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Uncertainty aversion predicts the neural 
expansion of semantic representations

Marc-Lluís Vives    1,2  , Daantje de Bruin    1, Jeroen M. van Baar3, 
Oriel FeldmanHall    1,4,5   & Apoorva Bhandari    1,5 

Correctly identifying the meaning of a stimulus requires activating the 
appropriate semantic representation among many alternatives. One way 
to reduce this uncertainty is to differentiate semantic representations 
from each other, thereby expanding the semantic space. Here, in four 
experiments, we test this semantic-expansion hypothesis, finding that 
uncertainty-averse individuals exhibit increasingly differentiated and 
separated semantic representations. This effect is mirrored at the neural 
level, where uncertainty aversion predicts greater distances between 
activity patterns in the left inferior frontal gyrus when reading words, 
and enhanced sensitivity to the semantic ambiguity of these words in 
the ventromedial prefrontal cortex. Two direct tests of the behavioural 
consequences of semantic expansion further reveal that uncertainty-averse 
individuals exhibit reduced semantic interference and poorer 
generalization. Together, these findings show that the internal structure of 
our semantic representations acts as an organizing principle to make the 
world more identifiable.

Human life is rife with uncertainty, from the information we gather 
through our senses1,2 to the unpredictable outcomes of our actions3–6. 
People intolerant to uncertainty find it especially aversive and are 
therefore strongly motivated to reduce it7,8. When confronted with 
ambiguous situations that lack a clear interpretation, those who are 
averse to uncertainty experience stress and will take action to avoid any 
additional uncertainty9. Because these individuals are more sensitive 
to uncertainty and perceive greater uncertainty than those who are 
uncertainty tolerant10, they are often better at remembering concepts 
or cues that signal uncertainty11. In short, uncertainty aversion plays 
an outsized role in shaping behaviour across a range of domains12–15. 
Despite this, uncertainty is inescapable; it even imbues the concepts we 
use to make sense of the world16. Take for instance the words ‘slip’ and 
‘lapse’, which have similar but subtly different meanings. When focusing 
on the similarities, both refer to some form of mistake, which means 
that they can be represented similarly in semantic space and it may not 
matter which word one uses. Focusing on the differences, however, 

highlights that a ‘slip’ is usually trivial and accidental, while a ‘lapse’ can 
be serious and imply responsibility, and this may cause an individual to 
separate these concepts in semantic space. In this Article, we propose 
that individuals seeking to minimize uncertainty distinguish concepts 
from one another by separating them in semantic space.

Semantic representations encode our conceptual knowledge 
about the world and influence how we perceive incoming sensory 
information17, which enables us to ascribe meaning to stimuli16. How-
ever, because stimuli typically activate more than one concept, there 
is always some uncertainty when identifying meaning. The degree of 
uncertainty between a pair of concepts depends on their separation in 
semantic representational space. Therefore, ensuring that concepts 
are sufficiently differentiated from one another in such a space helps 
to reduce semantic uncertainty. This logic accords with classic work 
showing that the closer a pair of concepts are in psychological space 
(for example, snow and cold), the more confusable they are, while 
more dissimilar concepts are easier to discriminate and thus suffer 
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This promotes useful generalization between similar concepts. In other 
words, the structure of a semantic representation reflects a trade-off 
between the need for discrimination and generalization. We hypoth-
esize that people averse to uncertainty, through semantic expansion, 
privilege discrimination over generalization.

To test this semantic-expansion hypothesis, we conducted four 
experiments in which we examined the effects of individual differ-
ences in uncertainty attitudes on semantic distances between words 
in psychological and neural space and their behavioural consequences. 
The results reveal that uncertainty aversion promotes the separation 
of semantic representations at both the psychological (experiment 1) 
and the neural levels (experiment 2). We then tested the direct behav-
ioural consequences of the semantic expansion by examining how 
uncertainty aversion shapes the trade-off between discriminability 
and generalization. We find that uncertainty aversion reduces semantic 
interference (experiment 3) and leads to poorer generalization (experi-
ment 4). In other words, people averse to uncertainty exhibit more 
distinct semantic representations, which results in them prioritizing 
the need to discriminate between concepts, at the cost of their ability 
to generalize.

Results
Uncertainty aversion is associated with a semantic expansion
In experiment 1, 103 participants made semantic relatedness judge-
ments between 16 target words and 42 comparison words (Methods 

far less from semantic interference (for example, cat and black)18,19. In 
short, the distances between concepts in semantic representational 
space determine whether one’s everyday experiences are conceptu-
ally ambiguous or fairly clear-cut. We hypothesize that individuals 
averse to uncertainty mitigate the effects of uncertainty by making 
their semantic representations more distinct. Here we test whether 
this process, which we term semantic expansion, causes increases in 
pair-wise distances between concepts.

The echo of such a strategy should also be detectable in the struc-
ture of neural representations. Consider a brain region that encodes 
concepts in the activity of its neurons. Each concept is associated with 
a distinct neural activity pattern, and separating the activity patterns 
from each other as much as possible enables a downstream neuron 
reading out the representation to disambiguate each concept from 
the others20–22. The greater the distance between neural activity pat-
terns, the more separable the representation is23,24 and, consequently, 
the less uncertainty there is in the representation—which would be 
very useful to those who prefer to reduce the attendant uncertainty 
of a concept (Fig. 1). Simply put, our semantic-expansion hypothesis 
predicts that individuals who are averse to uncertainty should exhibit 
more differentiated neural activity patterns.

While the need to discriminate between concepts encourages 
concepts to be separated from each other, there is an opposing func-
tional influence on the structure of the representational space: the need  
to keep similar concepts closer to each other in psychological space. 
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Fig. 1 | Dissimilar semantic representations and neural activity patterns 
are more identifiable. Each word is associated with a semantic representation 
captured by judging the semantic relationship between two sets of words 
(experiment 1) or a unique neural pattern of activity captured by reading a list of 

words one at a time (experiment 2). Semantic and neural competition increases 
as similarity between neural activity increases. Neural representations that 
are more dissimilar on average would suffer less neural competition and, as a 
consequence, be more identifiable.
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and Fig. 1). Similarity between the 16 target words was then estimated 
by correlating the 42-element vectors of relatedness ratings across 
words. To calculate distances between words using the same number 
of meaningful dimensions for each participant25, multidimensional 
scaling (MDS) was applied. A four-dimensional partition was selected 
given that it was the lowest number of dimensions that produced a 
good fit (stress = 0.09)26. In this four-dimensional space, the average 
distance between words was computed for each participant and then 
correlated with individuals’ uncertainty attitudes, which were captured 
by the well-validated intolerance of uncertainty scale (IUS). The IUS 
assesses uncertainty aversion by asking people to rate to what extent 
statements such as ‘the ambiguities in life stress me’ describe them9. 
Showing a semantic-expansion effect, we found greater aversion to 
uncertainty was associated with an increase in the distance between 
concepts in psychological space (r = 0.35, P < 0.001; Fig. 2a). This rela-
tionship was not dependent on the number of dimensions selected 
when applying MDS since the same result also holds for three, five and 
six dimensions (Supplementary Table 1). This effect was not driven by 
an increase in response variability in people with higher IUS scores: 
there was no significant relationship between response variability 
and uncertainty aversion (r = −0.03, P = 0.79; Supplementary Fig. 1), 
and the semantic-expansion effect remained significant after control-
ling for response variability in a regression (β = 0.001 ± 0.0002 (s.e.), 

P < 0.001). The effect also remains significant after controlling for 
global variables such as IQ, age and gender (β = 0.001 ± 0.0003 (s.e.), 
P = 0.002; Supplementary Table 2).

The expansion of semantic neural representations
To test whether uncertainty aversion is also associated with more 
distal neural representations, in experiment 2 we analysed data from 
a functional magnetic resonance imaging (fMRI) experiment in which 
44 participants read 60 words and were asked to think about their 
meaning (Methods). We used representational similarity analysis 
(RSA) to estimate the distance between words in neural semantic 
space. Given previous work showing a role for the left inferior frontal 
gyrus (LIFG), angular gyrus, middle temporal gyrus (MTG), anterior 
temporal cortex (ATC) and perirhinal cortex in semantic representa-
tion27–32, we hypothesized that the pair-wise distances between the 
neural representations of words in these brain regions (localized to 
the left hemisphere33) would be sensitive to uncertainty aversion. We 
further reasoned that the ventromedial prefrontal cortex (VMPFC) 
as well as the precuneus—regions known to process various forms 
of uncertainty6,34–38 and in some cases have also been implicated in 
semantic processing (that is, the precuneus)31—might be involved in 
indexing the relationship between uncertainty intolerance and how 
words are represented.
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Fig. 2 | The semantic-expansion at the psychological and neural level.  
a, A significant correlation (r) was observed between uncertainty intolerance 
and distances between semantic representations. The shaded area represents 
the 95% confidence interval; the result remains significant even after removing 
the two outliers, P = 0.01, two-sided test. b, Uncertainty aversion modulates 
the relationship between semantic similarity and neural similarity. Semantic 
representations were captured by a reduced neural space for people tolerant of 
uncertainty, while the neural space was larger for people averse to uncertainty. 
Cross-validated Mahalanobis distances between pairs of words plotted as 

a function of beta estimates extracted from the regression model. c, This 
relationship between uncertainty aversion and representational distance 
between words in the LIFG is further illustrated using two representative 
participants that differed in their uncertainty attitudes. MDS was applied to 
their average neural RDMs to transform the neural representational distances 
for all word pairs into a two-dimensional space. Each word is represented by a 
point in the plane. Words are more distant from one another for the uncertainty-
averse participant.
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In any neural semantic representation, the neural pattern distance 
between a pair of concepts should be proportional to their semantic 
dissimilarity. We reasoned that, under the semantic-expansion hypoth-
esis, uncertainty aversion would increase the slope of the relationship 
between semantic dissimilarity and neural representational dissimilar-
ity, as people averse to uncertainty expand their neural semantic space. 
To test this prediction, for each participant, a neural representational 
dissimilarity matrix (RDM) was constructed for each region of interest 
(ROI) by computing the cross-validated Mahalanobis distance between 
all word pairs39. A model RDM was also constructed containing the 
pair-wise differences of the semantic dissimilarity between words 
derived from Global Vectors for Word Representation (GloVe; Meth-
ods). For each of our ROIs, a linear mixed-effect regression was run 
with the vectorized lower triangle of the neural RDM as the dependent 
variable, and the vectorized lower triangle of the semantic similar-
ity RDM, an individual’s tolerance to uncertainty, and their interac-
tion, all as predictors. In the LIFG, we observed a significant positive 
interaction between semantic similarity and aversion to uncertainty: 
increasingly dissimilar words exhibit increasingly dissimilar activ-
ity patterns, especially for individuals who are averse to uncertainty 
(β = 0.02 ± 0.006 (s.e.), P = 0.005; Bonferroni-corrected for multiple 
comparisons across seven ROIs, Fig. 2c). Including age, gender and level 
of education as covariates did not change this result (Supplementary 
Results Experiment 2). This effect was not observed in any other ROIs 
(Supplementary Table 3).

We also tested the possibility that this neural semantic-expansion 
effect was driven by increased executive control exerted by participants 
with high IUS scores, which could in theory produce an online reshap-
ing of the semantic representation. To test this, we estimated the mean 
activity in the fronto-parietal regions of the brain40, which are known 
to index executive control and mental effort40, and included them as 
covariates in our regression. Again, the significant interaction between 
semantic similarity and IUS remained significant (β = 0.03 ± 0.005, 
P < 0.001).

Uncertainty aversion and semantic ambiguity
The uncertainty associated with multiple semantic representations 
cued by a given word is higher for words that have multiple meanings 
and are thus considered semantically ambiguous. For example, ‘run’ 
can be used in a diverse array of contexts, whereas ‘artichoke’ is typi-
cally only used in the context of food. A word that can be used in many 
different contexts has a larger number of referents and greater semantic 
ambiguity41. For those intolerant to uncertainty, encoding this ambigu-
ity would enable semantic representations to be tagged as ones that 
must be structured more distally. To test this, we used RSA to estimate 
the pair-wise neural pattern distances between each word. Given that 
each word is associated with a certain degree of semantic ambigu-
ity—estimated using a corpus that counts the number of contexts a 
given word appears in41—we can interrogate whether our ROIs6,34,35,37,38,42 

track this semantic ambiguity as a function of an individual’s aversion 
to uncertainty. We constructed a neural RDM comprising the pair-wise 
cross-validated Mahalanobis distances between individual words, and a 
model RDM containing the pair-wise differences of the semantic ambi-
guity between words derived from a language corpus (Methods). We 
then ran a linear mixed-effects regression analysis in which the vector-
ized neural RDM served as the dependent variable, and the vectorized 
semantic ambiguity RDM and an individual’s tolerance to uncertainty 
(as well as their interaction) served as predictors for our ROIs.

Given the importance of semantic ambiguity to uncertainty-averse 
individuals, we expected ambiguity to be encoded more strongly for 
participants with higher IUS. Indeed, in the VMPFC, we observed a 
significant positive interaction between semantic ambiguity and aver-
sion to uncertainty: words that are similar in their semantic ambiguity 
exhibit similar activity patterns, especially for individuals who are 
averse to uncertainty (β = 0.03 ± 0.006 (s.e.), P < 0.001; Fig. 3b). A simi-
lar effect, albeit of lower magnitude, was also observed in the precuneus 
and LIFG, as indexed by a significant interaction between intolerance 
of uncertainty and semantic ambiguity (precuneus: β = 0.02 ± 0.006 
(s.e.), P = 0.03; LIFG: β = 0.02 ± 0.006 (s.e.), P = 0.04); these effects, 
however, do not remain significant after controlling for increased 
cognitive effort presumably associated with processing semantically 
ambiguous words (see Supplementary Table 4 for the rest of the ROIs).

Uncertainty aversion improves semantic discrimination
The semantic-expansion hypothesis posits that uncertainty-averse 
participants reduce uncertainty by increasing the separation between 
concepts in both psychological and neural space. A natural conse-
quence of this hypothesized semantic expansion is that for those intol-
erant to uncertainty, similar concepts can be more easily discriminated 
and are less likely to produce semantic interference. To test for this 
reduction in semantic interference, we leveraged the classic Deese–
Roediger–McDermott false memory paradigm in which participants 
first encode lists of words and are then asked to discriminate between 
old and new words in a surprise recognition memory test (Fig. 4a). A 
robustly observed effect within the literature is that lure words semanti-
cally similar to the initial words (for example, snow and cold) tend to 
be falsely endorsed as old15,16.

In experiment 3, 205 participants first studied 50 words and were 
then given a surprise recognition memory task with 100 words, 50 
of which were the ones previously shown and 50 of which were novel 
(Methods and Fig. 4a). Participants performed the task reasonably 
well, correctly identifying the old words 72% of the time (hit rate) while 
misidentifying the new words 31% of the time (false alarm rate). To 
test the prediction that uncertainty aversion would modulate the 
effect of semantic interference, we focused our analysis on the false 
alarm rate. We first estimated semantic similarity between the novel 
and previously seen words using an unsupervised learning algorithm 
trained on a large language corpus (GloVe). The maximum similarity 
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between previously seen words and each new word was calculated and 
used as a regressor (alongside participants’ IUS scores, as well as their 
interaction) to predict the false alarm rate. Results reveal that as the 
similarity between novel and previously seen words increases, so too 
does the probability of falsely identifying a novel word as being already 
seen (β = −0.22 ± 0.11 (s.e.), P = 0.03)—an effect that was modulated 
by one’s tolerance to uncertainty (interaction: β = 0.06 ± 0.02 (s.e.), 
P = 0.01, Fig. 4b). That is, the greater the aversion to uncertainty is, 
the better the discrimination between similar concepts. This effect 
remains significant when adding average hit rate as a regressor in the 
model (β = 0.06 ± 0.02 (s.e.), P = 0.01; Supplementary Fig. 2).

Uncertainty aversion reduces semantic generalization
Classic work shows that generalization between stimuli decreases 
as the psychological distance (that is, discriminability) between the 
stimuli increases43. By this logic, a direct consequence of semantic 
expansion—which is observed in those averse to uncertainty—should 
be a reduction in semantic generalization. To test this, in experiment 
4, 197 participants first learned an association between 4 concepts (for 
example, chair and wrench, which were cued by images of objects) 
and 4 actions (pressing 1 of 4 possible keys). To learn the associations, 
participants were presented with an image of an object and told to 
press one of the keys. Feedback about whether the correct key was 
pressed was immediately provided. Once they learned which concept 
was associated with which key, they moved to a generalization phase 
in which they were presented with new pictures of other concepts 
(for example, stool, screwdriver). This time, they were instructed to 

press whichever key they saw fit (no feedback was provided during 
the generalization phase; Methods and Fig. 4c). For each of the four 
concepts presented during learning, two concepts were selected as 
stimuli in the generalization phase, one which was semantically close to 
the initial concept (for example, stool is conceptually similar to chair) 
and another that was further away (for example, curtain is conceptu-
ally distant to chair) but still semantically closer than any of the other 
target concepts (for example, curtain is even more distant to jellyfish 
than chair). Pressing the same key associated with the concept during 
learning was coded as successful generalization (=1), while any other 
response was coded as lack of generalization (=0). Semantic similarity 
between the novel concepts during generalization and initial concepts 
during learning was estimated using GloVe to predict the probability 
of generalization, alongside participant’s aversion to uncertainty and 
their interaction. As expected, results reveal that the probability of 
generalization increased as the similarity between novel and target 
concepts increased (β = −0.83 ± 0.042 (s.e.), P < 0.001), an effect that 
was modulated by uncertainty aversion (interaction: β = 0.08 ± 0.03 
(s.e.), P = 0.01), such that semantically similar concepts supported a 
lower level of generalization as uncertainty aversion increased (Fig. 4d).

Discussion
Uncertainty is present in virtually all aspects of our lives, from percep-
tual judgements to decision outcomes. A major source of uncertainty 
comes from deciphering meaning in a conceptually ambiguous world. 
Not only are most stimuli associated with more than one meaning44 but 
also a stimulus can activate multiple similar semantic representations45 
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(for example, slip and lapse), which results in greater uncertainty. Here 
we directly tested one strategy for reducing this type of uncertainty, 
which is to expand one’s semantic representations.

Behavioural and neural results illustrate the semantic-expansion 
hypothesis. Aversion to uncertainty scales with more differentiated 
semantic representations (experiment 1), which is also associated with 
increasingly separated neural activity patterns in the LIFG (experi-
ment 2)—a region classically involved with matching words with their 
appropriate semantic representation46–49. Two direct behavioural tests 
of this semantic-expansion hypothesis show that uncertainty-averse 
individuals exhibit improved semantic discrimination during a surprise 
memory recognition test (experiment 3) and reduced semantic gener-
alization for similar concepts (experiment 4). As uncertainty becomes 
more aversive, the structure of semantic representations becomes 
increasingly separated so that each concept is more easily identified, 
and as a consequence, the mapping between stimulus and meaning 
becomes more certain. Together, these findings show that personality 
needs, such as the need to reduce uncertainty, can shape fundamental 
aspects of cognition, including how we represent meaning. Indeed, our 
results suggest that an organizing principle of semantic representa-
tions might be the amount of uncertainty people can tolerate.

The fact that we found that the expansion of neural activity pat-
terns was localized to the LIFG—and not a broader neural network 
associated with uncertainty50–52—suggests that regions not traditionally 
related to uncertainty processing also play a distinct role in helping to 
reduce semantic uncertainty. Taken a step further, rather than relying 
on the arbitration of specific neural regions to encode various types 
of uncertainty50–52, it is possible that the brain reduces uncertainty 
by shaping the geometry of neural activity patterns associated with 
concepts (or stimuli). This account dovetails with current, broader 
theories of neural activity that posit a relationship between distinct 
representations and reduced task interference20,23,24.

Our findings also show that classic uncertainty regions, namely the 
VMPFC and precuneus, are especially sensitive to semantic uncertainty 
in those averse to uncertainty—linking the neural encoding of semantic 
representation to regions involved in processing uncertainty27. Con-
sidering that the semantic-expansion result was localized to the LIFG, 
this finding suggests a neural division of labour. In a situation devoid of 
context in which virtually any meaning associated with each word could 
be retrieved, VMPFC appears to signal the differences in the number of 
possible referents that could be retrieved. In contrast, the LIFG plays a 
role in biasing the structure of semantic representations—through the 
alteration of the geometry of neural representations—which expands 
depending on one’s aversion to uncertainty, thus avoiding semantic 
confusion. This accords with previous work linking LIFG activity with 
the resolution of semantic ambiguity53.

Even though the specific role of the LIFG in language processing 
is still debated54, it has been implicated in semantic control55,56. The 
fact that the observed semantic-expansion effect was localized only 
to the LIFG may suggest that semantic expansion does not occur in 
stable semantic representations but is instead produced online based 
on task demands. We caution, however, against interpreting the LIFG 
as the sole player involved in processing semantic expansion for two 
reasons. First, the fact that we did not observe semantic expansion in 
the ATC may simply be because our study was not optimized to capture 
the signal in this region. Second, the online account is hard to reconcile 
with our finding that semantic interference is reduced in those averse 
to uncertainty, since there is no task demand to discriminate concepts 
during encoding but only later, during a surprise recognition memory 
test. Indeed, similar semantic interference effects have previously been 
associated with medial temporal regions18 rather than the LIFG. Future 
work should clarify whether semantic expansion is a property of the 
stored representation, the result of an online computation or both.

Regardless, the resolution of semantic ambiguity through seman-
tic expansion has behavioural consequences that can be understood 

through the lens of a computational trade-off between discrimination 
and generalization23,43,57. The world would be impossible to navigate if 
we had to learn from scratch how to engage with each new stimulus. 
Instead, we routinely generalize what we learn about from one stimu-
lus to other conceptually similar stimuli43,57,58. This sensitivity to the 
similarity between concepts, however, comes at the cost of increased 
uncertainty and the possibility of interference. We are more likely to 
confuse two similar concepts with one another, resulting in errors of 
discrimination. A natural consequence of semantic expansion is that it 
shifts this trade-off in favour of discrimination. Increasing the separation 
of concepts in a psychological and neural semantic space would make 
concepts more discriminable. We show that people averse to uncer-
tainty are indeed less affected by interference between similar semantic 
representations and show improved discrimination between concepts. 
Simultaneously, they are also less able to generalize behaviours between 
similar concepts. In other words, uncertainty aversion leads to people 
making their world more compartmentalized, trading off generalization 
in favour of better discriminability and lower uncertainty.

Important open questions remain. First, does semantic expansion 
preferentially shape concepts that are closer together or generally 
influence the whole representation? When the structure of semantic 
representation was measured (experiments 1 and 2), we found no direct 
evidence that the expansion effect is greater for similar concepts. How-
ever, in experiments 3 and 4, people averse to uncertainty exhibited 
greater semantic discrimination (experiment 3) and poorer generaliza-
tion (experiment 4), especially for very similar concepts. It is possible 
that the different task demands in these latter experiments made our 
measurements more sensitive for detecting the semantic-expansion 
effect with concepts that share increasing similarity, and future work 
can help arbitrate whether this is the case. Second, might our findings 
be explained by expanding the dimensionality of the representation? 
Previous theoretical work has argued that the dimensionality of a 
representation controls a trade-off between discriminability and gen-
eralizability23, and indeed, an increase in dimensionality would result in 
greater separability. In line with this view, we found that those averse to 
uncertainty had higher discriminability (and thus lower uncertainty) at 
the cost of poorer generalizability (experiments 3 and 4). However, we 
found no direct evidence that uncertainty aversion is associated with 
higher dimensionality (experiments 1 and 2; Supplementary Figs. 3  
and 4). It is possible that, given the low dimensionality of the represen-
tational structures that we examined and the poor sensitivity of current 
dimensionality measures, our analysis was not sufficiently powered to 
detect higher dimensionality for people averse to uncertainty, which 
leaves it as an open question for future work.

Research has investigated how diverse experiences alter mental 
and neural representations, mostly by measuring different levels of 
expertise (for example, trained musicians versus non-musicians59). 
Rather than showing how different experiences shape neural represen-
tations, the semantic-expansion hypothesis proposes that differences 
can originate even when people share the same experience. Based on 
the notion that those averse to uncertainty are more likely to adopt 
strategies that decrease uncertainty and increase identifiability, we 
have demonstrated that this stable personality trait predicts a more 
distal structure of semantic representations—a mechanism that could 
be applied across domains (for example, animals, objects) and cogni-
tive processes (for example, perception).

Methods
All experiments were approved by Brown University’s institutional 
review board. All participants provided informed consent as approved 
by the institutional review board.

Experiment 1
Participants. A total of 108 people participated in the experiment on 
Prolific. Five participants were excluded after they failed to pass an 
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attention check at the end of the experiment, resulting in a final sample 
of 103 participants (47 women, 51 men, 3 non-binary and 2 transgender; 
mean age 34 years, s.d. = 12).

Word stimuli. For consistency, we selected a subset of words that were 
also used in experiment 2, which were originally selected to address an 
orthogonal research question. Apart from these words, we identified 
other words that the target words could be compared with. To do this, 
we searched through lists of abstract words and selected 48 words 
that we (1) classified as abstract (for example, life, system), (2) were 
comprehensible and (3) varied in how similar they were to each other. 
A table with these words can be found in Supplementary Information 
with their summary characteristics.

Procedure. Participants completed 672 relatedness ratings between 16 
target words and 42 comparison words on a scale from 1 (not related) 
to 9 (very related). The target and comparison words were presented 
on the screen simultaneously, and participants then judged to what 
extent they were related. The instructions did not ask participants to 
focus on a specific semantic domain. Words were selected to be rela-
tively abstract: freedom, family, choice (see full list in Supplementary 
Information). Following this task, participants’ uncertainty attitudes 
were captured using the 27-item IUS as well as demographic informa-
tion. The experiment lasted around 40 min, and participants received 
US$4.50 as compensation.

Experiment 2
Participants. A total of 44 participants, all of whom were right-handed 
(17 women and 27 men; mean age 32 years, s.d. = 14) participated in the 
experiment. The data analysed here were collected as part of a larger 
study exploring the neural mechanisms of intolerance to uncertainty. 
Participants provided informed consent and received US$40 as mon-
etary compensation.

Procedure. Participants completed a battery of tasks inside and out-
side the MRI scanner. Before the MRI scanning session began, partici-
pants provided basic demographic information and completed a list of 
questionnaires including the 27-item IUS9. The scanning session lasted 
approximately 1.5 h, in which they completed a word reading task and a 
video watching task (not analysed in this research). After the scanning 
session, participants completed other questionnaires and tasks that 
were also not analysed for this research.

Word reading task. The word reading task was conducted inside the 
MRI scanner. The task consisted of 6 runs, each made up of 80 trials. In 
every run, 60 unique words were individually presented on the centre 
of the screen without any accompanying context. Each trial stimulus 
was presented for 2.5 s with a fixed inter-stimulus interval of 2.5 s dur-
ing which only a fixation cross appeared on the screen. Twenty null 
trials were added in which only a fixation cross was shown to improve 
the efficiency of the design for estimating stimulus-evoked activity 
to each word. The trial order was randomized, and the words were 
presented in black font on a white background screen. To maintain the 
participant’s attention, participants had to indicate if they believed the 
word presented was political or non-political by pressing one of two 
response buttons. The total run duration was approximately 6 min, 
and each participant completed 6 runs.

fMRI acquisition and pre-processing. MR images were collected on a 
Siemens Prisma Fit 3-Tesla research-dedicated scanner. T2*-weighted 
functional scans were acquired using a multi-slice sequence capturing 
three slices at once to ensure whole-brain coverage with short repeti-
tion time (TR = 1,500 ms). Sixty 3 mm transverse slices were acquired, 
each with 64 × 64 voxels of 3.0 mm isotropic, building up a field of view 
that covered the entire brain except part of the cerebellum. The field 

of view was tilted upward by 25° at the front of the brain to minimize 
tissue gradient-related signal dropout in the orbitofrontal cortex. 
Contrast settings were optimized for cortical grey matter (TE(Echo 
Time) = 30 ms, flip angle = 86°). T1-weighted (T1w) anatomical scans 
were acquired using a standard MPRAGE sequence (160 sagittal slices 
with 256 × 256 voxels of 1.0 mm isotropic, TR = 1,900 ms, TE = 3.02 ms, 
flip angle = 9°). Pre-processing was performed using fMRIPrep 
1.5.1rc260 (RRID:SCR_016216), which is based on Nipype 1.3.0-rc160,61 
(RRID:SCR_002502).

Anatomical data pre-processing. The T1w image was corrected 
for intensity non-uniformity with N4BiasFieldCorrection62, distrib-
uted with ANTs 2.2.063 (RRID:SCR_004757) and used as T1w reference 
throughout the workflow. The T1w reference was then skull stripped 
with a Nipype implementation of the antsBrainExtraction.sh workflow 
(from ANTs), using OASIS30ANTs as target template. Brain tissue seg-
mentation of cerebrospinal fluid (CSF), white matter and grey matter 
was performed on the brain-extracted T1w image using fast64 (FSL 5.0.9, 
RRID:SCR_002823). Volume-based spatial normalization to one stand-
ard space (MNI152NLin2009cAsym) was performed through nonlinear 
registration with antsRegistration (ANTs 2.2.0), using brain-extracted 
versions of both the T1w reference and the T1w template. The following 
template was selected for spatial normalization: ICBM 152 Nonlinear 
Asymmetrical template version 2009c65 (RRID:SCR_008796; Template-
Flow ID: MNI152NLin2009cAsym).

Functional data pre-processing. The following pre-processing was 
performed for each of the BOLD runs per participant. First, a reference 
volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. The BOLD reference was then co-registered 
to the T1w reference using FLIRT66 (FSL 5.0.9) with the boundary-based 
registration67 cost function. Co-registration was configured with nine 
degrees of freedom to account for distortions remaining in the BOLD 
reference. Head-motion parameters with respect to the BOLD refer-
ence (transformation matrices and six corresponding rotation and 
translation parameters) were estimated before any spatiotemporal 
filtering using mcflirt68 (FSL 5.0.9). BOLD runs were slice-time cor-
rected using 3dTshift from AFNI 2016020769 (RRID:SCR_005927). The 
BOLD time series (including slice-timing correction when applied) 
were re-sampled onto their original native space by applying a single, 
composite transform to correct for head-motion and susceptibility dis-
tortions. These re-sampled BOLD time series referred to pre-processed 
BOLD. The BOLD time series were re-sampled into standard space, 
generating a pre-processed BOLD run in MNI152NLin2009cAsym 
space. Several confounding time series were calculated based on the 
pre-processed BOLD: frame-wise displacement, DVARS (defined as the 
temporal derivative of root mean square variance over voxels) and three 
region-wise global signals. Frame-wise displacement and DVARS are 
calculated for each functional run, both using their implementations 
in Nipype70. The three global signals are extracted within the CSF, the 
white matter and the whole-brain masks.

Additionally, a set of physiological regressors were extracted to 
allow for component-based noise correction (CompCor71). Principal 
components are estimated after high-pass filtering the pre-processed 
BOLD time series (using a discrete cosine filter with 128 s cut-off) for 
the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated from the 
top 5% variable voxels within a mask covering the subcortical regions. 
This subcortical mask is obtained by heavily eroding the brain mask, 
which ensures it does not include cortical grey matter regions. For 
aCompCor, components are calculated within the intersection of the 
aforementioned mask and the union of CSF and white matter masks 
calculated in T1w space, after their projection to the native space of 
each functional run (using the inverse BOLD-to-T1w transformation). 
Components are also calculated separately within the white matter and 
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CSF masks. For each CompCor decomposition, the first k components 
with the largest singular values are retained, such that the time series of 
the retained components are sufficient to explain 50% of the variance 
across the nuisance mask (CSF, white matter, combined or temporal)72. 
The remaining components are dropped from consideration.

The head-motion estimates calculated in the correction step 
were also placed within the corresponding confounds file. The con-
found time series derived from head-motion estimates and global 
signals were expanded with the inclusion of temporal derivatives 
and quadratic terms for each73. Frames that exceeded a threshold of 
1.0 mm frame-wise displacement were annotated as motion outliers. 
All re-samplings can be performed with a single interpolation step by 
composing all the pertinent transformations (that is, head-motion 
transform matrices and co-registrations to anatomical and output 
spaces). The data were not susceptibility-distortion corrected in the 
absence of field maps. The gridded (volumetric) re-samplings were 
performed using antsApplyTransforms (ANTs), configured with Lanc-
zos interpolation to minimize the smoothing effects of other kernels74. 
Non-gridded (surface) re-samplings were performed using mri_vol-
2surf (FreeSurfer).

fMRI data cleaning. For the word reading task, two exclusion criteria 
were used. First, we excluded runs in which there were excessive motion 
artefacts, defined as a frame-wise displacement greater than 1 mm in 
more than 10% of the repetition times. Second, runs in which partici-
pants did not press the response button because of experimenter error 
or a lack of attention were also excluded. This resulted in a total exclu-
sion of 8 runs from 6 participants (on average 1.3 runs per participant 
and not more than 2 runs for each participant, which leaves at least 4 
presentations of each word for each participant) and the exclusion of 
one participant all together, leading to a final inclusion of 43 partici-
pants for the statistical fMRI analyses.

Statistical fMRI analysis. ROI. Based on previous research on semantic 
processing27–32, we defined our ROIs as the LIFG, angular gyrus, MTG, 
ATC and perirhinal cortex. The LIFG was defined using the triangular 
and opercular part of the LIFG, as stipulated by the Automated Ana-
tomical Labeling (AAL) atlas75. The AAL atlas was also used to demarcate 
the angular gyrus, MTG and ATC. The perirhinal cortex was defined as 
Brodmann areas 35 and 36. We also had a priori ROIs related to uncer-
tainty6,34–38, which included the VMPFC and precuneus—which were 
also demarcated using the AAL.

RSA. For every participant, a general linear model was constructed 
using SPM12 in MatlabR2017b, in which every word that was pre-
sented in the word reading task was modelled as a separate regres-
sor yoked the duration of stimulus display. Motion was regressed 
using six motion directions, their first derivatives, their squares and 
the first derivatives of the squares. In addition, the CompCor physi-
ological regressors described above were included as covariates for 
de-noising. Fitting this model to the data yielded a beta map per run, 
per word. The beta values for each voxel were extracted for each ROI. 
The RSA Toolbox76 (http://github.com/rsagroup/rsatoolbox) was 
then used to compute, for each participant and ROI, a neural RDM 
using the cross-validated Mahalanobis distance between all word 
pairs. This measure incorporates multivariate noise normalization 
and cross-validation, which leads to higher reliability of the neural 
distance estimates39.

Testing for semantic expansion. To investigate whether intolerance 
of uncertainty expands the neural representation of semantics, we 
adopted a linear mixed-effects model in which the neural representa-
tional dissimilarity of each word pair was regressed onto uncertainty 
attitudes and semantic dissimilarity as captured by GloVe. A neural 
RDM for each ROI was computed using the approach described above. 

A model RDM containing the pair-wise dissimilarity in semantic dis-
similarity was created by computing the difference between semantic 
similarity scores obtained from GloVe. Both neural and model RDMs 
were vectorized and z-scored. The main effects of IUS and semantic 
dissimilarity and the interaction between the two were tested with the 
participant included as a random intercept77.

Semantic ambiguity analysis. To investigate whether intolerance 
of uncertainty modulates how semantic ambiguity is processed, we 
adopted a linear mixed-effects model in which the neural represen-
tational dissimilarity of each word pair was regressed by uncertainty 
attitudes and semantic ambiguity. A neural RDM for each ROI was 
computed using the approach described above. A model RDM con-
taining the pair-wise dissimilarity in semantic ambiguity was created 
by computing the difference between semantic ambiguity scores 
obtained from the English Lexicon Project Web Site78 (https://elexi-
con.wustl.edu/). Both neural and model RDMs were vectorized and 
z-scored. The main effects of IUS and semantic ambiguity and the 
interaction between the two were tested with the participant included 
as a random intercept77.

Experiment 3
Participants. A total of 213 participants were run on Prolific; 7 partici-
pants were removed as they failed to pass an attention check at the end 
of the experiment, and 1 participant because they did not complete the 
whole experiment, resulting in a total of 205 participants (103 women, 
96 men, 4 non-binary and 2 gender fluid; mean age 29 years, s.d. = 6).

Word stimuli. Concepts were selected to be relatively abstract and 
include a mix of relatively similar (for example, status–class) and dis-
similar (for example, ambiguity–peculiarity) new and old words.

Procedure. Participants were first presented with a word and a fractal 
and were told that these two stimuli were associated. After this, partici-
pants were asked to judge the likelihood that 10 other words were also 
associated with the same fractal on a scale from 1 (not likely) to 7 (very 
likely). Participants completed 5 blocks of this task. At the beginning 
of each block, a new fractal was associated with a new word, and par-
ticipants had to judge the association between the fractal and 10 new, 
comparison words. In total, they completed 50 trials of this task for a 
total presentation of 50 comparison words. A surprise recognition test 
was then administered. In total, participants were presented with 100 
words (50 old and 50 foils; for a subset of participants, a coding error 
made the presented foils to be only 48) and had to indicate whether 
they had seen this word before (Yes or No). Finally, participants were 
asked to judge the similarity between the 50 word pairs that they saw 
in the associative task on a scale from 1 (not similar) to 7 (very similar). 
Again, uncertainty attitudes were collected using the IUS scale together 
with demographic information. The experiment lasted around 15 min, 
and participants received US$2 as compensation.

Analysis procedure. A mixed-effect binomial regression was per-
formed on the probability of falsely recognizing a lure (1 = yes, 0 = no) 
predicted by the maximum similarity of the old words for each lure, 
uncertainty attitudes and the interaction between the two. Subject 
and word item were both added as independent random intercepts.

Experiment 4
Participants. A total of 221 participants were tested on Prolific; 13 
participants were removed as they failed to pass an attention check 
at the end of the experiment, 9 participants were removed because 
their average accuracy in the learning phase was lower than 70% and 2 
participants were removed because their average reaction time in the 
generalization task was lower than 500 ms, resulting in a total of 197 par-
ticipants (94 women, 97 men, 6 non-binary; mean age 29 years, s.d. = 6).
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Procedure. The experiment consisted of two phases, a learning phase 
and a generalization phase. In the learning phase, participants learned 
the association between four pictures cueing different concepts (for 
example, jellyfish, chair, canoe) and four keys (for example, ‘d’, ‘f’, ‘j’, 
‘k’). On each trial, a picture was presented and participants pressed 
one of the four keys. Immediately after, participants received feedback 
regarding whether the selected key was the one associated with the 
concept. Participants responded to 20 trials for each associated pair 
in a pseudo-randomized order. After learning, participants completed 
a generalization phase, in which new pictures of other concepts were 
presented and participants had to decide whether to select one of the 
old keys or the space bar that represented a ‘no response’. Two con-
cepts were selected for each of the four target concepts, one that was 
very semantically close to the target (for example, chair–stool) and 
another one that was semantically further (for example, chair–cur-
tain), for a total of eight pictures depicting eight different concepts. 
Each picture was presented twice in a pseudo-randomized order. In 
total, participants completed two independent blocks of learning and 
generalization for a total of eight pair associates (see Supplementary 
Information for the list of concepts presented). The presentation order 
was counterbalanced across participants. At the end of the experiment, 
uncertainty attitudes were collected using the IUS scale together with 
demographic information. The experiment lasted around 15 min, and 
participants received US$2 as compensation.

Analysis procedure. A mixed-effect binomial regression was per-
formed on the probability of generalization (1 = yes, 0 = no) predicted 
by the similarity of the new concept with the target concept, uncer-
tainty attitudes and the interaction between the two. Subject and 
category were both added as independent random intercepts.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
De-identified data for all experiments are publicly available at https:// 
osf.io/gmqh4. The data used for analyses to estimate semantic similar-
ity and ambiguity are available at https://nlp.stanford.edu/projects/ 
glove/ and https://elexicon.wustl.edu/.

Code availability
Codes for the analyses of the paper are publicly available at https:// 
osf.io/gmqh4.
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Behavioural & social sciences study design
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Study description All studies are quantitative.  
Experiment 1: participants were asked to judge the semantic relatedness of a list of words to estimate their semantic representation. 
Experiment 2: participants were asked to read words while undergoing functional neuroimaging.  
Experiment 3: participants were presented a list of words and were surprised with a recognition memory test. 
Experiment 4: participants learned associations between concepts and keys and were then asked to generalize for other set of 
concepts.

Research sample Experiments 1: Adult population of United States collected through Prolific. 103 participants (47 women, 51 men, 3 non-binary, and 2 
transgender; mean age 34, SD = 12). The sample is not representative. The sample size was decided to detect an effect size around 
r=0.2. 
Experiment 2: Adult population from Rhode Island area. 44 participants, (17 women and 27 men and; mean age 32, SD = 14). The 
sample is not representative. The sample size was decided to have a sufficient sample to detect differences across ideological groups. 
Experiment 3: Adult population of United States collected through Prolific. 205 participants (103 women, 96 men, 4 non-binary, and 
2 gender fluid; mean age 29, SD = 6). The sample size is not representative. The sample size was decided to detect an effect similar to 
Experiment 1, but this time the predicted effect was an interaction, so sample size was doubled. 
Experiment 4: Adult population of United States collected through Prolific. 197 participants (94 women, 97 men, 6 non-binary; mean 
age 29, SD = 6). The sample size was decided to be the same as in Experiment 3.

Sampling strategy All experiments used random sampling. 
Experiment 1: We were expecting a medium to small correlation (0.4-0.2), which requires a sample size of 100 for acceptable power 
(80%). 
Experiment 2: Since we were interested in individual differences in neural activity patterns, a relatively large sample was collected 
(N=44) to test for an orthogonal research hypothesis related to uncertainty attitudes and political polarization. Thus, this sample size 
was chosen as a result of a trade-off between obtaining  reliable estimates of neural activity patterns for each participant while 
obtaining a sufficiently large sample, given budget limitations. 
Experiment 3: Based on the effect size of Experiment 1, we expected again a medium to small effect size. Since this time the main 
prediction was an interaction, and the effect size that we expected to modulate was unknown, we decided to be conversative and 
double the amount of participants tested for an N=200.  
Experiment 4: Since we were expecting a similar effect as in Experiment 3, we went for the same sample size.

Data collection Experiment 1: Computer. It was conducted online, no researcher present during data collection. Experiment was run online until the 
study sample was completed. The researcher who designed the study was not blinded to the experimental condition nor the study 
hypothesis. 
Experiment 2: Computer and magnetic resonance imaging scanner. Research assitants were also present during data collection. 
Everyone was blind to the hypothesis.  
Experiment 3: Computer. It was conducted online, no researcher present during data collection. The researcher who designed the 
study was blinded to the experimental condition and the study hypothesis. 
Experiment 4: Computer. It was conducted online, no researcher present during data collection. The researcher who designed the 
study was not blinded to the experimental condition nor the study hypothesis.

Timing Experiment 1: november 23 2021-november 24 2021 
Experiment 2: april 22 2019-october 30 2019 
Experiment 3: march 21 2022-march 30 2022 
Experiment 4: october 4 2022-october 12 2022

Data exclusions All exclusion criteria were pre-established.  
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Data exclusions Experiment 1: 5 participants were excluded after they failed to pass an attention check at the end of the experiment. 

Experiment 2: 1 participant for excessive motion artifacts.  
Experiment 3: 7 participants were removed since they failed to pass an attention check at the end of the experiment, and 1 
participant because they did not complete the whole experiment. 
Experiment 4: 13 participants were removed since they failed to pass an attention check at the end of the experiment, 9 participants 
were removed because their average accuracy in the learning phase was lower than 70%, and 2 participants were removed because 
their average reaction time in the generalization task was lower than 500 milliseconds.

Non-participation No participants dropped out or declined participation.

Randomization Participants were not allocated into different experimental groups (all conditions within-subjects).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Experiment 1: Ad made available on Prolifics. No self-selection bias anticipated. 
Experiment 2: Participants were selected to meet certain criteria in terms of politic affiliation for a a larger study exploring 
the neural mechanisms of intolerance to uncertainty. No direct interference is expected for the main research question 
explored here. 
Experiment 3: Ad on Prolifics. No self-selection bias anticipated. 
Experiment 4: Ad on Prolifics. No self-selection bias anticipated.

Ethics oversight The study protocol was approved by Brown University’s Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Event-related

Design specifications The task consisted of 6 runs, each made up of 80 trials. In every run, 60 unique words were individually presented on 
the center of the screen without any accompanying context. Each trial stimulus was presented for 2.5s with a fixed inter 
stimulus interval of 2.5s during which only a fixation cross appeared on the screen. 20 null-trials were added in which 
only a fixation cross was shown to improve the efficiency of the design for estimating stimulus evoked activity to each 
word. Total run duration was approximately 6 minutes and each participant completed 6 runs. 

Behavioral performance measures To maintain participant’s attention, participants had to indicate if they believed the word presented was political or 
non-political by pressing one of two response buttons.

Acquisition

Imaging type(s) Functional

Field strength 3T

Sequence & imaging parameters T2*-weighted functional scans were acquired using a multi-slice sequence capturing three slices at once to ensure 
whole-brain coverage with short repetition time (TR = 1500 ms). 60 3-mm transverse slices were acquired, each with 
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64x64 voxels of 3.0 mm isotropic, building up a field of view (FOV) that covered the entire brain except part of the 
cerebellum. The FOV was tilted upward by 25 degrees at the front of the brain to minimize tissue gradient-related signal 
dropout in the orbitofrontal cortex. Contrast settings were optimized for cortical grey matter (TE = 30 ms, flip angle = 
86°). T1-weighted anatomical scans were acquired using a standard MPRAGE sequence (160 sagittal slices with 256x256 
voxels of 1.0 mm isotropic, TR = 1900 ms, TE = 3.02 ms, flip angle = 9°).

Area of acquisition Whole brain scan was used except cerebellum 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Preprocessing was performed using fMRIPrep 1.5.1rc254 (RRID:SCR_016216), which is based on Nipype 1.3.0-rc1 
(RRID:SCR_002502). The BOLD reference was co-registered to the T1w reference using flirt60 (FSL 5.0.9) with the boundary-
based registration61 cost-function. Co-registration was configured with nine degrees of freedom to account for distortions 
remaining in the BOLD reference. Head-motion parameters with respect to the BOLD reference (transformation matrices, 
and six corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt62 
(FSL 5.0.9). BOLD runs were slice-time corrected using 3dTshift from AFNI 2016020763 (RRID:SCR_005927). The BOLD time-
series (including slice-timing correction when applied) were resampled onto their original native space by applying a single, 
composite transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series are 
referred here as preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed 
BOLD run in MNI152NLin2009cAsym space. Several confounding time-series were calculated based on the preprocessed 
BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD and DVARS are calculated for each 
functional run, both using their implementations in Nipype64. The three global signals are extracted within the CSF, the WM, 
and the whole-brain masks. 

Normalization Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear 
registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template.

Normalization template The following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c

Noise and artifact removal Additionally, a set of physiological regressors were extracted to allow for component-based noise correction (CompCor65). 
Principal components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter 
with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components 
are then calculated from the top 5% variable voxels within a mask covering the subcortical regions. This subcortical mask is 
obtained by heavily eroding the brain mask, which ensures it does not include cortical GM regions. For aCompCor, 
components are calculated within the intersection of the aforementioned mask and the union of CSF and WM masks 
calculated in T1w space, after their projection to the native space of each functional run (using the inverse BOLD-to-T1w 
transformation). Components are also calculated separately within the WM and CSF masks. For each CompCor 
decomposition, the k components with the largest singular values are retained, such that the retained components’ time 
series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The 
remaining components are dropped from consideration.  
 
The head-motion estimates calculated in the correction step were also placed within the corresponding confounds file. The 
confound time series derived from head motion estimates and global signals were expanded with the inclusion of temporal 
derivatives and quadratic terms for each66. Frames that exceeded a threshold of 1.0 mm FD were annotated as motion 
outliers. All resamplings can be performed with a single interpolation step by composing all the pertinent transformations 
(i.e., head-motion transform matrices and co-registrations to anatomical and output spaces). The data was not susceptibility 
distortion corrected in the absence of fieldmaps. The Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels67. 
Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Volume censoring A reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.

Statistical modeling & inference

Model type and settings Representational Similarity Analysis (RSA). For every participant, a General Linear Model (GLM) was constructed using SPM12 
in MatlabR2017b, in which every word that was presented in the word reading task was modelled as a separate regressor 
yoked the duration of stimulus display, and motion was regressed using 6 motion directions, their first derivatives, their 
squares, and the first derivatives of the squares. This yielded a beta map per run, per word, thus mapping its neural 
representation. The beta values in the ROI voxels were extracted for each ROI. The RSA Toolbox69 (http://github.com/
rsagroup/rsatoolbox) was then used to compute, for each participant and ROI, a neural representation dissimilarity matrix 
(RDM) using the cross-validated Mahalanobis distance between all word pairs. This measure incorporates multivariate noise 
normalization and cross-validation, which leads to higher reliability of the neural distance estimates. 

Effect(s) tested Two main effects were tested: 
1. Does a personality trait (intolerance to uncertainty) predict overall dissimilarity in the neural activity patterns elicited while 
reading words? To test this, we applied multidimensional scaling (MDS) to a representational dissimilarity matrix estimated 
using RSA (see above). Overall dissimilarity among neural activity patterns for each word was computed by averaging neural 
distances on the 2-dimensional space elicited by MDS. This measure was then correlated with participants' aversion to 
uncertainty, which was estimated using a classic scale from past literature (see below).  
2. Does a personality trait (aversion to uncertainty) modulate the neural encoding of semantic ambiguity? To test this, we ran 
a linear mixed-effects model in which the neural representational dissimilarity of each word pair was regressed onto a set of 



5

nature portfolio  |  reporting sum
m

ary
M

arch 2021
regressors, which included participant’s aversion to uncertainty and semantic ambiguity.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) All Regions of Interested were demarcated using the Automated Anatomical Labeling atlas. 

Statistic type for inference
(See Eklund et al. 2016)

We did not carry out any whole-brain univariate or multivariate analyses that required voxel-wise or cluster-wise statistical 
inference. All our fMRI analyses focussed on a small number of predefined regions of interest which were analyzed using a) 
representational similarity analysis b) mixed-effects regression.

Correction We applied bonferroni-corrections for multiple comparisons across seven ROIs.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Main independent variables: 
- Intolerance to uncertainty was measured using the well-validated intolerance of uncertainty scale (IUS). The 
IUS assesses uncertainty aversion by asking questions like “the ambiguities in life stress me”. This variable 
was then used to predict neural expansion (main effect 1, see above), and the modulation of semantic 
ambiguity (main effect 2, see above).  
- Semantic ambiguity was measured by computing the difference between semantic ambiguity scores of 
each word obtained from the English Lexicon Project Web Site (https://elexicon.wustl.edu/). This model RDM 
was then vectorized, z-scored, and included in the mixed-effect regression model (main effect 2, see above). 
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