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Simple Summary: Acute megakaryoblastic leukemia (AMKL) is a rare and heterogeneous subtype
of acute myeloid leukemia (AML). We show that such patients can be identified by flowcytometric
immunophenotyping using the standardized EuroFlow panel. AMKL patients show a unique
immunophenotypic profile, and among AMKL patients, various subgroups can be distinguished.

Abstract: Acute megakaryoblastic leukemia (AMKL) is a rare and heterogeneous subtype of acute
myeloid leukemia (AML). We evaluated the immunophenotypic profile of 72 AMKL and 114 non-
AMKL AML patients using the EuroFlow AML panel. Univariate and multivariate/multidimensional
analyses were performed to identify most relevant markers contributing to the diagnosis of AMKL.
AMKL patients were subdivided into transient abnormal myelopoiesis (TAM), myeloid leukemia
associated with Down syndrome (ML-DS), AML—not otherwise specified with megakaryocytic dif-
ferentiation (NOS-AMKL), and AMKL—other patients (AML patients with other WHO classification
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but with flowcytometric features of megakaryocytic differentiation). Flowcytometric analysis showed
good discrimination between AMKL and non-AMKL patients based on differential expression of, in
particular, CD42a.CD61, CD41, CD42b, HLADR, CD15 and CD13. Combining CD42a.CD61 (positive)
and CD13 (negative) resulted in a sensitivity of 71% and a specificity of 99%. Within AMKL patients,
TAM and ML-DS patients showed higher frequencies of immature CD34+/CD117+ leukemic cells
as compared to NOS-AMKL and AMKL-Other patients. In addition, ML-DS patients showed a
significantly higher expression of CD33, CD11b, CD38 and CD7 as compared to the other three
subgroups, allowing for good distinction of these patients. Overall, our data show that the EuroFlow
AML panel allows for straightforward diagnosis of AMKL and that ML-DS is associated with a
unique immunophenotypic profile.

Keywords: EuroFlow; immunophenotyping; Down syndrome; transient abnormal myelopoiesis; AMKL

1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by
clonal proliferation of myeloid precursor cells with differentiation arrest. The World Health
Organization (WHO) classifies AML into different categories, including AML with recurrent
genetic abnormalities, AML with myelodysplasia-related changes, AML not otherwise
specified (NOS) and myeloid proliferation associated with Down syndrome [1–4]. The
AML-NOS category is further classified into eight subgroups according to maturation,
comparable to the French–American–British (FAB) classification system (AML subtypes
M0-M7) [4].

AML-NOS with megakaryocytic differentiation (AML-M7; NOS-AMKL) is a rare but
life-threatening subtype of AML affecting about 10% of pediatric AML patients and about
1% of adult AML patients [5]. These patients are characterized by the accumulation of
≥20% bone marrow leukemic cells with at least 50% showing overt megakaryocytic lineage
commitment [4]. However, straightforward diagnosis of NOS-AMKL patients remains
challenging due to their high biological and clinical heterogeneity [6–8]. Additionally,
megakaryocytic differentiation of leukemic cells can also be observed in at least three other
WHO subgroups. First, about 70–90% of patients with Down syndrome and myeloid
leukemia (ML-DS) show megakaryocytic differentiation [1,9]. Second, about 10% of Down
syndrome patients show transient abnormal myelopoiesis (TAM) in the first weeks after
birth [10]. The circulating blasts in TAM virtually always show immunological features of
megakaryocytic differentiation. The third subgroup concerns AML-NOS with megakary-
ocytic differentiation (NOS-AMKL) [4]. Finally, AMKL patients with a recurrent t(1;22)
(RBM15-MKL1), often identified in early infancy, are separately classified as such [2,11].
The biological variation between these subgroups is significant, since each of them shows
distinct genetic and molecular abnormalities [6,12]. Whereas TAM patients generally spon-
taneously clear the AMKL cells within a few weeks [13], the prognosis for other AMKL
subtypes is rather unfavorable [5,14].

The development and application of flowcytometric immunophenotyping has sig-
nificantly increased the accuracy of AMKL diagnosis. Blast identification in the bone
marrow is performed by flowcytometric analysis, including staining of platelet-specific
antigens (e.g., CD41, CD42b and CD61), stem/progenitor cell markers (e.g., CD34, CD33
and CD117), erythroid/megakaryocytic/monocytic markers (e.g., CD36) and T cell mark-
ers (e.g., CD7) [12,15–19]. In general, the immunophenotypic profiles of AMKL are well
defined. Nevertheless, immunophenotypic differences between AMKL subgroups have
only been studied to a limited extent, mainly due to the rarity of AMKL. Therefore, the aim
of this study was to perform an immunophenotypic characterization of leukemic cells from
72 AMKL cases, as determined by the use of the standardized EuroFlow AML panel. The
immunophenotypic profile of AMKL patients was compared with that of a control group of



Cancers 2022, 14, 1583 3 of 16

114 non-AMKL AML patients. In addition, we searched for differential immunophenotypic
profiles among subtypes of AMKL.

2. Materials and Methods
2.1. Patients

AMKL patients were selected for inclusion in this study if they fulfilled one of the
following criteria: (1) WHO diagnosis of ML-DS, TAM, NOS-AMKL or t(1;22)-positive AML;
(2) morphological FAB classification M7 or flowcytometric characteristics of megakaryocytic
differentiation. A control group of non-AMKL AML patients was selected based on the
availability of complete flowcytometric data from AML tube 1 to 7 (EuroFlow AML panel).
All data were collected in seven centers between 2010 and 2021; the institutional review
board of each participating center approved this study.

2.2. Immunophenotyping

Flowcytometric immunophenotyping was performed using the EuroFlow AML panel
according to EuroFlow protocols and instrument settings [19–21]. Briefly, bone marrow
(BM) or peripheral blood (PB) samples were stained with the appropriate cocktail of
antibodies (30 min at room temperature (RT)), after which 2 mL FACS lysing solution (BD
Biosciences, Erembodegem, Belgium) was added (10 min, RT). After centrifugation (540× g,
5 min), the cell pellet was washed with 2 mL phosphate-buffered saline (PBS) containing
serum 0.2% bovine albumin (BSA), and cells were resuspended in 100 µL FACS flow buffer
(BD Biosciences), with the exception of tube 4. TdT antibody (10 µL; clone HT-6, Agilent
Technologies, Glostrup, Denmark) was added to the washed cells of tube 4, followed by
incubation for 15 min at RT. After washing with PBS/BSA, cells were resuspended in FACS
flow buffer. All samples were acquired on FACS canto II or FACS lyric flow cytometers set
up according to the EuroFlow protocols [21,22]. In the EuroFlow panel (tube 6), CD42a and
CD61 are combined in the same fluorescence channel and reported as CD42a.CD61.

2.3. Data Collection and Evaluation

For each AML case, we requested that the participating center upload the anonymized
flow cytometry standard (FCS) files (raw data from the EuroFlow AML panel) to the secured
EuroFlow server. In addition, the participating laboratories performed a basic analysis on
merged FCS files (removal of debris/doublets and identification of lymphocytes) using
only the backbone markers (allowing a uniform analysis across tubes) (Infinicyt software,
Cytognos, Salamanca, Spain). The resulting analyzed (CYT) file was also uploaded to the
secured server. In addition, a spreadsheet with patient annotations (e.g., age, gender, WHO
classification and flow cytometer used) was requested. Finally, each CYT file was checked
by an independent reviewer to make sure all cells were gated correctly.

2.4. Quality Assessment (QA) Procedure

Our QA strategy was based on lymphocytes because lymphocytes (1) were present
in virtually all samples, (2) could easily be distinguished from myeloid cells (based on
the backbone markers) and (3) were assumed to be unaffected in AML patients (as they
originate from the lymphoid lineage). QA was performed as described by Bras et al.
(Bras et al., submitted). Briefly, a reference file containing a fixed number of lymphocytes
extracted from all tubes/cases was created, and data were visualized using principal
component (PC) analysis (PCA) in PC1 vs. PC2 plots. Subsequently, the two-standard-
deviation (SD) curves were represented within the PCA plots (one for the backbone markers
and six separate ones for the tube-specific antibodies). Then, for each patient/tube, the
lymphocyte population was compared with these reference 2SD curves. Patients with more
than 20% of their lymphocyte population falling outside the 2SD curves were checked for
errors and, if necessary, excluded from the dataset.
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2.5. Data Analysis and Statistics

Data analysis was performed using Infinicyt (Cytognos, version 2.0), R Studio (version
1.4.1717), GraphPad Prism (version 5.04), Microsoft Excel (2016), MedCalc (https://www.
medcalc.org/; accessed on 9 February 2022) and SPSS Statistics (version 25). For each
patient, the mean fluorescence intensity (MFI) of leukemic cells was obtained for each
marker. Overall, four main leukemic cell maturation stages were defined based on CD34
and CD117 expression. Additionally, differentiation of CD34+/CD117+ cells towards
the neutrophil granulocytic lineage was defined by CD15 expression, towards B cells
by CD19 expression, towards the monocytic lineage by CD64 expression and towards
the erythroid/megakaryocytic lineages by CD36 expression in the absence of monocytic
markers (CD64). For all markers, MFI values were defined, and a marker was considered to
be positive if the MFI value was >1000, as previously reported [23–25]. Data were analyzed
using PCA (APS tool in Infinicyt software), the CA tool in Infinicyt software (based on
multiclass linear discrimination analysis) [26] and neighborhood automatic population
separator (NAPS in Infinicyt software). Based on neighborhood components analysis
(NCA) [27,28], NAPS is a powerful and solid sustained algorithm from the mathematical
point of view. It aims to learn from the available data a distance metric that maximizes the
performance of nearest-neighbor (NN) classification. NCA approaches the ‘neighborhood’
concept in a stochastic manner in the sense that each data point (corresponding to an
individual case) selects another data point as its neighbor with a given probability. NCA
calculates a transformation matrix from the marker space so that NN performance is
optimized in the transformed space. Accordingly, the probability that data points (cases)
are correctly classified can be computed, whereas the expected number of correctly classified
cases can be maximized. The NAPS graphics represent the relative position of the points
(like in clustering figures, such as t-SNE), and therefore, they do not depict any scale.

To examine statistical differences in the distribution of continuous variables, the non-
parametric Kruskal–Wallis (for >2 groups) and/or Mann–Whitney U tests (for 2 groups)
were used. p-values < 0.05 were considered statistically significant.

3. Results
3.1. Patient Characteristics

A total of 72 AMKL patients were included in this study, and all passed the QA. This
group included 24 TAM, 16 ML-DS, 22 NOS-AMKL and 10 AMKL-Other patients (details in
Table 1). The AMKL-Other patients, morphologically and/or immunophenotypically con-
sidered AML with megakaryoblastic maturation, included one AML patient with inv(16),
one AML patient with NPM1-mutations, six AML patients with myelodysplasia-related
changes and two AML patients without further classification. As expected, significant age
differences were present between the four groups of patients, with only infants in the TAM
group and a vast majority of children in the ML-DS group and the NOS-AMKL group
(Figure S1A). In contrast, the AMKL-Other group mainly contained adult patients (median
age >60 years old). WBC counts were also significantly different between the four groups,
with the highest levels in the TAM and NOS-AMKL patients (Figure S1B). Most tested TAM
cases showed GATA1 mutations (17/19; 89%). Other molecular data were only limitedly
available: t(1;22) translocations (resulting in RBM15-MKL1 fusion) were detected in only
three patients, and given the low number, they were not analyzed separately but included
in the NOS-AMKL group.

For the non-AMKL group, a total of 114 AML patients passed QA and were included
(details in Table 1). The median age was 14 years old (due to composition of participating
laboratories, with half of the centers being pediatric oncology centers). WBC counts were
similar to TAM and NOS-AMKL counts but significantly higher than in ML-DS and AMKL-
Other (Figure S1B).

https://www.medcalc.org/
https://www.medcalc.org/
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Table 1. Patient characteristics.

AMKL Non-AMKL

TAM ML-DS NOS-AMKL AMKL-Other all

n 24 16 22 10 72 114
Age in years (median,
range) 0 (0–0) 1 (0–4) 1 (0–89) 62 (2–86) 1 (0–89) 14 (0–93)

Gender (M/F) 12/12 8/8 13/9 6/4 39/33 60/54
WBC × 109/L (median,
range)

49 (7–179) 6 (2–35) 21 (3–94) 4 (2–16) 14 (2–179) 16 (1–441)

WHO classification

AML with t(1;22) 3 3 0

AML with t(8;21) 6

AML with inv(16) 1 1 9

AML with t(15;17) 5

AML with t(9;11) 5

AML with inv(3) 1

AML with mutated NPM1 1 1 27

AML with biallelic CEBPA
mutations 5

AML
myelodysplasia-related
changes

6 6 5

AML therapy-related 2

AML NOS,
minimaldifferentiation 4

AML NOS, without
maturation 8

AML NOS, with
maturation 8

AML NOS,
myelomonocytic 13

AML NOS,
monoblastic/monocytic 12

AML NOS, erytroid 4

Not further classified 2 2 0
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3.2. Immunophenotypic Profile of AMKL versus Non-AMKL Patients: Univariate Analysis

Immunophenotypic profiles of the 72 AMKL patients were compared with those of
the control group of 114 non-AMKL patients. A heatmap visualizing the MFI values for
all evaluated markers of AMKL and non-AMKL patients is shown in Figure S2. In the
majority of AMKL patients, the blast population showed relatively high expression of
the megakaryocytic markers CD42a.CD61, CD41 and/or CD42b as compared to the non-
AMKL population. Additionally, CD36, CD7, CD33, CD38 and CD71 were also frequently
expressed in AMKL; however, expression of these markers was also frequently observed in
non-AMKL patients. HLADR and CD13 expression was often found to be low or absent
in AMKL, whereas non-AMKL showed HLADR and/or CD13 expression in the vast
majority of cases (Supplementary Figure S2). The number of patients positive for these
markers in the AMKL and non-AMKL groups, as well as odds ratios, are shown in Table 2.
The vast majority of AMKL patients (>95%) showed positivity for CD41, CD42b and/or
CD42a.CD61, whereas these markers were much less frequently detected in non-AMKL
patients (<20%). AMKL patients also showed a significantly higher frequency of CD36 (92%
vs. 60%), CD71 (90% vs. 57%) and CD7 expression (70% vs. 32%). Conversely, expression
of other markers was significantly less frequent in AMKL versus non-AMKL patients,
including HLADR, CD13, CD123 and expression of the lineage commitment antigens
CD11b, CD15, CD64, CD14, CD300e and CD203c (Table 2). Univariate logistic regression
analysis demonstrated that the highest predictive value for AMKL diagnosis was shown by
the expression of CD42b (odds ratio (OR): 119), followed by CD42a.CD61 (OR: 103), CD41
(OR: 15), CD36 (OR: 7.3), CD71 (OR: 7.0) and CD7 (OR: 5.2) (Table 2).

Table 2. Expression of markers in AMKL and non-AMKL patients a.

AMKL Non-
AMKL

Odds
Ratio 95% CI p

CD42a.CD61 66/72 92% 11/114 10% *# 103.00 36.34 to 291.89 <0.0001
CD36 65/71 92% 68/114 60% *# 7.32 2.93 to 18.32 <0.0001
CD71 65/72 90% 65/114 57% *# 7.00 2.95 to 16.60 <0.0001

CD42b 52/64 81% 4/114 4% *# 119.17 36.67 to 387.31 <0.0001
CD38 56/70 80% 97/114 85% 0.70 0.32 to 1.53 0.3722
CD33 56/71 79% 101/114 89% # 0.48 0.21 to 1.08 0.0766
CD41 46/64 72% 15/114 13% *# 15.18 7.13 to 32.31 <0.0001
CD7 50/71 70% 36/114 32% *# 5.16 2.71 to 9.83 <0.0001

CD123 42/71 59% 88/114 77% *# 0.43 0.22 to 0.82 0.0098
CD11b 27/70 39% 76/114 67% *# 0.31 0.17 to 0.58 0.0002

HLADR 28/72 39% 87/114 76% *# 0.20 0.10 to 0.37 <0.0001
CD15 25/70 36% 77/114 68% *# 0.27 0.14 to 0.50 <0.0001
CD13 16/70 23% 80/114 70% *# 0.20 0.11 to 0.38 <0.0001
CD64 9/70 13% 46/114 40% *# 0.22 0.10 to 0.48 0.0002
CD14 6/70 9% 27/114 25% *# 0.30 0.12 to 0.77 0.0127

CD105 6/71 8% 5/114 4% 2.01 0.59 to 6.86 0.2636
CD203c 2/72 3% 9/114 8% # 0.33 0.07 to 1.59 0.1680
CD300e 2/70 3% 10/114 9% # 0.31 0.07 to 1.44 0.1338

NG2 1/70 1% 18/114 16% *# 0.08 0.01 to 0.59 0.0138
a Data show the number and percentage of patients positive for a particular marker. A marker was considered
to be expressed (i.e., to be positive) if the mean fluorescence intensity exceeded the value of 1000. * Significant
difference in frequency between AMKL and non-AMKL (p < 0.05 by Fisher’s exact test); # Significant difference in
mean fluorescence intensity between AMKL and non-AMKL (p < 0.05 by Mann–Whitney test).

3.3. Expression of Megakaryocytic Markers

The above data show that AMKL patients have a specific immunophenotypic profile,
characterized overall by expression of megakaryocyte lineage-associated markers but
generally lacking CD13 and HLADR expression. Since expression of megakaryocytic
markers is a prerequisite for classifying an AML as an AMKL [4], we investigated the
diagnostic contribution of EuroFlow panel tubes 6 and 7. As shown in Supplementary
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Figure S3, CD41a.CD61 was most frequently expressed in AMKL patients (59/65; 91%),
followed by CD42b (52/65; 80%) and CD41 46/65 (71%). All three megakaryocytic markers
were present in 39/65 (60%) of AMKL cases. Three cases had MFI levels below 1000 for all
three megakaryocytic markers; one of these concerned an ML-DS patient, and the other
two were classified as NOS-AMKL (Supplementary Figure S4). Among the non-AMKL
patients, 22 expressed at least one megakaryocytic marker; CD42a.CD61 was positive in
11/114 (10%), CD41 in 15/114 (13%) and CD42b in 4/114 (4%) cases. Most cases (14/22)
expressed only one marker, generally weakly, and coexpression of all three markers was
never observed. Monocytic differentiation was present in 16/22 cases. Details of the
non-AMKL patients expressing at least one megakaryocytic marker are provided in Table
S1. Overall, these data show that CD42a.CD61 was the most sensitive marker for AMKL
detection (91%), whereas CD42b was the most specific marker (96%).

3.4. Immunophenotypic Profile of AMKL versus Non-AMKL: Multivariate Analysis

We used the MFI values of all markers as input for multidimensional analyses (com-
bining the information of all 32 markers). As shown in Figure 1A, AMKL patients could
clearly be distinguished from non-AMKL patients, particularly based on CD42a.CD61,
CD42b, CD15, CD13, CD11b and CD7. One of the three AMKL patients without expression
of megakaryocytic markers (ML-DS 3) was located in the same area of the plot as the
non-AMKL patients, whereas the other two patients (NOS-AMKL 15 and NOS-AMKL
16) were located on the border between the two patient groups. These data show that
most AMKL patients can be distinguished from non-AMKL patients using EuroFlow AML
panel tubes 1 to 7. Similar analyses were performed using the data from tubes 1 to 6 only
(Figure 1B), obtaining highly comparable plots and contributing markers, which confirms
that using tubes 1 to 6 is sufficient for AMKL diagnostics and that tube 7 is mainly for
confirming differentiation of blast cells to the megakaryoblastic lineage.
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Figure 1. Multivariate analysis of non-AMKL (green dots) and AMKL patients (red dots) using
the MFI values of all markers present in EuroFlow AML tubes 1–7 (A) or tubes 1–6 (B). Pattern
classification was performed using NAPS, and the markers contributing to the pattern classification
are shown in the bottom part of the figure. The three AMKL patients not expressing CD42a.CD61,
CD41 or CD42b (MFI < 1000) are indicated by arrows.
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Linear regression analysis showed a significant contribution of CD13, HLADR, CD34
and CD42a.CD61 in distinguishing AMKL and non-AMKL patients. The presence of a
CD13-/CD34+/HLADR-/CD42a.CD61+ immunophenotype resulted in a sensitivity of
40% and 100% specificity. Without HLADR, the sensitivity increased to 54%, with a similar
100% specificity. Including only CD42a.CD61 and CD13 resulted in a sensitivity of 72% and
a specificity of 99%.

3.5. Maturation-Stage-Related Immunophenotypic Profiles

Since gating/identification of AML cells can be challenging due to the heterogeneity
of the blast cell population and their similarities with normal myeloid cells, we evaluated
whether focusing on the most immature CD34+/CD117+ cells might facilitate the analysis.
After gating on CD34+/CD117+ cells (using MFI values of 1000 as cutoff), differentiation to-
wards the B-cell (CD19+), megakaryocytic/erythroid (CD36+/CD64−), erythroid (CD105+),
monocytic (CD64+), neutrophilic (CD15+) and megakaryocytic (CD42a.CD61+) lineage
was defined in both the AMKL and non-AMKL patients. As shown in Figure 2, leukemic
cell differentiation of AMKL patients was expectedly skewed towards the megakary-
ocytic/erythroid lineage, whereas immunophenotypic commitment toward other cell
lineages was significantly lower as compared to non-AMKL patients. Multivariate analysis
performed on CD34+/CD117+ cells from AMKL and non-AMKL patients showed good
discrimination of the two groups, both using tubes 1–6 and tubes 1–7 with major contribu-
tion of CD42a.CD61 and CD36 in both comparisons (Supplementary Figure S5). However,
multidimensional separation of AMKL versus non-AMKL patients was not significantly
improved when focusing on CD34+/CD117+ leukemic cells.
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Figure 2. Differentiation of CD34+/CD117+ AML cells in AMKL (red bars) and non-AMKL patients
(green bars). Percentage of positive cells, defined as cells with an MFI > 1000 (mean ± SEM). Differ-
entiation towards B-cell (CD19+), megakaryocytic/erythroid (CD36+/CD64−), erythroid (CD105+),
monocytic (CD64+), granulocytic (CD15+) and megakaryocytic (CD42a.CD61+) lineage is shown.

Given the observed heterogeneity in expression of CD34 and CD117 in AMKL patients,
we further evaluated whether there were immunophenotypic differences between various
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maturation stages within the AMKL patients. Thus, for all AMKL patients, AML cells were
divided into CD34+/CD117+, CD34−/CD117+, CD34+/CD117− and CD34−/CD117−
subsets (based on the backbone markers present in all tubes). As shown in Figure 3 and
Supplementary Figure S6, several markers, including maturation markers, such as CD11b,
CD14 and CD64, were more strongly expressed in the CD34−/CD117− subset, which is in
line with their presumed higher degree of differentiation. In contrast, CD13, CD33, CD7 and
CD38 expression was higher in the CD34+/CD117+ subset. The megakaryocytic markers
(CD41, CD42b, CD42a.CD61 and CD36) showed rather similar expression between the four
maturation subsets, although their expression was generally highest in the CD117−negative
subsets. In turn, CD123 was most strongly expressed in the CD34+/CD117− subset
(Supplementary Figure S6).
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Figure 3. Immunophenotypic profile of CD34+/CD117+, CD34−/CD117+, CD34+/CD117− or
CD34−/CD117− subsets of AMKL cells. Expression of markers is depicted as log10 transformed MFI
data. Statistical analysis was performed by the Kruskal–Wallis test, followed by the Mann–Whitney
test if p < 0.05. The horizontal lines between populations represent statistically significant differences
(p < 0.05). The grey zone indicates MFI levels < 1000; markers with such MFI values were considered
to be negative.
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Multidimensional analysis of the four maturation subsets showed that, in particular,
the CD34+/CD117− subset could be relatively well distinguished from the other three sub-
sets, with CD15, CD123, CD11b and CD36 as the most contributing markers (Supplementary
Figure S7). The CD34−/CD117+ subset could be separated from the CD34−/CD117−
subset mainly by CD15, whereas distinguishing other subsets (e.g., CD34+/CD117+ versus
CD34−/CD117−) was not possible. Overall, these data show that the different maturation
subsets have some differences in immunophenotypic profiles but that most markers are
similarly expressed.

3.6. Immunophenotypic Variability within AMKL

We next evaluated the immunophenotypic profiles of the four AMKL subgroups
included in our study: TAM, ML-DS, NOS-AMKL and AMKL-Other. Leukemic cells from
all patient groups were typically positive for CD34, CD117, CD45 and CD36. Univariate
analysis revealed that ML-DS patients showed a significantly higher expression of CD45,
CD33, CD35, CD38, CD11b and CD7 as compared to the other three groups (Figure 4
and data not shown). In turn, TAM and ML-DS patients showed significantly higher
expression levels of CD34 and CD117 on leukemic cells as compared to NOS-AMKL
patients. Further analysis showed a higher frequency of CD34+/CD117+ immature cells in
TAM and ML-DS patients as compared to NOS-AMKL and AMKL-Other patients (Figure 5).
The vast majority of blasts in all four subgroups showed expression of CD41, CD42 and
CD42a.CD61; however, expression of CD42b and CD42a.CD61 (Figure 4) was significantly
higher in TAM as compared to ML-DS and NOS-AMKL patients, whereas CD41 expression
was comparable across the four subgroups.
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Figure 4. Univariate analysis of marker expression between the four AMKL subgroups. Data
represent the MFI values after log10 transformation. The lines the on top of the figures represent
statistically significant differences (p < 0.05) between the two groups. The grey zone indicates MFI
levels < 1000; markers with such MFI values were considered to be negative.
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Figure 5. Distribution of AMKL cells over the various maturation stages, as defined by CD34 and
CD117 expression. The percentage of CD34+/CD117+ leukemic cells was significantly higher in
TAM and ML-DS patients as compared to NOS-AMKL and AMKL-Other patients (p < 0.05 by
Mann–Whitney test); in contrast, the percentage of CD34−/CD117− leukemic cells was higher in the
NOS-AMKL patients (p < 0.05) and AMKL-Other patients (not significant).

Finally, we evaluated whether the four groups could be discriminated from one
another in multivariate analysis. Multidimensional analysis was performed using the mean
expression values of all markers as input (combing the information of all 32 markers). As
shown in Figure 6, TAM, ML-DS and NOS-AMKL patients were generally well separated,
whereas the AMKL-Other patients were more variable and showed less separation from the
other three groups. In line with the univariate analysis, markers distinguishing the AMKL
subgroups included CD7, CD11b, CD33 and CD117. The three NOS-AMKL patients with
t(1;22) showed a comparable immunophenotype to that of the other NOS-AMKL patients
(Figure 6).
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Figure 6. Multivariate analysis of marker expression between the four AMKL subgroups. (A) TAM
versus ML-DS (contributing markers: CD7 (47%), CD11b (31%) and CD13 (21%)); (B) TAM versus
NOS-AMKL (contributing markers: CD117 (28%), CD4 (21%) and CD42b (19%)); (C) TAM versus
AMKL-Other (contributing markers: CD117 (61%), CD13 (36%) and CD19 (3%)); (D) ML-DS versus
NOS-AMKL (contributing markers: CD7 (68%), CD117 (27%) and CD11b (3%)); (E) ML-DS versus
AMKL-Other (contributing markers: CD33 (51%), CD203c (28%) and CD38 (21%)); (F) NOS-AMKL
versus AMKL-Other (contributing markers: CD7 (97%), CD38 (2%) nad CD117 (0.4%)). The arrows
indicate NOS-AMKL patients with t(1;22).
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4. Discussion

AMKL is a rare and heterogeneous disease. In this paper, we showed that more than
95% of AMKL cases show a specific immunophenotype, with expression of megakaryocytic
markers in most cases, and generally lack CD13 and HLADR. Most AMKL patients show
heterogeneous expression of CD34 and CD117, but these different subsets show rather
comparable immunophenotypes. However, TAM and ML-DS patients overall have higher
percentages of CD34+/CD117+ immature cells as compared to NOS-AMKL and AMKL-
Other patients (46% vs. 19%).

To make a diagnosis of AMKL, the leukemic cells should express megakaryocytic
markers [4]. Interestingly, three cases in our AMKL series did not show such expression and
clustered together with or near non-AMKL patients in the multivariate analysis. One such
case was an ML-DS patient; the minority (about 5–10%) of such patients are known to not
show megakaryoblastic differentiation. Despite the lack of megakaryocytic markers in im-
munophenotyping, this case clustered with the remaining ML-DS cases in the multivariate
analysis with other AMKL subgroups, indicating that besides the differences in megakary-
ocytic markers, other markers were more comparably expressed. Morphologically, the
leukemic cells were megakaryoblasts. The same was true for the other two patients, who
were negative for megakaryocytic markers and classified as NOS-AMKL. Although their
immunophenotype may have some characteristics of megakaryoblastic lineage, formally,
these cases should not have been diagnosed as NOS-AMKL. The 10 AMKL-Other cases
in our study had immunophenotypic features of megakaryocytic differentiation but were
WHO-classified differently, mostly as AML with myelodysplasia-related changes. Since
149/306 (49%) of MDS patients show abnormal megakaryocytic cells [29], this finding
is not unexpected. On the other hand, analysis of non-AMKL patients showed expres-
sion of at least one megakaryocytic marker in 22/114 (19%) of the cases and expression
of CD42a.CD61 (present in tube 6) in 11/114 (10%) of cases. Most cases (14/114; 12%)
expressed only one megakaryocytic marker, and expression was generally weak. Further-
more, most cases (16/22; 73%) appeared to exhibit monocytic differentiation. Non-specific
binding of platelets to monocytic AML cells may have resulted in seemingly positive ex-
pression of megakaryocytic markers in these cases, but this did not affect their classification.
Clearly, next to megakaryocytic markers, other markers should also be considered when
immunophenotypically classifying patients. Using EuroFlow AML panel tubes 1 to 6,
appropriate diagnosis of AMKL patients is possible, and tube 7 is particularly designed for
confirming the AMKL diagnosis. Indeed, our data show that CD42a.CD61 was most sensi-
tive, whereas CD42b was most specific. Based on our data, a combination of the backbone
markers CD34, CD117, HLADR and CD45 supplemented with CD13, CD42a.CD61, CD36
and CD42b may allow for flowcytometric confirmation of AMKL diagnosis in patients
highly suspected for AMKL based on morphological and/or clinical criteria.

AMKL patients often showed heterogeneous expression of CD34 and CD117, which
may hamper easy gating of the leukemic cells. When focusing on the presumed most
immature CD34+/CD117+ cells, we found that these cells were more frequent in ML-DS and
TAM patients (47% and 44%, respectively, versus 15% in NOS-AMKL and 22% in AMKL-
Other), which is in line with the observed increase in CD34+ immature megakaryoblasts
by the GATA1 mutation [30]. Immunophenotypically, the CD34+/CD117+ cells in the
AMKL patients clearly showed megakaryocytic differentiation, with frequent expression of
CD36 (76% of cases) and/or CD42a.CD61 (46% of cases) but lacking markers indicative
of other lineages (such as CD19, CD15 and CD64). In multidimensional analysis, AMKL
patients could be generally well separated from non-AMKL patients, both for the total
leukemic population as well as for the CD34+/CD117+ cells. This confirms the results
of an older study, which showed that the CD34+ cells in AMKL are different from those
in AML M0-M6 cases [15]. Comparing CD34+/CD117+ cells of AMKL patients with
CD34−/CD117+, CD34+/CD117− or CD34−/CD117− cells showed some differences,
e.g., higher expression of CD15 and CD64 in the CD34−/CD117− cells, indicating some
maturational changes. However, it should be noted that such differences might also at least
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partially be explained by contamination of the leukemic cell gate by mature neutrophils
and/or monocytes. The observation that the megakaryocytic markers were comparably
expressed by the four different maturation stages indicates that these markers were already
acquired early during megakaryocytic ontogeny.

AMKL patients consisted of four different groups, and immunophenotypic differences
between these groups could be observed. ML-DS patients have been reported to exhibit a
specific immunophenotypic profile (CD7+/CD36+/CD117+/CD71+/CD4low/CD42b+) [17],
which was confirmed in this study. Although TAM and ML-DS are related to one another,
ML-DS and TAM patients showed differences in marker expression. For example, expression
of CD33, CD7, CD38 and CD11b were higher in ML-DS patients, extending and confirming
previous studies [12,18]. Another study showed that deficiency of CD11a is a marker for
TAM and AMKL [31]; however, this CD11a is not included in the EuroFlow protocol. CD36
was highly expressed in both TAM and ML-DS patients; expression of this marker has been
associated with high drug sensitivity [32]. In multidimensional analyses, TAM and ML-DS
cases were generally separated from NOS-AMKL and AMKL-Other patients, whereas the
latter two groups could not be separated well and also seemed more heterogeneous.

In our study, we used mean fluorescence intensities (MFI) for evaluation of marker
expression in multidimensional analysis. One of the limitations of this parameter could
be the susceptibility for outliers in comparison to median values. However, given the
heterogeneous expression of several markers, with some markers only expressed by sub-
population(s), the mean value seemed to be more appropriate than a median MFI, which
would not take such expression into account, or only to a limited extent.

5. Conclusions

In conclusion, AMKL generally can be reliably diagnosed using the EuroFlow AML
panel (tubes 1–6). Besides the prominent contribution of the megakaryocytic markers, other
markers (such as CD36, HLADR and CD13) may support the diagnosis. Among AMKL
patients, TAM and ML-DS groups show a specific immunophenotypic profile. A future
challenge is to obtain more insights into unique immunophenotypes related to underlying
molecular abnormalities of AMKL subgroups in order to improve AMKL identification in
future diagnostics. The use of standardized diagnostic protocols, such as the EuroFlow
panel, will facilitate the collection of a sufficient number of patients with comparable
flowcytometric data.
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