbations similar to equation (3.27), but now with the added modifi-
cation that the perturbations also acquire a spatial modulation

hµν(z)e
−i

(
ωt−k⃗·x⃗

)
→ hµν(x, y, z)e

−i
(
ωt−k⃗·x⃗

)
,

bµ(z)e
−i

(
ωt−k⃗·x⃗

)
→ bµ(x, y, z)e

−i
(
ωt−k⃗·x⃗

)
.

(3.37)
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3.4. Computing Perturbations

(a) Longitudinal optical conductivity. For the
larger values of k, the sound peak moves to
higher frequency and broadens, indicating in-
creased attenuation.

(b) Transverse optical conductivity. Note that for
higher k, the Drude peak lowers and becomes
wider.

Figure 3.5.: Optical conductivity at finite momentum in RN. We choose here a constant source
Ex, and let k⃗ = kx̂ or k⃗ = kŷ for longitudinal and transverse computations, respec-
tively. In both cases, for large ω the CFT result σ(ω) → 1 is recovered.

The difference now is that the exponentials are not a periodic function on the domains Lx, Ly ,
while the perturbations are assumed to be. This is reminiscent of a Bloch wave expansion for per-
turbations that is common in condensed matter physics. The principle of solving the equations is
still a relatively simple affair, as the principle is the same as in all the cases before. The main differ-
ence is that now this turns into a set of linear partial differential equations rather than a set of linear
ordinary ones. The horizon boundary conditions are also given by requiring an order-by-order so-
lution of the equations of motion near the horizon to the infalling waves. The argument that
from symmetry ky can be set to zero in general is lost, because the uni- and bidirectional lattices
break rotational invariance badly. Another difference is that now the differential equation for the
perturbations has to be computed on a given (numerical) background. The variable coefficients
in the differential equations are then also dependent on a set of background fields instead of just
the radial coordinate. The gauge fixing terms described in section 3.4.2 still apply, and will now in
general depend on both spatial dimensions as well as background fields. This is mainly a practical
challenge from a programming point of view, not from a conceptual one. The evaluation of the
correlator is then the same as in equation (3.35), with the added point that we need to average over
the spatial dimensions in order to get the proper response.7 The optical responses in several types
of 1D holographic lattices have been extensively studied in other works.[107, 118, 120, 136, 140] The
main result that can be highlighted here is that in the presence of a weak (ionic or other) lattice,
there is also a small amount of momentum relaxation, as in the case of the transverse conductivity

7Since we always take the source to be spatially homogeneous, the average only needs to be done over the expectation
value. It is possible to do both finite wave vector sourcing and responses, see the discussion on inverting the alternate
quantization later in chapter 4.
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3. Numerical Holography and Lattices

in pure RN, but now also in the k = 0 channel. As a result, we again expect a finite Drude peak
to appear.

3.4.4. DC conductivities

The limit ω → 0 in the definition of the conductivity as in equation (3.36) is problematic when
we try to deal with conductivity at zero-frequency. Namely, the DC limit is well defined, but
evaluating at exactly ω = 0 contains a divide-by-zero, which is something that computers do
not handle well. DC transport contains a lot of information about the system and therefore it is
good to have access to it. Conveniently, there is an easier way to find these. In general, they are
computed by taking particular combinations of time-independent perturbations to the metric and
gauge field. This procedure has been investigated in great detail, with an interesting result at the
end. It turns out that the DC conductivity in both Reissner-Nordström and dilatonic black holes
can be evaluated by solving a Stokes flow-like problem at the black hole horizon.[114, 140–146]

In the most general setting, where we not only have the Einstein-Maxwell action but potentially
also other scalar fields, it turns out that by perturbing the black hole just right and using the sym-
metries in the equation of motion the horizon equations that need to be solved becomes a system
of four equations, where [142, 146]

ηH

(
−2∇j∇(ivj) + vj∇jϕ

(h)∇iϕ
(h)
)
− dχ

(h)
ij Q

j − F
(h)
ij Jj−

ρH (Ei +∇iw)− TsH

(
ζi −∇i

p

4πT

)
= 0,

∂jQ
j = 0, ∂jJ

j = 0.

(3.38)

These ηH , sH , ρH are horizon quantities that play the role of shear viscosity, entropy and charge
density in this Stokes-like problem for a fluid with velocity vj , pressure p and forcing term wj
living on the black hole horizon. sH is the same as the entropy we assign to the black hole when
considering its thermodynamics, and ηH ≡ sH/4π, akin to the famous result for minimal viscos-
ity.[85] Additionally, one can find that∇jv

j = 0must also be satisfied, making this a Stokes-flow
like incompressible flow problem. The thermal and electrical gradients are here sourced by ζi, Ei
and can in principle depend on spatial position, although I will not consider that in this thesis.
The unknowns here are the field vj , w, p, while the rest of the quantities are given in terms of
bulk fields evaluated at the horizon. Qi, Ji are the resulting heat and electrical currents. These are
defined on the horizon, but it can be shown that their unit cell averages Q̄, J̄ are not renormalised
from the horizon to the boundary, and are therefore equal to the averages of the DC currents we
want to interpret in the boundary theory. The conductivities are then found with(

J̄ i

Q̄i

)
=

(
σij Tαij

T ᾱij T κ̄ij

)(
Ej
ζj

)
. (3.39)

Here α, ᾱ are the thermoelectric conductivities and κ̄ is the thermal conductivity.

The exact forms of these depend on the exact setup that is being used.[142] What is the case is
that this simplifies in certain scenarios. Specifically, if translational symmetry is broken in some
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kind of homogeneous way, where there is no lattice, the thermoelectric conductivity can be eval-
uated by just evaluating certain horizon quantities. The case of the unidirectional lattice is simple
too, where now thermoelectric currents can be expressed in terms of integrals over horizon quan-
tities.[140] For the bidirectional lattice due to the lack of remaining symmetries there is no such
simplification and one has to resort to actually solving the Stokes differential equations (3.38) nu-
merically. This can be done rather simply, as this is just yet another modification of the code solving
a perturbative problem in the presence of a background, like in the AC case, but now restricted to
only the horizon.8

3.5. Outlook

All this together provides a lightning overview of the methods that have been used in the produc-
tion of this thesis. The results of these endeavours will be presented in the following chapters, in
papers on fermionic spectral functions in holographic lattices, optical and DC conductivities in
Gubser-Rocha black holes, and thermodynamics and quantization considerations in the Gubser-
Rocha model. All the numerics contained therein are based on the equations that have been pre-
sented here. Their practical efficient implementation into computer code is a story in and upon
itself, which unfortunately could not be included in this thesis due to constraints of length. For
this in-depth discussion on the numerical solutions of non-linear elliptic boundary value problems
in two and three dimensions, there are more in-depth discussions available.[147]

8One thing to keep in mind for accuracy is that in the way the setup is currently phrased, there are zero modes present
for the fields p, w, as they can be augmented by a constant shift p → p+ c, without changing the Stokes equations,
as they only appear as derivatives in the Stokes equations. In order to get a correct linear solve, one should expect to
have to fix the values of p, w at some point in the domain. This will remove the zero (or often numerically very small)
pair of eigenvalues from the matrix that is used to solve the problem.
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4.1. Attribution

This paper was published under the title “Isolated Zeros Destroy Fermi Surface in Holographic
Models with a Lattice” in the Journal of High Energy Physics (JHEP) 2020, article 151 [148], to-
gether with A. Krikun, A. Romero-Bermúdez, K. Schalm, and J. Zaanen. Relevant codes for this
section will be published together with the publication of this thesis at [149, 150].

4.2. Introduction

The physics of strongly correlated electron systems remains a major puzzle in modern condensed
matter theory. The possible deviations from conventional Fermi liquid behaviour are simulta-
neously extremely interesting and extremely hard to study. Nonetheless, evidence coming from
experiments in high temperature superconductors and other strange metallic systems points out
that such non-Fermi liquid systems do exist in nature and display many unconventional phenom-
ena. The defining feature of non-Fermi liquid behavior is the absence of long lived quasiparticles
anchored on a well-defined Fermi surface, which could be used as building blocks for Fermi liquid
perturbation theory. Such signatures of a destruction of the quasiparticles are seen in the angle re-
solved photoemission (ARPES) studies of experimentally realized strange metals [151]. In high Tc
superconductors in the normal phase, the spectral width, or the inverse lifetime, of the fermionic
excitation at the Fermi level becomes unnaturally broad in the anti-nodal directions, whereas one
still observes well defined quasiparticles at the nodes [152, 153] – the nodal-antinodal dichotomy.
In the pseudogap phase the phenomenon of so-called Fermi arcs is even more striking: the sharp
Fermi surface simply ends at a point in the Brillouin zone, which is topologically forbidden for a
Fermi liquid-like system [154]. A careful theoretical understanding of these phenomena has been
hampered by an absence of conceptually new approaches that do not rely on a stable quasiparticle
description.

The holographic duality provides such a conceptually novel way to treat the strongly correlated
systems without the need to postulate the quasiparticle description to begin with; for a review see
[61]. It has been shown in the earlier works [93, 155, 156] that one can obtain a spectrum with or
without the long lived fermionic quasiparticles depending on the parameters of the holographic
model. The natural question arises of whether it is possible to achieve the transition between these
regimes as a function of direction in the Brillouin zone, as it is observed in real materials. This is
the question we address in the present work. Most of the earlier works in holography on single
fermion spectral functions are restricted to isotropic setups, with the rare exceptions including
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[115, 157–160]. In order to study anisotropy and the effects of the Brillouin zone boundary, we in-
troduce a periodic modulation of the chemical potential, which mimics the ionic lattice, breaks the
rotational symmetry down to a discrete group and introduces Bloch momenta.1 A similar study
has been performed recently in [158, 160] which also includes a spontaneous breaking of transla-
tional invariance. In our case we restrict ourselves to a simpler setup that includes only an explicit
periodic lattice, without spontaneous striped order. This allows us to perform the analysis of our
results in the cleanest possible way. Similarly, in order to isolate the effects of the periodic lattice,
we don’t consider any non-minimal interaction terms in the Lagrangian of fermions coupled to
gravity in holographic dual description.

As expected, we observe the generic effects of a periodic potential: the fermionic dispersion rela-
tion becomes multivalued in the first Brillouin zone due to the presence of lattice copies from the
neighbouring zones. Umklapp gaps appear from the interaction between these copies and results
in the formation of Fermi pockets. These basic effects had already been observed before in various
holographic models with periodic potentials [157–159]. It simply shows the universality of Umk-
lapp at the boundary of the Brillouin zone in fermionic responses in periodic potentials. However,
we report here that, for substantially strong lattice potentials (much stronger then considered pre-
viously in i.e.[157, 159]), a novel physical effect appears: the partial destruction of the Fermi sur-
face due to the interaction of poles and zeros in the Green’s function. A noticable spectral weight
suppression in strong holographic mixed spontaneous and explicit lattices was observed earlier in
[158, 160]. However the effect which we observe is different: in our purposely simple tractable
model we can completely identify that there is not just suppression, but that the Fermi surface is
actually destroyed due to a collision of the defining pole with a zero in the Green’s function.2.

Zeros of the fermionic Green’s function have been observed in holographic models in several con-
texts. One kind of zeros, the “alternative quantization zeros”, has been pointed out in the early
works using bottom-up models [93, 155, 156] as well as in top-down constructions [161]. The exis-
tence of these zeros is understood straightforwardly within the holographic approach: they origi-
nate from the fact that, for a range of the parameters, a particular holographic theory can be treated
as a dual to two distinct quantum theories on the boundary [74]. These two treatments are the
“direct” and “alternate” quantization of the boundary operators and the simultaneous existence of
both leads to the appearance of zeros in the Green’s function of one theory, precisely at the point
where the other one has poles. As we will see below, in the presence of a strong lattice potential
these “alternative quantization zeros” approach the pole corresponding to the putative Fermi sur-
face. This proximity kills the peak in the spectral response. The origin of this type of zeros is quite
clear from the holographic point of view and universal in that context, but their interpretation in
terms of conventional condensed matter theory remains elusive. We shall comment on possible
interpretations in the discussion section. The phenomenon we observe is somewhat similar to the
“pole-skipping” in holographic correlators for hydrodynamic energy-density modes, discussed re-
cently in [162–166] and for fermionic modes in [167]. There one also observes the line of poles in
the spectral density being cut by the line of zeros.

1For the sake of technical simplicity we focus on a quasi-one-dimensional lattice, i.e. we only consider the modulation in
one spatial direction.

2For a discussion on the possible origins of the anisotropic spectral weight suppression observed in [158, 160] see [115]

60



4.2. Introduction

This holographic understanding of controlled zeros in the Green’s function has already been ex-
ploited in attempts to describe the zeros in the spectrum arising from Mott physics [168–172].
One mechanism relies on an extra Pauli or dipole coupling present in the fermionic Lagrangian.
It has been shown that in the particular case of massless bulk fermions this can partially convert
the Fermi surface into the line of zeros. We intentionally do not include the extra coupling in our
model, which allows us to distinguish the phenomenon we observe here from the one mentioned
in those works. On the other hand, zeros in spectral functions can have several origins but true
Mott physics is intrinsically linked to the presence of a lattice and translational symmetry breaking
as studied here.

The spectral signature of zeros colliding with poles/peaks is a very identifiable characteristic and for
that reason of high interest. More recently, a new zero-pole collision has been found [173] unrelated
to holography. It was shown that in the presence of a quantum critical continuum coupled with
two systems with discrete spectra, the spectrum of one such system has a characteristic zero at the
resonance of the other. And this zero may collide with a pole. This effect is in the same class as the
Fano resonance, where the spectrum of a continuum theory interacting with a discrete system has a
zero at the resonance frequency of the latter. Alongside with our main finding we observe this new
class of “resonant zeros” in our holographic model. The reason is that the near horizon geometry
generically encodes a certain type of the quantum critical continuum and the periodic potential
gives rise to the many copies of the discrete particle dispersion spectra within the first Brillouin
zone. The fermion spectral function precisely probes a discrete sector coupled via continuum to
other discrete spectra. The effect of these zeros is also interesting, but not so spectacular as the
one from “alternative quantization” ones. These discrete-continuum-discrete resonant zeros cut
through the Fermi surface and destroy the quasiparticle peak at a particular point, but they do not
remove extended intervals from the Fermi surface.

Our finding that “alternative quantization” zeros interfere with Fermi-surface poles in holographic
models with strong lattice potentials is theoretical and it is our thorough understanding of a pecu-
liar aspect of holographic theories that allows us to unambiguously identify this mechanism. The
result strikingly resembles the phenomenon of Fermi arcs, seen in the pseudogap. The creation
of Fermi arcs was already the motivation for the holographic studies[168–172], but in our work
they are directly tied to the presence of the lattice and anchored to the directional pattern of the
Brillouin zone. Undoped Mott insulators are known to have zero responses in the single particle
fermionic spectral function. In conventional condensed matter theory there are attempts to ex-
plain the formation of Fermi arcs in the pseudogap phase of the cuprates originating from these
Mott zeros in the spectral density [174–178]. In these approaches, it is argued that, due to strong
interactions, the self-energy of the quasiparticle diverges forcing the “dressed” Green’s function to
vanish at certain points in the phase space. These zeros do not violate the Luttinger count [179],
but render the Fermi surface disconnected. It would be interesting to determine whether there is
any connection between our results and this other approach, but as we shall discuss in the con-
clusion, there are a number of fundamental open questions that will require significant further
study.

The paper is organized as follows, in the first two sections we give an overview of basic features
of ordinary Fermi surfaces in a periodic potential (Sec. 4.3) as well as the holographic fermionic
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response in the case of a simple isotropic background (Sec. 4.4). In Section 4.5, we describe the
model and the method. The main result is presented in Section 4.6 and we draw our conclusions
in Section 4.7. The appendices are devoted to the details of our treatment in the homogeneous
black hole background (App. 4.A), the construction of periodic backgrounds (App. 4.B) and the
analysis of the fermionic response (App. 4.C). We also explain the Brillouin zone representation
of the Green’s function in Appendix 4.D.

4.3. Umklapp Scattering and Fermi Pockets in

Unidirectional Potential

We start by recalling the basic features of the fermionic spectral function in a periodic potential.
We wish to illustrate that at strong lattice potentials there are several non-linear responses, that are
normally not considered in linear analysis of Bloch wave physics and Umklapp. Nevertheless these
non-linear responses follow from a straightforward calculation. We consider a non-interacting
Dirac fermion ψ̄ in 2+1 dimensions in the presence of a periodically modulated chemical potential
µ(x) = µ[1+λ sin(px)] along thex-direction only. In order to facilitate the analysis of our main
results, we keep the y-direction homogeneous. The Dirac equation reads (here the bars denote a
2 + 1 dimensional toy-model in order to avoid confusion with our main treatment below)[

γ̄µ∂µ − iµ(x)γ̄t
]
ψ̄(x, y, t) = 0, (4.1)

µ(x) ∼ µ(x+ 2nπ/p) = µ
(
1 + λ sin(px)

)
(4.2)

γ̄t = iσ1, γ̄x = σ2, γ̄y = σ3 ,

where σi are the Pauli matrices. We introduce frequency, momentum in y-direction as well as the
Bloch momentum in x-direction

ψ̄(x, y, t) ≡ ei(kxx+kyy−ωt)ψ̄k(x), ψ̄k(x) ∼ ψ̄k(x+ 2nπ/p), n ∈ N, (4.3)

to get the equation on the Bloch wave function ψ̄k(x), which is by construction periodic with the
same period as the potential µ(x):[

−σ1(ω − µ(x)) + iσ2kx + iσ3ky + σ2∂x
]
ψ̄k(x) = 0. (4.4)

Here, the Bloch wave function ψ̄k = {ψ̄↑
k, ψ̄

↓
k} is a 2-component spinor and the Dirac operator

is a 2 × 2 matrix differential operator. Since the Bloch wave function has the same period as the
potential, it is convenient to expand it in the Fourier series:(

ψ̄↑
k(x)

ψ̄↓
k(x)

)
=
∑
l

(
a↑kl
a↓kl

)
eilpx. (4.5)

62



4.3. Umklapp Scattering and Fermi Pockets in Unidirectional Potential

In this representation, the Dirac equation (4.4) turns into a matrix equation for the vector wave
function (let us drop the k index for now) a⃗ = {. . . , a↑l , a

↓
l , a

↑
l+1, a

↓
l+1 . . . }

M · a⃗ = 0⃗

M = (4.6)

. . . · · · · · ·
−(kx − 2p)− δω −iky −iλµ/2 0

... iky (kx − 2p)− δω 0 −iλµ/2
...

iλµ/2 0 −(kx − p)− δω −iky
0 −iλµ/2 iky (kx − p)− δω

· · · · · ·
. . .



,

(4.7)

where δω ≡ ω−µ for brevity. The Green’s function in the Fourier mode representation is simply
the inverse of the Dirac operator:Glm = (M−1)lm. In ARPES experiments, the most important
element of the Green’s function is theG00 component, which characterizes the projection of the
fermionic linear response function in a crystal on the plane-wave states of the incident photon and
photo-electron. Therefore, in what follows, we will be focusing on the spectral function associated
with theG00 component of the fermionic Green’s function

A(ω, k) = ImTrG00(ω, k), (4.8)

where the trace is taken over the spin states. Throughout the paper we assume a practical definition
of the Fermi surface as the locus of maxima of the spectral density in the momentum plane at the
Fermi level.

In Fig. 4.1, we show various examples of the spectral density in the toy model (4.4) for various
parameters of the background potential.3 In the left column we consider a weak periodic potential
(λ = 0.08) for three values of the size of the Brillouin zone p. For a weak periodic potential all
the results can be easily understood from linear analysis. When the BZ is large enough, the Fermi
surface does not reach the BZ boundary and has the same isotropic shape as in the case without
modulation with Fermi momentum kf . For a smaller BZ (smaller p, middle panel), lattice copies
of the Fermi surface from the neighbouring Brillouin zones are seen. These copies are visible in the
G00 component due to the off-diagonal mixing terms iλµ/2 in Eq. (4.6). Therefore, the spectral
density in these lattice copies is suppressed by a factor of λ and, in case of the weak potential, they
are hardly visible. When the Brillouin zone size is further reduced (p/2 < kf ), the neighbouring
Fermi surfaces start to overlap and Umklapp gaps are opened at the Brillouin zone boundary. From
the point of view of the inversion of matrix (4.6), this is simply a linear eigenvalue repulsion effect
due to non-zero off-diagonal terms iλµ/2. This occurs around the point when the eigenvalues of
the top-left and bottom-right blocks of the matrix (4.6) become identical. In this case, the series

3The Green’s function of the real equation (4.6) is real. In order to make the spectral function visible, we evaluate it a
slightly imaginary frequency ω = Ef + i10−4, Ef = 0.4.
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Figure 4.1.: The shape of the Fermi surface of a non-interacting 2+1 dimensional Dirac toymodel in a unidirec-

tional periodic chemical potential. Shown is the spectral density (4.8), which equals the 00 component
of the inverse matrix M (4.6).
Left column: At weak modulation the shape of the Fermi surface appears circular as in the absence of a lat-
tice. However, lattice copies appear in the neighbouring Brillouin zones (BZ). When the BZ (red dashed
grid lines) becomes smaller than the Fermi momentum, these copies overlap and an Umklapp gap is opened
at the intersection point, giving rise to Fermi pockets.
Right column: At strong modulation amplitude λ = 1 nonlinear effects are seen. The shape of the Fermi
surface is now affected even far from the boundary of the BZ. When BZ gets smaller, the FS is first squeezed
and then strong Umklapp gaps are opened, leading to the small dumbbell-like Fermi pockets near kx axis
and the nearly kx independent flat “band” at finite ky .

of circular Fermi surfaces turn into a series of Fermi pockets in addition to a an outer band parallel
to x-axis. This “band” is an artefact of the unidirectional modulation of the potential, which we
introduced for simplicity. In the case of a realistic crystal lattice in bothx- and y- directions, Fermi
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pockets would form in the y- direction as well.

For strong modulating potential λ = 1, right column of Fig. 4.1, the situation is more involved.
Even though qualitatively the response is the same, quantitatively non-linear effects will now also
affect the shape of the Fermi surface. Firstly, of course, the lattice copies of the Fermi surface ac-
quire a larger spectral weight due to the stronger mixing and are visible already for large Brillouin
zones (top row). As the BZ decreases, the strong interaction effects that change the shape of the
Fermi surface are seen. It becomes “squeezed” as in the middle row of Fig. 4.1. Finally, once the
Fermi surfaces overlap, the umklapp gap that opens is so large that the outer “band” gets pushed
far away and is almost flat (independent of kx), while the heavily deformed Fermi pockets are
stretched along the BZ boundary, deforming in a dumbbell-like shape, see the bottom row of
Fig. 4.1.

As we will see below, these different types of the Fermi surface geometries that we find in the toy
model (4.4) with non-interacting electrons on top of the periodic potential will also appear in the
fermionic response of the strongly coupled holographic model. This will aid us in distinguishing
effects that are due to strong self-interactions from effects that are due to strong lattice poten-
tial.

4.4. Holographic Fermi Surfaces and Zeros

Next we recall the universal presence of zeros in the fermionic spectral response in a finite-density
holographic model of a strongly interacting system of fermions. This is also so in the absence of a
lattice and the simplest example of such a system – the homogeneous model at finite temperature
and chemical potential – is described by a Reissner-Norström black hole in the 3+1 dimensional
curved AdS space [61]. The corresponding metric reads

RN black hole ds2 =
1

z2

[
−f(z)dt2 + dx2 + dy2 +

dz2

f(z)

]
(4.9)

with

f(z) =

(
1− z

zh

)(
1 +

z

zh
+
z2

z2h
− µ2z2h

4

z3

z3h

)
≡
(
1− z

zh

)
P

(
z

zh

)
(4.10)

and zh being the radius of the black hole horizon which is related to the temperature and chemical
potential in the dual theory:

16πTzh = 12− µ2z2h. (4.11)

The gauge field potential of the charged black hole is simply

At = (z − zh)µ. (4.12)

In what follows we will set zh = 1 by choosing the appropriate measuring units.
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In order to study the fermionic response in the holographic framework, one considers the Dirac
equation on the curved space-time (4.9) [61, 93, 155–157, 180, 181]:[

Γfeµf

(
∂µ +

1

4
ωabµηacσ

cb − iqAµ

)
−m

]
Ψ(t, x, y, z) = 0, (4.13)

where Ψ = (ψ↑, ψ↓)T is a 4-component 3+1 dimensional Dirac spinor, which we break into two
2-component subparts corresponding to the different spin states on the boundary. Here efµ are
the tetrad vectors; ωabµ is the spin connection4; ηac is the Minkowski (−,+,+,+) metric; Aµ
is the gauge field, and σab ≡ 1

2 [Γ
a,Γb] is the generator of Lorentz transformations, where we

choose the Γ-matrices to be

Γt = i1⊗ σ1, Γx = σ3 ⊗ σ2, Γy = σ2 ⊗ σ2, Γz = 1⊗ σ3. (4.14)

The tunable parameters here are q andm – the charge and mass of the bulk fermion field. In the
homogeneous background (4.9) one can immediately expand in plane waves along {x, y} direc-
tions. It is also convenient to rescale the spinor and introduce the new fields ζa:

ψa = (g/gzz)
1/4eikxx+ikyy−iωtζa(z) , a ∈ {↑, ↓} (4.15)

where gµν is the metric and g its determinant. After this redefinition, the equation for ζ↑ reads[
∂z −

m

z
√
f
σ3 + i

ω + qA

f
σ2 +

kx√
f
σ1

]
ζ↑(z)− iky

1√
f
σ1ζ

↓(z) = 0. (4.16)

Taking advantage of the isotropy of the RN black hole, we choose the coordinates in such a way
that ky = 0 and the Weyl spinors ζ↑ and ζ↓ decouple. For ζ↓, the kx momentum term has
the opposite sign. Therefore, in the subsector ky = 0 the two spinors describe left- and right-
moving modes in the x-direction. This simplification generically doesn’t happen in the presence
of a lattice, however it still arises when the fermion propagates along the unidirectional potential,
as we will see in the next section5.

The analysis near the AdS boundary z → 0 shows the spinor components behave as

ζ↑(z;ω, k)
∣∣
z→0

=

(
b↑(ω, k)zm + a↑(ω, k)a0r(ω, k)z

−m+1 + . . .
a↑(ω, k)z−m + b↑(ω, k)b0s(ω, k)z

m+1 + . . .

)
, (4.17)

where the constants a0r, b0s can be fixed by solving the equations of motion, see Appendix 4.A,
and can in principle depend on parameters (ω, k). Given the expansion (4.17) of the bulk fermion

4Spin connection is defined as via ∂µeaν + ωa
bµe

b
ν − Γτ

µνe
a
τ = 0, where Γτ

µν is Christoffel symbol.
5This is a consequence of our choice of the Γ-matrices (4.14). Their reduction on the boundary, defined by the action

of 2+1 dimensional Lorentz generator σµν , µ, ν ∈ (t, x, y) on a positive subspace of Γz coincides with γ̄µ in (4.4).
The different spin states which we consider are the eigenstates of γ̄y and they decouple in case when the fermions
propagate along x-axis, since in the corresponding 1+1 dimensional problem they possess different chiralities.
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4.4. Holographic Fermi Surfaces and Zeros

profile one identifies the independent coefficients a and b with respectively the source and the
expectation value of the corresponding fermionic boundary operator Ψ of conformal dimension
∆ = 3

2 + m [93, 155, 156, 180, 182–185]. This is called “direct quantization” (Direct Q). It is
important to note however, that this identification is not unique: form ∈ [0, 12 one can consider
an “alternative quantization” (Alt. Q, which we denote with tilde: Ψ̃) and consider b as the source
and a as the expectation value of the operator Ψ̃ with conformal dimension ∆̃ = 3

2 − m. In
this regime of m ∈ [0, 12 ), a single bulk model can correspond to the two distinct boundary
theories, depending on the type of quantization chosen. A useful way of studying alternative
quantization is to consider the direct framework but to extend the range of m to negative values
ofm ∈ (− 1

2 , 0]. In this way the roles of a and b are switched in (4.17).

Within the linear response approximation, the holographic identification of source and response
allows one to obtain the two-point function of the fermionic operator under consideration: the
fermionic Green’s functionG = ⟨Ψ†Ψ⟩ = (response)/(source). In general the Green’s func-
tion is a matrix, and to divide out the sources requires a few steps. In the notation of [180], given
the relation between the sources and responses6(

b↑

b↓

)
= S

(
a↓

a↑

)
, (4.18)

the (retarded) fermionic Green’s function reads

GR = −iSγt, (4.19)

where γt = iσ1 with our choice of the Γ-matrices (4.14) [93, 155, 156, 180, 185–188]. Therefore,
in direct quantization G↑↑ = b↑/a↑, while in alternative quantization G̃↑↑ = a↑/b↑. In other
words, the two point functions in both quantizations are related by

G↑↑ = b↑/a↑ = 1/G̃↑↑. (4.20)

In particular and importantly, this means that the poles of the Green’s function in the alternatively
quantized boundary theory correspond to the zeros of the Green’s function in case of the direct
quantization.

The final point is to determine which type of the Green’s function we are looking at. This is fixed
by the boundary conditions at the black hole horizon, see Appendix 4.A. The retarded Green’s
function corresponds to a purely infalling solution at the horizon:

ζ↑(z)
∣∣∣
z→zh

∼ (zh − z)−iω/4πT . (4.21)

In short, in order to evaluate the Green’s function, one has to solve the Dirac equation (4.16) in
the full bulk geometry (4.9) and find the ratio between the a and b branches of the AdS boundary
expansion (4.17) of the solution. The first-order ordinary differential equation (4.16) together with

6Note that in the boundary fermionic theory the a↑ is a source to b↓ and vice versa, see [186, 187].

67



4. Holographic Lattice Fermions

the boundary condition (4.21) is solved with the numerical shooting method, as we explain in
Appendix 4.A, and for given values of the background parameters {T, µ}, fermionic parameters
{q,m}, frequency and momentum {ω, kx = k}, the asymptotic form (4.17) is read off from the
solution. This gives us the Green’s function G↑↑(ω, k) from Eq. (4.20). In complete analogy
we can evaluateG↓↓ by solving the appropriate equation, or simply use the symmetry mentioned
aboveG↓↓(k) = G↑↑(−k). Finally, we evaluate the fermionic spectral density as

A(ω, k) = ImTrG(ω, k) = Im(G↑↑(ω, k) +G↓↓(ω, k)) , (4.22)

which is the central object of our study. In what follows we mostly focus on the features of the
Fermi surface, defined as the locus of the spectral density peaks at zero frequency: ω(kF ) = 0.

The fermionic spectral density (4.22) at zero frequency in the RN black hole (4.9) computed this
way is shown on Fig. 4.2. We have chosen the fermionic bulk massm = 1/4, the charge q = 1 and
T/µ ≈ 0.005. The Fermi surface with direct quantization is shown on the left panel. Moreover,
sincem < 1/2 alternative quantization is also possible and the result is shown on the right. The
Fermi surfaces are circular, as expected for fermionic excitations at finite chemical potential in
an isotropic background. We also observe the specific holographic feature of the appearance of
multiple nested Fermi surfaces [93]. This is a generic feature in holographic models: the number
of the observed Fermi surfaces depends on the mass and the charge of the bulk fermion as well as
on the background chemical potential, and in principle it can be arbitrary [61].

Here we wish to call attention to another interesting phenomenon which is evident when compar-
ing the results of direct and alternative quantizations: each plot in Fig. 4.2 includes the position of
the Fermi surface in the other quantization in dashed lines. We see that the Fermi surfaces in the
direct and alternative quantization alternate. This effect is more clearly visible on the left panel of
Fig. 4.3, where the ky = 0 cut of the spectral density is shown. Indeed, the solid and dashed verti-
cal grid lines, indicating the Fermi surfaces in the direct and alternative quantization, respectively,
alternate: there is always an alternative quantization FS in between two direct ones.

At this point it is important to remember that, due to the inverse relation between the Green’s
function in Direct Q. and Alt. Q. (4.20), a pole in the alternative Green’s function G̃ always cor-
responds to a zero in the Direct Green’s function G. While a pole near the real axis produces a
discernible peak in the spectral densityA, a zero is only reflected in a depletion of spectral density
with a minimum set by the imaginary part of the position of zero in the complex plane, which is
proportional to temperature. This depletion, unlike the peaks, is harder to spot in density plots
like Fig.4.2. The reason is simply that in order for the depletion in spectral density to be visible,
the latter must have a finite background value. However, the spectral density at zero frequency is
set by temperature itself and therefore the depletion is not seen. Therefore, the most direct way of
detecting the zero in the Green’s function is indeed to study the peaks in its alternatively quantized
counterpart. This is how we will identify the zeroes of the Green’s function in the remainder of
this paper.

Another reason for the absence of detectable depletions of the spectral density is that the trace of
the Green’s function contains several additive terms, only one of which is suppressed. Indeed, in
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Figure 4.2.: The fermionic spectral density at near the Fermi level (ω = 0.01
√
ρ) in the

isotropic Reissner Nordström background (4.9) form = 1/4, q = 1. The den-
sity plot shows the distribution of the spectral density in momentum plane kx, ky for
the direct (left panel) and alternative (right panel) quantization picture. The circular
Fermi surfaces are seen, which are expected for the isotropic background. In both cases
there are two nested FS with different lifetime of the excitation. The positions of the
FS in the other quantization picture are shown with the dashed lines on each panel,
which makes apparent their alternating structure. T/√ρ = 0.01, µ2/ρ ≈ 3.329

a particularly simple example with ky = 0 the Green’s function is diagonal in the spin represen-
tation

ImTrG(ω, k) = ImG↑↑ + ImG↓↓ = Im

[
1

G̃↑↑

]
+ Im

[
1

G̃↓↓

]
. (4.23)

Therefore, the peaks of a single component, shown in dashed in Fig. 4.3, are clearly seen in the
total ImTrG, while the depletion, if any, would be shaded with the finite value coming from the
opposite-spin component. One could alternatively capture the position of zeros by looking at
the real part of the Green’s function at real ω, which changes sign at exactly this point. However
this method suffers from the same problem: the contribution of the two spin components add
together in the trace of the Green’s function and one has to diagonalize it in the spin space in
order to distill the position of zeros.

The Green’s function zeros become particularly important in the case where the peaks in both
direct and alternative quantization of the same spin component (shown with arrows in Fig. 4.3)
come closer to each other. In this situation, the pole and the zero of the Green’s function in the
complexω plane would recombine and the residue of the pole would vanish In this way, a peak in
the spectral density would be “eaten” by the approaching depletion producing a distinct observ-
able phenomenon. This pattern is similar to what happens in a Fano resonance in a continuum
coupled to a discrete system, but here it is manifested as a destruction of the Fermi surface atω = 0.
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Figure 4.3.: The fermionic spectral density near the Fermi level (ω = 0.01
√
ρ) in the

isotropic Reissner-Nordström background (4.9). The ky = 0 cuts in linear scale
of the direct and alternative quantization pictures are shown. The left panel corre-
sponds to the fermionic massm = 1/4 < 1/2, where the alternatively quantized dual
CFT is well defined, while the right panel corresponds to the case m = 3/4 > 1/2,
where it does not exist. In both cases the clear peaks corresponding to the well defined
Fermi surfaces are seen in both direct and alternative pictures (In case m = 3/4 one
needs larger value of fermionic charge q = 1.2 in order for the FS to be formed). The
dashed lines show the contribution of a single spin component to the spectral density.
The red arrows point out the peaks which, if brought close to each other, may be de-
stroyed due to the proximity of the zero and a pole in the given spin Green’s function.
In all cases T/√ρ = 0.01, which matches the parameters we will use later on.

In the simple isotropic model described above this does not happen since the poles and zeros are
always separated. In what follows we will show that the situation changes when a strong periodic
background chemical potential is considered.

Before moving forward, another comment regarding the existence of the zeros in the Green’s func-
tion is in order. On the right panel of Fig. 4.3 we show the results obtained for a different mass
m = 3/4 for which only a single quantization in the dual CFT is possible [155, 183]. In other
words, one cannot prescribe a physical meaning to the Alt. Q Green’s function. Formally, how-
ever, we can still evaluate the Alt. Q expression by inverting the Direct Q result. The artificially
computed Alt. Q spectral density clearly exhibits the peaks even in this case, which therefore cor-
respond to the zeros of the Direct Q Green’s function. Therefore, we conclude that the general
mechanism of appearance of the zeros, is independent of whether or not the alternatively quan-
tized picture is well defined.
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4.5. Fermionic Spectral Function in a Holographic Lattice

We now turn to the study on how the fermionic spectral function discussed in Sec. 4.4 is affected
by the periodic chemical potential, and in particular when the strength of the lattice potential is
strong. The bulk model with periodically modulated chemical potential – the holographic ionic
lattice – has been introduced in [118] and studied in great detail in [136, 140]. In what follows we
will adhere to the framework used previously by some of us in [79, 189] [190]. We consider the
holographic model with Einstein-Maxwell action

S =

∫
d4x

√
−g
(
R− 1

4
F 2 − 2Λ

)
, Λ = −3, (4.24)

where F = dA is the gauge filed strength tensor, R is the Ricci scalar and Λ – the cosmological
constant. We introduce the spatially modulated chemical potential (c.f. (4.2))

At(x, z)
∣∣∣
z=0

= µ(x) = µ0[1 + λ sin(px)] . (4.25)

The non-isotropic black hole solution can now no longer be constructed analytically, but must
be found numerically. In order to find the gravitational background solution it is sufficient to
consider the following metric ansatz

ds2 =
1

z2

(
−T 2f(z)dt2 + Z2 dz

2

f(z)
+ X 2(dx+Qzxdz)

2 + Y2dy2

)
, (4.26)

A = Atdt.

The blackening factor f(z) is that of the RN black hole (4.9) and all the other ansatz functions
depend on both z and x coordinates. Given that, at the horizon(

Z2 − T 2
)∣∣
z=1

= 0, (4.27)

the temperature is still given by (4.11). Using the DeTurck trick [128, 129, 191] and the numerical
methods for solving partial differential equations (PDEs) developed in [79, 147, 189] we obtain the
background gravitational solutions for a given temperature T at a fixed chemical potential. The
lattice wave-vector is p and λ is the amplitude of the chemical potential modulation in units of
µ0. The details of the numerical procedure and precision control are discussed in Appendix 4.B.
With the gravitational background solution at hand we proceed to solve the Dirac equation (4.13).
The co-frame is now less trivial than for the isotropic case:

et =

√
fT
z

dt, ex =
X
z
(dx+Qzxdz), ey =

Y
z
dy, ez =

Z√
fz
dz, (4.28)

but we can still follow the procedure outlined in Sec. 4.4. Since we are now working in a peri-
odic background potential, we express the spinors in Bloch waves (4.4) instead of plane waves and
therefore the rescaling of Eq. (4.15) is modified as

ψa(z, x) = (g/gzz)
1/4eikxx+ikyy−iωtζa(z, x),

ζa(z, x+ 2π/p) ≡ ζa(z, x), a ∈{↑, ↓},
(4.29)
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where ζa(z, x) is now a position dependent periodic Bloch wave function. Substituting (4.28)
and (4.29) into the Dirac equation (4.13), we obtain the fermionic equations of motion, which are
now PDEs with (2π/p) - periodic boundary conditions in x-direction (c.f. (4.16)):[

∂z −
m

z
√
f
Zσ3 + i

ω + qA

f

Z
T
σ2 +

kx√
f

Z
X
σ1

]
ζ↑(x, z)

− iky
1√
f

Z
Y
σ1ζ

↓(x, z)

−
[
i
1√
f

Z
X

(
∂x +

1

4
∂x ln

1√
f

Z
X

)
σ1

+Qzx

(
∂x +

1

2
∂x lnQzx + ikx

)
1

]
ζ↑(x, z) = 0.

(4.30)

The equation for the ζ↓ component is obtained by a parity transformation: ki → −ki,∂i → −∂i
and Qzi → −Qzi, for i ∈ {x, y}. The AdS boundary and horizon asymptotic behavior (4.17),
(4.36), (4.21), (4.38) remain unchanged in the presence of the periodic potential, except that all the
expansion coefficients are now periodic functions of the boundary coordinate x. The details of
the numerical algorithm used to integrate these equations are given in Appendix 4.C.

Given a solution of (4.30) as a function of both z and x, we extract the near boundary coefficients
a(x) and b(x) defined in Eq. (4.17). In order to obtain the linear response S-matrix of Eq. (4.18),
we expand these periodic expansion coefficients in Fourier series similarly to the method shown in
Sec. 4.3:

a(x) =
∑

ale
ilpx, b(x) =

∑
bne

inpx. (4.31)

Therefore, the S-matrix is a infinite matrix with both spin and Fourier indices (c.f. (4.6)).(
b↑n
b↓n

)
=
∑
l

Snl

(
a↓l
a↑l

)
, (4.32)

The Green’s function is evaluated in the same way as in Eq. (4.19), except that it is now a matrix.
It is worth mentioning that, since the Fourier basis exponents differ from each other by a shift
with exactly one unit of the lattice wave vector p, the indices m, l can be interpreted as the Bril-
louin zone index. Therefore, the Green’s function Gml is simply a matrix in the Brillouin zone
representation. We comment on some features of its structure in Appendix 4.D.

As it was discussed earlier in Sec.4.3, the most interesting component of the Green’s function for
us isG00, which measures the overlap between the response function in the material and the plane
waves of the ARPES probe (4.8). In order to measureG00 and the associated spectral density, we
consider a plane wave source a(x) = 1 as a boundary condition when solving the bulk equa-
tions of motion (4.30) and read off the homogeneous component of the response b(x), see also
Appendix 4.C.
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In order to evaluate the Green’s function in the alternative quantization picture, one has to invert
the full infinite matrix and the simple formula (4.20) turns into

G̃00 =
(
G−1

)
00
. (4.33)

In order to perform this inversion one has to evaluate all the components of the Direct Q Green’s
function, which is hard in practice even when one truncates the Fourier series. Therefore, instead
of using this method we evaluate the alternatively quantized Green’s function by solving the Dirac
equation with the negative fermionic mass parameter (see Appendix 4.A). As explained above, this
switches the roles of a(x) and b(x) in the linear response calculation. In Appendix 4.D we check
that the two approaches give identical results.

4.6. Destruction of the Fermi Surface by the Zeros in the

Green’s Function

Let us now analyze the results which we get for the fermionic spectral function in the holographic
model described in Sec. 4.5. In what follows we study a series of the background gravitational
solutions for various Brillouin zone sizes p, but with fixed charge density ρ. We also fix the tem-
perature T/√ρ,7 and the amplitude of the chemical potential modulation λ (4.25). We consider
two cases with weak and strong potential modulation, in direct analogy with the toy model study
performed in Sec. 4.3. We use the same temperature and parameters for the bulk fermion as in the
homogeneous RN-black hole case addressed in Sec. 4.4:

T
√
ρ
= 0.01, m = 1/4, q = 1. (4.34)

As seen in Fig. 4.2, the size of the Fermi surface in the absence of the periodic potential for these
parameters is kf ≈ 0.94

√
ρ.

4.6.1. Weak Lattice Potential

We start with a weakly modulating lattice with strength λ = 0.1. On Fig. 4.4, we show the mo-
mentum distribution of the spectral density, which in this case displays the circular Fermi surface
with exactly the same size as the homogeneous one (c.f. Fig. 4.2). The weak lattice potential does
not affect the shape of the Fermi surface. We choose the size of the Brillouin zone to be smaller
then the Fermi momentum p < 2kf , therefore the umklapp copies of the FS overlap and, in
perfect agreement with the observations in toy-model of Sec. 4.3, we see umklapp gaps opening at
the BZ boundaries. Another feature which is expected is the suppression of the spectral density in
the neighboring Fermi surfaces. Indeed, these are almost invisible in the linear scale plot on top of
Fig. 4.4. However, the bottom panel shows the logarithm of the spectral density, which makes the
λ-suppressed lattice copies of the Fermi surface clearly visible. In a nut shell, the results obtained

7In practice we have control over the mean chemical potential µ0, which is set by the boundary condition, but we can
tune it in such a way that the mean charge density, which can be read out for a given background solution stay fixed
when we change the lattice wave-vector p.
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Figure 4.4.: The fermionic spectral density in the holographic model with weak unidirec-

tional periodic potential (λ = 0.1).
The density plots at small (ω = 0.01

√
ρ) show the effects of introducing the periodic

potential. The two plots represent the same data on linear (upper) and logarithmic
(lower) scales. Near the Brillouin zone boundary, indicated by the dashed lines, the
umklapp gap is starting to open. The weak nature of the potential suppresses the in-
tensity of the copies in neighbouring Brillouin zones, to the extent that they are hardly
visible in the upper plot. The lower plot shows that the copies are clearly visible on a
logarithmic scale.
The background parameters are: p = 1.4

√
ρ, λ = 0.1, T = 0.01

√
ρ, µ2 ≈ ρ/0.3.

in the holographic model with a weak periodic potential are in perfect agreement with both the
standard logic of fermion physics in a periodic potential, and the shape and size of the holographic
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Figure 4.5.: The frequency resolved fermionic spectral density in the holographic model

with weak unidirectional periodic potential (λ = 0.1).
The density plot shows a cut through the same data as Fig.4.4 in the kx, ω plane, at
ky = 0.001

√
ρ. Around (kx, ω) ≈ (±0.4, 0.02), the dark lines crossing through

the inner Dirac cone arise from the “resonant” type zeroes [173] discussed in Sec. 4.2.

Fermi surface in the homogeneous background. This serves as a consistency check of our approach
and numerical techniques.

Similarly, a familiar pattern is also seen on the energy-momentum resolved spectral function
shown on Fig. 4.5. As expected, the usual holographic dispersion relation for fermionic excitations
is recovered. In this case, it consists of the two nested Dirac cones in the vicinity of the Fermi level.
The spectral lines quickly broaden due to the quantum critical self energy Σ(ω) ∼ ω2νkF [61,
93, 155, 156]. However, there is one distinctive new feature due to the presence of the holographic
lattice. There is a localized depletion of the spectral weight along the lines which correspond to the
dispersion bands of the neighbouring Brillouin zones. This feature is a consequence of a general
effect pointed out earlier in [173]. Namely, when multiple systems with discrete spectra interact
with each other by means of the quantum critical continuum, the spectral function of one of the
systems develops isolated zeros, or depletions, at the positions of the energy levels of the other
systems. In the case of the holographic model with a lattice, the discrete systems are the umklapp
copies of the fermionic dispersion while the quantum critical continuum originates from the near
horizon geometry [93]. This interesting effect may, in principle, also lead to a destruction of the
Fermi surface at an isolated point, however it will not be relevant in the present study.
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Figure 4.6.: The fermionic spectral density in the holographic model with strong unidirectional

periodic potential (λ = 8.0), in direct and alternate quantizations near the Fermi level (ω =
0.01

√
ρ). The squeezing of the outer Fermi surface happens like in the toy model on Fig. 4.1.

In the Alt. quantization, where the Fermi surfaces are larger, the outer FS breaks apart in a band
at ky ≈ ±3, and a pocket at the BZ boundary due to Umklapp. When the BZ boundary is
brought closer, to p = 1.4

√
ρ, the spectral density appears to be drastically reduced in the

direct quantization near the Umklapp surface. In the alternate quantization, dumbbell shapes
similar to the non-interaction model in Fig. 4.1 appear. The background parameters are T =
0.01

√
ρ and p = 5

√
ρ, µ2 = ρ/0.54 (top); p = 2.4

√
ρ, µ2 = ρ/1.22 (middle); p =

1.4
√
ρ, µ2 = ρ/2.04 (bottom).
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4.6. Destruction of the Fermi Surface by the Zeros in the Green’s Function

4.6.2. Strong Lattice Potential

Let us now turn to the analysis of the case of strong potential modulation λ = 8, depicted in
Fig. 4.6. Similarly to the toy model study of Sec. 4.3, we consider a series of backgrounds with dif-
ferent potential wave-vectorpwhich sets the sizes of the Brillouin zone. The parameters considered
allow to access the alternative quantization, which has an inverse Green’s function G̃ = G−1.
In order to analyze the spectral density in Alt. Q, we solve the Dirac equations (4.30) on top of
the same gravitational background lattice, but taking the negative sign for the bulk fermion mass
m = −1/4 (see Appendix 4.D for the details of obtaining the Alt Q fermionic response). We
show the results of the direct and alternative quantizations side by side on Fig. 4.6. Note, how-
ever, that we choose logarithmic scale for the Alt. Q results in order to resolve all the features of
the FS.

On the first row of Fig. 4.6, the BZ is much larger then the Fermi surface in direct quantization (top
left, p = 5

√
ρ ≈ 5kf ). Therefore, since the umklapp surfaces are far away, the FS is not deformed

even in this regime of strong lattice potential. This is expected; when momentum is much smaller
than the BZ, i.e. in the long wave length limit, the periodic structure of the potential becomes
irrelevant and only the mean value of the chemical potential µ0 plays a role in the formation of
the Fermi surface.8 On the other hand, the outer FS in the alternate quantization is larger (kf ≈
1.5

√
ρ, see Fig. 4.2). Therefore, on the top right panel of Fig. 4.6, we see that, in this case, the FS

is already deformed by the BZ boundaries, similar to the non-interacting toy model in Sec. 4.3.

When the BZ becomes smaller, p ≈ 3kf , second row of Fig. 4.6, the neighbouring Fermi surfaces
come close to each other and get deformed due to the strong lattice potential in direct quantiza-
tion. This is exactly the same situation observed in the toy model of Sec. 4.3. For Alt. Q (right
panel), we readily observe the formation of Fermi pockets and the flat outer band. This is again
similar to the toy model at strong lattice potential.

The novel interesting phenomenon arises when the Brillouin zone is squeezed even further. On
the bottom row of Fig. 4.6 we show the situation with p = 1.4

√
ρ. Quite strikingly, we see that as

the FS is squeezed further more, the sharp spectral density peaks indicating the shape of the Fermi
surface disappear along the boundary of the BZ in direct quantization. A more detailed view in
Fig. 4.7 shows this explicitly. On the other hand, the alternative quantization plot displays heavily
squeezed dumbbell-like Fermi pockets, which are centered at the BZ boundaries.

As discussed in Sec. 4.4, we have a thorough understanding of some of the peculiar features of the
holographic fermionic spectral response. This allows us to figure out the origin of the depletion
of spectral function. The zeros of the direct quantization are the corresponding poles of the al-
ternative quantization Green’s function. In Fig. 4.8, we show high resolution results of the FS for
Direct and Alternative quantizations. In each plot, we show with the dashed green lines the posi-
tions of the poles in the other quantization scheme. Most strikingly, the position of the secondary
Fermi surface in the Alt. Q overlaps with the primary Fermi surface in the Direct Q, as seen on
the left panel of Fig. 4.8. Therefore, there are zeros in Direct Q that get pushed towards the poles

8As is well known by now, this logic can be violated in other holographic models involving homogeneous lattices [115,
192] or the periodic scalar lattice [193].
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Figure 4.7.: The destruction of the Fermi surface in strong unidirectional holographic

lattice potentials (λ = 8.0). Zooming on the picture shown on the bottom left in
figure 4.6, it is clearly seen that the Fermi surface loses its sharpness and even disappears
around ky = 0.
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Figure 4.8.: Poles and zeros of the fermionic response in strong holographic lattices (λ =
8.0). Looking more closely at the spectral densities for large lattices and small BZ
(p = 1.4

√
ρ), for the direct quantization in the left figure the spectral density broad-

ens and disappears near the Umklapp surfaces kx ± 0.7
√
ρ. When tracing out the

Fermi surfaces in direct and alternate quantizations and overlaying them on top of
each other, it becomes apparent that when the Fermi surfaces of the two different
quantization would lie at the same point, they both experience a reduction and broad-
ening of the spectral weight near the FS. The secondary Fermi surface of the alternate
quantization is also shown as a trace on the left. This is not visible on the right-hand
picture due to the choice of color scheme (see the log-scale Fig. 4.6 instead).
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defining the FS. This effect destroys the Fermi surface in an extended region near the BZ bound-
ary. This cancellation of poles and zeros is the fundamental reason for the novel phenomenon we
observe.

We can expose the “zero-eats-pole” effect in more detail by analysing cuts along the kx-axis of the
spectral density. These Momentum Distribution Curves (MDC) are shown in Fig. 4.9, where we
plot the Direct and Alternative quantizations, in exactly the same fashion as we did in Fig. 4.3. A
clear depletion is observed in the Direct Q MDC corresponding to the secondary FS peak in the
Alt. Q scheme. As the size of the Brillouin zone (red dashed grid line) is decreased as shown in
bottom left plot of Fig. 4.9, this depletion approaches the peak shown by filled red pointer and
absorbs it completely at p = 1.4

√
ρ as shown in the bottom right plot of Fig. 4.9. Therefore, we

conclude that for strong lattices, the Fermi surfaces in both direct and alternative quantizations
are deformed in such a way that the poles and zeros overlap and cancel each other.

This destruction has a dramatic effect on the very existence of the quasiparticle excitations in part
of the kinematic region. This is best seen on Energy Distribution Curves (EDCs), which we show
on Fig. 4.10. Here, we plot the frequency dependence of the spectral weight at two perpendicu-
lar directions in the Fermi surface: kx = k

(x)
f , ky = 0 and kx = 0, ky = k

(y)
f . When the

BZ boundary is far away (top panel of Fig. 4.10), the EDCs are practically identical in both di-
rections, confirming that the FS is almost isotropic. In the bottom left panel, the anisotropy is
now manifest, since the FS is deformed by the lattice. Finally, the most drastic effect is seen on the
bottom right panel of Fig. 4.10. On the one hand, in the ky-direction, there is still a sharp peak
corresponding to a quasiparticle excitation. However, the spectral density in the kx direction (red
line) is totally incoherent – there is no excitation with definite energy which propagates along the
kx-direction.

4.7. Discussion

In this work we have studied the fermionic spectral function in a holographic model with periodic
ionic lattices. Our most important finding is a novel phenomenon which appears as a destruction
of coherent spectral weight peaks of the Fermi surface along the directions of the lattice vector.
We have shown that the origin of this phenomenon is the interaction between poles and zeros of
the fermionic Green’s function. More precisely, due to non-linear effects from the strong back-
ground lattice potential, these are pushed together and suppress each other. What is tantalizing,
is that the patterns of the spectral density observed here look very similar to the results of ARPES
experiments in strongly correlated materials in which nodal-antinodal dichotomy and Fermi arcs
are observed. There one also observes the destruction of the coherent spectral weight in certain di-
rections. It is therefore very interesting to further investigate whether our results can clarify these
unconventional phenomena.

A warning is in order however; one should handle the results of holographic models with great
care. As we discussed in Sec. 4.4, the presence of zeros in our holographic treatment follows from
the simple logic relying on the existence of two possible choices for the dual CFT operators corre-
sponding to each quantization, and the existence of a Fermi surface in the alternate quantization.
However, as we noted on Fig. 4.3, when only one quantization is allowed, zeros are still present
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Figure 4.9.: Momentum distribution curves in strong unidirectional holographic lattices

(λ = 8.0) in direct and alternate quantizations.

At large lattice momentum, when the BZ boundary is far away from the FS, the the
peaks in direct and alternate quantization alternate along the MDCs (c.f. Fig. 4.3).
The positions of Direct Q peaks and Alt Q dips are correlated. When the BZ boundary
is brought closer, the peaks and zeroes seem to absorb each other. For p = 1.4

√
ρ,

the quasiparticle peak is eaten by the zero completely.
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Figure 4.10.: Energy distribution curves in for strong unidirectional holographic lattices

(λ = 8.0) in direct quantization near and far from the Umklapp surfaces.

When the BZ boundaries are far away, as in the top picture, the EDCs look very sim-
ilar: they both show a well-defined, sharp peak. The dip on the right shoulder of
the peak corresponds to the alternate quantization zero. When the BZ boundary is
brought closer, first some asymmetry in the sharpness of the peaks appears. When the
BZ boundaries are brought very close, the peak for the EDC near the BZ boundary
gets destroyed by the zero completely.
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4.7. Discussion

and perhaps their existence is a more fundamental feature, which is yet to be explored. The fact
that the zeros and (the multiple) poles of the fermionic Green’s function appear in simple models
as alternating series suggests that, as we drive some parameter (chemical potential or temperature)
to zero, they might coalesce and form a branch cut in the complex plane. This signals the truly
unparticle shape of the Green’s function characteristic of the ultraviolet CFT of the holographic
duality. This idea is rather at odds with the physics of experimentally realized strange metals, be-
cause the UV CFT of a holographic model is clearly not the UV theory governing the behaviour
of electrons in real materials. Moreover, the multiple pole features of the fermionic response in
the holographic model arguably rely on the large-N approximation, which may or may not be
efficient in reality.

However, one can regard our results with a larger perspective; we observe that the destruction
between zeros and poles requires the two fundamental ingredients: the very existence of zeros
in the fermionic Green’s function and strong lattice potentials, which influences the position of
poles and zeros by bringing them closer together so that eventually they annihilate each other.
Even though the understood origin of the zeros in our particular holographic model cannot be di-
rectly mapped to known condensed matter systems, there are models in condensed matter theory,
which display similar features, in particular Mott insulators [174, 179]. Our finding suggests that,
if upon doping the insulating Mott zeros of the Green’s function remain present, their proximity
to the quasi-particle poles may indeed be the origin of this spectacular experimental phenomenon.
Doped Mott insulators are exactly the systems where the real Fermi arcs are observed. In this regard
holographic studies certainly confirm its use as a convenient theoretical laboratory for studying the
phenomenology of the strongly correlated systems which goes far beyond the applicability of the
Fermi liquid theory.
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4.A. Appendix A: Fermionic Equations of Motion in the

RN Background

Here, we discuss in detail the algorithm to numerically solve the Dirac equation in the RN back-
ground (4.16) for two cases depending on the bulk fermion mass:

• m = 1
4 : The case |m| < 1/2, when the alternative quantization is allowed.

• m = 3
4 : The case |m| > 1/2, when the alternatively quantized CFT on the boundary side

is ill-defined (non-renormalizable) [155, 183].

In both cases on top of the direct approach we will also formally evaluate the response in the alter-
native quantization (settingm→ −m), which can be done in the bulk even in case ofm = 3/4,
despite the fact that the boundary dual theory is ill defined.

In order to eliminate divergences at the UV boundary (4.17) and the oscillations due to the ingoing
boundary conditions at the horizon (4.21), we redefine the components of the wave function in
(4.16)

ζ(z) → z−m(1− z)−i
ω

4πT ξ(z), (4.35)

and solve for ξ(z) ≡ (ξr, ξs)
T in what follows.

For our choices of the bulk mass, the rescaling of Eq. (4.35) leads to one of the components ap-
proaching a constant at the boundary z → 0, and the other component scaling as a positive
half-integer power of z. The terms in the equations of motion contain only integer powers of z at
the boundary, therefore one can expand the solution as series (see (4.17))

m =
1

4
:

{
ξr = bz1/2

(
1 + b1rz + . . .

)
+ az

(
a0r + a1rz + . . .

)
ξs = a

(
1 + a1sz + . . .

)
+ bz3/2

(
b0s + b1sz + . . .

)
,

(4.36)

m =
3

4
:

{
ξr = bz3/2

(
1 + b1rz + . . .

)
+ az

(
a0r + a1rz + . . .

)
ξs = a

(
1 + a1sz + . . .

)
+ bz5/2

(
b0s + b1sz + . . .

)
,

(4.37)

where the coefficients ala, bla are fixed by the near boundary expansions of the equations of motion
while a, b are the integration constants describing the source and response, respectively. Impor-
tantly, we see that because the expansion is in half-integer powers of z, the series proportional to a
and b never overlap and therefore there are no logarithmic terms appearing in the expansion [75,
194].

Near the horizon, both spinor components approach constants for any value of mass. However,
the equation coefficients include the factors of

√
f ∼

√
1− z, therefore the expansion near hori-

zon goes in half-integer powers of (1− z)

z → 1 : ξr = h(1 + h11
√
1− z + h21(1− z) . . . ) (4.38)

ξs = −ih(1 + h12
√
1− z + h22(1− z) + . . . ),
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where h is an arbitrary integration constant and the coefficients hla, including the “−i” factor in
front of ξs come from the expansion of the equations of motion near horizon.

In order to render the solutions regular on both ends of the integration interval it is therefore
convenient to rescale the coordinate as well. More specifically, we define

z ≡
(
1− (1− r)2

)2
, r

∣∣∣
z→0

∼
√
z/2, (1− r)

∣∣∣
z→1

∼
√
(z − 1)/2. (4.39)

With these modifications, the problem reduces to solving two coupled first-order linear ODEs
(4.16) on the interval r ∈ [0, 1] subject to the boundary conditions (4.36), (4.38). There are 3 inte-
gration constants a, b and h, one of which can be set to unity due to the linearity. The remaining
two are fixed by the two boundary conditions giving a unique solution for fixedω, kx, ky . We use
the numerical shooting method to obtain this solution. We shoot from both ends of the interval,
using the expansion series (4.36) and (4.38) as the initial conditions, and look for the values of free
constants b, h for which the solutions match in the arbitrary point in the interior of the interval.
The advantage of this method is that we have a direct control over the response constant b and do
not need to extract it from subleading terms in the near boundary expansions of the solution as it
is usually done when shooting from horizon only.

4.B. Appendix B: Numerical Calculus and Precision Control

for Gravity Background

In order to obtain the non-homogeneous gravitational background with a periodic boundary con-
dition for the gauge field (4.25), we have to solve the full set of the Einstein equations. These follow
from Eq. (4.24), which gives a set of 6 coupled non-linear partial differential equations (PDEs) in
coordinates (x, z), which are not elliptic. In practice we solve for functions Q̂µν , Âµ defined as

At = µ̄(1− z)Ât, T 2 = 1 + zQ̂tt, X 2 = 1 + zQ̂xx (4.40)

Y2 = 1 + zQ̂yy, Z2 = 1 + zQ̂zz, Qxz = zQ̂xz, (4.41)

such that the RN black hole solution corresponds to the choice Q̂µν(x, z) = 0, Ât(x, z) = 1.

We use the DeTurck trick, outlined in [128, 129, 191] and used for this type of holographic models
in [118, 136]. It allows to recast the Einstein’s equations as a boundary value problem for a set of
nonlinear elliptic equations. We choose the RN black hole as a reference metric, which allows us
to use for the non-homogeneous background the same expression of temperature as a function of
chemical potential as that of the RN black hole (4.11).

The boundary conditions in x-direction are periodic, as dictated by the symmetry of the back-
ground lattice potential. It is convenient to rescale the spatial coordinate x → (2π/p)x̂ in order
to fix the integration interval to unity: x̂ ∈ [0, 1). At the z → 0boundary we require the metric to
be asymptotically AdS with a nontrivial inhomogeneous source for the gauge field (c.f. (4.25))

z → 0 : Q̂µν(x, 0) = 0, Ât(x, 0) = 1 + λ cos(2πx̂). (4.42)
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The horizon boundary conditions follow from the asymptotic expansion of the Einstein equations
near the horizon f(1) = 0. We expand the unknown functions in the Taylor series down to
the first derivative order and substitute these expansions into the Einstein equations. This gives
us 5 equations in the subleading order which relate the derivatives of the fields to their horizon
values, i.e. generalized Robin boundary conditions. On top of that we get one algebraic equation
Q̂tt(x, 1) = Q̂zz(x, 1) at the leading order, which guarantees the solution to be static [118, 136,
140].

The numeric algorithm follows closely the treatment of our earlier works [79, 147, 189] with
several technical improvements. We used a finite difference discretization of the equations on a
homogeneously spaced grid and realized a Newton-Raphson procedure to solve the nonlinear
boundary value problem. While supplementary procedures were implemented, including a relax-
ation scheme with Orszag regularization, no other methods matched the speed and accuracy of
the direct Newton-Raphson method [195, 196], see also [147].

We ran a comprehensive series of precision and accuracy tests to make a judicious choice of com-
putational parameters. We employed the norm of the DeTurck vector and the value of the trace of
the Einstein tensor as measures of convergence. The thermodynamic potential was used as a phys-
ical observable, from which we could estimate the relative precision of our calculations. From
this analysis, we were able to conclude that the configuration which gives us the best balance be-
tween speed and accuracy of computations for both the backgrounds and the fermions is a grid of
nx×ny = 34×80 points, where we use 8th-order accuracy central finite difference derivatives in
our finite difference scheme. This achieved relative errors of less than 10−5 in the thermodynamic
potential, while still allowing for the fermionic equations to be computed quickly and accurately
enough. In order to make sensible comparisons, we work in the canonical ensemble with a con-
stant charge density. Since this is not a parameter in our equations, but rather an observable we
can only extract after solving the background, we employed a root-finding algorithm with a relative
tolerance of 10−3 to fix the charge density.

We implement our numerical routines in Python 3.6 using a set of packages that can be found in
the standard SciPy stack [197]. Under the hood, these use the SuperLU [198] package for solving
the sparse linear equations. We have performed several cross checks with a similar code in Mathe-
matica [199], which was used earlier in [79, 189, 190], in order to prove the reliability of the package.
The code was designed such that it could run a large number of small instances in parallel on any
number of machines. This technique was suitable for running on the Lorentz Institute Maris
cluster

4.C. Appendix C: Numerical Calculus for Dirac Equation

There are few subtleties which one encounters when solving the Dirac equation on the non-
homogeneous background (4.30) numerically. First, in order to make the fermionic solutions
regular on both horizon and asymptotic boundary we perform the same set of redefinitions of
the wave-functions (4.35) and holographic coordinate (4.39) as it was done in the homogeneous
case discussed in Appendix 4.A.
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Moreover, there are several strategies which one can use in order to solve the set of first order dif-
ferential equations numerically. One of them is to solve a Cauchy problem, integrate the equa-
tions starting from horizon and read off the boundary asymptotes. This is somewhat similar to
the shooting method we discussed above and it was used in the early work [159]. However, when
dealing with PDEs, one has to consider solving for all possible Fourier modes on the horizon and
tracing out all the components of the response matrixSnl (4.18) before one gets access to the single
S00 component, which we are mostly interested in. Therefore we find this approach not suitable.
Instead, we consider the boundary value problem, imposing the (position dependent) infalling
boundary conditions (4.38) at the horizon as well as setting the source a(x) on the asymptotic
boundary z → 0 to a desired Fourier mode. In this way, setting for instance a(x) = eipl with
fixed l and measuring the full profile of b(x) =

∑
n e

ipn, we get the information on all compo-
nents of the response matrix in a row Sln, n ∈ [−N/2, N/2], where N is the size of the grid
in the x-direction. This boundary value approach is more useful since we can obtain the desired
value S00 in a single iteration by considering simply a(x) = 1 as boundary condition.

However, a problem arises when one tries to implement the boundary value PDE solving code in
the case of a Dirac equation. The boundary value problem requires setting the boundary condi-
tions for each field on both ends of the integration interval. For a first order differential equation,
like the Dirac equation, this over determines the problem. We avoid this obstacle by formally set-
ting a trivial boundary conditions of the form ‘0 = 0’ for half of the fields on the boundary.
Indeed, after performing the rescaling of the fields (4.35) we guarantee that the sub-leading spinor
component will behave as ξr ∼ z2m at the boundary. Therefore, setting ξr(0) = 0 does not
impose any extra constraint in the problem. This precise trick does not work however in case of
alternative quantization, when we formally take m < 0 and the “response” branch ∼ z2m di-
verges on the boundary. In the particular case of m = −1/4 studied here, this divergence is
mild enough and we simply get rid of it by further redefining the “response” fermion compo-
nent with an extra factor of z. More precisely, in case of m = −1/4 instead of (4.35) we use
ζr → z−m−1(1 − z)−i

ω
4πT ξr . This changes the near boundary behavior of the ξr component

to ξr ∼ z1/2. As before, the Dirichlet boundary condition ξr = 0 is trivial and does not over
constrain the problem.

We use a similar logic on the horizon; in addition to the leading behaviour ξr(x) = iξs(x), Eq.
(4.38), following from the ingoing boundary condition, we include the sub-leading terms in the ex-
pansion of the equations of motion,. These, relate the derivatives of the functions to their bound-
ary values. Since these relations are obtained from the equations of motion themselves, they do not
introduce extra constraints and we are left with the correct amount of boundary conditions.

Another problem with the first order differential equations is that the matrix which represents the
discretized problem on a lattice does not have a positively defined spectrum of eigenvalues typical
of elliptic problems. Therefore, one can not rely on the iterative methods, because these are not
guaranteed to converge. In our case, the Dirac equation is linear and one does not require to use
iterations of any kind: the problem is solved “in one shot” by inverting the master matrix once.
Even though we managed to make use of this approach, it may not always be applicable, especially
in cases where the pseudospectral collocation is used and hence the matrix is dense, or simply if
the grid is dense and inversion of the huge matrix is not feasible. In this case one can improve
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the situation by substituting the first order equations (4.30) with the second order elliptic ones.
Indeed, if we represent the equations (4.30) for ξ↑ and their P-transformed counterparts for ξ↓
as

Dirac↑ ≡ Dx[ξ↑] +Kyξ↓, Dirac↓ ≡ D−x[ξ
↓]−Kyξ↑ , (4.43)

we can apply to one of the equations the differential operator of the other equation, and vice versa,
to get the following second order system

(Dirac↑)2 = D−x[Dx[ξ↑]] +D−x[Ky]ξ↓ +K2
yξ

↑, (4.44)

(Dirac↓)2 = Dx[D−x[ξ
↓]]−Dx[Ky]ξ↑ +K2

yξ
↓ .

In this form, the second order differential operator for each spinor component is the Laplacian
in curved space. This representation allows us to use the full power of the iterative numerical
techniques designed for elliptic equations. We have observed that the direct inversion of the master
matrix, similar to the one we used in the first order case, becomes numerically less demanding
due to improved features of the differential operators. When using the second order equations
(4.44) one has to take care that no ghost solutions are obtained which do not solve the original
problem. We can guarantee this by using the expanded first order Dirac equations as the boundary
condition on the horizon. Unlike the first order case, these boundary conditions are not trivial,
but they rather impose the constraint that the first order equations are satisfied at the horizon, and
this constraint is further propagated in the bulk by the second order system. We checked in our
numerical calculations that the two approaches, with the first and the second order differential
equations, give identical results and this cross-check serves as a good confirmation of the validity
of our numerical treatment.

4.D. Appendix D: Green’s Function in the Bloch

Momentum Representation

Here, we study spatial features of the Green’s function in the Bloch momentum representation
and the way the poles in the alternative quantization manifest themselves as zeroes in direct quan-
tization. We focus on the response matrix (4.32). In practice, by representing the Dirac equation
as a boundary value problem, as outlined in Appendix 4.C, we have a direct control over a(x)
and can, for instance, source any given harmonic mode. In most cases we just switch on a0 = 1,
corresponding to the constant source and obtain b(x) as the series

b(0)(x) =
∑
n

einpxSn0 . (4.45)

Then, we extract the b0 homogeneous component, which gives S00 = b0/1 (note that we nor-
malized a0 = 1 here).

In principle, we can go further and study a full rectangular sector of a (formally infinite)S-matrix.
In order to do so, we consider several harmonic sourcesa(l)(x) = eilpx and evaluate the responses
for these cases

b(l)(x) =
∑
n

einpxSnl. (4.46)
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It is now clear that by extracting N Fourier modes of the response profiles b(l)(x) for a set of L
harmonic sources we get access to the fullN×L patch of theS-matrix. Formally, in order to treat
the alternative quantization as exchanging the of roles between b(x) and a(x) and obtain the S̃00

component of the Alt. Q response matrix, we have to guess what kind of the boundary “response”
condition a(x) would lead to a constant “source” b(x) = b0. In other words, our goal in this case
is to find a set of coefficients al, such that∑

l

alb
(l)(x) =

∑
l,n

Snlaleinpx = b0. (4.47)

In a vector notation this has a simple form

S · a⃗ = b0e⃗0, (4.48)

where a⃗ = (. . . , a−1, a0, a1, . . . ) and e⃗n is the unit basis vector with the only nonzero compo-
nent at n-th position. Clearly, the result is

a⃗ = b0S−1 · e⃗0 (4.49)

And after taking the a0 component we arrive at the expression: S̃00 ≡ b0/a0 = (S−1)00, from
which the equation (4.33) of the main text follows. As we see here, if S00 has a diverging value, it
will enter the determinant ofS and therefore force the (S−1)00 component to vanish in complete
analogy to the simpler homogeneous case we studied in Sec. 4.4. Given that using the harmonic
sources we can evaluate a large enough sector of the S-matrix, we can invert it approximately and
obtain a required value of (S−1)00. However this treatment is not feasible in practice. The other
way of obtaining the alternative quantization picture is by directly setting the boundary condition
for b(x) = 1 and read out the profile of a(x). In this way we directly measure the S̃00 compo-
nent and no matrix inversion is needed. This approach is equivalent to setting the bulk fermion
mass to its negative value (4.17), as we discussed above and it is much less demanding, therefore
we predominantly use it in this work. Nonetheless, the rescaling of the fermionic wave function
discussed in Appendix 4.C is different in this case. Consequently, the equations differ from the
direct quantization ones. We find it important to check whether the two approaches do indeed
lead to the equivalent results. On Fig. 4.11 we show that indeed the result obtained from inverting
the S-matrix for a set of 34 harmonic sources (left panel) coincides with the one which we get by
changing the sign of the bulk fermion mass (right panel).

One extra comment on the structure of theS-matrix is in order. This clarifies the relation between
the shifts in parameter k and the values of the spectral function in the different Brillouin zones. It
is useful to recall that the k-parameter is a part of the definition of the Bloch wave-function (4.29).
The actual solution to the equations of motion near the boundary is

ψ(x, z) = eikx
[
a(x)(1 + . . . ) + b(x)zα(1 + . . . )

]
. (4.50)

From this solution we infer that b⃗ = S[k] · a⃗. However, one can represent the same wave-function
in a different way

ψ(x, z) = ei(k−p)x
[
ã(x)(1 + . . . ) + b̃(x)zα(1 + . . . )

]
, (4.51)

ã(x) ≡ eipxa(x), b̃(x) ≡ eipxb(x). (4.52)
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Figure 4.11.: Comparison of the two treatments of the alternative quantization pictureThe
comparison between computation in alternate quantization and doing the inversion
procedure from the direct quantization data. The main features (sharpness, shape,
and the reduction of spectral weight near (kx, ky) = (0.65, 0.40)

√
ρ) are demon-

strably reproduced. The inversion procedure does suffer from limited numerical pre-
cision, as the contributions from all the different Green’s function components range
over many orders of magnitude. The non-smoothness of the left-hand side arises be-
cause the width of the FS is smaller than the density of data points, causing the com-
putation to not quite hit the peak. This can be improved in principle, however due to
the prohibitive computational cost of this procedure we don’t show it here.

The ã(x) and b̃(x) functions are still periodic in the unit cell, therefore (4.51) is a perfectly valid
Bloch wave representation as well. However, the Bloch momentum is now different and the rela-
tion between b̃(x) and ã(x) reads

⃗̃
b = S[k − p] · ⃗̃a (4.53)

Recalling the definition (4.52) we can relate the Fourier component of a(x) and ã(x):

al = ãl+1, bn = b̃n+1, (4.54)

and together with (4.53) it allows us to relate the components of S[k] from the different Brillouin
zones

S[k − p]nl = S[k]n−1,l−1. (4.55)

This identity serves as another useful check of our numerical procedures and our results are in
agreement with it.
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5. Quantization of the Gubser-Rocha

Model

5.1. Attribution

This paper has been previously published as a preprint on arXiv and has been submitted to
JHEP for publication, and is currently under editorial review, under the title ‘Quantization
and variational problem of the Gubser-Rocha Einstein-Maxwell-Dilaton model, conformal and
non-conformal deformations, and its proper thermodynamics.’, together with N. Chagnet and
K.Schalm.[99]

5.2. Introduction

One of the main insights holography has provided into the physics of strongly correlated systems
is the existence of previously unknown (large N ) non-trivial IR fixed points. These fixed points
are characterized by an emergent scaling symmetry of the Lifshitz form categorized by a dynamical
critical exponent z, a hyperscaling exponent θ, and a charge anomalous dimension ζ .

x→ λ1/zx , t→ λt , F → λ
d−θ
z F , ρ→ λ

d−θ+ζ
z ρ . (5.1)

HereF is the free energy density and ρ the charge density [93, 102, 200, 201]. Within these Lifshitz
fixed points those with z = ∞ are special. Such theories have energy/temperature scaling with
no corresponding spatial rescaling. These are therefore systems with exact local quantum critical-
ity. Phenomenologically this energy/temperature scaling without a corresponding spatial part is
observed in high Tc cuprates, heavy fermions and other strange metals, where this nomenclature
originates (see e.g. [202]). In holography z = ∞ IR fixed points correspond to an emergent AdS2
symmetry near the horizon of the extremal black hole. The two most well-known such solutions
are the plain extremal RN black hole and the extremal GR black hole [98]. The RN solution of
AdS-Einstein-Maxwell theory has been studied extensively primarily because it is the simplest such
model. Its simplicity also means it is too constrained to be realistic as a model of observed locally
quantum critical metals. Notably the RN has a non-vanishing ground-state entropy and emerges
from a d > 2-dimensional conformal field theory. The more realistic GR model arises from a
non-conformal strongly correlated theory, where one isolates the leading irrelevant deformation
from the IR fixed point. This “universal” subsector gives it a chance to be applicable to observed
local quantum critical systems. Moreover the groundstate now has vanishing entropy (to leading
order). In the gravitational description this leading (scalar) (IR)-irrelevant operator is encoded in
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a dilaton field that couples non-minimally to both the Einstein-Hilbert action and the Maxwell
action. Even with its more realistic appeal, the more complex nature of the GR dynamics means
it has been studied less; some examples are [106–108, 203, 204].

In the course of these studies of non-minimally coupled EMD theories, it was noted in particular
that the proper holographic interpretation of the analytical Gubser Rocha (aGR) black hole so-
lution depends sensitively on the particular quantization [108, 204]. Within holography, relevant
and marginally relevant scalars allow for different quantization schemes. A relevant operator of di-
mension d

2 < ∆ < d always has a conjugate operator of dimension1 d
2−1 < ∆conj = d−∆ < d

2 ,
and one can choose whether one considers the original operator as the dynamical variable (stan-
dard quantization) or the conjugate operator (alternate quantization) or any intermediate linear
combination through a double-trace deformation [205, 206].

An additional complication results from the fact that the (static and isotropic) aGR solution is
a two-parameter solution depending on T and µ, whereas one expects a third independent pa-
rameter encoding the asymptotic source value of the dilaton field. A low-energy scalar can have a
sourced (or unsourced) vacuum-expectation value; this changes the energy of the ground-state and
hence should contribute to the thermodynamics. For minimally coupled scalars this was recently
elucidated in [207].

In this paper we will show that the correct way to interpret the aGR solution is as a two-parameter
subset of solutions within the three-parameter thermodynamic phase diagram. For essentially all
quantization schemes this constrains the source of the dilaton field in terms of the temperature and
chemical potential of the solution. Crucially this implies that derivatives of thermodynamic po-
tentials mix the canonical contribution with an additional contribution from the scalar response.
We will show this explicitly in Section 5.4.2. A proper understanding of the solution requires one
to carefully separate out this contribution.

It also turns out, however, that there is a specific quantization scheme where the dilaton corre-
sponds to an exactly marginal operator in the theory. This was previously noted for another set
of the EMD actions [204].2 In this special quantization choice the aGR solution corresponds to
a solution with no explicit source for the dilaton field. Within this special quantization scheme
one can deform the analytical solution to a nearby solution with a finite scalar source. We do so in
Section 5.5. We conclude with a brief discussion on the meaning of this newly discovered exactly
marginal deformation.

5.3. Setup

The GR black hole is a solution to the EMD action

Sbulk =
1

2κ2

∫
d4x

√
−g
[
R− Z(ϕ)

4
F 2 − 1

2
(∂ϕ)2 − V (ϕ)

]
, (5.2)

1The upper bound of ∆ would suggest ∆conj > 0 but requiring unitarity of the conjugate theory leads to a higher
bound.

2We thank Blaise Goutéraux for bringing this paper to our attention.
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where the potentials are given byZ(ϕ) = eϕ/
√
3 andV (ϕ) = −6 cosh

(
ϕ/

√
3
)

.3 This action is
a consistent truncation of d = 11 supergravity compactified onAdS4 × S7 [98]. The equations
of motion for this system are

Rµν =
Z(ϕ)

2

[
Fµ

ρFνρ −
1

4
gµνF

2

]
+

1

2
∂µϕ∂νϕ+

1

2
gµνV (ϕ) ,

∇µ

[
Z(ϕ)Fµν

]
= 0 ,

□ϕ = V ′(ϕ) +
Z ′(ϕ)

4
F 2 ,

(5.3)

where we used that, on-shell,R = 2V (ϕ) +
1

2
(∂ϕ)2. The static and isotropic metric ansatz that

is asymptotically AdS is

ds2 = gµνdx
µdxµ =

1

z2

[
−f(z)dt2 + g(z)

(
dx2 + dy2

)
+

dz2

f(z)

]
, (5.4)

where the coordinate z is the radial direction with z = 0 the AdS boundary (UV). The aGR
solution [98] is then given by

g(z) = (1 +Qz)3/2 ,

f(z) =
1− z/zh
g(z)

[
1 + (1 + 3Qzh)

z

zh
+
(
1 + 3Qzh + 3Q2z2h

)( z

zh

)2
]
,

At(z) = µj(z) =

√
3Qzh(1 +Qzh)

zh

1− z/zh
1 +Qz

,

ϕ(z) =

√
3

2
log [1 +Qz] ,

(5.5)

where zh is the horizon of this non-extremal black hole. From hereon we choose units where
2κ2 = 16πG = 1, such that the temperature, chemical potential and entropy-density of the
GR-black hole are

T = −f
′(z)

4π

∣∣∣∣
z=zh

=
3
√
1 +Qzh
4πzh

, s = 4πah = 4π
(1 +Qzh)

3/2

z2h
,

µ = At(z = 0) =
√

3Qzh(1 +Qzh)/zh ,

(5.6)

where ah =
√
gxx(zh)gyy(zh) is the area density of the horizon. Expressed in terms of the tem-

perature, it is easy to see that the entropy vanishes linearly s = 16π2

3
√
3
µT + . . . at low temperatures

with no remnant ground state entropy. Important in the remainder is (1) to recall that both the
temperature and the entropy can be read off from the near-horizon behavior of the metric alone.

3Note that the dilaton has dimension zero.
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As local properties of the black hole they do not depend on the boundary conditions. (2) The
analytic solution depends on two parametersQ and zh. And (3) note that the metric gauge choice
is not of the Fefferman-Graham (FG) type in that the change in metric functions starts at order z
and not z3.

5.4. Regularization, boundary terms and choice of

quantization

5.4.1. Boundary action

We must add to the gravitational action (5.2) a boundary action. This is to regularize its on-shell
value as well as to make the variational principle well-defined. In the case of the scalar it also pre-
scribes the quantization of the scalar field. We will be using in this work a standard multi-trace
deformation of the Neumann boundary theory, which were generally described in [205, 206, 208]
and more specifically in EMD theories [204], with a boundary action of the form

Sbdy = −
∫
z=ϵ

d3x
√
−γ
[
2K + 4 + (3)Rγ

]
+ Sbdy,ϕ , (5.7)

HereNµ = −
√
gzz(0, 0, 0, 1) is an outward pointing spacelike unit normal vector defining the

hypersurface z = ϵ ≪ zh and γµν = gµν − NµNν is the induced metric on the surface. Fur-
thermore K ≡ γijKij is the trace of the extrinsic curvature Kij ≡ −γµi γνj∇(µNν) and (3)Rγ
the Ricci scalar curvature of the hypersurface (Latin symbols correspond to coordinates on the hy-
persurface while the greek symbols are those of the original manifold). The first three terms corre-
spond to the usual Gibbons-Hawking-York counterterms necessary to make the variational princi-
ple for the metric well-defined and also to regularize the Einstein-Hilbert-Cosmological Constant
part of the action on shell. In our coordinatization Eq. (5.4) the induced metric is flat on-shell. The
scalar part of the boundary term Sbdy,ϕ can take two forms depending on whether we consider
the standard quantization boundary theory where only the ϕ2 regularization term appears

S
(SQ)
bdy,ϕ =

∫
z=ϵ

d3x
√
−γΛϕ

2
ϕ2 , Λϕ = −1 , (5.8)

— here the value of Λϕ is set to regularize the boundary term arising from varying the bulk ac-
tion — or whether we consider a multi-trace deformation of the alternate quantization boundary
theory

S
(MT)
bdy,ϕ =

∫
z=ϵ

d3x
√
−γ
[
Λϕ
2
ϕ2 + ϕNµ∂µϕ

]
+ SF , Λϕ = 1 . (5.9)

The ϕNµ∂µϕ is a Legendre transform from Dirichlet to Neumann boundary conditions, which
also diverges at leading order and is the reason for the shift in Λϕ as we will see.4 The multi-
trace deformation SF is a finite contribution to the boundary action and will be described when

4Strictly speaking ϕNµ∂µϕ is a combination of a true Legendre transform JO = zλ−−λ+−1ϕ∂nz−λ−ϕ (see
Eq. (5.13)) and counterterms.
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the asymptotics of the solution are analysed. We will continue the derivation with the choice
Sbdy,ϕ = S

(MT)
bdy,ϕ while keeping in mind that a similar derivation can easily be done using in-

stead Sbdy,ϕ = S
(SQ)
bdy,ϕ, and we will invoke those results when necessary.

Varying the total action S = Sbulk + Sbdy to first order, a proper holographic interpretation
demands that one obtains a variation of the form [100]

δS =

∫
z=ϵ

d3x
√
−γ
[
1

2
Tµνδγ

µν + JµδAµ +Oφδφ

]
, (5.10)

where the terms multiplying the EMD fields are interpreted as the operators in the boundary CFT
whereTµν is the boundary stress tensor, Jµ the boundary current associated with the U(1) charge,
and Oφ the operator dual to a scalar which may be a non-linear function of the dilaton field. The
important point is that the action evaluated on the black hole solution is equated with (minus)
its Gibbs free energy density. The variation of the action (restricted to preserve isotropy) thus in-
cludes thermodynamic variations. The expression above makes clear that in addition to the tem-
perature and the chemical potential there ought to be a dependence of the Gibbs free energy on
an external (source) variation of (the boundary value of) the scalar field [207].

Performing this variation on Eqs (5.2) plus (5.7), we can write it as a bulk integral of an integrand
proportional to the equations of motion (5.3), that vanishes on-shell, and a remaining boundary
part. In the boundary part the normal derivatives of δγµν cancel due to the Gibbons-Hawking-
York term; there are no normal derivatives inAµ. Restricting to boundary indices we have5

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij

[
ϕNz∂zϕ+ Λϕϕ

2/2
]
+ TFij ,

Ji = −Z(ϕ)NzFzi ,
(5.11)

where TFij is the contribution from SF . The expression for Oφ requires a more detailed discus-
sion. Focusing on the variation in the dilaton ϕ in (5.10), we have

δSϕ =

∫
z=ϵ

d3x
√
−γ
[
Λϕϕδϕ+ ϕNz∂zδϕ

]
+ δSF . (5.12)

From its linearized equation of motion the dilaton has the following expansion in the near-
boundary region

ϕ(z) = αzλ− + βzλ+ +O(z3) , (5.13)

where λ± =
3

2
± 1

2

√
9 + 4m2 and m is the effective mass. In the GR model the effective mass

equals

m2 =
∂

∂ϕ2

[
V (ϕ) +

Z(ϕ)

4
F 2

]∣∣∣∣∣
ϕ=0,z→0

= −2 . (5.14)

This value of the mass − 9
4 < m2 < 1 − 9

4 = − 5
4 is in the regime where two different quanti-

zations are allowed, i.e. for this value of m both λ± > 0 and either α (standard) or β (alternate)
5The radial components of Tµν and Jµ vanish due to the projection on the hypersurface.
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can be chosen as the source for the dual CFT operator with the other the response. One can also
choose a mixture of the two, corresponding to a multi trace deformation, as we shall elucidate
below.

The proper holographic normalization is most conveniently performed in a FG ansatz for the met-
ric

ds2 =
1

z2

[
−Htt(z)dt

2 +Hxx(z)dx
2 +Hyy(z)dy

2 + dz2
]
, (5.15)

where we require Anti-deSitter (AdS) aymptotics Hµν(z = 0) = 1 and use the equations of
motion (5.3) to constrain the near-boundary expansion ofHµν in terms of a small subset of degrees
of freedom. We will use this ansatz for the remainder of this section. Using that Nz(z) = −z,
and substituting (5.13) into (5.12), we can expand the variation w.r.t. the dilaton as

δSϕ =

∫
z=ϵ

d3x

[
Λϕ − 1

ϵ
αδα+ αδβ(Λϕ − 2) + βδα(Λϕ − 1) +O(ϵ)

]
+ δSF . (5.16)

As we claimed in (5.9), we must remove the leading divergence by imposing Λϕ = 1, leaving a
finite contribution

δSϕ =

∫
z=ϵ

d3x
[
−αδβ +O(ϵ)

]
+ δSF . (5.17)

For the standard quantization term (5.8), it is easy to see that a similar derivation leads to Λϕ =
−1.

One can modify the quantization by the addition of a multitrace deformation. This can in
general be encoded in the boundary action SF . Following [204, 208, 209], we choose SF =∫
d3x

√
−γϵdF(α) such that, ignoring the metric variation, δSF =

∫
d3x

√
−γϵdF ′(α)δα.

Without loss of generality we choose F of the form F(α) = a
2α

2 + b
3α

3 from here on. The
variation of the boundary action then becomes

δSϕ =

∫
z=ϵ

d3xα
[
−δβ + (a+ bα)δα

]
. (5.18)

We can therefore identify the VEV of the boundary scalar operator as Oφ = α while the source
of the operator is

JMT = −β + aα+
b

2
α2 . (5.19)

Once again, had we chosen the standard quantization boundary term, then we would have δSϕ =∫
d3xβδα such that Oφ = β and φ = α leading to the boundary condition JSQ = α.

We have now almost all the ingredients to compute the scalar contribution to the stress tensor, but
we still need to derive the variation ofSF w.r.t. the leading order of the boundary metric in order to
compute the termTFij , as was done before in [204]. Doing so, one simply findsTFij = γijϵ

dF(α).
It is interesting to note that the contribution SF can also be absorbed into corrections to the ϕ2
term as well as a ϕ3 term as

Sbdy =

∫
z=ϵ

d3x
√
−γ
[
−(2K + 4 + (3)Rγ) +

Λϕ + ϵa

2
ϕ2 + ϕNµ∂µϕ+

b

3
ϕ3
]
, (5.20)
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where Λϕ + ϵa is a renormalized ϕ2 coupling which will reproduce the α2 contribution of F , as
was done in e.g. [205, 210]. The ϕ3 coupling on the other end will reproduce theα3 contribution
of F . This way of writing the boundary action highlights why we concentrated on F of the form
F(α) = a

2α
2+ b

3α
3. Lower order inα terms are constant shifts variationally and can be absorbed

in a field redefinition – they are tadpoles. Any termαn for n > dwould lead to vanishing contri-
butions ϵn−d in the action – they are irrelevant deformations. The equality Λϕ = 1 remains true
in order to regularize δS.

In the presence of such a boundary action, the contribution TFij in the expression (5.11) simply
includes the ϕ2, ϕ3 contributions and leads to

Tij = 2Kij − 2 (dRγ,ij)− 2(K + 2)γij + γij

[
ϕNz∂zϕ+

Λϕ + ϵa

2
ϕ2 +

b

3
ϕ3
]
. (5.21)

We recognize the F -dependent part of the stress tensor which agrees with the direct method. It is
then immediate to compute the trace of the stress tensor

Ti
i =

α

2

(
3aα+ 2bα2 − 4β

)
= −α

2
(aα− 4JMT) , (5.22)

where in the last equality we used the boundary condition (5.19). This result points to the existence
of a line of critical points with a = 0 where the sourceless (JMT = 0 equivalent to the boundary
condition −β + aα + b

2α
2 = 0) deformation F is just marginal. This is equivalent to only

deforming the boundary theory through a ϕ3 term which indeed has dimension d and should
therefore be marginal.

For completeness we mention that in the case of the standard quantization the trace of the stress
tensor is simply Tii = αβ = βJSQ.

5.4.2. Choice of quantization and thermodynamics

In this subsection, we will derive the thermodynamics of a black hole solution in a general compat-
ible quantization choice. This goes beyond the analyses in [108, 204] where only the thermody-
namics of a marginal scalar were considered, i.e. the case of alternate quantization with a multitrace
deformation such that the stress tensor remains traceless. In view of extending the choice of possi-
ble theories to non-marginal ones, we will show that the thermodynamics space is extended from
a 2-parameter to a 3-parameter space, as also emphasized for Einstein-Scalar theory in [207].

Let us start with the constraint that a choice of solution imposes on the possible quantization
schemes. Indeed, while the choice of boundary terms in the action and therefore of the boundary
deformation is a priori agnostic of a given solution to the bulk equations of motion, we have seen
that the multi-trace deformation leads to a specific choice of boundary condition on the scalar
(5.19). Not every solution to the bulk equations of motion (5.3) are compatible with every possible
boundary condition, as was noted in [204, 211]. In the case of the metric corresponding to the
aGR solution (5.5), the scalar ϕ has the following falloffs

ϕ ∼ αz + (β − f ′(0)α/2)z2 = αz + (β − 3Qα/4)z2 , (5.23)
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5. Quantization of the Gubser-RochaModel

where we have related the values of ϕ′(0), ϕ′′(0) to the falloffs α, β in the FG ansatz (5.15). This
matching is made explicit in Section 5.8. Comparing with the full solution (5.5), we can therefore
equate α =

√
3Q/2 and β =

√
3Q2/8. Consider then alternate quantization deformed by an

arbitrary (relevant and marginal) multitrace deformation. In that case the source equals

JMT(Q) =

√
3Q

8

(
4a+ (

√
3b− 1)Q

)
. (5.24)

From this equation, we see there are a few distinct cases to consider

1. a = 0, b = baGR ≡ 1/
√
3: every instance of the 2-parameter aGR solution (5.5) is com-

patible with this choice and is sourcelessJ = 0. This is the sourceless marginal deformation
we previously mentioned and which was studied in [108, 204, 211]. From Eq. (5.22), we see
that this boundary theory has Tii = 0.

2. a = 0, b = 0: the quantization procedure is conventional alternate quantization. In this
case, since the solution (5.5) is not sourceless, we must impose a Neumann boundary con-
dition β = −J with fine-tuned source J(Q) = −

√
3Q2/8. The explicit source leads

to an explicitly broken conformal symmetry in the boundary. (A similar argument holds
for standard quantization with a Dirichlet boundary condition α = J . One would then
need to consider the boundary term Sbdy,ϕ = S

(SQ)
bdy,ϕ instead, and a fine-tuned source

J(Q) =
√
3Q/2. Also here the explicit source leads to an explicitly broken conformal

symmetry in the boundary.)

3. For all the other cases, one can look for explicitly sourced solutions J = J(Q, a, b) defined
in Eq. (5.24).6 This case is fundamentally similar to the case 2, with the explicit sourcing
leading to a non-zero trace of the boundary stress-tensor.

In the end, we see that the only natural sourceless description we have of the solutions (5.5) corre-
sponds to the marginal multi-trace deformation, case 1. The other cases, 2 and 3, are better under-
stood as explicitly sourced deformations where the source is fine-tuned to select a certain subset of
solutions at a fixedQ.

An important aspect is that even though a bulk solution may have different interpretations de-
pending on the quantization choices set out above, the thermodynamics does know about the
quantization choice. Let us consider the free energy of the solutions (5.5). Substituting the solu-
tion into the action, the free energy density Ω of the aGR black hole solution with compatible
boundary condition is given by

Sregularized
on−shell = −

∫
d3xΩ , so Ω = −

(
1

zh
+Q

)3

+
Q2

8

(
Q(1−

√
3b)− 3a

)
.

(5.25)
6If we insist on looking for solutions with J = 0, one of the couplings a or b must be fine-tuned e.g., b(Q) = 1√

3
(1−

4a/Q). As it was noted in [211], this means that fixinga, b to some constant will restrict the space of solutions to those
for which Q = 4a

1−
√
3b

. Allowing for a finite, albeit fine-tuned, source J = J(Q) leads to the same result and we
will choose this more natural point of view.
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5.4. Regularization, boundary terms and choice of quantization

Furthermore, the holographic dictionary tells us that the chemical potential and the temperature
of the boundary theory are given by (5.6). One might be inclined to use this to deduce a variation
of Ω in the 2-parameter grand canonical ensemble dΩ = −s1dT − ρ1dµ and derive from it the
thermodynamic entropy and charge density of the theory

s1 = −
(
∂Ω

∂T

)
µ

, ρ1 = −
(
∂Ω

∂µ

)
T

. (5.26)

However, we have seen from Eq. (5.10) that the free energy variation in the presence of an explicit
source should be corrected by a scalar contribution of the form (see also [207])

dΩ = −s2dT − ρ2dµ−OφdJ . (5.27)

This is the full 3-parameter thermodynamics of the system. The fact that the free energy (5.25) of
the aGR solution only depends onT andµ, and not on the value of the scalar source means that the
aGR solution should be seen as a 2-parameter constrained solution within this 3-parameter space.
This family of solutions is only a subset of all the possible ones for any given compatible quanti-
zation scheme. A direct corollary is that to explore only this analytical set of solutions, variations
of J, T, µ are not independent. Denoting J as the dependent variable, i.e. it is not independent
but is a function of both T and µ, then the grand canonical potential varies as

dΩ = −
(
s2 +Oφ

∂J(T, µ)

∂T

)
dT −

(
ρ2 +Oφ

∂J(T, µ)

∂µ

)
dµ (5.28)

if one constrains one’s considerations to aGR solutions only.

The precise relation of the VEV Oφ and the source J to the fall-off of the dilaton depends on
the quantization scheme as we have just reviewed. A choice of quantization is not a canonical
transformation, as shown by [207] in the standard quantization case for Einstein-Scalar theories.
Therefore the value of the free energy will depend on this choice. This is evident in the dependence
ona, b in Eq. (5.25). In the full 3-parameter space of solutions this quantization choice dependence
would only appear in the dilaton contribution part. In the constrained 2-parameter space of solu-
tions, it would appear to imply that now also the thermodynamic entropy s1 and charge density
ρ1 deduced from Eq. (5.26) depend on the quantization, as

s1 = 4π
(1 +Qzh)

3/2

z2h

[
1 +

Q2z3h
8(1 +Qzh)3

(
Q(1−

√
3b)− 2a

)]
,

ρ1 = µ
1 +Qzh
zh

[
1− Qz2h(2 +Qzh)

8(1 +Qzh)3

(
Q(1−

√
3b)− 2a

)]
.

(5.29)

This is strange, as the Bekenstein-Hawking entropy and the charge density – the VEV of the
sourced gauged field – are properties of the black hole solution and do not depend on the bound-
ary action which sets the quantization. Indeed they can be read off directly from the geometry
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5. Quantization of the Gubser-RochaModel

as

s2 = 4π
√
gxx(zh)gyy(zh) =

4π(1 +Qzh)
3/2

z2h
the area of the horizon of the black hole,

ρ2 = −∂zAt(z → 0) = µ
(1 +Qzh)

zh
the global U(1) charge.

(5.30)
The solution is of course that in the constrained system s1 and ρ1 are not the true entropy and
charge density, as they include the artificial contribution from varyingJ(T, µ) following from the
constraint to stay within the 2-parameter aGR solution space. It is then a rather straightforward
computation to connect Eqs. (5.29) and (5.30) through the variation of J expressed in Eq. (5.27).
To that end, we can remember that the source J is constrained by the boundary condition (5.24)
and that in our choice of quantization, we always have Oφ = α. In summary, the geometric
expressions for the entropy and charge of the aGR solution are always the correct ones. The dif-
ference from the quantities computed from the Gibbs potential can be attributed to the fact that
one considers a constrained system: the expression s1 = −

(
∂Ω
∂T

)
µ
= −

(
∂Ω
∂T

)
µ
−Oφ

(
∂J
∂T

)
µ

contains a term that is absent in the correct definition of the entropy s2 = −
(
∂Ω
∂T

)
µ,J

, and
similarly for ρ.

There is, however, the special case 1. When the deformation is purely marginal and sourceless –
a = 0 and b = 1√

3
– we can immediately infer that the variations of J = 0 will be trivial. In

that case, we will have s1 = s2 and ρ1 = ρ2. The way to understand this is that within the 3-
parameter space of possible solutions quantified by (T, µ, J) the 2-parameter aGR solution spans
a different subspace depending on the quantization choice for the dual boundary theory. Figure
5.1, illustrates how this difference of boundary interpretation between the alternate quantization
with sourceless marginal deformation of case 1 and the standard quantization of case 2 changes
the shape of the aGR solution manifold inside the thermodynamic space of sources {T, µ, J}.
This visualization allows us to see at a glance how the sourceless marginal deformation reduces to
a 2-charge thermodynamic space where 2-parameters of the solution naturally coincide with T, µ
while the standard quantization interpretation of the aGR solution induces some non-trivial pro-
jection when varying the Gibbs free energy w.r.t. T, µ. For the sourceless marginal deformation
the thermodynamics of the boundary thus simplifies greatly and will behave in a similar fashion
to the conformal fluid dual to the RN black hole solution.

To complete the argument above we shall construct numerical solutions to the equations of mo-
tion (5.3) in the next section that differ from the aGR solution in that they explore the third direc-
tion orthogonal to T, µ and analyse their various boundary interpretations.

102



5.5. Deformed Gubser-Rocha black holes

Figure 5.1.: aGR solution manifold in the thermodynamic parameter space of source {T, µ, J}
for two specific choices of boundary interpretations (cases 1 and 2). The sourceless
marginal case has trivial source and is by itself a 2-charge submanifold while the stan-
dard quantization case has a constrained source which leads to the non-trivial correc-
tions in s1, ρ1.

5.5. Deformed Gubser-Rocha black holes

5.5.1. Numerically constructed solutions

The solutions that generically differ from (5.5) correspond to setting different boundary condi-
tions for the dilaton field. However, for each such new solution, its interpretation depends on the
quantization one considers, i.e. what the on-shell value of the action including boundary terms
reads.
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We will solve the GR equations of motion (5.3) numerically using the following parametrization

ϕ =

√
3

2
z ψ(z) , At(z) = µ j(z)at(z) , (5.31)

and with metric ansatz

ds2 =
1

z2

[
−f(z)Gtt(z)dt2 +

dz2

f(z)
Gzz(z) + g(z)G(z)

(
dx2 + dy2

)]
, (5.32)

where f(z), g(z), j(z) are held fixed to their expressions in the aGR solution (5.5) and ψ, at,
Gtt, Gzz, G are the dynamical fields. The radial coordinate z spans the range from the boundary
at z = 0 to the outer horizon at z = zh. The IR boundary conditions are chosen to have a single
zero horizon corresponding to a non-extremal black hole and to impose regularity at the horizon
for other fields (see e.g., [118]).7 The UV boundary conditions are chosen to impose AdS asymp-
totics for the metric components andAt(0) = µ. Parametrizing µ =

√
3Qzh(1 +Qzh)/zh as

in the aGR solution, the scalar boundary condition (5.19) can be rewritten in terms of the falloffs
of ψ as

ψ′(0) = − 2J√
3
+

(
a− 3Q

4

)
ψ(0) +

√
3b

4
ψ(0)2 . (5.33)

For simplicity, we will choose zh = 1 and the temperature of the solutions will therefore be en-
coded byQ = 3µ2

16π2T 2 . In holography, we would usually first fix the boundary theory of interest
by choosing a, b. Then every solution to the equations of motion would be labeled by (T, µ, J)
imposed through the boundary conditions. However in this section, we will be interested in how
a given set of solutions, labeled by (T, µ, ψ(0)), behaves in the various compatible boundary the-
ories. This is possible because the boundary condition we impose on the scalar is simply a way to
parametrize how we choose a bulk solution constrained to have a black hole in the interior. Every
boundary theory determined by a, b and the value of sourcing J compatible with the condition
(5.33) will provide a valid boundary description. We will focus on the boundary interpretations
in the next subsection. In many holographic studies ψ(0) is often used interchangeably with the
source J , but this is of course only true in standard quantization. We shall, however, be careful
to distinguish between the boundary value ψ(0) of the AdS scalar field and the source J of the
operator in the quantization choice dependent dual field theory.

Let us now briefly describe the effect of changing ψ(0) without referring to any specific bound-
ary theory. By looking at the aGR solution (5.5), we see that ψ(0) = Q ∼ (T/µ)−2 for this
family. Therefore, increasing ψ(0) is akin to lowering the temperature and vice versa. To con-
firm our intuition, we can compare solutions at fixed Q0 ∼ (T0/µ)

−2, and varying ψ(0), to
aGR solutions with ψ(0) = Q ̸= Q0 i.e., at different T/µ ̸= T0/µ. We will choose to fo-
cus on the gauge field At(z) and more specifically the component at(z) defined in (5.31). For-
mally, at(z) = At(z)/(µj(z, T0/µ)) for a fixed T0/µ. Since the aGR solution at a differ-

7The boundary conditions from regularity imply in particular that Gtt(zh) = Gzz(zh). This conveniently allows us
to set the temperature with the parameters Q and zh just like in the aGR solution in Eq. (5.6), as the temperature of
this generalised model is given by T = TGR

√
Gtt(zh)/Gzz(zh) = 3

√
1 +Qzh/4πzh.
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Figure 5.2.: Gauge field component at(z) as defined in (5.31) at T0/µ = 0.15 and for various val-
ues of ψ(0). We compare with the equivalent function aψ(0)=Qt of the aGR solution
at different temperaturesT/µ = 0.16 (purple) andT/µ = 0.14 (red). This illustrates
that qualitatively the effect of changing the dilaton boundary value has similarities to
changing the ratio T/µ.

ent temperature T/µ will have a gauge field At(z) = µj(z, T/µ), the correct field to com-
pare with will be aψ(0)=Qt (z, T/µ ̸= T0/µ) = j(z, T/µ)/j(z, T0/µ). We plot the profiles
a
ψ(0) ̸=Q0

t (z, T0/µ) in figure 5.2 and compare these to aψ(0)=Qt (z, T/µ > T0/µ) (purple) and
a
ψ(0)=Q
t (z, T/µ < T0/µ) (red). We see that indeed, starting from ψ(0) = Q0, as we increase

(decrease)ψ(0) withQ0 fixed, the solution becomes similar to the aGR solution at lower (higher)
T/µ.

5.5.2. The holographic dual of the one-parameter family of solutions in

different quantization choices

Having numerically constructed instances of this one-parameter deformation of fixed T/µ GR
black holes, each instance in turn has multiple holographic dual interpretations depending on the
quantization scheme. These are constrained by the compatibility condition (5.33). We will focus
on three specific choices:

1. the conformal symmetry preserving quantization a, J = 0 boundary theory for which we
can then label our solutions by b(ψ(0)) = 4√

3ψ(0)2

(
ψ′(0) + 3Q

4 ψ(0)
)

,

2. the standard quantization boundary theory with the label J = α = 3
2ψ(0),
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Figure 5.3.: Trace of the boundary stress tensor when varying the Dirichlet boundary condition
ψ(0). This can be interpreted as exploring boundaries with a = 0, J = 0 and varying
marginal coupling b (left) or as changing the source J = α in standard quantization
(right). aGR denotes the analytically known GR solution. (Left) We see that in this
case, Tij remains traceless regardless of bwhich is consistent with a marginal deforma-
tion and the result (5.22). (Right) In standard quantization, the trace is generically not
zero, but this can happen for specific boundary theories: sourcelessJ = 0– not visible
on the graph – and when Oφ = 0 – which happens at J/Q ≃ 1.4.

3. the alternate quantization boundary theory with a, b = 0 for which the label is now J =

−β = − 3
2ψ

′(0)− 3
√
3Q
8 ψ(0).

Using Eq. (5.11) we can compute the energy and the pressure of a solution in a specific quantization
scheme and construct the trace of the stress tensor Tii = −ϵ + 2P for each of these solutions.
For the choice 1, as we can see in Figure 5.3, the stress tensor remains traceless for any value of
b(ψ(0)), confirming the analytic result Eq. (5.22). This is what we expect from a CFT deformed
by a marginal operator. On the other hand, for the choice 2, we see that generically conformality
is broken and the stress tensor acquires a non zero trace. In this quantization scheme, this is also
true for the aGR solution, as we described in the case 2. There are two exceptions: the first one
is when J = 0 (but Oφ ̸= 0) – which is reminiscent of a Z2 spontaneously symmetry breaking
solution but here, the finite charge of the black hole actually always leads to an explicitly symmetry
broken (ESB) solution ϕ(z) ̸= 0. This case is outside the range of the plot Figure 5.3. The second
solution would happen around J/Q ≈ 1.4 such that Oφ = 0. These are consistent with what
we would have expected from Ti

i = αβ.

Each one of these new black hole solutions has a different thermodynamics compared to the aGR
solution.

A clean way to exhibit this is to show the boundary charge density ρ2, which for the choice 1 is
the same as the variation of the Gibbs free energy w.r.t. the chemical potential, i.e. in that case
ρ2 = ρ1. In Figure 5.4, we plot the charge density as a function of temperature for various values
of the marginal coupling b. It is clear from this figure that the charge density as a function of T/µ
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Figure 5.4.: Boundary charge density as a function of the temperatureT/µwhen imposing Dirich-
let boundary conditions, which we interpret as varying the boundary theory through
b. The charge density is normalized by Q2 in the left-hand plot and by its aGR value
defined in (5.30) in the right-hand plot. The qualitative behaviour of all these theories
is extremely similar to the aGR solution (left) but quantitatively differs as a function
of T/µ (right), showing the theories described are different.

is dependent on the choice of boundary theory and the deformed solution describes a different
state, even if the change is small.

To reiterate this last point, let us remember that a priori, the true charge density of the theory ρ2,
as well as the true entropy of the theory s2, only depend on the bulk solution – they are geomet-
ric quantities. Yet we now argue that different boundary theories have different thermodynamics.
The resolution of this apparent contradiction is that while the entropy and charge density of a
black hole solution only really depend on the bulk solution, how we explore the space of solutions
is dependent on the choice of quantization. As we mentioned in Section 5.5, the holographic in-
terpretation of black hole thermodynamics shows that we should label solutions by their sources
{T, µ, J} – and in the case of the sourceless solutions of the choice 1, b plays the role of the label
J . But different boundary theories have different notion of source J such that varying T and µ at
fixed J will mean different path in the space of bulk solutions labeled by {T, µ, ψ(0)}. In Figure
5.5, we illustrate this point by looking at the Bekenstein-Hawking entropy s2 as a function ofT/µ
– all solutions are normalized by the aGR entropy defined in (5.30). Both choices 1 and 3 are used
to label the solutions when varying the temperature, which can be done by imposing the bound-
ary condition (5.33) for each of the choices. The values of b(ψ(0)) and J = −β are chosen such
that solutions meet in pair at T/µ = 0.2. Upon lowering the temperature, we see that these pairs
split indicating that the bulk solutions they belong to are not the same anymore. A path at fixed
J = −β is therefore generically different than a path at fixed J = α or fixed b(ψ(0)).
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Figure 5.5.: Black hole entropy as a function of T/µ when keeping either the alternate quantiza-
tion source J = −β fixed (choice 3, orange gradient curves) or when keeping the label
b(ψ(0)) fixed (choice 1, blue gradient curves). The curves meet in pairs at T/µ – in-
dicating identical bulk solutions – and separate for other temperatures – indicating
different black hole solutions.

5.6. Conclusion

In this paper, we have clarified how the GR black hole thermodynamics works in the context of
holography and the appropriate quantization thereof. The well-known analytical solution (5.5)
of [98] covers only a 2-parameter subspace of the full 3-parameter thermodynamics of black hole
solutions to the action (5.2). The 2-parameter aGR black hole solution has been used widely as a
physically sound version of the z = ∞ AdS2 IR critical point that preserves the quantum criti-
cal properties but does so with a vanishing zero temperature entropy. It was already pointed out
[108] that an unusual quantization choice could preserve conformal thermodynamics and hence
stay within the analytically known 2-parameter family. This indicates the existence of a marginal
operator in this specific quantization scheme [204] and we have recovered this in our analysis. For
other quantization choices, the analytic solution has a fine tuned value for the source. To prove this
point we have numerically computed the solutions corresponding to different boundary values of
the dilaton. This fills out the full 3-parameter thermodynamic phase space. The filled out phase-
space therefore elucidates that other quantization choices are just as valid as the one we chose to
focus on. This had to be so, but the trade-off that one must make is to properly account for vari-
ous scalar contributions to the general thermodynamics of the theory in line with the findings in
[207].
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Because the GR action is a consistent truncation of d = 11 supergravity compactified on AdS4×
S7 and has ABJM theory as its known holographically dual CFT, in principle one should be able to
identify this marginal operator in the CFT. The fact that marginality is associated with a multitrace
deformation makes this not as straightforward as may seem. In particular as it originates naturally
in alternate quantization, it is likely that it is an operator which is only marginal in the large N
limit where the classical gravity description applies. We leave this for future research.

Our focus and interest is the use of the GR and other EMD models as phenomenological descrip-
tions of AdS2 fixed points, especially due to its resemblance to the experimental phenomenology
of strange metals. In this comparison, thermodynamic susceptibilities and (hydrodynamic) trans-
port play an important role. Our result here shows that in EMD models one must be precise in
the choice of boundary conditions and scalar quantization as they will directly affect the long-
wavelength regime of the dual boundary theory as well as correct the thermodynamics of any ex-
tension of the GR model. This is especially true for any boundary interpretation differing from
the pure marginal case of [108, 204], as was shown by [207] for Einstein-Scalar models and we have
shown here for the GR model. A proper understanding of the boundary conditions is necessary
both for the thermodynamics of the background and the hydrodynamic fluctuations on top of
that background.

5.7. Validity of the boundary action

In a previous version of this paper, we considered the boundary term introduced by [108] which
is of the form

S
(cϕ)
bdy,ϕ =

∫
z=ϵ

d3x
√
−γ
[
Λϕ
2
ϕ2 + cϕϕN

z∂zϕ

]
, Λϕ = 2cϕ − 1 , (5.34)

which matches our boundary terms for specific valuesS(cϕ=0)
bdy,ϕ = S

(SQ)
bdy,ϕ andS(cϕ=1)

bdy,ϕ = S
(MT)
bdy,ϕ

fora = 0, b = 0. The claim of [108] is that more general values of cϕ are also possible, which from
a renormalization point of view is an acceptable assumption. The only prescription one has for
boundary terms is to choose relevant and marginal ones (the irrelevant boundary terms contribute
as corrections in the cutoff ϵ and can be truncated) which respect the symmetries of the action.
However, choosing the boundary term (5.34) leads to

δ
(
Sbulk + S

(cϕ)
bdy,ϕ

)
=

∫
z=ϵ

d3x
√
−γ

[
(1− cϕ)βδα− cϕαδβ

]
=

∫
z=ϵ

d3x
√
−γ

(
−cϕα1/cϕ

)
δ
(
βα1−1/cϕ

) (5.35)

which generically differs from our result for the standard quantization or multi-trace deformation
where Oφ = α or β.

The question of the validity of such variational problem as Eq. (5.35) was raised before in e.g.
[212] for the simple case of a non-relativistic particle. Consider a particle with action S1 =∫ t2
t1

dt(−q̇2/2) to which one adds the total derivative term S2 =
[
1
2qq̇
]t2
t1

. The variation of the
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total action on-shell δ(S1 + S2) =
[
1
2qδq̇ −

1
2 q̇δq

]t2
t1

is of a similar form as the variation (5.35)
for cϕ = 1/2. The boundary condition required to make the boundary variation well-defined
is then to fix q̇/q = C at t = t1 and t = t2. However, in the case of S1, this is not a correct
boundary condition to impose. Since the bulk equation of motion is q̈ = 0 with solutions
q(t) = At+ B and q̇(t) = A, the quantity to fix is q̇q = A

At+B = 1
t+B/A which only depends

on the ratioB/A. Therefore, fixing it at t1 leaves no freedom to also fix it at t2. At the same time
the two boundary conditions at t1 and t2 do not select a unique solution. A direct check one
can do is whether for other values of the analogous cϕ, this problem remains. Taking for example
S2 =

[
1
3qq̇
]t2
t1

, the boundary condition to impose is now to fix q̇/q2 = A
(At+B)2 . Solving this

condition at the boundaries for values C1,2 now does lead to fully determined solutions, unlike
the previous case. However, the solutions are not unique, because the boundary conditions itself
have arbitrary constants C1,2. There are therefore multiple branches to the system of equations
AC1,2 = (At1,2 +B)2.

In holography only the UV boundary conditions are imposed in the exact same manner. The IR
boundary condition in a black hole spacetime is different. We simply require regularity of the scalar
at the event horizon. For cϕ = 1/n, n ∈ N∗, the question of whether the variational problem is
well-defined is then whether the UV boundary condition of fixing β

αn−1 = C is sufficient to pick
a unique solution once the IR boundary conditions are taken into account. It is quite straightfor-
ward to show that these are the same boundary conditions as the usual multi-trace deformation
boundary condition (5.24), forJ = 0 and specific choices of monomialFn = an

n α
n. From (5.19),

we see that for n > 1, the sourceless boundary condition for the deformation associated with Fn
is β
αn−1 = an

n−1 so the matching between boundary theories occurs forC = an
n−1 . Interestingly,

choosing the boundary value C is equivalent to choosing a deformation coupling constant with
(single-trace) scalar source J = 0. This is because the coupling constant an is really the same as a
source for the multi-trace operator On.

In Table 5.1 we look at n = 1, 2, 3,∞ and what type of multi-trace deformation they match.
For n ≥ 4 the higher order terms in F represent irrelevant operators and we shall not consider
them. The special cases n = 1 and n = ∞ i.e. cϕ = 1 and cϕ = 0 are the alternate and
standard quantization case of fixing α = J and β = −J . In the previous version of this article
we argued that the aGR solution quantized with boundary term (5.34) and cϕ = 1/3 could be
viewed as a marginal deformation withn = 3 andβ/α2 = 1

2
√
3

which according to our mapping
is equivalent to the case 1, as expected.

Moreover, and importantly, the on-shell values of the boundary actions (5.9) with monomial mul-
titrace deformations F = Fn and (5.34) are also equivalent through the mapping described in
Table 5.1. Indeed, we see that the difference between the boundary terms is

S
(MT)
bdy,ϕ(F = Fn)− S

(cϕ)
bdy,ϕ =

∫
z=ϵ

[
an
n
αn − (1− cϕ)αβ

]
=

∫
z=ϵ

[
an − C(n− 1)

] αn
n
,

(5.36)
where we injected the expansionϕ ∼ αz+βz2 and in the second equality, we used the boundary
condition β = Cαn−1 with cϕ = 1/n. We see that the difference (5.36) vanishes for the choice
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n Boundary condition Analog multi-trace choice
n = 1 β = C a = 0, b = 0, J = −C
n = 2 β

α = C a = C , b = 0, J = 0

n = 3 β
α2 = C a = 0, b = 2C , J = 0

n = ∞ α = C a = 0, b = 0, J = C

Table 5.1.: Matching between the boundary conditions obtained from the multi-trace deformation
boundary action (5.9) and those obtained from the boundary term (5.34).

C = an
n−1 and thus the actions are the same through the mapping described in Table 5.1. We can

conclude that as far the two roles of the boundary terms go – setting the boundary conditions of
the variational problem and specifying an on-shell value for the action – these boundary terms
yield the same answer for specific choices of the boundary theory. This explains how our previous
derivation based on (5.34) yielded the same results as the derivation based on (5.9) for sourceless
solutions. The on-shell action equivalence does not hold in generality, however. The boundary
term (5.34) fails to account for polynomial deformations F and therefore would miss out on the
most general theories of case 3.

5.8. Matching of metric gauge choices

In Eq. (5.13) we have expressed our scalar field UV expansion in the FG gauge choice for the metric
(5.15). In this section we will use r to denote this choice of radial coordinate. However, the aGR
solution (5.5) uses a different metric gauge choice (5.4). This means that the expansion of the scalar
fieldϕ = α̂z+ β̂z2+ . . . in the (5.4) coordinates is not directly identical to that given in Eq. (5.13).
They are related by solving dr2

r2 = dz2

z2f(z) . This relation is formally given by

log r(z)− log ϵ =

∫ z

ϵ

dx

x
√
f(x)

, with ϵ→ 0 . (5.37)

In the near-boundary regime, we will only be interested in the leading and subleading orders of this
relation – since we only want to see how the leading and subleading orders in the scalar expansion
mix – and we therefore expand f(z) = 1+ f ′(0)z+ . . ., where the analytical value of f is given
in Eq. (5.5). Doing so, we find

r(z) ∼ z − 3Qz2

4
+O(z3) . (5.38)

It is then straightforward to input this in the FG UV expansion

ϕ ∼ αr + βr2 ∼ αz +

(
β − 3Q

4
α

)
z2 , (5.39)

as was claimed in Eq. (5.23).
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6. Planckian Transport for a Holographic

Local Quantum Critical Metal in

Periodic Potentials

6.1. Attribution

This paper is to be published under the name T-linear resistivity, optical conductivity and Planck-
ian transport for a holographic local quantum critical metal in a periodic potential. and has been
submitted to arXiv, number 2211:05492.[213] Other contributing others to this paper are N. Chag-
net, S. Arend, J. Aretz, K. Grosvenor, M. Janse, O. Moors, J. Post, V. Ohanesjan, D. Rodriguez-
Fernandez, K. Schalm and J. Zaanen.

6.2. The Planckian Dissipation Mystery versus

Computational Holography

Are there states of matter that are governed by physical principles of a different kind from those
identified in the 20th century? This question arose in the study of strongly interacting electron
systems realized in condensed matter, starting with the discovery of superconductivity at a high
temperature in copper oxides. Their metallic states exhibit properties that appear to be impossible
to explain with the established paradigm explaining normal metals – the Fermi-liquid theory – and
these were accordingly called “strange metals” [43, 214].

An iconic signature is the linear-in-temperature electrical resistivity [42], an exceedingly simple
behavior that is at odds with transport due to the quasiparticle physics of normal metals. A linear
temperature dependence of the resistivity does occur naturally in conventional metals due to scat-
tering of the quasiparticles against thermal disorder of the lattice above the Debye temperature.
The problem in the cuprates and related systems is that the resistivity is linear all the way from the
lowest to the highest temperatures where it has been measured. One anticipates some powerful
principle of a new kind to be at work protecting this unreasonable simplicity.

The measured optical conductivities reveal at lower temperatures a Drude response [215–218], sig-
naling that the electrical conduction is controlled by a current relaxation time. Intriguingly, this
time is very close to the “Planckian dissipation” time scale τℏ = ℏ/(kBT ). Planck’s constant
ℏ plays a special role in dimensional analysis, as for instance the Planck scale of quantum grav-
ity. Since ℏ carries the dimension of action, τℏ is a time scale associated with the thermal physics
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property of dissipation, the conversion of work into heat [51, 219]. The case was made based on
DC data that this Planckian time is remarkably universal also involving a variety of non-cuprate
unconventional metals exhibiting the linear resistivity [38, 71, 220].

However, upon raising temperature further, in the “bad metal” regime above the Mott-Ioffe-Regel
bound optical conductivity studies show that the dynamical response changes drastically. Instead
of a Drude response, a mid-infrared resonance develops with a characteristic energy that appears to
increase with temperature, leaving a rather incoherent response at low energy [221]. Remarkably,
there is no sign of this radical reconfiguration of the dynamical response in the DC resistivity that
continues to be a perfectly straight line, seemingly controlled by τℏ.

The occurrence of this universality of electrical conduction poses quite a problem of principle.
On the one hand, considerable progress has been made in the understanding of dissipative phe-
nomena in terms of quantum thermalization, explaining it in terms of unitary time evolution and
the collapse of the wave function (e.g. [222]). An early result is the identification of τℏ as the char-
acteristic universal dimension for the dissipation time of non-conserved quantities associated with
densely many-body entangled quantum critical states [223] realized at strongly interacting bosonic
quantum phase transitions [48, 224].

This was very recently further clarified using both holographic duality (AdS/CFT correspon-
dence) as well as studies in the closely related SYK models that connect macroscopic transport
in such strange metals to microscopic quantum chaos. The central issue is that thermalization
leading to local equilibrium may proceed very rapidly in densely entangled systems compared to
quasiparticle systems. Using out-of-time-order correlators (OTOC’s) one can identify a quan-
tum Lyapunov time τλ characterizing the microscopic time associated with the onset of quantum
chaos that turns out to be bounded from below by τℏ. In strongly correlated strange metals this
microscopic time scale together with the chaos propagation “butterfly” velocity vB can set the nat-
ural scale for the charge/heat and momentum diffusivities controlling the dissipative properties of
the macroscopic finite temperature hydrodynamical fluid [225–227].

However, in ordinary metals electrical conduction is controlled by total momentum conservation,
as a ramification of translational invariance: any finite density system in the Galilean continuum
has to be a perfect conductor. A finite resistivity is therefore rooted in the breaking of translation
invariance. But how can this ever give rise to a universal resistivity controlled by τℏ? This is the core
of the mystery – all explanations we are aware off rely on accidental, fine tuning circumstances, e.g.
[52, 71, 228].

Holographic duality is now widely appreciated as a mathematical machinery that has a remark-
able capacity to shed light on general principles associated with densely entangled matter [61, 62,
71, 223], the “scrambling” that we just discussed being a case in point. It achieves this by dual-
izing the densely entangled quantum physics into a gravitational problem in one higher dimen-
sion that is computable with (semi-)classical General Relativity. However, this is only a relatively
easy mathematical affair for a homogeneous translationally invariant space. When one breaks the
spatial translation symmetry the Einstein equations become a system of highly non-linear partial
differential equations. If one wishes to have a full view on what holography has to say about trans-
port in the laboratory systems one has to confront this challenge. Invariably a very strong effective
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potential due to the background of ions is present in the laboratory strange metals, and it is even
believed to be a necessary condition to obtain strongly correlated electron behavior [174, 229, 230].
But what has holography to tell about the effects of strong lattice potentials on strange metal trans-
port?

This can only be accomplished numerically. Although relatively efficient numerical relativity algo-
rithms are available, the computations are demanding. Proof of principle was delivered that it can
be done [118–120, 140, 231] and we set out to explore this more systematically. We focused specifi-
cally on the so-called Gubser-Rocha holographic strange metal [98]. This is unique in the regard
that it is characterized by “local quantum criticality” (a dynamical critical exponent z → ∞) as
well as a Sommerfeld entropy s ∼ T in the regime T ≪ µ, generic properties that appear to be
realized by the cuprate strange metals [223]. For comparison we also include results for the elemen-
tary Reissner-Nordström holographic strange metal. This also exhibits local quantum criticality,
but it has a (pathological) finite zero temperature entropy.

6.2.1. Main Observations and Summary of the Results

We consider a 2+1 dimensional strongly interacting strange metal holographically dual to the
Gubser-Rocha model in the presence of a harmonic square ionic lattice background encoded in
the chemical potential

µ(x, y) = µ0

(
1 +

A

2
(cos(Gx) + cos(Gy))

)
(6.1)

We numerically compute the full set of DC thermo-electrical transport coefficients — electrical
conductivity σ, thermal conductivity κ̄, the thermo-electrical coefficientα— up to very large po-
tentials (A ≃ 8) and temperatures as low as T ≃ 0.005µ. For stronger potentials we sometimes
resort to uni-directional 1D potentials to maintain numerical control. In addition, we also com-
pute the optical conductivities. Because of numerical difficulties we encountered this is limited to
intermediate potential strength (A ≲ 1− 2) and 1D lattices.

From this computational experiment we make three remarkable observations:

1. The DC electrical resistivity of the Gubser-Rocha metal becomes to good approximation
linear in temperature at low temperatures, see the upper left panel in Fig. 6.1. Strikingly,
we find the slope of this linear resistivity to saturate for an increasing potential strength
after correcting for a spectral weight shift. This suggests a connection with the universal
Planckian dissipation bound: using the optical conductivity to deconvolve this in a total
spectral weight and a current life time, the saturation value for the latter is close to τGR =
1
2πℏ/(kBT ) (see Fig. 6.13).

The electrical conductivity of the RN metal also saturates for large potential strength at
a roughly temperature independent value, although less perfect. The gross differences in
temperature dependencies of the GR and RN metals between the electrical conductivity
appear to reflect the different temperature dependencies of the entropies. We will discuss
below why this is not so. Despite first appearances, the thermoelectric (α) and heat (κ̄)
conductivities do not saturate at larger lattice potentials, but vanish as 1/A (see Fig. 6.12).
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Figure 6.1.: The thermoelectrical DC transport coefficients as functions of temperatureT in units
of the chemical potential µ for the Gubser-Rocha (GR, left column) and Reissner-
Nordström (RN, right column) metals in a 2D square lattice harmonic background
potential with wave vector G = 0.1

√
2µ and a strength 0 < A < 8. σ, α and κ̄ are

the electrical conductivity, thermo-electrical cross conductivity and the overall thermal
conductivity respectively. The electrical conductivity of the GR metal (top-left panel)
shows for all potentials a nearly linear in temperature resistivity (ρ = 1/σ ∼ T ) with
a slope that shows saturating behavior for large potentials.

2. We can separate out the convective overall transport from more microscopic diffusive trans-
port by considering the heat conductivity with zero electrical current κ = κ̄− Tα2/σ,
also known as the open boundary heat conductivity. Similarly, one can define an electri-
cal conductivity without heat transport σQ=0 = σ − Tα2/κ̄ that is a (non-perfect) proxy
for transport anchored in charge diffusion — it is proportional to charge diffusion, but its
thermodynamic scaling is also determined by crossterms with the convective part. These
are shown in Fig. 6.2. The σQ=0 is also (nearly) inversely proportional to temperature up
to the largest potentials, similar to the overall σ. Most importantly, however, we see that
for large potentials this diffusion-anchored contribution to the conductivity dominates the
transport (middle panels): up to ∼ 80% of the electrical currents is anchored in the dif-
fusive sector. Similarly, the diffusion-anchored open boundary thermal conductivity (κ,
lowest panels) accounts for almost the full heat conductivity κ̄ of Fig. 6.1 in the large po-
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Figure 6.2.: The electrical conductivity at zero heat currentσQ=0 shows that as the lattice strength
is increased the non-convective current anchored in charge diffusion becomes the
dominating conduction channel. At the largest lattice strength where A = 8, the
ratio of non-convective to convective transport σQ=0/σ reaches up to 80%, signalling
that momentum conservation is nearly completely destroyed. By definition, the frac-
tion σQ=0/σ is equal to the ratio κ/κ̄. The open boundary thermal conductivity
κ anchored in thermal diffusion is rather independent of the lattice strength, barely
changing after a moderate value ofA = 1 has been reached. Parameters are the same
as in Fig. 6.1.

tential regime. This signals that for the strongest potentials the system approaches closely
the incoherent metal regime addressed by Hartnoll [219] where there is no longer a sense of
momentum conservation; It is governed instead by a “hydrodynamics” that only relies on
energy- and charge conservation. A key observation is that this is the regime which displays
the “Planckian saturation” of the electrical resistivity highlighted above in Fig. 6.1. In other
words, this is the regime that should contain the clue behind the saturation phenomenon.

3. Computing the optical conductivities, we find for small lattice potential at the lowest tem-
perature a perfect Drude peak (left panel Fig. 6.3). Strikingly, upon raising temperature this
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Figure 6.3.: The DC resistivities for the small- (A = 0.15, left panel) and intermediate (A = 1.1,
right panel) lattice potential of the Gubser-Rocha metal are in both cases (nearly) linear
in temperature. However, in both cases the optical conductivity (insets) undergoes
radical changes when temperature increases. At the lowest temperatures in the small
potential case (left panel) this consists of a simple Drude peak that gradually turns
into an incoherent “flat top” low frequency response terminating at a developing “mid
IR peak”. The characteristic temperature where this happens decreases for increasing
potential strength. In the right panel, a full fledged mid IR peak has already developed
at a low temperatureT ∼ 0.015µ (left inset), while it is accompanied by a high energy
peak atω = csG = 1√

2
G that is identified to be the “Umklapped sound peak”. Upon

further raising temperature, the mid IR peak moves up in energy to eventually merge
with the sound peak (right inset).

evolves into a mid IR peak, reminiscent of what is seen in experiment. Although the dynam-
ical response shows such drastic changes, these remarkably do not imprint on the linearity
in temperature of the DC resistivity at all. This finding is repeated in the intermediate po-
tential case. There, the electrical DC resistivity can even stay linear-in-T through a second
change in relaxational dynamics from the mid-IR-peak regime to a fully incoherent metal.
Just within reach of our numerics, the spectrum at the lowest temperature (left inset) now
already displays the mid-IR peak, and we have good reasons to expect that at even lower tem-
peratures, outside of our numerical reach, a Drude response should still be present. There
is also a second peak at higher frequencies that can be identified with the “Umklapp copy”
of the sound mode at an energy ω = csGwhere cs is the speed of sound andG the lattice
wavevector (Section 6.6). Upon raising temperature the mid-IR peak moves to higher fre-
quency to eventually merge with the “Umklapped sound” peak, transitioning to a fully bad
incoherent metal regime (right inset), while the DC resistivity stays essentially linear-in-T
throughout.

These observations are reminiscent of the experimental observation that the linear-in-T DC
resistivity appears to be completely insensitive to the change from “good metal” to “bad
metal” behavior when temperature increases. This transition can be defined using the ab-
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solute value of the resistivity crossing the Mott-Ioffe-Regel limit but perhaps a better way
is to identify it through the dynamical response, associating the good metal regime with a
Drude response while the bad metal has the incoherent “mid IR peak” type of behavior as
in our computations.

To dissect these numerical results is an intensive exercise. We therefore provide an executive sum-
mary of the paper here. The reader interested in the details may proceed directly to Section 6.3 and
skip the remainder of this Introduction.

The Local Quantum Critical Strange Metals of Holography and Hydrodynamical

Transport

Transport in holographic strange metals is governed by hydrodynamics (Section 6.3). Holographic
strange metals originate in the quantum critical state of a non-trivial IR fixed point and the GR
metal is singled out as the one with the right scaling properties to reproduce both the local quan-
tum criticality and Sommerfeld entropy of the cuprate strange metals. The non-trivial fixed point
is of a special kind in that it still has an intrinsic correlation length ξ ∼ 1/µ ([232] and Appendix
6.B). Hydrodynamics has long been utilized to describe transport in such densely entangled crit-
ical states, and holography is no different. In the Galilean continuum hydrodynamics is governed
by (near) momentum conservation captured by the Navier-Stokes equations describing convective
currents, also called “coherent” in the condensed matter- and holographic communities. However,
there are also transport channels that are controlled by only diffusive (or “incoherent”) transport.
The overall electrical (σ) thermoelectric (α) and thermal (κ̄) transport coefficients are set by the
sum of both convective and diffusive transport channels. The open boundary thermal conductiv-
ity κ = κ̄ − Tα2/σ and the charge-without-heat transport σQ=0 = σ − Tα2/κ̄ can be used
to disentangle these. These zero out the dominant convective contribution. If Planckian dissipa-
tion occurs, the natural channel is this diffusive channel which can reflect universal microscopic
dynamics. The convective channel is controlled by the way translational symmetry is broken and
therefore unlikely to be universal. However, the convective channel dominates when translational
symmetry is only broken weakly, and Planckian dissipation is therefore most natural in systems
with strong translational symmetry breaking.

Convective Hydrodynamics in the Presence of a Weak Lattice Potential

The presence of a lattice potential plays an important role in cuprate strange metals and this is
the obvious way translational symmetry is broken. Placing the holographic strange metals in a
background lattice with a perturbatively small potential strength the nature of the linear response
of hydrodynamical transport is in fact familiar (Section 6.4). Hydrodynamic fluctuations must be
decomposed in Bloch modes that Umklapp at Brillouin zone boundaries. This holds for purely
diffusive as well as propagating modes. Well known is that the translational symmetry breaking by
the lattice makes momentum relax due to shear drag with a life time Γshear = ηG2/(ε + P ) (ε
andP being the energy density and pressure and η the shear viscosity). However, a careful analysis
reveals that the Umklapp potential gives rise to a mode coupling between this relaxational mode
and the Umklapped charge diffusion mode characterized by a relaxation rate Γcharge = DcG

2,
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whereDc is the charge diffusivity. For weak latticesA≪ 1 the result of this generic mode coupling
problem is an optical conductivity of the form (cf. Eq. (6.19) & Eq. (6.32)),

σ(ω) ∼ Ω− iω

(Γ− iω)(Ω− iω) + ω2
0

(6.2)

where ω0 is related to the strength of the mode coupling and Γ and Ω are combinations of Γshear
and Γcharge. Taking the DC limit gives an overall current relaxation rate ΓDC = Γ + ω2

0/Ω con-
trolled by two separate dissipative channels.

The above hydrodynamic analysis is only valid for lattice sizes a = G−1 greater than the earlier
emphasized retained correlation length ξ ≃ 1/µ of the IR fixed point or equivalently G ≪ µ
(Section 6.5). This length ξ ≃ 1/µ where hydrodynamics provides the better perspective on
transport than the quantum critical power law response set by the near horizon geometry as eluci-
dated by Hartnoll and Hofman [233]. In a lattice background this reflects itself in a strong change
in the transport properties when the lattice momentum G crosses this scale. The results in the
above are all associated with the hydrodynamical regime (G ≪ µ); for large lattice momenta
(G ≳ µ) the additional Umklapp contribution to the dissipation of the currents is strongly sup-
pressed (Fig. 6.11).

This Umklapp hydrodynamics can explain our observations at weak lattice potential (Section 6.6).
When |Γ−Ω| > 2ω0 the AC conductivity displays a single peak, explaining the low temperature
Drude-like result of Fig. 6.3. Only for the lowest temperatures is this a pure Drude peak controlled
by a single pole, however. In detail it originates in two diffusive poles, the Drude k = 0 sound
pole and the Umklapped charge diffusion pole; for each we fully understand their temperature
dynamics from the underlying hydrodynamic computation and the thermodynamical properties
of the holographic strange metal.

At higher temperatures (and/or at stronger lattices) generically |Γ − Ω| < 2ω0 and a real, prop-
agating part develops in modes controlling the AC conductivity. This pole collision explains the
emergence of the mid-IR-peak in the dynamical response – the numerical results are perfectly fit-
ted by this form.

The same two-relaxational-current response was identified in the context of a hydrodynamical
fluid coupled to the fluctuations of a damped pinned charge density wave [234]. Our discovery is
that Umklapp hydrodynamics gives the right temperature evolution necessary to have a mid-IR-
peak appear as temperatures increase.

As emphasized, the DC resistivity can remain linear throughout this transition. This can be ex-
plained by the fact that the scaling properties of the hydrodynamic parameters are inherited from
the underlying non-trivial quantum critical IR fixed point. For the GR strange metal both re-
laxation rates scale as T , whereas for the RN metal one scales as T 0 and the other as T 2. This
manifestation of the differing detailed expressions for both relaxation rates shows that a simple
interpretation of the scaling of the resistivity in terms of the entropy fails. Instead their scaling is
determined at a deeper level by the quantum critical IR fixed point.
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At intermediate lattice strengths a similar scenario can take place. Now the transport response
is determined by four modes, the two modes above and two Umklapped sound modes at Re
ω = ±csG. Upon raising temperature the pole responsible for the mid-IR peak moves up with
temperature to approach close to the Umklapped sound pole, such that it gets obscured and only
one peak remains in the AC conductivity (right inset of Fig. 6.3). From this temperature onward
the low frequency AC spectrum becomes roughly temperature independent. We can track this
in terms of the quasinormal modes (Fig. 6.9) although we can no longer rely on the perturbative
expansion to enumerate it. For a large part of this intermediate lattice regime, the DC resistivity is
still effectively captured by the expression σDC = ω2

p/(Γ + ω2
0/Ω), though one needs a careful

AC-fit to extract the values. Again, its temperature scaling is set by the non-trivial IR fixed point
and can remain unaffected by the change in dissipative dynamics in the AC conductivity.

The Incoherent Hydrodynamics at Large Lattice Potential

At large lattice potentials momentum is strongly broken and we enter in a qualitatively different
regime (Section 6.7). Observationally this is where the numerically extracted relaxation rate of
the DC conductivity of the GR metal saturates at about the Planckian value Γcorrected ≃ 2πT
(Fig. 6.13). Because momentum is strongly broken, the framework to understand whether this
can be verified is the one where transport is governed by only two conserved quantities, energy
and momentum [219]. Their fluctuations consist of two coupled diffusive modes with diffusion
constants that are not the same as they are in the homogeneous system. At strict T = 0, charge
and energy transport formally decouple and the electrical conductivity is governed by one of these
modes σ = χD+ with χ the charge susceptibility, while the thermal conductivity κ = cnD−
is governed by the other with cn is the specific heat at constant charge density. At low but finite
temperature they mix perturbatively, but are still dominated by their T = 0 scaling. From our
numerics we conclude thatD+ ∼ T−1 whereasD− ∼ T for the GR metal; similar behavior has
been established in homogeneous holographic strange metals with strong momentum relaxation
(GR metal in a Q-lattice) where the homogeneous geometry allows analytical solutions [235]. It
has been argued that the temperature dependence of the thermal diffusivity empirically defined
as DT ≡ κ/cn should be insensitive to the breaking of translations and reduces to one of the
incoherent diffusivities D− at low temperature and strong lattices. Moreover, it can be related
to microscropic chaos through a butterfly velocity v2B times a maximal Lyapunov rate λ = 2πT
that embodies Planckian dissipationDT = 1

2v
2
B/(2πT ) [225–227]. Provided we can extrapolate

from the homogeneous result that in the non-trivial IR fixed point of the GR metal in a strong
lattice the butterfly velocity still scales as v2B ∼ T 2, this is consistent with our findings. The puzzle
is the DC-conductivity and charge response. We conjecture that the Planckian relaxation set by
the maximal Lyapunov rate should still govern charge transport as well. Given that on dimensional
groundsD+ ∼ (v

charged
B )2/(2πT ), this can be only so if the butterfly velocity is not universal but

depends on the quantum numbers of the operators probing chaos; there are hints that this is true
[236–239]. If it can be shown that vcharged

B ∼ T 0 this could explain not only the observed linear-
in-T resistivity at strong lattice potentials in the GR metal, but also its saturation to the Planckian
value.

We will end with a short discussion in Section 6.8 of these results with a focus on the possible rele-
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vance to experiment. We also include a number of Appendices where we discuss various technical
details.

6.3. Holographic Strange Metals, Transport and

Translational Symmetry Breaking

In the absence of a lattice, the homogeneous finite density strange metals [61, 62, 71, 223] of holog-
raphy are characterized by a non-trivial IR fixed point. These are specified by a handful of anoma-
lous scaling dimensions: the dynamical critical exponent z, the hyperscaling violation dimension
θ and the charge exponent ζ , expressing the scaling of time with space, the scaling of the thermo-
dynamically relevant degrees of freedom with volume, and the running of the charge, respectively.
Experimental evidences suggest that the cuprates are “local quantum critical” [50, 240, 241], re-
ferring to z → ∞, while electronic specific heat measurements in the high temperature strange
metal regime exhibit a Sommerfeld entropy, s ≃ kBT/µ (see e.g. [242]) where µ is the chem-
ical potential taking the role of the Fermi energy. Though the notion that cuprate strange met-
als are explained by a non-trivial IR fixed point was put forth independently of holography, the
fixed point that shares the rough qualitative characteristics was first discovered using AdS/CFT.
Amongst the holographic strange metals this is the so-called Gubser-Rocha (GR) strange metal
[98], being the only holographic strange metal in the general classification that reconciles z → ∞
with Sommerfeld entropy. Within the larger class of holographic strange metals, the critical scal-
ing at the IR fixed point insists that the entropy should scale as s ∼ T (d−θ)/z . For z → ∞ and
d− θ finite the entropy should therefore be temperature independent, implying a zero tempera-
ture entropy. This is the case for the holographic strange metal dual to the Reissner-Nordström
black hole and the closely related SYK systems. The GR metal is characterized by a double scaling
limit such that z,−θ → ∞ while −θ/z = 1. This reconciles a low temperature Sommerfeld
entropy s ∼ T + . . . with local quantum criticality. For comparison we will also present results
for the Reissner-Nordström (RN) strange metal [61, 71, 156]. For a qualitative understanding of
our results nothing more than the thermodynamics of the fixed point are required (summarized
in Table I). The precise details RN and GR holographic strange metal and the duality map are
discussed in Appendix 6.A.

Scaling RN
θ = 0, z = ∞

GR
z,−θ = ∞

Entropy s/µ2 ∼ (T/µ)(d−θ)/z s/µ2 ∼ (T/µ)0 s/µ2 ∼ (T/µ)1

Charge Density * n/µ2 ∼ (T/µ)0 n/µ2 ∼ (T/µ)0

Table 6.1.: Scaling behavior in holographic strange metals of the entropy density s and the charge
densityn in terms of the chemical potentialµ and the temperatureT . The first column
highlights the general formula of holographic scaling geometries. The last two columns
focus on the two holographic models with local quantum criticality (z → ∞) of in-
terest in this paper: the Reissner-Nordström and the Gubser-Rocha model. (∗): For a
discussion on this, see section 4.2.4 of [71].
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The motivation for this study is that all experimental strange metals are known to occur in the
presence of an excessively strong effective ionic background potential felt by the electron system,
the Mottness of the cuprates being case in point (see e.g., [174, 229, 230]). The commonality of
this lattice potential suggests an importance in observed systems of which the effects on the holo-
graphic strange metals have not yet been systematically investigated. We shall study the GR and the
RN AdS black holes dual to 2+1 dimensional strange metals where we break translations by either
a one dimensional or two-dimensional explicit periodic square ionic lattice potential encoded in
the local chemical potential

µ1D(x, y) = µ0

(
1 +A cos(Gx)

)
µ2D(x, y) = µ0

(
1 +

A

2
(cos(Gx) + cos(Gy))

)
(6.3)

The parametrization is such that the maximal deviation from the average is ±A in both cases.

The above explicit lattice condition appears as boundary conditions in the dual holographic grav-
itational description of the strange metal system in question. The difficulty is that studying such
explicit translational symmetry breaking is only possible numerically outside perturbation theory.
We solve the full set of spatially dependent Einstein-Maxwell-Dilaton equations of motion for the
GR and RN strange metals using the DeTurck gauge in a Newton-Raphson scheme [128, 129,
147]. A summary is given in Appendix 4.B. DC transport is computed by numerically solving for
the Stokes flow problem at the horizon [142, 143, 146, 243]. All numerical computations employ a
higher-order finite difference scheme where the radial coordinate is discretized on the Chebyshev-
Lobatto nodes (Appendix 6.A.3).

We treat the numerical data obtained as the outcome of an experiment. However, the framework
in which to analyze this data is known. As we already emphasized, the dense entanglement of the
quantum many body system described holographically by its dual gravity theory drives a very rapid
quantum thermalization. This implies that local equilibrium sets in very rapidly, which in turn im-
plies that, in the homogeneous background with no lattice, transport at macroscopic times and
lengths is governed by hydrodynamics. Different from the quasiparticles in Fermi-liquid metals, a
strange metal flows like water. It is a general hydrodynamical principle that it can be decomposed
in convective- (also called “coherent”) and diffusive (“incoherent”) flows. The former refers to the
motion of the fluid as a whole as protected by the conservation of total momentum in the transla-
tionally invariant homogeneous background. When the translational symmetry is weakly broken,
both are readily recognizable in the Drude model, which introduces by hand a momentum decay
rate Γmom.rel. = τ−1

mom.rel. as the largest relaxation time. For relativistic hydrodynamics appropriate
to strange metals where a linear dispersion relation of charged constituents induces an emergent
Lorentz symmetry the Drude conductivities are

σ(ω) =
n2

ϵ+ P

1

Γmom.rel.
+ σinc

α(ω) =
ns

ϵ+ P

1

Γmom.rel.
+ αinc

κ̄(ω) =
s2T

ϵ+ P

1

Γmom.rel.
+ κ̄inc (6.4)
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Here n, s, ϵ, P of the convective terms are the charge, entropy, energy, and pressure density re-
spectively. The Lorentz symmetry also demands that the incoherent contributions are related to
each other by σinc = σQ, αinc = − µ

T σQ and κ̄inc = µ2

T σQ in terms of a transport coefficient
σQ.1

Writing σinc = T
µ2 κ̄inc, αinc = − 1

µ κ̄inc instead, this reveals that in a Galilean invariant system
where both c→ ∞ and µ = mec

2 + . . .→ ∞, only the incoherent heat contribution survives.
It is a highlight of non-relativistic finite temperature Fermi-liquid theory that such a diffusive heat
conduction is present even dealing with spin-less fermions, mediated by the Lindhard continuum.
This κ̄inc = cnDT , where the specific heat at constant density (equal to the specific heat at con-
stant volume) cn ∼ T , while the thermal diffusivity DT ≃ v2F τcol where τcol ≃ EF

kBT
τℏ; there-

fore κ̄inc ∼ 1/T as verified e.g. in the 3He Fermi liquid. In contrast in the non relativistic limit
ϵ+ P → µn ∼ nmc2 the electrical conductivity becomes purely convective and one recognizes
the familiar Drude weight expressed in the plasma frequency as ω2

p = ne2/m.

The incoherent contributions to transport are in principle measurable in the laboratory by zeroing
out the coherent part. This can be done by measuring heat transport in the absence of charge
transport (open boundary heat conductivity) κ or charge transport without heat, σQ=0 equal
to

κ = κ̄− Tα2

σ
,

σQ=0 = σ − Tα2

κ̄
. (6.5)

Note that in the Galilean limit when there is only an incoherent heat conductivity κ = κ̄inc.

These incoherent contributions are diffusive. The open boundary combinations Eq.(6.5) are
therefore a mixture of diffusive and convective transport. Nevertheless, it is useful and conven-
tional to define the charge and thermal diffusivities Dc ≡ σ/χ and DT ≡ κ/cn, where χ is the
charge susceptibility, and cn the heat capacity. In the remainder of this text, we will see that when
translational symmetry is strongly broken and the convective part is strongly suppressed, these
diffusivities are directly related to diffusion constants in transport. These “incoherent metal”
diffusivities and diffusion constants should not be confused with the well-known diffusion of
charge Dρ and energy Dπ in weak or vanishing translational symmetry breaking. As we shall
see in the Gubser-Rocha metal the latter are both linear-in-T at low temperature while they are
T -independent at low temperature in Reissner-Nordström. In the incoherent metal, in contrast,
we will see thatDT ∼ T whileDc ∼ T−1.

Will the Real Planckian Dissipating Channel Make Itself Known?

The point of this brief hydrodynamical exposition is to highlight the fundamental issue we address
in this article. The above illustrates that even in the simplest Drude hydrodynamics there are two

1There is one exception. If the translational symmetry breaking happens in only one of the spatial dimensions αinc and
κinc vanish [139]. In that particular case a subleading term in the numerator of the convective term precisely cancels
the incoherent term in the thermoelectric and heat conductivity.
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dissipative channels: the convective coherent Drude term encoding the way translational symme-
try is broken, and the incoherent term related to a diffusion of microscopic origin. For weak lat-
tice potentials, or more generally for weak translational symmetry breaking, the convective Drude
term is much larger than the incoherent term. With the conjecture that in strongly correlated crit-
ical points the shear viscosity is bounded by the entropy η ≥ s/4π, two of us, together with R.
Davison, proposed that in disordered strange metals the usual shear viscosity based momentum
relaxation rateΓmom.rel. ∼ η ∼ s can explain a linear-in-T resistivity for a system with Sommerfeld
entropy [106]. The connection between the resistivity and the entropy would explain the univer-
sality and the minimal viscosity would be the encoding of Planckian dissipation. Moreover, this
argument is also consistent with a Drude response in the optical conductivity. The counterargu-
ment is that this only holds in detail for marginal disorder. Relevant or irrelevant disorder would
significantly limit the regime of applicability of this argument [244, 245].

Taking a step back, it actually is difficult to argue that a universal phenomenon such as Planckian
dissipation should manifest itself through the convective channel, as this coherent channel will
generically depend on the details of translational symmetry breaking [225, 246]. The far more nat-
ural channel for Planckian dissipation would be the incoherent diffusive channel. But if one takes
this point of view, one can no longer use it to explain the universal linear-in-T DC resistivity in
strange metals. These all show strong Drude behavior in the optical conductivity, and the DC con-
ductivity is therefore set by the coherent response in the context of weak translational symmetry
breaking. It appears to be a Catch-22. Either a Planckian dissipation can set the universally ob-
served linear-in-T resistivity in strange metals, but then the AC conductivity ought to be Drude,
or weak translational symmetry breaking sets the resistivity, but then it is hard to see how it can be
universal.

We will resolve this conundrum by showing explicitly that in weak lattice near a non-trivial IR
fixed point, the thermodynamics of the fixed point together with a fixed-point-controlled scaling
of transport coefficients can set the DC resistivity in a universal sense, independent of the dissi-
pative channel shown in the AC conductivity. Qualitatively this is an extension of the Davison-
Schalm-Zaanen Γmom.rel. ∼ η ∼ s result. At the same time, for large lattice strengths the inco-
herent part becomes dominant and indeed shows universal Planckian dissipation as surmised by
Blake and others [225–227]. For good measure we state that there may still be a deeper way to also
understand the weak lattice results in terms of Planckian dissipation. Even though they appear
non-universal, the observed scaling, together with the way the Sommerfeld entropy is a natural
bounding behavior at low temperatures, leaves this possibility open.

6.4. Umklapp Hydrodynamics for Weak Lattice Potentials

As we emphasized, in the low frequency limit at macroscopic long wavelengths holography reduces
to hydrodynamics albeit with specific transport coefficients. A fundamental principle behind the
theory of hydrodynamics is local equilibrium. The state of the fluid can be described by a slowly
spatially varying energy-momentum tensorTµν(x) and in the presence of aU(1) charge, a current
Jµ(x). In turn the local equilibrium condition implies that one can also describe fluid behavior in
the presence of a slowly spatially varying external potential whether temperature T (x), pressure
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P (x), or chemical potential µ(x) [247–249], Suppose this background is periodic in the coordi-
nate x. The hydrodynamical problem of relevance is nothing else than that of a hydrodynamical
fluid like water that is flowing through a periodic “array” of obstacles weakly perturbing the flow,
characterized by a microscopic “lattice constant”. This is a rather unusual circumstance in stan-
dard hydrodynamics and we are not aware of any literature addressing the role of Umklapp in the
AC structure of the correlators, though a beginning was made in [250].

But it represents an elementary exercise, and the answer is readily understood. From elementary
solid state physics it is well known that a quantum mechanical wave function in a periodic back-
ground experiences Umklapp. This is purely a wave phenomenon and the principle therefore also
applies to classical waves as described by hydrodynamics. Both a quantum mechanical wave func-
tion and linearized hydrodynamic fluctuations around equilibrium are described by a differential
equation of the form

(∂t +M(x))ϕ(x) = 0 (6.6)

If M(x) is periodic M(x + 2πn
G ) = M(x), then ϕ(x) can be decomposed in Bloch waves

ϕ(x) = 1
2πG

∫ G/2
−G/2 dk

∑
n ϕn(k)e

i(k+nG)x. TakingM(x) = −M0∂
2
x+A cos(Gx) as canon-

ical example, one can solve Eq. (6.6) perturbatively inA. Definingϕn(k) = ϕ
(0)
n (k)+Aϕ

(1)
n (k)+

A2

2 ϕ
(2)
n (k) + . . ., the solution to first orderA is

ϕn(k) = ϕ(0)n (k) +
A

2G(G− 2k)M0
ϕ
(0)
n−1(k)−

A

2G(G+ 2k)M0
ϕ
(0)
n+1(k) + . . . (6.7)

This mixing between the different Bloch waves is Umklapp. In hydrodynamics these Umklapped
responses have already been observed several years ago in numerical computations of holographic
metals in explicit periodic lattices in [107, 120, 140]. Fig.4 in the article [140] shows an Umklapped
sound mode at ω = vsG in the optical conductivity with G the lattice momentum. However, a
full treatment has been lacking.

For U(1) charged relativistic hydrodynamics the fluctuation equations in the longitudinal sector
in a spatially constant background are the coupled equations [81]

 −iω ik 0
ikβ1 Dπk

2 − iω ikβ2
−Dn1

k2 ikβ3 Dn2
k2 − iω

 δϵ
δπx
δn

 = 0 (6.8)

Here δϵ, δn, δπx are the fluctuations in energy-, charge-, and longitudinal momentum density re-
spectively. The upper two-by-two block is the sound sector with β1 =

(
∂p̄
∂ϵ̄

)
n

. At finite density
this interacts with a charge diffusion mode in the bottom one-by-one block through the interac-
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tions β2 =
(
∂p̄
∂n̄

)
ϵ
, β3 = n̄

ϵ̄+p̄ and the diffusion constantDn1 . The diffusion constants equal

Dπ =

(
2

(
1− 1

d

)
η + ζ

)(
∂vx
∂πx

)
ϵ

=
2
(
1− 1

d

)
η + ζ

ϵ̄+ p̄
,

Dn1
= σQT̄

(
∂(µ̄/T̄ )

∂ϵ̄

)
n̄

= −σQ

(
∂n̄
∂T̄

)
µ̄
+ µ̄

T̄

(
∂n̄
∂µ̄

)
T̄(

∂n̄
∂µ̄

)
T̄

(
∂ϵ̄
∂T̄

)
µ̄
−
(
∂n̄
∂T̄

)
µ̄

(
∂ϵ̄
∂µ̄

)
T̄

,

Dn2
= σQT̄

(
∂(µ̄/T̄ )

∂n̄

)
ϵ̄

= σQ

(
∂ϵ̄
∂T̄

)
µ̄
+ µ̄

T̄

(
∂ϵ̄
∂µ̄

)
T̄(

∂n̄
∂µ̄

)
T̄

(
∂ϵ̄
∂T̄

)
µ̄
−
(
∂n̄
∂T̄

)
µ̄

(
∂ϵ̄
∂µ̄

)
T̄

.

(6.9)

In the last two equations, the last equality leads to a seemingly more complicated form, but each
of these derivatives is much simpler to compute. Barred quantities denote the (spatially constant)
equilibrium background, and η, ζ, σQ are the microscopic transport coefficients: the shear- and
bulk-viscosity and the momentum-independent contribution to the conductivity. As discussed,
the holographic models we consider have d = 2 with an underlying conformal symmetry for
which the equation of state ϵ̄ = 2p̄ implies that ζ = 0, β2 = 0 and β1 = c2s = 1/2; we will limit
our focus to conformal hydrodynamics in the remainder.

Placing such a system in a spatially varying chemical potential µ(x) = µ̄
(
1 +A cos(Gx)

)
the

Umklapp interactions follow from a re-derivation of the fluctuation equations in this background.
A detailed derivation for both conformal and non-conformal hydrodynamics and discussion with
a natural generalization to a two-dimensional latticeµ(x) = µ̄

(
1 + A

2 cos(Gx) + A
2 cos(Gy)

)
is given in a companion article [251]. In summary, to maintain equilibrium with spatially constant
temperature also requires a spatially varying charge densityn(x) = n̄+µ̄A

(
∂n̄
∂µ̄

)
T̄
cos(Gx)+. . .

and pressure p(x) = p̄+Aµ̄n̄ cos(Gx) + . . . to leading order inA. The exact equation of state
ϵ̄ = 2p̄ in a conformal fluid means the energy density follows the pressure. By viewing the lattice as
a small perturbation on the thermal equilibrium, we can express the perturbations in terms of the
chemical potential modulation and the thermodynamic susceptibilities of the background. These
corrections to the background are responsible for the Bloch decomposition and Umklapp interac-
tions mixing them. To first order in the lattice strengthA the three modes of the longitudinal sec-
tor2 mix with their six Umklapp copies. Our interest in this article is how this Umklapp affects the
response at low frequencies ω ≪ G and zero momentum k = 0. At k = 0 the un-Umklapped
charge diffusion mode decouples, and the remaining eight modes decompose into four parity-
odd-in-G ones and four parity-even modes. The latter include the k = 0 sound mode δπ(0), two
Umklapped sound modes built on δϵ(S) =

∫
dx sin(Gx)δϵ(x), δπ(C) =

∫
dx cos(Gx)δπ(x);

and one Umklapped charge diffusion mode built on δn(S) =
∫

dx sin(Gx)δn(x) that interact

2Substituting this spatially varying background into the defining conservation equations of hydrodynamics and expand-
ing in fluctuations, they no longer decompose in a longitudinal and transverse sector. It can be shown, however, that in
the presence of a orthogonal lattice the naively longitudinal sector along one of the lattice directions is self-contained.
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as
(∂t +M) · δϕ = R (6.10)

with

M =


0 1

2AGµ̄
1
2AGµ̄ − 3

2 iωAµ̄β3
− AGµ̄

(ϵ̄+p̄)αn
DρG

2 0 0

−2AGµ̄β2
3 0 0 −Gβ3

−3iωAµ̄β3 0 G
2β3

DπG
2

 (6.11)

and

δϕ =


δπ

(0)
x

δn(S) − β3δϵ
(S)

β3δϵ
(S)

δπ
(C)
x

 , R =


n̄

µ̄Aβ3
DρG
αn

−µ̄Aβ3DρG
αn

µ̄A
(
α−1
n + n̄2

(ϵ̄+p̄)c2s

)
 δĒx (6.12)

where we have defined Dρ = Dn2
the charge diffusion constant and where we used the coef-

ficient αn ≡ T̄
(
∂(µ̄/T̄ )
∂n̄

)
ϵ̄

which entered the definition of Dn2 . It is purely thermodynamic
and has a universal scaling behavior determined by the scaling of entropy, as we will later high-
light. We have added to our system a perturbatively small time-varying electric field δEx(t) =
−δĒxe−iωt which will externally source a longitudinal current δJx. This term will also enter
the hydrodynamic system as an extra term in the current constitutive relation through ∂xµ →
∂xµ+ δEx(t).

We can now therefore linearize the constitutive relation

δJx = nδvx − σQ

[
∂x(δµ− µ

T
δT ) + δEx

]
(6.13)

for the current density defined as

δJx(t) =

(
∂Jx

∂ϕ

)⊺

· δϕ(t) + σQδĒxe
−iωt

with
(
∂Jx

∂ϕ

)⊺

=

(
β3, −µ̄ADρG

2
β3, µ̄A

DρG

4n̄αn
, µ̄A

(
β3 +

1
2n̄αn

))
.

(6.14)

We make use of the dynamical system (6.10), to obtain the time-evolution of the dynamical fields
δϕ(ω) =

(
−iωI4 +M(ω)

)−1 ·
(
δϕ(t = 0) +RδĒx

)
. Since we have turned on the external

electric field, we are not interested in explicitly sourcing any of the hydrodynamical variables and
therefore we set δϕ(t = 0) as an initial condition such that δϕ(ω) ∝ δĒx and by extension so
will be δJx. Finally, the optical conductivity can be computed as [251]

σ(ω) =
δJx

δĒx
. (6.15)
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The inverse (−iωI4+M)−1 is dominated by the vanishing of its determinant. These zeroes show
up as poles in the conductivity. Expanding the determinant to orderA2, there are four poles at

ω1 = −i(Γη + Γd) +O(A4) ,

ω2 = −i(DρG
2 − Γd) +O(A4) ,

ω± = ± G√
2

[
1− µ̄2A2β2

3 +O(A4)
]
− i

1

2

[
DπG

2 − Γη +O(A4)
]
+O(G3)

(6.16)

with

Γd ≡ A2 µ2

2(ϵ̄+ p̄)Dραn
,

Γη ≡ 2µ̄2A2β2
3DπG

2 = 2A2 µ̄2n̄2

(ϵ̄+ p̄)2
DπG

2 (6.17)

At low frequency ω ≪ csG, the contribution from the two sound poles ω± should be negligible
in the conductivity. By expanding the expression (6.15) as a quadruple Laurent series

σ(ω) = σ0 +
∑

i=1,2,±

Zi
ω − ωi

(6.18)

and truncating the two sound modes, one finds that it takes the form3

σno sound(ω) = σ0 +
Z1

ω − ω1
+

Z2

ω − ω2
= σ0 + Zeff

Ω− iω

(Γ− iω)(Ω− iω) + ω2
0

(6.19)

with

Ω =

O(1)︷ ︸︸ ︷
DρG

2 −

O(A2)︷ ︸︸ ︷
2D2

ρG
2Γd +O(G3)+O(A4) ,

Γ = 2D2
ρG

2Γd + Γη +O(G3) +O(A4) ,

ω2
0 = DρG

2Γd

[
1− 2D2

ρG
2 +O(G3)

]
+O(A4) ,

Zeff/ω
2
p = 1 + 4µ̄2A2β2

3D
2
πG

2 −DρΓd

[
4 +Dρ(Dρ − 4Dπ)G

2
]
+O(G3, A4),

σ0 = σQ +O(A4) ,
(6.20)

where the plasmon frequency is ω2
p = n̄2

ϵ̄+p̄ .

The form Eq. (6.19) is well known from studying the hydrodynamics of decaying charge density
waves or other unstable superfluids [221, 234, 252–258]. This is not surprising as the underlying

3An attempt to formally decouple the sound modes by taking the limit c2s → ∞ requires that Γη ∼ 1
c2s

and will
therefore shift the poles. The truncated Laurent expansion keeps the poles in the right location.
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physics is that of two damped currents cross-coupled with an interaction ω0 (see Appendix 6.F).
Both a decaying (i.e. damped) pseudo-Goldstone boson, as well as an Umklapp hydrodynamics
interaction belong to this class.

Given an appropriate temperature scaling of Γ,Ω, ω0 or equivalently Z1,2, ω1,2 it was already
proposed that such a conductivity could explain the emerging mid-IR peak at high temperature
in the cuprates. We will argue below that this Umklapp hydrodynamics in an holographic AdS2
metal with Sommerfeld specific heat provides precisely the right scaling.

6.5. The Applicability of Hydrodynamics and the Imprint of

Local Quantum Criticality

Despite the fact that the interplay between holography and hydrodynamics has been formidable, it
is not a given that a hydrodynamical understanding as given above applies directly to holographic
strange AdS2 metals in explicit lattices. Even though holography describes strongly coupled sys-
tems which implies a large hydrodynamical regime, this regime is finite as has been emphasized in
several recent articles [259–263], and bounded byω = 2π∆T where∆ is the scaling dimension of
the lowest irrelevant operator from the strange metal fixed point. This argument against hydrody-
namics can be sharpened by the fact that momentum dependent longitudinal DC-conductivities
at zero frequency σ(ω = 0, k ̸= 0) vanish [264].4 This is an unavoidable consequence of U(1)
current conservation: ω → 0 impliesG · J = 0. Naively considering Umklapp as the mixing of
the σ(ω, 0) and σ(ω, k = G), would argue that the amplitude of the mixed-in Umklapp wave is
thus very small. This is illustrated by a memory matrix computation [233, 264]. The momentum-
dependent density correlation functionGJtJt in a homogeneous AdS2 metal, which is the oper-
ator to consider for our choice of lattice, scales as a function of the temperature as

ImGhomogeneous
JtJt (ω = 0, k) ∼ T 2νk + . . . ,

νk =
1 + η̂

2
√
2 + η̂

√
10 + η̂ + 4(2 + η̂)k̄2 − 8

√
1 + (2 + η̂)k̄2

(6.21)
where η̂ ≡ −θ/z characterizes the near-AdS2 region and k̄ ≡ k

µλ is a wavevector renormalization
that correctly rescales to the emergent near horizon AdS2 geometry in a lattice [140, 264]. For GR
η̂ = 1 and for RN, η̂ = 0 while in both cases, λ = 1. This scaling of GJtJt follows from a
near-far matching method in the AdS2 bulk which shows that a generic Green’s function takes
the form

G =
A+BG
C +DG

(6.22)

4Recall that momentum-dependent conductivities at finite momentum need not be in the hydrodynamic regime. Within

hydrodynamics, longitudinal diffusive conductivities obeying σ(ω, k) =
iωDχ

iω −Dk2
give an exactly vanishing DC

conductivity at finite momentum, but a finite DC conductivity at zero momentum obeying Einstein’s relation σ =
Dχ.
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withA,B,C,D purely real and G the AdS2 Green’s function [93]

G(ω, k) ∝ T 2νk
Γ (1− νk) Γ

(
1
2 + νk − iω

2πT

)
Γ (1 + νk) Γ

(
1
2 − νk − iω

2πT

) (6.23)

The imaginary part of the density correlator is proportional to the imaginary part of the AdS2
correlator as ImGJtJt ∼ ImG. Though this scaling as a function of the temperature is exact,
it ignores the possibility that there can still be a large amplitude as a function of the other param-
eters. This is in fact what happens when one extrapolates the exact answer for the momentum-
dependent transverse conductivity σ⊥(ω, k) to the hydrodynamic regime k ≪ µ [265]. The
momentum dependent current-current correlation function in an AdS2 metal behaves as

GJ⊥J⊥(ω, k) = − k2G(ω)
ω2 + k2

2r0
G(ω)

(6.24)

Although the scaling is indeed captured by the Hartnoll-Hofman result Eq. (6.21) one also sees
that for small k the hydrodynamic pole at ω = −iDk2 becomes far more important than the
(ω/T )2ν -suppression. For k ≤ µ the hydrodynamic pole captures the physics far better than the
AdS2 power-law.

As is clear from the mathematical expressions this is not a sharp transition, but a smooth crossover.
Nevertheless there is a clear transition between dominant physics regimes (AdS2 vs hydrodynam-
ics) that can be made visible through the holographic dynamics. A finite momentum conductivity
is better viewed as the response when the system is placed in a fixed spatially oscillating but static
electric field background. The spatial oscillation imprints a lattice structure in the finite density
system. The conventional RG perspective is that this lattice is irrelevant in the RG. This is the
physics behind the power-law dependence on temperature in Eq. (6.21). The AdS2 fixed points
of the holographic metals that we study, either RN or GR, are so-called semi-local quantum liq-
uids [232], however. This means that while for T < µ the two-point correlation function dis-
plays power-law behavior between two time-like separated points, it is exponentially suppressed
between two space-like separated points. This exponential suppression is so strong that two points
separated spatially by a distance |x| ≳ 1

µ have no causal contact [232]. In momentum space this
implies that the coupling between modes with k ≲ µ is exponentially small. This decoupling
means that for modes k ≲ µ or equivalently a spatially oscillating but static electric field with
G ≤ µ the RG-flow becomes strongly suppressed once T decreases below µ. One can think of
it as that the d-dimensional RG-flow at T = µ decomposes into individual RG-flows for each
momentum mode. Recalling that in holography the radial direction encodes the RG-flow, we can
visualize this. In Fig. 6.4 we plot the charge/current density as a function of location for a mod-
ulated chemical potential. For a lattice momentum G ≫ µ the lattice irrelevancy towards the
IR is uninterrupted. However for an oscillating chemical potential with periodicity G ≪ µ, the
RG flow “halts” around the AdS radius value r ∼ µ corresponding to T ∼ µ. For such values of
G≪ µ the lattice thus remains quite strong in the IR and certainly much stronger than one would
naively expect. The way to understand this is that precisely in this regime it is the proximity of the
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Figure 6.4.: A holographic visualization of the cross-over in response functions between G > µ
(left) andG < µ (right). Plotted is the bulk electric fieldFtz (whose boundary value is
dual to the charge density) in the presence of a 1D spatially varying chemical potential
µ(x) = µ0+A cos(Gx) as a function of position and the AdS radial direction z. For
G > µ (G = 4µ) one sees the lattice amplitude decrease smoothly as one moves from
the AdS boundary to the horizon at z = 1. For G < µ (G = 0.05µ) on the other
hand, one sees that the RG flow is much slower and “halts” around z ∼ 0.5. This
is due to the exponential suppression of the coupling between different momentum
modes at the AdS2 IR fixed point. The results are for a RN black hole atT/µ = 0.15.

hydrodynamic pole that dominates the response rather than the RG scaling suppression. Ulti-
mately the RG wisdom does holds for any lattice perturbation and even forG≪ µ the lattice will
eventually turn irrelevant in the IR (Sec 3.4 in [140]), and scaling again becomes the pre-eminent
physical effect but this only happens at the lowest of temperatures.

For Umklapp hydrodynamics this is relevant because it implies that the regime where the hydro-
dynamics results capture the physics is appreciable. Below we shall verify that near an AdS2 fixed
point Umklapp hydrodynamics is the better way of understanding the physics forG < µ, whereas
AdS2 Hartnoll-Hofman scaling is the better way forG > µ. For the sake of clarity, we emphasize
that strictly speaking at a mathematical level both can be, and often are, valid simultaneously as is
evidenced by (6.24). However, the physical response is generically dominated by one or the other,
and relying on only one of them is not sufficient.

There is a second reason why hydrodynamics is the more appropriate perspective for G ≪ µ.
A more precise analysis of the momentum-dependent density correlator in an AdS2 metal shows
that it has multiple characteristic scaling contributions [264]

ImGhomogeneous
JtJt (ω = 0, k) ∼ c−T

2νk + c0T
2ν0

k + c+T
2ν+

k (6.25)
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with the additional scaling exponents

ν0k =
1 + η̂

2

√
1 + 4k̂2

ν+k =
1 + η̂

2
√
2 + η̂

√
10 + η̂ + 4(2 + η̂)k̄2 + 8

√
1 + (2 + η̂)k̄2 (6.26)

For k = G≪ µ as one needs for Umklapp between ImGhomogeneous
JtJt (0, k′) for k′ = 0,±G, all

these three exponents take values that are very close to each other. For such small differences in the
exponents there is observationally no clean scaling regime. For low lattice strengths A this is the
reason that the observed weak lattice DC conductivities in Fig. 6.3 do not scale exactly inversely-
linear-in-T as noted in the Introduction. Through Umklapp, the lattice DC conductivity is related
to the homogeneous density correlator (which we will review in more details in the next section)

σDC,lattice ∼

(
lim
ω→0

ImGhomogeneous
JtJt (ω, k)

ω

)−1

∼ 1

c−T 2νk−1 + c0T 2ν0
k−1 + c+T 2ν+

k −1
.

(6.27)
Fig. 6.5 shows that the deviation from linearity is exactly due to the contribution of the additional
exponents.

6.6. DC vs Optical conductivities in explicit lattice

(holographic) strange metals from Umklapp

Having argued that hydrodynamics should dominate the response in holographic strange metals,
we now exploit our ability to do computational experiments to confirm that Umklapp hydrody-
namics applies when such holographic strange metals are placed in an explicit periodic lattice with
a small amplitude A. Then we shall describe the surprising phenomenological conclusions for
electrical DC and optical electrical conductivity.

To verify the applicability of Umklapp hydrodynamics in AdS2 metals, we can study the location
of the poles in linear response functions. Fig. 6.6 shows the poles in the optical conductivity σ(ω)
in a GR strange metal in a 1D ionic lattice background µ(x) = µ0(1 + A cos(Gx)). There
are multiple poles on the negative imaginary axis and two poles with real part at the location ω =
±vsG. The latter are the ones already noted by [107, 120, 140] and identified as Umklapped sound
modes [140]. That Umklapp is at work is confirmed by tracing the behavior of the poles as a
function of temperature. Compare the behavior of the two poles on the negative imaginary axis
closest to the origin to the analytically computed values Eqs. (6.16) , we see that the match is very
good; see Fig. 6.7. Moreover, if one also studies the response functions at finite momentumk, then
one observes the characteristic Umklapp level repulsion at the edge of Brillouin zone k = G/2
(Fig. 6.6).
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Figure 6.5.: The DC conductivity of the GR metal in a weak lattice potential A = 0.05
is not perfectly inversely linear-in-T. This is due to subleading scaling contri-
butions computable from the AdS2 fixed point. Shown is a three parame-
ter fit of the DC conductivity for c−, c0, c+ to the functional form σDC =

1/
(
c−T

2νG−1 + c0T
2ν0

G−1 + c+T
2ν+

G−1
)

at low temperature with νG, ν0G, ν
+
G

given by Eq. (6.21) and Eq. (6.26), with k = G, for G/µ = 0.1. The values of the
exponents νG, ν0G, ν

+
G at this wave vector are 1.00015, 1.0198 and 2.53, respectively.

Therefore according to this fit, one expects the exponent νG to be the dominating one
only at temperatures T/µ < O(10−50).

6.6.1. Low Temperatures: Drude Transport

We have claimed Umklapp Hydrodynamics explains the remarkable finding summarized in Fig. 6.3
that the DC conductivity of a strange metal in a weak lattice remains linear-in-temperature while
the mechanism governing the AC-response appears to change. We can now show this.

The DC conductivity from Umklapp Hydrodynamics to lowest order in the lattice strength A
equals

σDC =
Zeff

Γ +
ω2

0

Ω

+ σQ =
ω2
p

Γη + Γd︸ ︷︷ ︸
O(A−2)

+σoffset + σQ︸ ︷︷ ︸
O(1)

+O(A2) (6.28)

where, in the last equality, the first term is the leading order and the offset term σoffset comes from
the higher order terms in Eqs. (6.20). The first contribution in the DC from the sound part of
the Laurent expansion (6.18) only comes at order O(A2) and is therefore negligible here. These
expressions already suggest that two physical mechanisms are at play in the DC result. At first sight
this may appear contradictory to the conventional explanation of weak lattice DC conductivity in
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Figure 6.6.: Umklapp hydrodynamics. The left panel shows the presence of both the Drude (up-
per) pole and the Umklapped charge diffusion (lower) pole and associated zero in the
complex frequency plane at kx = 0. The right panel shows the motion of both poles
as a function of longitudinal momentumkx. The Umklapp is confirmed by matching
this motion to the diffusion coefficients of the un-Umklapped hydrodynamics com-
puted in Eqs. (6.24). The inset shows the level splitting near the Brillouin zone bound-
ary at k = G/2. The results are computed in the GR black-hole lattice at T/µ =
0.1, G/µ = 0.1 with a 1D ionic lattice potential µ(x) = µ

(
1 + 0.05 cos(Gx)

)
.

The deviation at low k finds its origin in the next order level splitting in umklapp
which our formula does not account for, similar to the level splitting near the Bril-
louin zone.

terms of Drude momentum relaxation σ =
ω2

p

Γmom.rel.
. The momentum relaxation rate Γmom.rel. can

be computed in the memory matrix formalism [233, 266] to equal

Γmom.rel. =
g2G2

(ϵ̄+ p̄)
lim
ω→0

Im⟨OO⟩(ω, k = G)

ω
(6.29)

where O(G) is the operator that breaks translation invariance with coupling g. In the case of
an ionic lattice with a cosine potential as we consider, there are two operators O(G) = J t, one
inserted at wavevector G and one at −G each with coupling strength g = µ̄A/2. Therefore the
memory matrix momentum relaxation rate for the ionic lattice is

Γmom.rel. =
µ̄2A2G2

2(ϵ̄+ p̄)
lim
ω→0

ImGJtJt(ω, k = G)

ω
. (6.30)

Inserting its correlation function computed in a homogeneous background into (6.30) one in fact
finds the exact same answer as computed by Umklapp hydrodynamics Γmom.rel. = Γη + Γd (see
Appendix 6.D for a derivation of this result). Theoretically this can be understood through the
observation that there are two possible dissipative channels in hydrodynamics. There is sound
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Figure 6.7.: The motion of the poles as one increases temperature. As the temperature is increased
further the Drude pole eventually collides with the Umklapped charge diffusion pole
and gains a real part. At low temperatures where a perturbative Umklapp analysis is
valid the behavior of the poles can be understood from the un-Umklapped hydrody-
namic analysis. Note that the imaginary part of the charge diffusion pole scales as T 1

in the GR lattice, while it scales asT 0 in RN. Results are in the GR and RN 1D lattices
withG/µ = 0.08 and potential strengthsA = 0.07 andA = 0.12, respectively.

attenuation controlled by the shear viscosity η (and bulk viscosity ζ) and there is charge diffusion
controlled by the microscopic conductivity σQ. Both are at the same order in the lattice strength
Γd,η ∼ A2. This is the expansion parameter in the memory matrix computation and explains
why they both show up.

The phenomenologically important characteristic is the temperature scaling of the DC resistiv-
ity. Implicitly the lattice scaling implies a scaling with temperature as the effective lattice strength
should become irrelevant in the deep IR. This must be encoded explicitly in the scaling of bothΓη
andΓd, and not in the UV-strengthA. However, there is a priori no requirement that bothΓd and
Γη will scale the same as a function of T . Generically they ought not. However, in holographic
strange metals without a ground state entropy they do. For these systems at low temperatures

Γη ∼ η(T ) ∼ s ∼ T (d−θ)/z

Γd ∼ T 2

σQ(T )

(
T
∂s

∂T

)2

∼
(
d− θ

z

)2

T (d−θ)/z (6.31)

The derivation requires a mild assumption about the low temperature equation of state and is
given in Appendix 6.E. Thus for the GR strange metal Γη ∼ T and Γd ∼ T , whereas for the
RN metal which has a ground state entropy Γη ∼ T 0 but the first non-vanishing order for Γd is
Γd ∼ T 2. Over the range of validity, usually one of them will dominate, though it is conceivable
that one dissipative momentum relaxation process switches dominance with the other. If this
coincides with a change in scaling this would show up as a change of temperature scaling of the
DC resistivity.
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Two observations follow. The first is that despite the numerical results supporting the inference
from disordered translational symmetry breaking that the momentum relaxation rate scales as the
entropy, this is not true for the contribution from Γd.

The more important observation here and in the following is that which term dominates does not
matter. In holographic strange metals the momentum-relaxation rate is set at a deeper level by
the non-trivial locally quantum critical IR fixed point. As pointed out by Hartnoll-Hofman and
briefly reviewed in the previous Section 6.5, in the regime where Eq. (6.30) holds, the frequency
scaling enforced by local quantum criticality also sets the temperature scaling of the DC result. For
the RN strange metal it is onlyΓη that is responsible for this, whereas in the Gubser-Rocha strange
metal both obey the appropriate scaling. Since Γη also scales asG2, whereas Γd does not, one can
tune the GR response to be dominated by Γd for G ≪ 2µ, and Γη to dominate for G ≫ 2µ.
This coincides with the applicability of hydrodynamics as we discussed in the previous section,
confirming a correlation with a physically observable change (see also section 6.6.4 below). This
very difference between Γη ∼ G2 and Γd ∼ G0 actually causes the order of importance to be
opposite in disordered systems. Because disorder can be viewed as an average over an infinite set
of lattices, in the decay rate in a disorder system Γdisorder ∼

∫
Gd−1dG(Γd + Γη) the Γη term

will generically dominate the integral [106]. Since Γη ∼ η ∼ s, this explains why in disordered
systems entropy does directly control the dissipation time scale in contrast to a lattice with a fixed
lattice momentumGL as we explained above.

Independent of the dissipative mechanism, both leading inAmomentum-relaxation ratesΓη and
Γd become vanishing small at low temperatures suggesting Drude transport. This is readily con-
firmed in the AC conductivity. Its real part displays a characteristic Drude peak. Mathematically,
however, the peak is not exactly a (half-)Lorentzian, but follows from the two-pole expression
Eq. (6.19).

6.6.2. Intermediate temperatures: a mid IR-peak in the optical response

We have just argued that the DC resistivity can remain the same while the physical regime con-
trolling dissipation changes, because it is set at a deeper level by the underlying AdS2 fixed point.
Though we have just noted this fact by analyzing the analytic expressions, it is in fact dramati-
cally made clear at an intermediate higher temperature, as we already summarized in the Intro-
duction.

In the regime of interest the conductivity computed from Umklapp hydrodynamics is controlled
by two poles. In the parametrization

σ(ω) = σQ + Z
Ω− iω

(Γ− iω)(Ω− iω) + ω2
0

(6.32)

these are the Drude and Umklapp charge diffusion poles at

ωDrude =
−i
2
(Γ + Ω) +

i

2

√
(Γ− Ω)2 − 4ω2

0 = −i(Γη + Γd) +O(A4) ,

ωUm.Ch.Diff. =
−i
2
(Γ + Ω)− i

2

√
(Γ− Ω)2 − 4ω2

0 = −i(DρG
2 − Γd) +O(A4) . (6.33)
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At low temperatures, the second pole (let alone the two already ignored Umklapped sound poles)
has a small effect. Increasing the temperature changes this fundamentally, however. Both poles
move as one increases the temperature. However, they do not move in unison. When the argu-
ment under the square root (Γ−Ω)2−4ω2

0 becomes negative, the poles collide. For temperatures
higher than the pole-collision temperature, the poles can now acquire a real part and move off the
imaginary axis symmetrically; see Fig. 6.8. Initially this “microscopic pole collision” has little ef-
fect on the optical conductivity. In a formal sense it slightly broadens the peak aroundω = 0 and
without an insight into the complex frequency response it is essentially indistinguishable from
a conventional Lorentzian Drude peak. However, as one increases temperature further and the
poles move further away from the imaginary frequency axis, the peak will split into two, symmet-
rically arranged aroundω = 0. For the positive half-lineω > 0 one would thus see a peak emerge
in the near IR whereas the DC value at ω = 0 continues to decrease.

This collision point is controlled by a combination of temperature, lattice strength and lattice
periodicity. Already at moderate lattice strengths, this emergence of the mid-IR peak in the AC
conductivity happens at temperaturesT < Tstrange where the DC response is still set by the critical
scaling behavior of the underlying AdS2 strange metal. In other words, despite the qualitatively
drastic change in the AC-vs-T conductivity, the DC-vs-T response is unaffected.

What is striking is that this emergence of mid-IR peak in the optical response as temperature in-
creases while the DC-resistivity stays linear in T is precisely what is observed in high Tc cuprates
and other strange metals as explained in the introduction. Given the earlier hypothesis reviewed
there that transport in the high Tc-cuprates is hydrodynamical, it is conceivable that this is the
explanation of this observed experimental finding.

The mechanism we just explained is tantalizing given its minimalistic nature. It is in fact ubiqui-
tous for any hydrodynamical fluid exposed to a microscopic Umklapp potential where the effective
potential strength is rising more rapidly than the momentum diffusivity. Notice that it does not
apply to a Fermi liquid in metallic background potentials. The onset of equilibration is set by the
quasiparticle collision time, but typically a substantial fraction of the centre of mass momentum
is absorbed by the Umklapp impeding the total momentum conservation required for hydrody-
namics including the mechanism in the above.

6.6.3. Intermediate Lattice Strength: Towards an Incoherent Metal

Our computational experiments on holographic strange metals can also provide us insight in what
happens at larger lattice strengths beyond the applicability of perturbative Umklapp hydrodynam-
ics. This is best quantified by tracking the behavior of the complex frequency poles in the AC con-
ductivities. In Fig. 6.9 we show typical quasinormal mode spectrum computed for lattice strength
A = 0.15. At low temperatures one finds that these are still dominated by the non-linear contin-
uation of the same two-pole structure as we identified for small A, i.e. the Drude and Umklapp
charge diffusion poles identified in Umklapp hydrodynamics.

What is notable, is that the pole collision has already happened at a lower temperature than for per-
turbatively small A. Qualitatively this is easy to understand in terms of the RG wisdom that the
lattice becomes irrelevant in the IR. If one starts with a strongerA in the UV, one is at a relatively
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Figure 6.8.: Emergence of mid-IR peak in the optical conductivity σ(ω) from pole collision. At
low temperatures the Umklapp has neglible consequences as the response is strongly
dominated by the conventional Drude pole. At intermediate temperatures the Umk-
lapp pole causes an additional broadening. When the temperature increases to the
point where the poles collide and gain a real part the peak still looks Drude to the eye
even though it arises from two poles symmetrically arranged on both sides of the real
axis. At even higher temperatures these two poles move so far apart that the peaks sep-
arate and a mid IR peak at finite ω appears in the optical response. For this figure the
parameters areA = 0.15, G = 0.08µ, the same as in Fig. 6.3.

stronger strength at a temperature T or vice versa one is at a comparable strength at a lower tem-
perature T . This may seem like semantics, but crucially the DC conductivity linear-in-T scaling
remains set by the local quantum critical IR fixed point, which is less affected by an increase inA.
As a result we can again observe in the AC conductivity a transition in the dissipative mechanism
as one increases T during which the resistivity stays essentially linear (Fig. 6.3 in the Introduc-
tion). The transition in this case is that from the mid-IR-peak regime to an incoherent metal. The
latter means that the low frequency AC response is no longer well described by the “two-coupled-
relaxational-current” formula. Other poles now also influence the AC response, especially the two
Umklapped sound modes. They feature prominently in the AC response; see Fig. 6.9.

Though the AC conductivity really shows the emergence of the incoherent metal regime at larger
T and the “two-coupled-relaxational-current” expressions fails, for most of the temperature range
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the DC limit ω → 0 is still well described by its asymptotic expression

σDC = σ0 +
Z

Γ +
ω2

0

Ω

(6.34)

With careful fitting of the optical conductivity as well as the complex location of the four poles,
one can fit the parameters Z, σ0,Γ,Ω, ω2

0 as well as the parameters of the two first Umklapped
sound poles as a function ofA and T . For the full 4-pole ansatz, see Section 6.C. In Fig. 6.10 we
show how the three parameters in the denominatorΩ,Γ andω0 evolve as function of temperature
for intermediate 0.1 < A < 0.8. One sees how these explain the observed DC conductivity quite
well. Given that the DC conductivity is so well captured by Eq. (6.34), one concludes that for
these potentials the DC conductivity is still limited by the momentum life time.

6.6.4. On the Applicability of Umklapp Hydrodynamics

We end this section with a brief check on our earlier argument in Section 6.5 that Umklapp hydro-
dynamics is the relevant perspective to understand strange metal transport in a weak/intermediate
lattice for G ≲ µ rather than Hartnoll-Hofman scaling. The intuitive argument is that momen-
tum dependent conductivities are strongly power-law suppressed as a function of T forG ≳ µ as
the RG flow is not “halted”. Umklapping conductivities that have such marginal weight should
have negligible observable effect. Fig. 6.11 shows that this insight is essentially correct. For a lattice
withG = 1.0µ,T/µ ≲ 0.35 andA = 1.0 the AC conductivity is Drude-like , and no transitions
to a mid-IR-peak or incoherent metal are seen. An illustration that formally Umklapp hydrody-
namics still applies is that one can still notice the now very highly suppressed Umklapped sound
peak. Even so, for G ≳ µ the better perspective is Hartnoll-Hofman scaling. Since G/µ is large
here, the various exponents in the resistivity described in Section 6.5 are not close and the lowest
exponent νG of Eq. (6.21) alone is enough to describe the DC conductivity at low temperatures.

6.7. Observations at Strong Lattice Potentials: Planckian

Dissipation and Incoherent Metals

6.7.1. The Remarkable Ubiquity of Planckian Dissipation

We now switch to analyzing our numerical results at large lattice potentialsA > 1. As we reviewed
in Section 6.3, for small lattice potentialsA < 1, Planckian dissipation is unlikely to be universal as
it will depend on the details of how translational symmetry is broken [226, 246]. At finite density
one must be in a regime where translation is broken strongly and long time transport is controlled
by another dissipative mechanism than translational symmetry breaking.

Performing this numerical experiment where we increase the lattice strength, one sees not only
a beautiful sharper linear-in-T resistivity, but also a saturating behavior in that the resistivity ap-
pears to become independent of the lattice strengthA, highlighted in the Introduction (Fig. 6.1).
Though the thermoelectric and heat conductivity also appear to saturate, they do not. Replotting
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Figure 6.9.: Optical conductivity (right) and the quasinormal mode spectra (left) for intermediate
lattice strength GR lattices for A = 1, G/µ = 0.1µ at three different temperatures.
Compared to smallA the pole collision (see section 6.6.2) has already happened even
at lowest T/µ = 0.02. As one increases T the Umklapped sound poles which stay
almost fixed at Re ω = ±csG = ± 1√

2
G (and others not shown) become more

important and their dominance in the AC conductivity signals the transition to an
incoherent metal regime.

the results as a function of the inverse lattice strength 1/A rather thanA, one sees that they asymp-
tote to zero as 1/A; see Fig. 6.12. One also notes that the electrical conductivity does not saturate
but turns over when inspected this precisely. However, we will argue that the dissipative process
does saturate. Increasing the lattice potentialAhas two effects, it changes the strength and possibly
mechanism of dissipation, but it can also shift degrees of freedom from lower to higher energy and
vice versa. In simple Drude language where σDC = ω2

p/Γ, increasing the lattice strength cannot
only affect Γ, but also the Drude weightω2

p . The Drude formula doesn’t necessarily apply at large
A, of course. Nevertheless, to focus on the dissipation we must also account for possible shifts
in the weight. Because the total weight of the optical conductivity is protected and conserved, a
more appropriate measure of the dissipation is to normalize the measured DC conductivity by
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Figure 6.10.: (a-c) The evolution of the phenomenological parameters Γ/µ,Ω/µ, ω0/Aµ as
present in the “two-coupled-relaxational-current” expression Eq. 6.32 as a function
of A and T/µ at G/µ = 0.12 in the 1D Gubser-Rocha model. These parameters
are extracted from a four-pole fit to the optical conductivity that includes the two
lowest-order Umklapped sound peaks which reside at Re ω ≈ ±csG. Both Ω/µ
and ω0/Aµ show little A-dependence, whereas Γ/µ depends strongly non-linearly
onA. In (a), the arrows labelled 1 and 2 point to the temperatures at which the pole
collision happens at A = 0.1 and A = 0.2, respectively. For the stronger lattices,
the pole collision has already happened at lower temperatures than we have access to
in our numerics. (d) Comparison of σTwo-Pole, the conductivity reconstructed from
only the “two-coupled-relaxational-current” part of the spectrum in figures to σDC ,
the observed DC conductivity. At larger values ofA, it becomes clear that one must
include more information, such as the Umklapped sound modes, in order to accu-
rately reconstruct the DC conductivity at all temperatures.
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Figure 6.11.: The AC conductivity of the GR model at G = 1.0µ and lattice strength A = 1.0
for a large temperature range. The low ω-response is of the Drude form for all values
and no transition to a mid-IR-peak or an incoherent metal is seen in contrast to lattice
momenta G < µ. The small rise at ω/µ = 1√

2
G
µ = 1√

2
is the Umklapped sound

mode which now has barely noticeable height at low temperatures. The inset shows
that the DC conductivity obeys leading order Hartnoll-Hofman scaling at low tem-
perature, which is expected to go as (T/µ)−2.05 at low temperatures.

the total weight
∫ Λ

0
dωσ(ω) and study the resultant rate Γ−1

corrected = σDC/
∫ Λ

0
dωσ(ω). Fig. 6.13

shows both the naive Drude rate Γ−1
bare = σDC/ω

2
p and the corrected rate. Indeed in terms of

the naive Drude rate even at the largestA the saturating behavior in the conductivity is not exact.
However, when corrected for a possible spectral shift, the relaxation rate does saturate. Not only
does this relaxation rate saturate, as Fig. 6.13 shows, it saturates to a value that is numerically close
to the Planckian dissipation rate Γcorrected ≃ 2π/τℏ = 2πT . To understand whether Planckian
dissipation is really occurring, we must resort to a different theoretical framework.

6.7.2. An Incoherent Metal Explained with Microscopic Scrambling

How to understand transport in a system where translation invariance is badly broken was dis-
cussed in detail by Hartnoll [219], and its connection with Planckian dissipation was set out in a
series of papers [225–227, 235, 267] in the context of systems with strong translational disorder.
The essence is that in this regime only energy and charge are the conserved currents that survive
at long distances. For this section we shall not just focus on the electrical conductivity but on the
full thermoelectric transport matrix(

J⃗

j⃗Q

)
=

(
σ αT
α κ̄

)(
E⃗

1
T ∇⃗T

)
(6.35)
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Figure 6.12.: (Left panel) Absence of exact saturation of the conductivities as a function of lattice
strength at fixed temperature in the 2D GR model is made quite clear when they are
plotted as a function of 1/A instead of A. The electrical conductivity σ reaches a
minimum and then starts to grow again at larger A, whereas the thermoelectric α
and heat conductivity κ̄ scale as 1/A rather than saturate. (Right panel) The open
boundary heat conductivity κ at first instances does appear to be independent of the
lattice strengthA for most of the computed values. However, at the largestA it does
show a downturn, asymptoting to κ̄ which vanishes as 1/A → 0. In this large A
regime, these asymptotesκ→ κ̄ andσQ=0 → σ indicate the increased dominance of
the diffusive channel. These results are for the 2D GR lattice with T = 0.06µ,G =
0.1

√
2µ.

with jiQ = 1
T (T

0i − µJ i). Here κ̄ = κ + Tα2

σ is the heat conductivity in the absence of
electric field, and κ is the heat conductivity in the absence of electric current (open boundary heat
conductivity). Fig. 6.1 shows the result for all conductivities for increasing lattice strength into the
incoherent regime, both in the Gubser-Rocha (sGR ∼ T + . . .) and in the Reissner-Nordström
AdS2 metal (sRN ∼ c0 + c1T + . . .). The conductivities are rescaled such that their dominant
power-law scaling with T is scaled out. In detail one observes also that the thermoelectric and
the heat conductivity conform sharper to the conjectured appropriate temperature scaling as A
increases, culminating again in a saturating behavior for largeA.

It is tempting to view this scaling of the thermoelectric conductivities as validating that the system
is dominated by a single common relaxation time that scales like the entropy at low temperatures,
even though it does not apply here asA is large. Single relaxation time Drude theory would suggest
that σ = ω2

p/Γ, α = s
nσ, and κ̄

T = s2

n2σ. If Γ ∼ s(T ) as naively guessed above, it is consistent
with the above observations. As we will now explain, and confirmed with counterexamples in
studies of strong translational disorder, this single relaxation time description is not correct.

To extract possible relaxation rates in an incoherent metal with strong translational symmetry
breaking, one posits constitutive relations for the two remaining currents and does a hydrody-
namic analysis. One finds that the DC conductivities are the zero frequency limit of the dynamics
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Figure 6.13.: The upper figures show the saturating behavior of the relaxation rate of the conduc-
tivity is not exact when inspected closely. However, the integrated optical conductiv-
ity FSum(Λ) =

∫ Λ

0
σ(ω)dω shows that the spectral weight increases with A. We

can account for this effect by normalising the Drude weight to this integrated spec-
tral weight. The resulting corrected relaxation rate Γ−1

corrected ≡ σDC/FSum(Λ) does
appear to show a saturating behavior compared to the bare rate Γ−1

bare = σDC/ω
2
p .

Furthermore, this rate is remarkably close to the Planckian value of 2πT/µ. From in-
spection a cut-off value Λ/µ = 0.4 is sufficient to account for all the spectral weight
in any Drude or Umklapped sound peaks. These results are taken in the 1D GR model
with T = 0.06µ,G = 0.12µ.

of two independent diffusive modes with diffusion constantsD+ andD−. These are

D+ +D− =
κ

cn
+
σ

χ
+
Tσ

cn

(
α

σ
−
(
∂s

∂n

)
T

)2

D+D− =
κ

cn

σ

χ
(6.36)

Here cn = T
(
∂s
∂T

)
n

is the specific heat at fixed charge density, χ =
(
∂n
∂µ

)
T

is the isothermal
charge compressibility, and the conductivities σ, κ are both the transport coefficients as well as
the DC values. One recognizes a charge diffusion and a heat/energy diffusion mode (the remnant
of sound in absence of a nearly conserved momentum), cross coupled through the combination

g ≡ Tσ
cn

(
α
σ −

(
∂s
∂n

)
T

)2

. If we are to make the case that a single dissipative mechanism dom-

inates, this cross-coupling is important, as in its absence, charge and energy diffusion are clearly
independent. Fig. 6.14 shows what the strength of this coupling is numerically. As was shown in
[227], this coupling behaves as g/σ ∼ T (z+d−θ)/z if the scaling of the homogeneous non-trivial
IR fixed point remains valid in the presence of strong translational symmetry breaking. For the
GR metal this means g ∼ T . Compared to σ/χ ∼ T−1 it is therefore small and can be treated
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perturbatively in the low temperature limit.

Solving for σ, κ in the limit where the terms in the cross coupling Tα2

cnσ
∼ T , Tαcn

(
∂s
∂n

)
∼ T and

Tχσ
cn

(
∂s
∂n

)2
T
∼ T are small compared to σ ∼ T−1, one finds5

σ

χ
= D+

1 + T

cnχ

(
α−D+χ

(
∂s
∂n

)
T

)2

D+(D− −D+)



κ

cn
= D−

1− T

cnχ

(
α−D+χ

(
∂s
∂n

)
T

)2

D+(D− −D+)


(6.37)

To lowest order in the temperature the electrical and heat conductivity are therefore determined by
independent diffusion constants; see Fig. 6.14. The electrical conductivity is determined byD+ ∼
T−1 and the heat conductivity byD− ∼ T . There is therefore no simultaneous explanation for
both conductivities in terms of universal Planckian dissipation. In holographic models with strong
translational disorder there are systems where both conductivities are set by Planckian dissipation
[225, 226]. This happens when the charge susceptibility is relevant. For irrelevant or marginal
charge susceptibility, the electrical conductivity is set by a different dissipative mechanism. The
Gubser-Rocha model with strong disorder belongs to this class [235], and so does our strong ionic
lattice model with χ ∼ T 0.

Despite the existence of two independent dissipative mechanisms, the heat conductivity can be
explained from Planckian dissipation. Very strongly coupled systems are similar to weakly cou-
pled dilute classical gases in that their macroscopic transport can be understood from microscopic
processes. For weakly coupled dilute gases this is through the Boltzmann equation summing
microscopic scattering; for ultrastrongly coupled systems this is through parameters of micro-
scopic scrambling as measured through the out-of-time-ordered correlation function C(t, x) =
⟨W (t, x)V (0)W (t, x)V (0)⟩T ∼ eλ(t−x/vB).6 In holographic systems this connection man-
ifests itself in that the OTOC is equivalent to computing the hydrodynamic response function
(of longitudinal sound) at imaginary ω and k [162]. The Lyapunov exponent λ and the butter-
fly velocity vB can then be read off from a skipped pole in the hydrodynamic dispersion relation

5Note that the coupling term Tχ
cn

(
∂s
∂n

)
T

= nT
(ϵ+P )

−
c2sµ

αns
contains the same thermodynamic factor as Γd. If the

temperature scaling in the strong lattice is the same as in the homogeneous system, this coupling scales as
nT

(ϵ+ P )
−

c2sµ

αns
∼ T since αn ∼ T−2 as was shown in Appendix 6.E. Numerics confirms that this is the case.

6This “ballistic“ OTOC expression applies to large N systems such as holographic and SYK systems. The more generic
answer is “diffusive” C(t, x) ∼ eλ(t−x2/vBt).
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Figure 6.14.: Left: The cross-coupling between the heat and electrical conductivity in the strongly

coherent regime is governed by the combination g = Tσ
cn

(
α
σ −

(
∂s
∂n

))2

respec-

tively at low temperatures. Clearly g decreases linear in temperature at low T , but
it also decreases with stronger lattice potential A. Right: As a consequence the dif-
fusivities at low T in a strong lattice become independent. Shown are the empirical
combinations Dσ ≡ σ

χ , DT = κ
cn
, DσQ=0

=
σQ=0

χ as a function of 1/A for fixed
T/µ = 0.05.

[162]. One finds that in holographic systems λ saturates the Maldacena-Shenker-Stanford unitar-
ity bound λ ≤ 2π/T . The butterfly velocity is more sensitive to the theory. On general grounds
it scales near (translationally invariant) quantum critical IR fixed points as v2B ∼ T 2−2/z . The
fact that both macroscopic transport and the scrambling parameters λ, vB are encoded in the
hydrodynamic response means that they are not unrelated. In particular the thermal diffusiv-

ity DT =
κ

cn
= E

v2B
λ

with E = 1
2 for AdS2 z → ∞ metals in strong disorder [226, 227,

267]. Since the natural units of diffusivity are v2τ , this is interpreted as Planckian dissipation with
τ = 1

λ = 1
2πT . The RN metal is a special case. As explained in [267], there the butterfly velocity

is controlled by a dangerously irrelevant operator instead of universal scaling. A careful compu-
tation reveals that for the RN strange metal vB ∼

√
T . Combined with Planckian dissipation

τ = 1
λ = 1

2πT , this explains the observed RN thermal diffusivityD− = κ
cn

= T 0 ∼ v2Bτ .

This result is established and confirmed in the many studies cited above on connecting scram-
bling to hydrodynamics for weak momentum relaxation or “homogeneous” momentum relax-
ation (so-called Q-lattices or disorder). We postulate that the same applies in the explicit strong
lattice systems studied here. This need not be, for computing the butterfly velocity vB in a non-
translationally invariant system is not straightforward (the Lyapunov exponent on the other hand
is universally λ = 2π/T [268]). At the same time the scaling we observe for strong lattice poten-
tials is the same as that which is observed for strong translational disorder. This is strong evidence
in favor of the argument that the same should apply here.

Within the framework of incoherent metals there is no universal explanation of the observed
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inverse-in-T scaling of the conductivity for the Gubser-Rocha metal. Its tantalizing behavior σ ∼
s(T )−1 or ratherσ ∼ 1

Γℏ
on the other hand does suggest that some type of universality is at work.

This is confirmed by the RN results. The obvious conjecture is thatD− = (v
(c)
B )2/λ where the

butterfly velocity v(c)B for charged objects differs from the butterfly velocity for neutral objects.
Some evidence that this can be the case is presented in [236–239]. If v(c)B were independent of
temperature, this would explain the observed incoherent metal phenomenology in the large lat-
tice GR and RN metals in terms of a single Planckian relaxation time, but differing scrambling
velocities. We leave this for future research.

6.7.3. Saturating Behavior and Planckian Dissipation

The diffusivities in the incoherent regime should be insensitive to the details of translational sym-
metry breaking. This is what allows them to expose universal dissipative physics. This resulting
explanation of universality in terms of microscopic scrambling also makes physical sense: the onset
of chaos is controlled by the short-range interactions and is not expected to be influenced signifi-
cantly by a background lattice. The data we present is obviously dependent on the lattice strength
A. For most values of A we are therefore not in the universal regime. However, as A increases to
the largest value we can observe in our numerical data, there is a saturating behavior in the electri-
cal conductivity that together with its sharper single power behavior argues strongly that we are
close to this universal incoherent limit. Such saturating behavior in the incoherent electrical con-
ductivity at large lattice strength was already noted in [269]. That study focused on the regime
where the dimensionless combinations µ

G → 0, AµG fixed and large. Here we focus on the regime
where both µ

G and Aµ
G are fixed and large with the latter parametrically larger.

We can use our numerical results to directly check these assertions. Rather than observing the
conductivities we do so for the diffusivities

Dσ =
σ

χ
, DT =

κ

cn
, DσQ=0

=
σQ=0

χ
(6.38)

We have introduced here a charge-without-heat diffusivity DσQ=0
=

σQ=0

χ as this is the appro-
priate counterpart to the heat-without charge open boundary thermal diffusivity DT ≡ κ/cn.
Fig. 6.14 shows indeed how the charge diffusivities Dσ , DσQ=0

not only both saturate, but also
become approximately equal. The latter shows indeed that we have entered the incoherent regime.
A more detailed depiction of the saturation is given in Fig. 6.15.

We have already shown in the Introduction that the crossover into the incoherent sector can also
be seen in the conductivities directly (Fig. 6.2). The open boundary thermal conductivity κ starts
to comprise more than 80% of the full heat conductivity. A stronger statement extrapolated from
the incoherent metal considerations is that the open boundary heat conductivityκ is rather insen-
sitive to momentum relaxation for any translational symmetry breaking potential irrespective of
its strength [227]. According to Fig. (6.12) this is indeed the case in the perturbative smallA case.
Upon pushing the potential to extremely large values we do observe that some changes inκ start to
arise. This is fully in the incoherent regime, where we can equateκ ≡ cnDT with one of the phys-
ical diffusion constants κ = cnD−. This diffusion constant also changes fromA-independent to
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Figure 6.15.: Electrical and thermal diffusivities as a function of T for various A. The T -
dependence shows how they become more single-power like at larger A. The A-
crosssection shows the saturation for largeA for the charge diffusivity, but an increas-
ing A dependence for the thermal diffusivity. These results are in the GR lattice at
G = 0.1µ.

slight decaying behavior, explaining the change in behavior in κ. We conclude that at least forDT

our computations confirm the universal nature of the diffusion constants.

6.8. Discussion: Is it Relevant for Condensed Matter

Physics?

We started this paper with just presenting the data as these rolled out of the computer. As such
these are highly suggestive. We focus in on a holographic strange metal that fulfills minimal condi-
tions that appear to be imposed by experiment: local quantum criticality (z → ∞) and a Fermi-
liquid like thermodynamics in the form of a Sommerfeld entropy (s ∼ T ). We then invoke a
lattice potential that may become very strong, again a minimal requirement suggested by experi-
ment. For a wavevector of the potential that is not too large (smaller than the inverse local length)
we find a resistivity that is to good approximation linear in temperature for a large range of poten-
tial strength. Ramping up the potential the slope of the linear resistivity saturates at a value that is
consistent with a Planckian (τℏ) current life time. Although the dynamical range in temperature
and potential strength is limited in our computations, we can track the temperature evolution of
the optical conductivity in the regime where the saturation is setting in. This temperature evo-
lution is also suggestive with regard to experiment: at low temperature we find a simple Drude
response that turns into an incoherent mid IR peak, and this gross change does not imprint on
the DC resistivity that stays linear. Taken together, this shines an unusual light on the three prob-
lems of principle in strange metal transport: (a) Why is the resistivity linear in temperature down
to the lowest temperatures? (b) Why is the empirically extracted current relaxation time so close to
the Planckian rate τℏ? (c) Why does the cross-over from good metal (Drude optical conductivity)
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to bad metal (the mid IR peak response) not affect the DC resistivity at all?

The question remains whether the resemblances between numerical observations from this holo-
graphic toy model and the complicated reality of the copper oxide electron systems are just a co-
incidence or whether they reveal a truly universal principle governing transport that supersedes
all the differences between them. To get a better understanding, we focused in on both the small-
and large lattice potential regimes. We showed that in the perturbative small potential regime the
transport behavior can be completely reconstructed on basis of the thermodynamics and transport
properties of the unbroken homogeneous system. This is based on hydrodynamical flow behavior
in the presence of a weak periodic potential and we discovered a generic principle governing linear
response: next to the usual shear drag, a mode coupling emerges with the Umklapped charge dif-
fusion mode. As we increase temperature the coupling between two relaxation modes can account
for a second new phenomenon: the two poles can collide and this explains the emerging mid-IR
peak in the AC conductivity. Even though the temperature dependence of the DC-resistivity is
formally set by the same thermodynamic quantities, the underlying non-trivial IR fixed point con-
strains these in such a way that the DC resistivity temperature scaling can be independent of the
dynamical change in the AC conductivity.

The large lattice potential regime on the other hand is where the resistivity slope saturates. Our
numerics indicate that this happens in the “incoherent metal” regime where momentum conser-
vation does not play any role. Accordingly, the temperature dependence of the resistivity should
be inversely proportional to the charge diffusivity. This charge diffusivity in the incoherent regime
D− ∼ T−1 should not be compared with the hydrodynamical charge diffusivity for weak or
zero momentum relaxation which scales as Dρ ∼ T . The thermal diffusivity DT ∼ T on the
other hand is essentially insensitive to the strength of the lattice potential. It scales similarly for
both small and large potential, though only at large potential can it be explained in terms of mi-
croscopic chaos anchored in a saturated Lyapunov bound Γ = λ = 2πT having a Planckian
magnitude. Although this is presently not well understood this is consistent with the analytical
findings in a homogeneous holographic strange metal with momentum relaxation (Q-lattice).

Although this does shed light on various aspects we do not claim a complete understanding of
our numerical results. The above suggests that there are quite different forms of physics at work
pending the strength of the potential. Nevertheless, we do find that the evolution of the transport
quantities is of a strikingly smooth kind. Another striking aspect is the contrast between the GR
and RN results in Fig. 6.1: the differences in temperature dependencies appear to be entirely linked
to the different temperature dependence of the entropy. The above analysis, where we can expose
the different origins in the weak and large lattice potential regime, does make clear that this con-
nection with entropy is almost certainly a coincidence, though we cannot exclude that some yet to
be identified greater universality may be at work linking the dissipative properties in the convective
and diffusive regimes together where entropy may play a crucial role.

To use this to explain the experimental observations, the critical holographic input is in the form
of the current being controlled by “generalized” hydrodynamics (including the incoherent metal)
that in turn requires (a) an existence of hydrodynamics up to microscopic length scales shorter than
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the lattice spacing, (b) thermodynamical behavior that is anchored in a non-trivial IR fixed point,
and (c) a saturation of the chaos bound (with a charge dependent butterfly velocity vcharge

B ).

In fact, the most critical question is whether experimental strange metal transport is governed
by hydrodynamics, and not by the usual quasiparticle transport. In this regard our finding that
hydrodynamics provides a most natural explanation for the temperature evolution of the DC and
AC charge response is encouraging: it is an elementary mechanism that offers a minimal and simple
explanation for this otherwise mysterious affair. However, to prove it one would like to mobilize
the mesoscopic transport devices of the kind that have proven successful in this regard observing
hydrodynamical flow behavior in graphene (e.g., [270]).

The next issue is, are the hydrodynamical modes surviving down to length scales of order of the mi-
croscopic lattice spacing 1/G? We found this to be a special property of the local quantum critical
holographic metals, but is this also at work in the cuprate strange metals? This is far from obvious.
Besides the Umklapped charge diffusion mode, we also saw the sharp and prominent Umklapped
sound peak in the optical conductivity when the potential becomes sizable. This relates directly
to a first discrepancy between our results for the optical conductivity and the experimental results
in the cuprates. We find that for the strongest potentials that our numerics can handle, the optical
response rather abruptly switches off at frequencies above the umklapped sound peak ( Fig. 6.9).
In experiment no sound peak is seen, and a power law (branch cut) tail is found instead, extend-
ing all the way up to µ ≃ 1 eV [217, 218, 271]. Our holographic results do not shed any light on
this matter, although one could imagine that perhaps an umklapped overdamped sound channel
could conspire to give rise to such a quasi-critical behavior. But the issue is whether the charge
diffusion hydro-mode that is responsible for the mid IR peak in holography may survive up to
large momenta in the experimental systems. Different from sound, this mode is non-convective
and perhaps less sensitive to translational symmetry breaking. Presently we have no answer to this
question. It could be interesting to study the optical conductivity of the cuprate metals experi-
mentally at high temperatures. The data in so far available are sketchy and it would be interesting
to find out what a systematical and high precision study would reveal regarding for instance the
way in which the mid IR peak depends on temperature. Alternatively the sound contribution
to the density-density response can been measured directly by EELS [50, 272], with the caveat
that sound is promoted to a plasmon in the presence of dynamical electromagnetism.This may be
hard, because the plasmon is damped stronger in strange metallic states than ordinary Fermi liq-
uids [273–276]. The results are at this moment inconclusive, and need to still be found consistent
with the AC optical conductivity.

Perhaps the most delicate issue relates to the connection with microscopic chaos. The connection
with Planckian dissipation requires a saturation of the Maldacena-Shenker-Stanford bound on
the Lyapunov exponent of the OTOC λ ≤ 2πT . It appears that a necessary condition for this to
happen is in the form ofdensemany body entanglement. One may argue that this is the secret of the
experimental strange metals: these are born from strongly interacting fermion systems at a finite
density and it may well be that the concomitant sign problem enforces dense entanglement in the
non-Fermi-liquids [223]. But this may not be a sufficient condition. The chaos bound is known
to saturate in matrix large N systems at strong coupling with a holographic dual as well as the
disorder averaged SYK models. These systems are characterized by dense matrix interactions.
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However, the Hubbard models that are the community standard as microscopic point of depar-
ture for the cuprate electrons are characterized by local interactions and the associated Hamiltoni-
ans correspond with rather sparse matrices. As with regard to the transport properties, the present
benchmark is in the form of finite temperature quantum Monte Carlo computations for the re-
sistivity [277]. The temperatures that can be reached are still quite high (≃ 1000 K) but arguably
approaching the linear resistivity regime. However, the outcomes are quite different from what
we find.

The Hubbard models are of course in their own way toy models, capturing the largest scales in the
problem but ignoring a lot of other physics. Could it be that long range interactions arising e.g.
from Coulomb interactions and/or phonon mediated interactions are crucial to support the rapid
scrambling near the Lyapunov bound given their non-local nature [278]? Could there be a direct
relation to SYK physics associated with the observation of spin glass physics [279, 280] , with the
obvious difficulty that this has only been observed in the spin striped 214 system?

At the least, holography inspires to ask quite unusual questions to experiment: it suggests a
physics that is tantalizingly different from the usual Fermi-liquid quasiparticle physics. Eventu-
ally, it should be possible by targeted experimentation to reach a verdict. This is not easy: the
cuprates have been subjected to unprecedented experimental scrutiny over the last 35 years but on
basis of the available information it is still impossible to decide the issue.

An example of this law-of-Murphy that insightful results may be the hardest to obtain experimen-
tally is the thermal transport. So much is clear that the thermal conductivity κ of the GR metal
acquires a universal temperature dependence that is up to very high lattice potentials independent
of the potential strength. Numerically we observe thatκ ∼ T 2. But this in gross contrast with the
thermal conductivity in a Fermi liquid, whereDT ∼ τc where τc ∼ 1/T 2 is the quasiparticle col-
lision time such thatκ ∼ 1/T [281]. There is a large difference of the orderT 3 in the temperature
dependence of the thermal conductivity between the holographic metal and a Fermi liquid!

This should be the smoking gun but why can this not be used? The reason is that at the high tem-
peratures where the strange metal is realized (> 100 K) the thermal transport is rather completely
dominated by the phonons. The phonon heat conduction short circuits the heat transport and it is
virtually impossible to extract the electronic contributions. The same problem is there for a mea-
surement a charge transport without heat σQ=0. Aside from the experimental hurdle of zeroing
out heat transport cleanly, the definition of σQ=0 = σ−Tα2/κ̄ implicitly refers to the electronic
component of the heat transport only.

Finally, there is one thermo-electrical transport coefficient that is readily available experimentally:
the Seebeck coefficient enumerating the thermopower. This is given by s = α/σ. According to
Fig. 6.1, α ∼ T 0 and σ ∼ 1/T , and we predict s ∼ T : although for different reason this is the
same temperature dependence generic for a Fermi-liquid (the Mott formula), this is indeed the
scaling that has been observed in cuprate strange metals , e.g. [282, 283].
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6.A. Appendix A: AdS RN and GR Black Holes

We will be interested in perturbations of both Reissner-Nordström and Gubser-Rocha black
holes.

6.A.1. Reissner-Nordström

The RN black holes start from the Einstein-Maxwell action

S =

∫
d4x

√
−g

[
L2

2κ2
(R− 2Λ)− L2

4e2
FµνF

µν

]
, (6.39)

with 2κ2 = e2 = L2 = 1 and Λ = −3. The equations of motion are

Rµν − Λgµν =
1

2

[
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

]
,

∇µF
µν = 0 .

(6.40)

These equations admit an electrically charged black hole solution, the AdS-Reissner-Nordström
(RN) solution in asymptotically AdS4 space-time, for which the metric and gauge field are given
by7

ds2 = gµνdx
µdxν =

1

z2

[
−f(z)dt2 + dz2

f(z)
+ dx2 + dy2

]
,

A = At(z)dt ,

(6.41)

where

f(z) = (1− z)

(
1 + z + z2 − µ2z3

4

)
, At(z) = µ(1− z). (6.42)

The radial coordinate z can be scaled such that the horizon is located at zh = 1 and the boundary
of the space-time is at z = 0. The temperature of the black hole can be computed by considering
the surface gravity of the horizon, and is given by

TRN =

∣∣∣∣f ′(zh)4π

∣∣∣∣ = 12− µ2

16π
(6.43)

7Sometimes, it is more convenient to make a change of variable z → 1− (1− r)2 [127].
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6.A.2. Einstein-Maxwell-Dilaton

For the dilatonic black holes, we depart from the Einstein-Maxwell-Dilaton action[98, 107]

S =
1

2κ2

∫
d4x

√
−g
[
R− Z(ϕ)

4
FµνF

µν − 1

2

(
∂µϕ

)2
+ V (ϕ)

]
. (6.44)

The potentialsZ, V are given by

Z(ϕ) = exp
(
ϕ/

√
3
)
, V (ϕ) =

6

L2
cosh

(
ϕ/

√
3
)
. (6.45)

The cosmological constant is given by Λ = −V (0)/2 = −3. Setting 2κ2 = L2 = 1, the
equations of motion for this system are given by

Rµν =
Z(ϕ)

2

[
Fµ

ρFνρ −
1

4
gµνF

2

]
+

1

2
∂µϕ∂νϕ+

1

2
gµνV (ϕ) ,

∇µ

[
Z(ϕ)Fµν

]
= 0 ,

□ϕ = V ′(ϕ) +
Z ′(ϕ)

4
F 2 ,

(6.46)

where we used that on-shell R = −2V (ϕ) +
1

2
(∂ϕ)2. This setup also has an analytic solution

which is given by a metric, gauge field and non-trivial scalar ϕ in the form of

ds2 = gµνdx
µdxν =

1

z2

[
−h(z)dt2 + 1

h(z)
dz2 + g(z)(dx2 + dy2)

]
A =

√
3Qzh(1 +Qzh)

zh

(1− z/zh)

1 +Qz
dt

ϕ =

√
3

2
log (1 +Qz)

(6.47)

where

h(z) =
(1− z/zh)

g(z)

[
1 + (1 + 3Qzh)

z

zh
+
(
1 + 3Qzh(1 +Qzh)

)( z

zh

)2
]
,

g(z) = (1 +Qz)3/2.

(6.48)

The parameter Q encodes the charge of the black hole. The chemical potential is given by µ =√
3Qzh(1 +Qzh)/zh. The near-horizon form of the potentials in equation (6.44) corresponds

to a scaling behavior of z,−θ → ∞, also identified by γ,−δ = 1/
√
3 in [102]. The temperature

here is given by

TGR =

∣∣∣∣h′(1)4π

∣∣∣∣ = 3
√
1 +Qzh
4πzh

. (6.49)
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6.A.3. Lattice Backgrounds

The translational symmetry of the black hole backgrounds is broken by applying a periodic ionic
lattice in the boundary field theory through the modulation of the chemical potential [118]. In the
gravitational theory, this corresponds to imposing a boundary condition on the gauge field

At(x, y, z = 0) = µ̄
(
1 +Ax cos(Gxx) +Ay cos

(
Gyy

))
. (6.50)

Ax,y parameterize the strength of the lattice, while Gx,y are the reciprocal lattice dimensions,
respectively. Our computational domain in (x, y) is chosen to always contain a whole number of
lattice periods, i.e. x ∼ x+2πnx/Gx, y ∼ y+2πny/Gy where nx, ny ∈ Z. Throughout this
work, we takeGx = Gy ≡ G andAx = Ay ≡ A0/2 in a 2D lattice andAx ≡ A0, Ay = 0 for
a 1D lattice.

This breaking of translational symmetry influences the solutions dramatically. The additional cur-
vature generated by the periodic lattice means that in principle all the off-diagonal components of
the metric as well as all components of the gauge field will become non-trivial.

For RN, the ansatz for the fields is adapted from reference [127]:

ds2 =
1

z2

(
−Qttf(z)η2t +Qxxη

2
x +Qyyη

2
y +

Qzz
f(z)

η2z

)
,

ηt = dt,

ηx = dx+Qxydy +Qxzdz,

ηy = dy +Qyzdz,

ηz = dz,

A = µ(1− z)Atdt

(6.51)

Our EMD ansatz looks similar and is given by

ds2 =
1

z2

(
−Qtth(z)η2t + g(z)

(
Qxxη

2
x +Qyyη

2
y

)
+
Qzz
h(z)

η2z

)
,

ηt = dt,

ηx = dx+Qxydy +Qxzdz,

ηy = dy +Qyzdz,

ηz = dz,

A =
µ(1− z)

1 +Qz
Atdt, ϕ =

3

2
log (1 + φQz) .

(6.52)

For both types of solutions, we are interested in stationary solutions, and therefore all func-
tions F =

{
Qij , Ai, φ

}
are functions of (x, y, z), each periodic in (x, y) with a periodicity

of Lx,y = 2πnx,y/Gx,y . The equations of motion in equation (6.40) and (6.46) form very
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complicated systems of non-linear partial differential equations in three dimensions, which in
general cannot be solved analytically. For numerical convenience, the DeTurck trick and another
gauge fixing term for the gauge field can be used to turn this set of equations into an elliptic
boundary value problem [127–129]. The UV boundary conditions on the radial coordinate come
from imposing an asymptotically AdS solution while imposing that the dilaton be a marginal
operator with no source, as was highlighted in [99]. The horizon boundary conditions arise from
requiring regularity at the horizon, which means that in a series expansion in powers of (z − 1)
we can relate each ∂zFi to all functions and their tangential derivatives at the horizon,8 together
with the condition thatQtt

∣∣
z=1

= Qzz
∣∣
z=1

.9

The boundary value problems are solved using a self-developed software package in C, using the
PETSc library [284, 285]. A Newton line-search algorithm employing second- and third order
finite difference schemes on rectangular grids is used to find solution to the non-linear problem.
The computational grids are either uniformly spaced or have the radial coordinate run over the
Chebyshev-Lobatto nodes for increased accuracy near the boundaries of the problem. Typical
grid sizes for the simulations run betweenNx×Ny×Nz = 40×40×60 to 80×80×120. For
convergence checks, the vanishing of the norm of the DeTurck vector provides a good measure
[129]. Due to the large number of degrees of freedom involved (O(107) for the largest lattices)
most of the numerical work was done using the ALICE cluster at Leiden University and the Dutch
national Cartesius and Snellius supercomputers with the support of SURF Cooperative.

6.A.4. DC Conductivity

The DC conductivity is computed by solving a Stokes flow problem on the black hole horizon
[142, 143, 146, 243]. Using a set of time-independent perturbations, one can show that the bulk
linear response problem of computing (thermo)electric DC conductivities can be reduced to a
linearised version of the Navier-Stokes equations for an auxiliary fluid that lives on a static black
hole horizon background. The equations take a similar form for both EMD and RN black holes,
and can be written as [142]

η(0)
(
−2∇j∇(ivj)+3vj∇jϕ

(0)∇iϕ
(0)
)
− dχ

(0)
ij Q

j − F
(0)
ij J

j =

ρ(0)
(
Ei +∇jw

)
+ Ts(0)

(
ζi −∇i

p

4πT

)
∂iQ

i = 0, ∂iJ
i = 0.

(6.53)

The superscript (0) indicates that these are background quantities evaluated at the horizon.
These are the values we extract from the numerical solutions to the background lattices described
above.10 The Stokes equations (6.53) is then a set of four equations for the four unknown func-
tions vx, vy, w, p. The currents Q, J and transport coefficients ρ(0), η(0), s(0), χ(0) can be

8If the change of coordinates in footnote 7 is used, this simplifies to ∂rFi = 0 ∀ i, as only even powers of r will appear
in the near-horizon expansion. This comes at the cost of accuracy near the horizon.

9This ensures a constant temperature across the (corrugated) horizon.
10For the RN black holes, one should take ϕ = 0, Z(ϕ) = 1, V (ϕ) = 6.
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written in terms of these four functions, the background horizon quantities and the induced
metric on the horizon h(0)ij [142]. Ei, ζi source the electric field and thermal gradient, and are
taken to be constant over the unit cell. The thermoelectric DC conductivities are then extracted
by evaluating (

J⃗

Q⃗

)
=

(
σ αT
ᾱT κ̄T

)(
E⃗

ζ⃗

)
, (6.54)

where J⃗ , Q⃗ are here the spatial averages of the solutions when evaluating equation (6.53). These
averaged values do not renormalise when lifted to the boundary to be interpreted in the field the-
ory. As a result, the thermoelectric conductivity matrix defined in equation (6.54) is that of the
field theory.

In previous works, e.g. [143], these equations have been used to study simpler systems that do not
fully break spatial translational symmetry or break it in a homogeneous way. That simplification
allows for a largely analytic treatment of these equations. The systems we are interested in do not
permit us such luxuries and therefore we have to solve this coupled linear PDE in two periodic
dimensions numerically. For this, we developed a package in Python which can solve coupled
(non-)linear partial differential equations for backgrounds as well as perturbations. This package is
rather flexible, in that it can make use of both (pseudo)spectral and arbitrary-order finite difference
methods to solve the equations. This package will be made available publicly at a later date.

6.B. Appendix B: Semi-local Criticality and an Induced IR

Length Scale

Semi-local quantum liquids can be defined by a “self-energy” that is either a power-law in fre-
quency Σ ∼ ω2ν(k) or exponential Σ ∼ exp

(
−kz/(z−1)

ωz−1

)
with z the dynamical critical expo-

nent. In the limit z → ∞ the latter reduces to the former [156]. Both ω and k are dimensionless
frequencies and momenta in units of the chemical potential µ. As emphasized in [232] the spatial
structure of such semi-local quantum liquids is that the spread of local perturbations decays very
rapidly and is bounded by an emergent length scale ξ ∝ µ−1.

Though the emergence of this semi-local physics is poorly understood from a conventional point
of view, its emergence bound is surprisingly clear from a dual holographic perspective. It is a direct
consequence of the existence of a maximal distance, xmax ∼ 1/ξµ that two light-rays emitted
from near the AdS black hole horizon can spread [232]. It implies that a local perturbation in the
IR can only originate from/influence a finite spatial region (in the UV variables).

This supplementary section shows how this maximal distance arises. A light-ray parametrized by
Xµ(τ) follows a null geodesic, i.e.

gµνẊ
µẊν = 0 . (6.55)
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Consider a generic z = ∞ metric

ds2 =

(
r

R

)− 2η
d

[
−µ2R2r2dt2 +

R2
2

r2
dr2 + µ2R2dxidx

i

]
(6.56)

The parameter η = − θ
z is the remnant of the hyperscaling violation exponent θ in the limit z →

∞ andR2 = R/
√
6 is the emergent AdS2 radius. For a geodesic emanating from the horizon we

can use the radial r coordinate as the affine parameter τ , and the physical gauge Xr = r. Then
solving the geodesic equationDτ Ẋ

µ = 0 subject to the null length constraint, one finds for the
motion in the transverse directions

Xi,±(r) = x
(0)
i ± viR2

µRv
tan−1

(
rv√

v2t − r2v2

)
. (6.57)

with v2 =
∑
i v

2
i . Two light-rays starting from the same point x(0)i one pointing to the left and

one to the right therefore arrive at the boundary (r = ∞) a distance 2 viv
R2

µR
1

tan(i) apart.

We are now interested in the intersection of two lightcones xi,+ and xi,−, which can be found
from

xi,+(r0;x
(0) = 0) = xi,−(r0;x

(0)) =⇒ r0 =
vt
v
sin

(
µRvx

(0)
i

2viR2

)
. (6.58)

After combining (6.57) with (6.58), we find that the maximal allowed distance is

x
(max)
1 =

R2

Rµ
π cos θ , x

(max)
2 =

R2

Rµ
π sin θ . (6.59)

where we have chosen the parametrization for the initial velocity components along (x1, x2) as
v1 = v cos θ , v2 = v sin θ ,where θ ∈ [0, π/2] is the initial angle, measured with respect to
the x1-axis.

The relative initial distance between the two geodesics ∆s reads

∆s =

√
x
(max)
1

2 + x
(max)
2

2 =
R2

Rµ
π , (6.60)

which is universal and does not depend on the initial conditions. It coincides with the result pre-
sented in [232].

In figure 6.16, we plot the causal structure for two light-rays separated by a certain initial distance.
For an initial separation larger than the critical distance, (6.59), both light-rays are not causally
connected anymore. To illustrate this, we have chosen as a dialing parameter the external time t.
After some computations, we get

t(xi) = − R2v

µRvt
cot

[
µRv

viR2

(
xi − x

(0)
i

)]
. (6.61)
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Figure 6.16.: Left figure: Causal structure for two light-rays separated at a relative distancex0 = π.
The x-axis corresponds to the x1(t), while the y-axis to the r(t) coordinate. The
external time has been taken as the dialing parameter, along the z-axis in the figure.
For the present purposes, we have considered no motion along the x2 direction, and
we have also set R2 = R = µ = 1. Right figure: Causal structures for three light-
cones as functions of

(
x1(t), x2(t)

)
. The z-axis corresponds to time, for which we

have set t = 1 as the time that the geodesics reach the boundary. Those geodesics
that start at any point within the disk of radius π will be causally connected, while
disconnected if otherwise.

which is plotted in the second figure in 6.16. From here, we highlight that any geodesic that starts
at an initial relative distance ∆s ≤ π, will be causally connected, whereas if ∆s > π, it will be
causally disconnected.

Based on (6.60) and on the fact that the 2-point correlation function G ∼ 1/ξm ∼ π, we con-
clude that the maximal correlation distance in Planckian dissipation is related to the existence of
this maximal causality distance in geodesic.
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6.C. Appendix C: Four-Pole Fitting Formula

The full 4-pole fitting formula that can fit the four poles nearest to the origin in the complex fre-
quency plane is given by the following nine-parameter formula

σ(ω) = σ0+Z
Ω− iω

(Ω− iω)(Γ− iω) + ω2
0

+(
Zs,1 + iZs,2

ω − (ωs,1 + iωs,2)
+ time-reversed

)
.

(6.62)

The weights and positions of the sound poles is constrained by time reversal symmetry, which
dictates that

σ∗(−ω∗) = σ(ω) . (6.63)

6.D. Appendix D: Memory Matrix Formalism

The correlation functions of the homogeneous GR and RN fluids are well described by the stan-
dard hydrodynamics of relativistic conformal fluids with U(1) charge (see [81]). To compute (6.30),
we simply need the correlatorGJtJt which is given by

GJtJt(ω, k) =
σQk

2

Dρk2 − iω
−

k2ω2
p

ω2 + iDπk2ω − c2sk
2
. (6.64)

This form quite readily shows how this dynamical response has both a convective part (sound)
and a dissipative part. At low frequencies, this correlator can be expanded as

GJtJt(ω, k) =
ω2
p

c2s
+
σQ
Dρ

+ iω

[
σQ
Dρk2

+ ω2
p

Dπ

c4s

]
+O(ω2) . (6.65)

The leading term is entirely real and will not contribute to the imaginary part. Therefore, we can
eventually obtain (6.30) as

Γmom.rel. =
µ̄2A2

2(ϵ̄+ p̄)Dραn
+
µ̄2A2Dπn̄

2

2c4s(ϵ̄+ p̄)2
G2 = Γd + Γη , (6.66)

where we recognize the quantities Γd,Γη introduced in (6.17).

6.E. Appendix E: Scaling of Hydrodynamical Relaxation

Rates

Consider an equation of state P (T, µ)/µ3 = a0 + a1(T/µ)
η̂+1 where η̂ = (d − θ)/z is the

generic effective dimension in the presence of a dynamical critical exponent z and hyperscaling vi-
olation exponent θ. This equation of state will be a valid approximation for the low-temperature
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regime of the holographic Einstein-Maxwell-Dilaton systems, such as RN and GR. Then, the
entropy and charge density one obtains from this pressure are s/µ2 = (η̂ + 1)a1(T/µ)

η̂ and
n/µ2 = 3a0 − (η̂ + 2)a1(T/µ)

η̂+1. We will now look at the momentum relaxation rate
(6.30) for a relativistic charged fluid such that the viscosity saturates the minimal viscosity bound
η = s/(4π) and we will take the EMD T-scalingσQ = σ̂Q(T/µ)

η̂+2 [286]. From the integrated
first law ϵ + P = sT + µn, we find ϵ = 2P for this choice such that we still have a conformal
system and therefore ζ = 0.

The relaxation rate has two contributions, oneG-dependent and oneG-independent, reminiscent
of our result (6.17), which we will by analogy name Γη and Γd. In the general non-conformal case
we have now introduced, these therefore take the form

Γη/µ = A2(G/µ)2
πa1(η̂ + 1)

6a0

(
T

µ

)η̂ (1− a1(η̂−2)
3a0

(T/µ)η̂+1
)2

(
1 + a1

a0
(T/µ)η̂+1

)3 ,

Γd/µ = A2 a
2
1(η̂ + 1)2

6a0σ̂Q

(
T

µ

)η̂ (η̂ + a1(η̂−2)
3a0

(T/µ)η̂+1
)2

(
1 + a1

a0
(T/µ)η̂+1

)3 .

(6.67)

The leading order of Γη can therefore be obtained as

Γη/µ ∼ A2(G/µ)2
πa1(η̂ + 1)

6a0

(
T

µ

)η̂
∼ A2(G/µ)2

π

2

s

n
. (6.68)

This shear drag contribution is therefore entirely determined by the entropy at low temperature.
The other contribution, Γd, is slightly less straightforward. When η̂ > 0, a similar behavior
arises

Γd/µ ∼ A2 a
2
1(η̂ + 1)2η̂2

6a0σ̂Q

(
T

µ

)η̂
∼ A2

2n/µ2

(
T
∂s

∂T

)2

σ−1
Q

(
T

µ

)2

. (6.69)

Therefore in this general case, which encompasses the GR case η̂ = 1, Γd and Γη have the same
temperature dependence although Γd is more sensible to the susceptibilities like the specific heat
T ∂s
∂T and the hydrodynamic transport coefficientσQ. A counterexample of this general rule how-

ever arises when η̂ = 0, as it is for the RN black hole for instance, where the leading order of Γd
vanishes and instead one must expand to second order to have

Γd/µ
η̂=0∼ A2 a41

3a30σ̂Q

(
T

µ

)2

. (6.70)

Finally, we can explain how this (T/µ)2 factor in (6.69) arises naturally from the αn factor in-
troduced in (6.9). To do so, consider the quantity DρΓd = A2 µ̄2

2(ϵ̄+p̄)αn
. We will relax here our

assumptions about the equation of state and only assume some Sommerfeld entropy s = γ(µ̄)T̄
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and n = n0(µ̄) at low temperature. The scaling ofDρΓd is therefore entirely determined by that
of α−1

n which can be determined using(
∂n̄

∂T̄

)
µ̄

=

(
∂s̄

∂µ̄

)
T̄

∼ γ′(µ̄)T̄ ,(
∂n̄

∂µ̄

)
T̄

∼ n′0(µ̄) ,(
∂ϵ̄

∂T̄

)
µ̄

= T̄

(
∂s̄

∂T̄

)
µ̄

+ µ̄

(
∂n̄

∂T̄

)
µ̄

∼
(
γ(µ̄) + µ̄γ′(µ̄)

)
T̄ ,(

∂ϵ̄

∂µ̄

)
T̄

= T̄

(
∂s̄

∂µ̄

)
T̄

+ µ̄

(
∂n̄

∂µ̄

)
T̄

∼ µ̄n′0(µ̄) + γ′(µ̄)T̄ 2 .

(6.71)

Then, we can plug these relations into Eqs. (6.9) and obtain

αn ∼
T̄ 2
(
γ(µ̄) + 2µ̄γ′(µ̄)

)
+ µ̄n′0(µ̄)

T̄
[
n′0(µ̄)

(
γ(µ̄) + µ̄γ′(µ̄)

)
T̄ − γ′(µ̄)T̄

(
µ̄n′0(µ̄) + γ′(µ̄)T̄ 2

)] ∼ µ̄

T̄ 2γ(µ̄)
. (6.72)

Therefore, given Sommerfeld entropy, we naturally get that DρΓd ∼ T 2. Provided then that
Dρ ∼ T , which is the case for the GR holographic metal, you recover the scaling Γd ∼ T .

6.F. Appendix F: Lorentz Oscillator Decoupling

Consider a system of modes coupled to one another in the following way

∂tJ1 + Γ1J1 + γ1J2 = E1 ,

∂tJ2 + Γ2J2 − γ2J1 = E2 ,
(6.73)

whereΓ1,2 are relaxation rates for the currents J1,2,E1,2 are explicit sourcing and γ1,2 couple the
two modes to one another. In matrix notation ∂tJa +MabJb = Ea, this leads to the following
evolution matrix

MLO =

(
Γ1 γ1
−γ2 Γ2

)
. (6.74)

We can then solve this dynamic system and obtain, in frequency space,

J1(ω) =
(Γ2 − iω)E1

(Γ1 − iω)(Γ2 − iω) + γ1γ2
,

J2(ω) =
γ2E1

(Γ1 − iω)(Γ2 − iω) + γ1γ2
,

(6.75)

where we have set E2 = 0 as we are only interested in externally sourcing one of the currents.
Critically, we will be interested in a total currentJ which overlaps with bothJ1 andJ2 through

J = σ0E1 + aJ1 + bJ2 (6.76)
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where σ0 is some explicit contribution by the external sourcing. Therefore, the conductivity asso-
ciated to this current is

σ = J/E1 = σ0 +
a (Γ2 − iω) + bγ2

(Γ1 − iω)(Γ2 − iω) + γ1γ2
. (6.77)

This form is very reminiscent of (6.19) with

Zeff = a , Ω = Γ2 +
b

a
γ2

Γ = Γ1 −
b

a
γ2 , ω2

0 = γ1γ2 −
b

a
γ2

[
Γ1 − Γ2 −

b

a
γ2

]
.

(6.78)

Let us now compare to the matrix M (6.11) describing the dynamical hydrodynamic system in
the small lattice expansion. From this system of 4 coupled fields, it is possible to decouple two by
taking the large speed of sound limit cs → ∞11 which formally just encodes the assumption that
the sound poles live far from the two poles close to origin. While this is a relatively simple limit to
illustrate the qualitative behavior of the isolated two pole sector, we must emphasize that this limit
will not reproduce quantitatively the mapping (6.20) exactly, and that is because there are higher
order effects of the coupling to the sound sector which should be more carefully disentangled.
It will be however a helpful illustration of the dynamics of the low frequency sector. The two
currents remaining J1,2 are then the momentum current density δπ(0)

x and the parity-odd charge
density δn(S).

The decoupled system then takes the form

M =

(
0 AGµ̄/2

− AGµ̄
(ϵ̄+p̄)αn

DρG
2

)
=

 0 AGµ̄/2

−2DρGΓd
Aµ̄

DρG
2

 , (6.79)

while the total current of interest isJ = σQEx+ω
2
pδπ

(0)
x − µ̄A

2 ω
2
pDρGδn

(S). Thus, we deduce
from this that Zeff = ω2

p while the effective momentum relaxation rates and effective couplings
are

Ω = DρG
2
[
1−DρΓd

]
,

Γ = (DρG)
2Γd ,

ω2
0 = DρG

2Γd

[
1− (DρG)

2 +D3
ρG

2Γd

]
.

(6.80)

As expected, there is a discrepancy between Eqs. (6.20) and Eqs. (6.80) which just highlights that
the limit cs → ∞ should be refined. However, this correctly predicts the leading order in A of
every coefficient and gives a very close, qualitative estimate of the corrections at the next order.

11To take this limit carefully, one needs to rescale the momentum modes δϵ(C), δπ
(C)
x by a factor of c2s beforehand.
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The central theme of this thesis has been the exploration of holographic systems where transla-
tional symmetry is explicitly broken in an inhomogeneous manner. In particular, we were inter-
ested in systems that have some relevance to condensed matter physics, such as the cuprate strange
metals. By solving the Einstein equations for a corrugated black hole in negatively curved space-
time, we were able to explore thermodynamical and transport properties of strongly coupled sys-
tems where translational symmetry is broken. There have been several results that appear to show
similar behaviour to what is observed in physical experiment. But, as we have tried emphasise, the
holographic results are not to be interpreted literally, and instead need to be digested carefully in
order to properly interpret what holography is telling us.

This is of great importance in chapter 4, which deals with holographic fermions. The spectral
function of these fermions can be thought of as an analogue to what is measured in ARPES ex-
periments in the laboratory. We were able show that at weak translational symmetry breaking,
the physics of the probe holographic fermions we use is not much different than that of normal
fermions undergoing weak potential scattering in a periodic potential. This changes drastically
when the lattice strength is raised into the non-perturbative regime. Here instead, we see that the
Fermi surface appears to end at a point instead of forming a continuous sheet throughout thex−y
plane. The root cause of this turns out to be the proximity of a sheet of poles to a sheet of zeros
in the complex frequency-momentum space. This is rather remarkable, as in conventional mate-
rials the Fermi surface is typically closed. This phenomenon also appears to be present in ARPES
experiments on some cuprates in the pseudogap phase for example.

It is tempting to get excited and take holography as a physical explanation of what is happening
in the lab. As we are cautioned, we have to admit that the large-N nature of the dual quantum
field theory, the probe status of the fermions and the unidirectional nature of the potential all
contribute to our inability to interpret the results of holography in a condended matter physics
setting. The line of zeros that causes the Fermi arc-like phenomenon is also purely holographic in
origin, relying on some special range of masses that allow us freedom in the choice of quantization
for the bulk fermion. Peering through this is perhaps something interesting; namely, if there is
some phenomenon that would cause a line of zeros to come close to the Fermi surface, similar
extinction effects might be observed in strongly coupled systems where translational symmetry
is strongly broken, e.g. the strange metal. Therefore, purely phenomenologically, holographic
fermions could make a useful numerical exploration tool.

Chapter 6 takes a different approach. This chapter shows perhaps the deepest and most high-
precision test of the application of holography to condensed matter theory yet. It takes aim simul-
taneously at the three key mysteries to the cuprate strange metal: the linear-in-temperature resis-
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tivity at low temperature, the observed Planckian relaxation rate, and the indifference of the DC
conductivity to the good-to-bad-metal transition. The holographic Gubser-Rocha model presents
an excellent testing grounds for this. By exploring carefully the thermodynamics and conductivity
in the weak lattice regime, we were able to show that hydrodynamical flow can not only be used to
reproduce the Drude-like line shape, but also the transition into the ‘bad metal’/Mid-IR peak that
is seen in experiments. Intriguingly, even though the peak appears through an effective diffusive-
to-propagating crossover of the poles of the Green’s function, we can show that the parameters
governing the low-frequency conductivity evolve smoothly and therefore that the DC resistivity
cannot be sensitive to this crossover.

The large lattice ‘incoherent metal’ regime shows a completely different story. Here, nothing of
our hydrodynamical intuition remains, as momentum conservation is absolutely not present. The
slope of the resistivity appears to saturate with increased lattice potential to some value that is of
the order of the Planckian scale. The conductivity in this regime can be understood in terms of
the thermal and charge diffusivities. The first of these is rather insensitive to the translational sym-
metry breaking, showing a universal temperature scaling which can be understood from quantum
chaos and rapid scrambling in the black hole, but it disappears as the lattice becomes increasingly
strong. On the other hand the charge diffusivity saturates, but it evades such a clear understanding
as the thermal diffusivity.

Again, we must ask ourselves, what do these black holes actually tell us about the physical ex-
periment, and where does it fall short? First of all, there are also significant discrepancies. The
Umklapped sound peak, which is observed to be the peak responsible for a significant fraction
of the large-lattice conductivity, is not seen in experiment. Likewise, quantum critical power law
tails seen in experiment are not reproduced directly here. However, both of these discrepancies
can be understood, and one can reasonably pose conditions under which these phenomena might
match.

What remains underneath then is that the real, number one claim that we can draw from these
results is that holography is arguing for a fundamentally different kind of physics than that of the
Fermi liquid to be governing the strange metal phase. Is it possible that it is hydrodynamics that
governs the physics of the strange metal, and is that rooted in the densely many-body entangled na-
ture of the fermions? There are some ways of exploring this in experiment, but with the currently
available data it is not possible to make a conclusive decision either way.

It is my hope that the works presented in this thesis have made a sufficiently strong case that the
holographic lattice offers a highly intriguing and suggestive view of condensed matter physics.
What is more, the interest on the experimental side into holographic claims seems to be increasing.
One can think here of recent data suggesting z → ∞ scaling, and perhaps the soonest revolution
will come from the new mesoscopic devices that can potentially be used to detect hydrodynamic
behaviour in strongly coupled electronic systems. If the coin falls the right way, the AdS/CFT
correspondence will finally be truly cemented as a tool for studying condensed matter physics, in
particular in systems where strong correlations and dense entanglement are present. The holo-
graphic lattices will then have yet another part to play, and hopefully this work can be of use for
future generations of physicists.
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Summary

Progress and discoveries in the physical sciences can often come from unexpected places. For sev-
eral decades now, a part of the theoretical physics community has been faced with a conundrum:
certain superconducting compounds, the so-called cuprate strange metals, display characteristics
that cannot be explained with the theoretical models that we have available to us. The most strik-
ing of this is the electrical resistivity of these metals. This increases linearly with temperature over
a very wide range of temperature, from far below freezing to far above boiling temperatures. This
is at odds with conventional wisdom regarding metallic compounds, which would for example
predict quadratic scaling at low temperatures. This is only one of many observations.

The reason for our limited understanding of the phenomena of the strange metal has several root
causes. For one, the mathematical tools we have at our disposal only work well if the electrons in
this material are not strongly influenced by either each other or the underlying crystal structure
of the material. In the strange metal, both of these conditions are violated. Computers are also of
no great help: while our classical computers are great at dealing with classical data, encoded in 1’s
and 0s, they are spectacularly unsuited to deal with problems where quantum mechanics plays an
important role. In the future quantum computers might be able to shed light on these problems,
but the technology is simply not there yet.

It may appear we are stuck. However, from the unlikely realm of string theory comes a surprise:
the holographic duality. Here string theory is not used as a model of the finest structure of the
universe. Instead, it was found that there exists a remarkable duality between the structure of the
mathematical equations that describe strongly interacting quantum systems, similar to the strange
metal mentioned above, and the theory of General Relativity. The details of this are intricate, but
it offers us an olive branch: we are able to translate the original problem that we could not solve,
into a problem of General Relativity, one involving black holes and negatively curved space times.
Solving this problem is still hard, but no longer impossible. Unfortunately we are not able to
model precisely those physical systems of interest, and must always use some proxy that can never
be realised in the laboratory. However, thorough investigation of the results can still give rise to
universal answers that cannot be arrived at through any other known means.

In this thesis, the duality was investigated with high precision. In particular, we focused on what
effects we observe when we try to also pull the crystal structure of the metals through the duality.
We looked at several observables such as resistivity and conductivity, but also spectral functions
of fermions in the presence of such a lattice. This is a technically difficult thing to accomplish,
and we have developed new codes to solve these black hole problems to high accuracy using super-
computers. The main difficulty here comes from the complexity of Einstein’s equations, that get
monstrously large when a crystal lattice is included.
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After several years of hard work, ironing out all bugs and problems in the code, we were able to
use this setup to great effect. Chapter 4 for example shows that the effect of the crystal lattice can
lead to very similar behaviour as is found in photoemmission experiments. However, the duality
is only a phenomenological tool: we show that we can reproduce a similar looking effect, but we
have gained no greater insight into what might cause these effects in the real materials in the lab.

The heart of this thesis is formed by Chapter 6. In this chapter, we take a different approach to
the duality. Here we treat our supercomputer codes truly like an experiment, and we try to see if
we can, in the language of the duality, find explanations or suggestions for the observed mysteries
in the strange metal. We are able to see and explain many of the phenomena of the strange metal
in our framework. Above all, what we find is that holography appears to argue for there to be a
fundamentally different physical principle to be on the foreground when it comes to the strange
metal. Rather than electrons zooming around in metals, we should think instead in a truly quan-
tum (supreme) manner: all intuition we have from our everyday life should go out of the window,
and instead we should be concerned with the most exotic quantum physics.

While the data is extremely suggestive of this, the jury is still out on this one. The viewpoints
of holography are highly unconventional in the condensed matter physics community, and often
dismissed out of hand. We propose certain measurements that could potentially be done that can
shed more light on the veracity of our statements, but these experiments may be many years away
still. On the other hand, with a recent uptake in attention from the community at large, perhaps
the time is ripe for the holographic duality to become another common tool in the toolbox of
theoretical physics.
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Samenvatting

Ontdekkingen die de wetenschap vooruit brengen komen vaak uit onverwachte hoek zetten. The-
oretici die zich met gecondenseerde materie bezig houden staan al lange tijd voor een dilemma:
bepaalde supergeleidende materialen, de zogeheten ‘cuprate strange metals’, zijn tot nu toe nog
niet goed begrepen. Deze strange metals hebben bepaalde karakteristieke eigenschappen, bijvoor-
beeld een weerstand die rechtevenredig met de temperatuur oploopt, zowel bij hoge als bij lage
temperaturen. In andere metalen zou dit kwadratisch moeten zijn bij lage temperatuur, en het is
niet begrepen waarom dit afwijkt. Dit is slechts een van vele observaties die niet verklaard zijn.

De redenen voor het gebrek aan begrip zijn uiteenlopend. Vanuit een wiskundig oogpunt speelt
de grote sterkte van de wisselwerking tussen electronen in de strange metals een belangrijke rol. De
vergelijkingen die de electronische sector zouden beschrijven zijn niet direct op te lossen. Wanneer
deze wisselwerking echter zwak is, is het met bepaalde goed beheersbare benaderingen mogelijk om
toch een berekening uit te kunnen voeren. In de strange metals is dit niet het geval. Een andere be-
nadering zou kunnen zijn om het metaal direct met computers te proberen te simuleren. Dit gaat
echter catastrofaal fout: de simpele structuur van data in onze computers, die alleen de waardes
1 en 0 aan kunnen nemen, zorgt ervoor dat dit onmogelijk is. Kwantumcomputers bieden hier
wellicht uitkomst, maar deze zijn nog lang niet in een dusdanig ver gevorderd stadium dat ze voor
dit probleem nuttig zouden kunnen zijn.

De verrassing komt nu uit de hoek van de snaartheorie. Rond de millenniumwisseling kwam daar
naar voren dat er een merkwaardige dualiteit bestaat tussen twee verschillende theorieën die op
het eerste gezicht niets met elkaar te maken zouden moeten hebben: de holografische dualiteit.
Het blijkt namelijk dat de wiskundige structuur een supersymmetrische veldentheorie die niets
van zwaartekracht afweet, precies dezelfde wiskundige structuur heeft als een snaartheorie met
een extra ruimtedimensie, waar zwaartekracht wel een rol speelt. Dit is een erg diepgaand onder-
werp waar vele tienduizenden artikelen over geschreven zijn, maar wij zijn geı̈nteresseerd in één
specifieke realisatie hiervan, waar we niet met snaartheorie maar alleen met Algemene Relativiteit-
stheorie (AR) te maken hebben. Met behulp van de dualiteit kunnen we dit vertalen naar een
veldentheorie, waar sterke wisselwerkingen en kwantumverstrengeling de hoofdrol hebben. Op
deze manier ruilen we een onmogelijk op te lossen probleem in voor een moeilijk probleem, AR
is namelijk niet bepaald makkelijk op te lossen. Er zijn ook enkele kanttekeningen die geplaatst
moeten worden bij de resultaten die wij krijgen: de dualiteit is niet erg gebruiksvriendelijk, en
de veldentheorie die de dualiteit beschrijft is nogal ver verwijderd van de veldentheorie die in de
strange metal echt gerealiseerd wordt. Desalniettemin is het nog steeds mogelijk om bepaalde al-
gemene waarheden te ontdekken op deze manier.
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Om wat specifieker te zijn ontfermt dit proefschrift zich voornamelijk over de vraag wat er gebeurt
als we de effecten van een kristalrooster na proberen te bootsen aan de kant van de AR. De niet-
lineaire eigenschappen van de AR produceren enorm ingewikkelde vergelijkingen, waarvoor wij
speciale computerprogramma’s moesten schrijven om met behulp van de nationale supercomput-
ers berekeningen uit te kunnen voeren. De resultaten van deze berekeningen vormen de data die dit
proefschift gebruikt worden. Hoofdstuk 4 laat zien hoe het mogelijk is om bepaalde spectraalfunc-
ties die in fotoemissie-experimenten waargenomen worden, namelijk de zogeheten Fermi Arcs, na
te bootsen. Door de hierboven genoemde kanttekeningen is het echter niet mogelijk hieruit op te
maken wat het mechanisme is dat deze Fermi arcs veroorzaakt.

Het magnum opus van dit proefschrift is hoofdstuk 6. Door de data van de supercomputer te
behandelen als experimentele data hebben wij geprobeerd of het mogelijk is om aan de hand van
de dualiteit suggesties kunnen geven over wat er zich daadwerkelijk in de strange metals afspeelt.
Wonderbaarlijk genoeg bleek het niet alleen mogelijk, maar zelfs natuurlijk om veel van de in exper-
iment waargenomen verschijnselen na te bootsen. De conclusie die wij hieruit kunnen trekken is
dat de holografische dualiteit laat zien dat er waarschijnlijk een compleet ander soort natuurkunde
van belang is dan men zou verwachten in de strange metal. Dit betekent dat men de notie van
elektronen die zich voortbewegen in een metaal los moet laten, en in plaats daarvan moet denken
in termen waar kwantumeffecten en kwantumverstrengeling oppermachtig zijn. Dit staat haaks
op de gewone denkwijzen in de theorieën van gecondenseerde materie, en zal daarom ook niet
makkelijk op het wijdere publiek overslaan.

Ook is het zo dat het onderzoek dat in dit proefschrift aan bod komt op zichzelf verre van genoeg
is om hierover een finaal oordeel te vellen. Zoals in hoofdstuk 6 ook aan bod komt hebben wij wel
voorstellen voor enkele experimenten die bijzonder gevoelig zouden moeten zijn voor de aan- of
afwezigheid van deze nieuwe fysica. Samen met de recente groei in aandacht van de holografische
dualiteit is de tijd misschien rijp voor holografie om de boel echt op te schudden in de wereld van de
theoretische natuurkunde. Hopelijk dragen de resultaten en onderzoekingen van dit proefschrift
bij aan een soortgelijke revolutie.
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