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CHAPTER 4
Spatial populations with seed-banks

in random environment

This chapter is based on the following paper:
S. Nandan. Spatial populations with seed-banks in random environment: III. Conver-
gence towards mono-type equilibrium. Electron. J. Probab., 28:1–36, 2023.

Abstract

We consider the spatially inhomogeneous Moran model with seed-banks introduced in [46].
Populations comprising active and dormant individuals are spatially structured in colonies
labeled by Zd, d ≥ 1. The population sizes are sampled from a translation-invariant, ergodic,
uniformly elliptic field that constitutes a static random environment. Individuals carry one
of two types: ♥ and ♠. Dormant individual resides in what is called a seed-bank. Active
individuals exchange type from the seed-bank of their own colony, and resample type by
choosing a parent uniformly at random from the distinct active populations according to
a symmetric migration kernel. In [46] by exploiting a dual process given by an interacting
coalescing particle system, we showed that the spatial system exhibits a dichotomy between
clustering (mono-type equilibrium) and coexistence (multi-type equilibrium). In this paper,
we identify the domain of attraction for each mono-type equilibrium in the clustering regime
for an arbitrary fixed environment. Furthermore, we show that in dimensions d ≤ 2, when
the migration kernel is recurrent, for almost surely every realization of the environment,
the system with an initially consistent type-distribution converges weakly to a mono-type
equilibrium in which the probability of fixation to the all type-♥ configuration does not
depend on the environment. An explicit formula for the fixation probability is given in terms
of an annealed average of the type-♥ densities in the active and the dormant population,
biased by the ratio of the two population sizes at the target colony.

Primary techniques employed in the proofs include stochastic duality and the environment
process viewed from particle, introduced in [53] for random walk in random environment on
a strip. A spectral analysis of Markov operator yields quenched weak convergence of the
environment process associated with the single-particle dual process to a reversible ergodic
distribution, which we transfer to the spatial system of populations by using duality.
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§4.1 Introduction
In this chapter we study the spatial model with seed-banks introduced in Chapter 2 by
treating the preassigned constant population sizes as an environment of the system.
One of our main results in this chapter is that a full characterization of the domain of
attraction for each mono-type equilibrium in the clustering regime is obtained for an
arbitrary fixed environment (satisfying mild regularity conditions).

Recall that the constituent active and dormant populations in the spatial model
maintain constant sizes over time. While this can be biologically explained by assuming
that the system receives sufficient supply of environmental resources, a more natural
extension would be to consider the model where population sizes come from a random
field determined by environmental factors such as extreme temperatures, inadequate
supply of food resources, etc. Research in this direction has started only recently (see
e.g. [28, 17, 152]), although most results are available only for models that are scaled
diffusively or are simulation based.

The novelty in the content of present chapter is that here we study the mono-type
equilibrium behaviour of the spatial system with seed-banks introduced in Chapter 2
for the setting where the population sizes constitute a static random environment. In
particular, the sizes are drawn from a translation-invariant and ergodic random field.
Our contributions are two-fold:

(a) When the symmetric migration kernel is recurrent (which requires d ≤ 2) and
the random environment is uniformly elliptic, we show that the system started
from an initially consistent type-distribution converges in law to a mono-type
equilibrium for almost surely all realisation of the environment. In other words,
we prove that the system undergoes homogenisation in the quenched setting.

(b) We show that, in the homogenised mono-type equilibrium, the fixation probability
(in law) to the all type-♥ configuration is deterministic, i.e., does not depend on
the realisation of the environment. We also provide an explicit formula for this
probability.

The techniques used in the proof of the main theorems include stochastic duality,
moment relations, semigroup expansion and the environment viewed from the particle
recently introduced in [53] for random walk in random environment (RWRE) on a
strip, and spectral analysis of Markov kernel operator.

Outline. The chapter is organised as follows. In Section 4.2 we recall some basic
results from previous chapters, state our main theorems on the convergence of the
system to a mono-type equilibrium, and explain the strategy of the proofs in detail.
Section 4.3 is devoted to the analysis of dual process with a single lineage (or single
particle) in random environment, where homogenisation results are derived for the
associated environment process. In Section 4.4 we prove our main theorems using the
results derived in Section 4.3. In Appendix B.1, we prove a result stated in Section 4.3
on the existence of a stationary distribution for the aforementioned environment pro-
cess, and also give a proof of the strong law of large numbers for the single-particle
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dual, which is a result of independent interest. Finally, in Appendix B.2 we prove
an auxiliary proposition relating weak convergence of Markov chain to the peripheral
point-spectrum of a Markov operator, which is needed for the proof of our main the-
orems.

§4.2 Main theorems
In Section 4.2.1 we introduce some preliminary notations and set the stage to state our
main results. In Section 4.2.2 we give our first main result on the convergence of the
system in the clustering regime for an arbitrary fixed environment (Theorem 4.2.4).
In Section 4.2.3 we consider the system in a static random environment that is drawn
from a translation-invariant and ergodic field defined on a subset of uniformly elliptic
environments, and present a homogenisation statement in the quenched setting on the
convergence of the system to a mono-type equilibrium (Theorem 4.2.9–4.2.11). In
Section 4.2.4 we discuss the results and shed light on the strategy of the proofs.

§4.2.1 Recollection of previous results and basic nota-
tions

Let us recall that under the resampling and exchange dynamics described in Sec-
tion 2.2.1 of Chapter 2, the initial population sizes (Ni,Mi)i∈Zd remain constant
over time. Thus, we can naturally think of the sizes of the populations as a static
environment for the spatial process in (2.2). Throughout the sequel we denote by
e := (Ni,Mi)i∈Zd ∈ (N×N)Zd a typical choice for the sizes of the constituent popula-
tions and refer to it as the environment. From here onwards, we adopt the convention
of adding a superscript (or subscript) with Fraktur font to emphasize the dependence
of a variable on the realisation of the environment. Let us also recall that the Markov
process associated to the spatial system is an interacting particle system denoted by

Ze := (Ze(t))t≥0, Ze(t) := (Xe
i (t), Y e

i (t))i∈Zd , (4.1)

and lives on the inhomogeneous state space

X e :=
∏
i∈Zd

[Ni]× [Mi]. (4.2)

The superscript e indicates the dependence of the process Ze on the environment
e = (Ni,Mi)i∈Zd , and the pair (Xe

i (t), Y e
i (t)) ∈ [Ni] × [Mi] represents the number of

active, respectively, dormant individuals of type ♥ at time t at colony i. Let Pe be
the set of probability distributions on X e defined by

Pe :=
{
Pe
θ : θ ∈ [0, 1]

}
, Pe

θ := (1− θ)δ♠ + θδ♥, (4.3)

where δ♥ (resp. δ♠) is the Dirac distribution concentrated at the all type-♥ configura-
tion e = (Ni,Mi)i∈Zd ∈ X e (resp. the all type-♠ configuration (0, 0)i∈Zd ∈ X e). Recall
that the process Ze is said to exhibit clustering if and only if the limiting distribution
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of Ze(t) (given that it exists) always falls in Pe. Otherwise the process is said to be
in the coexistence regime.

We throughout consider environments that are admissible in the following sense:

Definition 4.2.1 (Admissible environments). Consider the following three con-
ditions for the environment e = (Ni,Mi)i∈Zd ∈ (N × N)Zd and the migration kernel
a(· , ·):

(a) Ni ≥ 2 and Mi ≥ 2 for all i ∈ Zd.

(b) supi∈Zd\{0} ‖i‖−γNi < ∞ and
∑
i∈Zd ‖i‖d+γ+δa(0, i) < ∞ for some γ > 0 and

some δ > 0.

(c) lim‖i‖→∞ ‖i‖−1 logNi = 0 and
∑
i∈Zd eδ‖i‖a(0, i) <∞ for some δ > 0.

If (a) is satisfied, i.e., in each colony, both the active and the dormant population
consist of at least two individuals, then we say that e is non-trivial. Further, if either
(b) or (c) is satisfied, then we say that e is compatible. Non-trivial and compatible
environments are referred to as admissible environments. The set of all admissible
environments is denoted by A. �

Remark 4.2.2. Observe from Theorem 2.2.2 in Chapter 2 that under Assumption 2.A,
for any compatible environment, the Markov process Ze in (4.1) is well-defined. Con-
dition (a) comes from Assumption 3.A which was made in Chapter 3 because of a
technical requirement for determining the clustering regime of the process Ze and it
can perhaps be removed with minor adaptations.

§4.2.2 Clustering in a fixed environment
In this chapter we refrain from reintroducing the dual process in full generality and
only define a version of the dual consisting of a single particle in terms of a coordinate
process Θe. Informally, the process Θe keeps track of the location and the state of a
single dual particle in time, while the general dual Ze

∗ describes the evolution of the
particle via configurations in X e

∗ . The process Θe plays a key role in the proofs of all
our main results, and will be our sole focus in Section 4.3. Later, in Section 4.4.1 we
will explain via Lemma 4.4.2 how the single-particle process Θe is related to the general
dual process Ze

∗. We refer the reader to Section 2.4.2 of Chapter 2 and Section 3.3.1
of Chapter 3 for further insight into the general dual process Ze

∗.

Definition 4.2.3 (Single-particle dual process). The single-particle dual process

Θe := (Θe(t))t≥0, Θe(t) = (xet , αe
t), (4.4)

in environment e := (Ni,Mi)i∈Zd is the continuous-time Markov chain on the state
space

G := Zd × {0, 1} (4.5)
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with transition rates

(i, 1) −→
{

(j, 1) at rate a(0, j − i), j ∈ Zd, j 6= i

(i, 0) at rate λ,
(i, 0) −→ (i, 1) at rate λKi,

(4.6)

where i ∈ Zd and the environment e fixes Ki by (2.1). We define the time-t probability
transition kernel pet(· , ·) : G×G→ [0, 1] associated to Θe as

pet(η, ξ) := P e
η (Θe(t) = ξ), η, ξ ∈ G, (4.7)

where P e
η is the law of the process Θe started at η ∈ G. �

The coordinates xet and αe
t in (4.4) represent, respectively, the location in Zd and the

state (active or dormant) of the particle at time t, where 0 stands for dormant and 1
stands for active. Note from (4.6) that only the wake-up rate of the particle depends
on the environment e, and only via the ratios (Ki)i∈Zd defined in (2.1). Indeed, the
average time spent in the dormant state by the particle at site i is proportional to
K−1
i , the relative strength of the seed-bank at colony i. The particle in the active

state migrates according to the kernel a(· , ·), and so migration is not affected by the
environment e, at least not in a direct manner. This makes the analysis of the single-
particle process Θe in a typical random environment e easier than the full dual process
Ze
∗.

Let us now state the main result of this section.

Theorem 4.2.4 (Domain of attraction). Suppose that the process Ze := (Ze(t))t≥0
is in the clustering regime and Ze(0) = (Xe

i (0), Y e
i (0))i∈Zd has distribution µe ∈

P(X e), where e := (Ni,Mi)i∈Zd ∈ A is an arbitrarily fixed environment. If µe
t de-

notes the time-t distribution of the process Ze, then the following are equivalent:

(a) µe
t converges weakly as t→∞.

(b) For any (i, α) ∈ G := Zd × {0, 1},

f e(i, α) := lim
t→∞

∑
(j,β)∈G

pet((i, α), (j, β))Eµe

[
β
Xe
j (0)
Nj

+(1−β) Y
e
j (0)
Mj

]
exists, (4.8)

where pet(· , ·) is as in Definition 4.2.3.

Further, if any of the above two conditions is satisfied, then there exists θe ∈ [0, 1] such
that f e(·) ≡ θe and

lim
t→∞

µe
t = (1− θe)δ♠ + θeδ♥. (4.9)

The following corollary states that if the process Ze exhibits clustering and starts
from an initial distribution that puts a constant density of type ♥ individuals at
infinity, then with probability 1 the spatial process Ze converges towards a mono-type
equilibrium. Further, the probability of fixation to the all type-♥ configuration in the
attained equilibrium is given by the initial density of type ♥ in the populations at
infinity.
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Corollary 4.2.5. Suppose that the process Ze is in the clustering regime and µe
t de-

notes the time-t distribution of the process, where e := (Ni,Mi)i∈Zd ∈ A is fixed
arbitrarily. If the initial distribution µe := µe

0 is such, that for some θe ∈ [0, 1],

lim
‖i‖→∞

∫
X e

Xi
Ni

dµe{(Xk, Yk)k∈Zd} = lim
‖i‖→∞

∫
X e

Yi
Mi

dµe{(Xk, Yk)k∈Zd} = θe, (4.10)

then
lim
t→∞

µe
t = (1− θe)δ♠ + θeδ♥. (4.11)

Let us recall that in Chapter 3, the clustering criterion stated in Theorem 2.4.12
of Chapter 2 was further refined, and conditions on the environment e and other
parameters were obtained for which the process Ze exhibits clustering. In particular,
it was shown (see Corollary 3.2.8 in Chapter 3) that clustering prevails under the
following set of conditions:

Assumption 4.A (Clustering environment). The migration kernel a(· , ·) satis-
fying Assumption 2.A and the environment e = (Ni,Mi)i∈Zd are such that

(1) a(· , ·) is symmetric, i.e.,

a(0, i) = a(0,−i), i ∈ Zd. (4.12)

(2) a(· , ·) generates a recurrent random walk on Zd that satisfies a local central
limit theorem (LCLT). This requirement implicitly forces d ≤ 2 and requires the
migration kernel a(· , ·) to have a finite second moment.

(3) The relative strength of the seed-banks determined by e are spatially uniformly
bounded, i.e.,

sup
i∈Zd

Mi

Ni
<∞. (4.13)

(4) The sizes of the active populations determined by e are non-clumping, i.e.,

inf
i∈Zd

∑
‖j−i‖≤R

1
Nj

> 0 for some R <∞. (4.14)

�

In view of the above, unless stated otherwise, we will throughout assume that Assump-
tions 2.A and 4.A are in force. We remark that the above conditions are sufficient but
not necessary for the process Ze to remain in the clustering regime. The following
corollary is immediate.

Corollary 4.2.6. Suppose that Assumptions 2.A and 4.A are in force. Then the result
in Theorem 4.2.4 holds.
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§4.2.3 Clustering in random environment
In this section we consider the process Ze in a static random environment e. Let us
introduce the necessary notations before we present our main theorems. To simplify
our analysis, we only consider uniformly elliptic environments.

Definition 4.2.7 (Uniformly elliptic environment). An environment e ∈ (N2)Zd

with e := (Ni,Mi)i∈Zd is said to be uniformly elliptic if

(Ni,Mi) ∈ {2, 3, . . . ,K}2 (4.15)

for all i ∈ Zd and some natural number K ≥ 2. The set of all environments satisfying
(4.15) is denoted by EK. �

From here onwards we fix a natural number K ≥ 2, which we refer to as the ellipticity
constant. We equip EK with the product topology and the Borel σ-field Σ. The product
topology is naturally induced by the metric H : EK × EK → [0,∞),

H((Ni,Mi)i∈Zd , (N̂i, M̂i)i∈Zd) :=
∑
i∈Zd

1
2‖i‖

[
1 ∧ (|Ni − N̂i|+ |Mi − M̂i|)

]
. (4.16)

In this metric topology, EK is a compact Polish space, and the Borel σ-field Σ becomes
countably generated. Trivially, EK ⊂ A (see Definition 4.2.1) and so the process Ze is
well-defined for any e ∈ EK. Note that any e ∈ EK automatically satisfies conditions
(3)–(4) in Assumption 4.A.

Definition 4.2.8 (Translation operators). For each j ∈ Zd, the shift operator
Tj : EK → EK is defined by the map

e 7→ Tje, Tje := (Ni+j ,Mi+j)i∈Zd , (4.17)

where e := (Ni,Mi)i∈Zd ∈ EK. The action of Tj on a set is interpreted pointwise, i.e.,
for A ⊂ EK, TjA := {Tje : e ∈ A}. �

We impose the following assumption on the law of the random environment:

Assumption 4.B (Translation-invariant and ergodic field). The probability
law P̄ of the random environment e is defined on the measurable Polish space (EK,Σ)
and satisfies:

(1) For any A ∈ Σ and j ∈ Zd, P̄(T−1
j A) = P̄(A).

(2) If A ∈ Σ is such that T−1
j A = A for all j ∈ Zd, then P̄(A) ∈ {0, 1}.

We use Ē to denote the expectation w.r.t. P̄. �

We are now ready to state the main result of this section.
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Theorem 4.2.9 (Convergence in random environment). Let fA, fD : EK →
[0, 1] be two Σ-measurable functions such that, for P̄-a.s. every realisation of e :=
(Ni,Mi)i∈Zd , the initial law µe ∈ P(X e) of the process Ze satisfies the following for
all i ∈ Zd:∫

X e

Xi
Ni

dµe{(Xk, Yk)k∈Zd} = fA(Tie),
∫
X e

Yi
Mi

dµe{(Xk, Yk)k∈Zd} = fD(Tie).
(4.18)

If Assumption 2.A and conditions (1)–(2) in Assumption 4.A hold, then, for P̄-a.s.
every realisation of the environment e, Ze(t) converges in law to (1 − θ)δ♠ + θδ♥,
where the fixation probability θ to the all type-♥ configuration e ∈ X e does not depend
on the realisation of the environment and is given by

θ = 1
1 + ρ

∫
EK

[
fA((Nk,Mk)k∈Zd)+ M0

N0
fD((Nk,Mk)k∈Zd)

]
dP̄{(Nk,Mk)k∈Zd}, (4.19)

with ρ := Ē
[
M0
N0

]
=
∫
EK

M0
N0

dP̄{(Nk,Mk)k∈Zd}, the average relative strength of the
seed-bank in each colony.

Let us look at a simple example where the conditions in the above theorem are met.

Example 4.2.10 (Homogenised fixation probability). Fix κ ∈ [0, 1]. Suppose
that, for a typical environment e := (Ni,Mi)i∈Zd drawn from the law P̄, the process
Ze starts with the initial law µe ∈ P(X e) given by

µe :=
⊗
i∈Zd

Binomial(Ni, κNi )⊗Uniform([Mi]). (4.20)

In other words, in the spatial system of populations with sizes (Ni,Mi)i∈Zd , initially
each active individual of colony i independently adopts type ♥ with probability κ

Ni
,

and the number of type-♥ dormant individuals, which is given by Y e
i (0), is uniformly

distributed over [Mi] = {0, 1, . . . ,Mi}. In this case, if we let fA : EK → [0, 1] to be the
map e 7→ κ

N0
and fD : EK → [0, 1] to be the constant map e 7→ 1

2 , then µe satisfies

Eµe

[Xe
i (0)
Ni

]
= κ

Ni
= fA(Tie), Eµe

[Y e
i (0)
Mi

]
= 1

2 = fD(Tie), (4.21)

for all i ∈ Zd. Thus, if the migration kernel a(· , ·) is symmetric, recurrent and satisfies
a LCLT, then by Theorem 4.2.9 we have that, for P̄-a.s. every realisation of e, the
process Ze converges in law to (1− θ)δ♠ + θδ♥, where θ is given by

θ = 1
1 + Ē[M0/N0]

[
Ē
[
κ
N0

]
+ 1

2 Ē
[
M0
N0

]]
. (4.22)

This tells that, in the long run, the probability of fixation of the spatial population
to the all type-♥ configuration is θ and does not depend on the realisation of the
environment e. Another interesting observation is that the fixation probability θ is an
annealed average of the densities of type-♥ individuals. Therefore, θ is a function of
the average type-♥ densities determined by the initial distribution µe and does not
depend on any other parameters of the distribution. �
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The proof of Theorem 4.2.9 relies on the analysis of the single-particle process Θe

in Definition 4.2.3 in a random environment e drawn from the law P̄. In particular,
at the heart of the proof lies an exploitation of the following homogenisation result,
whose proof is deferred to Section 4.3.3.

Theorem 4.2.11 (Homogenisation of environment). Let fA : EK → R and
fD : EK → R be two bounded Σ-measurable functions. Then, under Assumption 2.A
and conditions (1)–(2) in Assumption 4.A, for P̄-a.s. every realisation of e and any
α ∈ {0, 1},

lim
t→∞

∑
(j,β)∈G

pet((0, α), (j, β))
[
βfA(Tje) + (1− β)fD(Tje)

]
= θ, (4.23)

where pet(· , ·) is the time-t transition kernel of the single-particle dual process Θe given
in Definition 4.2.3, and

θ := 1
1 + ρ

∫
EK

[
fA((Nk,Mk)k∈Zd) + M0

N0
fD((Nk,Mk)k∈Zd)

]
dP̄{(Nk,Mk)k∈Zd},

(4.24)
with ρ := Ē

[
M0
N0

]
=
∫
EK

M0
N0

dP̄{(Nk,Mk)k∈Zd}.

The interpretation of the above result is that, for P̄-a.s. every realisation of the
environment e, the law of the “environment viewed from the particle” in the process
Θe converges weakly to an invariant distribution. The precise meaning of the last
statement will become clear in Section 4.3. Conditions (1)–(2) in Assumption 4.A
play a crucial role in the proof. Theorem 4.2.11 combined with Theorem 4.2.4 enable
us to prove Theorem 4.2.9.

Note that, in (4.23), the process Θe is assumed to start at (0, α) ∈ G. However, this
does not matter, because the law of the environment is translation-invariant. Indeed,
we have the following corollary:

Corollary 4.2.12. Suppose that Assumption 2.A and conditions (1)–(2) in Assump-
tion 4.A hold. Let fA, fD and θ be as in Theorem 4.2.11. Then, for P̄-a.s. every
realisation of e and all (i, α) ∈ Zd × {0, 1},

lim
t→∞

∑
(j,β)∈G

pet((i, α), (j, β))
[
βfA(Tje) + (1− β)fD(Tje)

]
= θ, (4.25)

where pet(· , ·) is as in Definition 4.2.3.

§4.2.4 Discussion
Clustering in fixed environment. In Theorem 2.4.9 of Chapter 2 we only showed
convergence of the spatial process Ze to an equilibrium for a restricted class of initial
distributions, namely, a product of binomials with parameters that are tuned to the
environment e and the density of type-♥ individuals in the populations. The main
result of Section 4.2.2, namely, Theorem 4.2.4, fully characterises the set of initial
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distributions for which Ze admits convergence to equilibrium. The result is valid for
any admissible environment e in which Ze exhibits clustering. The proof follows from
similar arguments used in the proof of the analogous results [112, Theorem 1.9(b)]
and [140, Theorem 1.2] derived, respectively, in the context of the Voter model and
the Stepping Stone model (see also e.g. [27, 12]). In Theorem 2.4.12 of Chapter 2 we
showed that the process Ze clusters if and only if two dual particles in Ze

∗ coalesce into
a single particle with probability 1. We also show in Theorem 4.4.4 in Section 4.4.1
that coalescence of two dual particles with probability 1 is equivalent to coalescence
of any finite number of dual particles with probability 1. This consistency property
of the dual process, which is purely a consequence of the duality relation between Ze

and Ze
∗, is far from trivial, because the dual particles interact with each other.

To summarise, the process Ze admits only mono-type equilibria if and only if the
evolution of the dual Ze

∗ is eventually governed by pet(· , ·), the probability transition
kernel of the single-particle dual Θe (recall Definition 4.2.3). Precisely because of this,
we see in (4.8) that the domain of attraction for each mono-type equilibrium of the
process Ze in the clustering regime is dictated by the limiting behaviour of pet(· , ·) as
t → ∞. On the contrary, if the process Ze is in the coexistence regime (= existence
of multi-type equilibria), then the evolution of the dual Ze

∗ is no longer described by
pet(· , ·) alone, and therefore providing an answer to similar questions in the case of
coexistence is challenging. In particular, because of the presence of interactions in the
dual and the lack of translation-invariance of the state space X e, the characterization
of the domain of attraction for a multi-type equilibrium via Liggett-type conditions
(see e.g. [112, Theorem 1.9(a)],[76]) is a highly non-trivial problem, and is closely
related to the study of harmonic functions (see e.g. [141]) of the general dual process
Ze
∗.

Clustering in random environment. Turning to the main result of Section 4.2.3,
we see that Theorem 4.2.9 is a homogenisation statement on the convergence of the
spatial system to a mono-type equilibrium in random environment. It states that if
the population sizes are drawn from an ergodic and translation-invariant random field
for which clustering prevails, and the initial average densities of type-♥ active and
dormant individuals in each colony are modulated, respectively, by two global func-
tions fA(·) and fD(·) of the population sizes, then the spatial system converges in law
towards a mono-type equilibrium for almost all initial realisations of the sizes. In the
attained equilibrium, the probability of fixation to the all type-♥ configuration is a
weighted average of the two functions fA and fD, and is independent of the chosen ini-
tial population sizes. In other words, the spatial process Ze undergoes homogenisation,
which, roughly speaking, can be viewed as a “weak law of large numbers”.

A closer look at the proof in Section 4.4.2 will reveal that the homogenisation
comes, in essence, from the duality relation with the process Θe evolving in the same
random environment. The homogenisation in the continuous-time process Θe, in turn,
is inherited from a discrete-time subordinate Markov chain Θ̂e (see Definition 4.3.1
in Section 4.3.1). This Θ̂e is embedded into the continuous-time process Θe and
closely resembles a d-dimensional version of the random walk in random environment
(RWRE) on a strip introduced in [21] (see also [54, 53, 62] for similar models and
further references). However, results derived in that context do not immediately carry
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over to our setting, because Θ̂e fails to meet some basic irreducibility hypotheses
(see e.g. [21, Condition C]). Nonetheless, it turns out that Θ̂e is easier to analyse
than the RWRE on a strip, as some of its transition probabilities are controlled by
deterministic parameters that do not depend on the environment e. To be precise, the
step distribution of a particle evolving via Θ̂e on the d-dimensional strip Zd×{0, 1} is
a preassigned probability distribution p̂(·) on Zd and, in fact, is defined in terms of the
migration kernel a(· , ·) of the spatial process Ze. This simplicity of the subordinate
Markov chain, which is similar to a property found in for random walk in random
scenery (see e.g., [44, 49]), allows us to answer some of the highly sought-after questions
in the literature on RWRE. In particular, we are able to identify a stationary and
ergodic distribution for the environment viewed from the particle, with an explicit
expression for the density w.r.t. the initial law, and establish a strong law of large
numbers for the location of the particle (see Section 4.3.2). Moreover, when p̂(·) is
symmetric and recurrent (d ≤ 2), we show that the environment process converges
weakly to the reversible stationary distribution in the quenched setting. The latter
is a very powerful result, which ultimately causes the homogenisation found in the
subordinate Markov chain Θ̂e, and later passes it on to the single-particle dual Θe as
well.

As argued before, the spatial process Ze acquires the homogenisation via duality
from Θe. Indeed, a crucial observation will reveal that the homogenised fixation prob-
ability in (4.19) is nothing but the average of the two global functions fA and fD
w.r.t. the invariant distribution of the environment process. The method employed
in proving the quenched weak convergence of the environment process for Θ̂e to the
invariant distribution is not probabilistic and relies on ergodic theoretic tools. To be
precise, we first show that the peripheral point-spectrum (i.e., the set of all eigenvalues
of modulus 1) of the self-adjoint Markov kernel operator R associated to the envir-
onment process is trivial (see Lemma 4.3.12 in Section 4.3.2) and afterwards invoke
a generalised version of the fundamental theorem for Markov chains (see Proposi-
tion 4.3.10 in Section 4.3.2) to establish the convergence. This way of proving weak
convergence of the environment process is non-standard in the literature on RWRE,
where such convergences are often established by exploiting some form of regeneration
structure, or results like a local central limit theorem for the relevant random walk
(see e.g., [95, 106, 54, 9]). Admittedly, the analysis of the peripheral point-spectrum
of a Markov kernel operator in the Lp (p ≥ 1) space of its reversible distribution
is non-trivial and requires knowledge of the explicit form of the distribution. How-
ever, in many random environment models, such as the random conductance model,
the one-dimensional RWRE, etc., important results in the quenched setting are still
incomplete, despite knowledge of the explicit reversible distribution. Perhaps such
problems may be approached in a similar way.

§4.3 Single-particle dual in random environment
As indicated in the previous section, the single-particle dual process Θe (see Defini-
tion 4.2.3) serves as the main ingredient in proofs of all our main results. In this section
we study Θe in a typical random environment e ∈ EK drawn according to the law P̄
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(see Assumption 4.B) and prove the homogenisation result stated in Theorem 4.2.11.
To avoid dealing with technicalities that arise in the context of continuous-time

Markov processes, in Section 4.3.1 we transform the process Θe into a discrete-time
Markov chain Θ̂e using the well-known method of uniformisation by a Poisson clock.
We also introduce an auxiliary environment process W associated to the Markov chain
Θ̂e. In Section 4.3.2 we show that the environment process W converges weakly to
an invariant distribution in the quenched setting. Finally, in Section 4.3.3 we prove
Theorem 4.2.11 and Corollary 4.2.12 by transferring the convergence result on W to
the continuous-time process Θe.

§4.3.1 Subordinate Markov chain and auxiliary en-
vironment process

When a continuous-time Markov process on a countable state space retains uniformly
bounded jump rates, it can be uniformised by a Poisson clock and a discrete-time
subordinate Markov chain (see e.g., [113, Chapter 2]). The method of uniformisation
essentially transforms a variable-speed continuous-time Markov process into a constant-
speed continuous-time Markov process [11]. Observe from (4.6) that the jump rates
of Θe (see Definition 4.2.3) are uniformly bounded when the chosen environment e

is uniformly elliptic, and therefore Θe is uniformisable for such an environment. We
start by defining a subordinate Markov chain Θ̂e corresponding to the process Θe in
a uniformly elliptic environment e.

Definition 4.3.1 (Subordinate Markov chain). The subordinate Markov chain
(see Fig. 4.1)

Θ̂e := (Θ̂e
n)n∈N0 , Θ̂e

n = (Xe
n, α

e
n), (4.26)

in a uniformly elliptic environment e := (Ni,Mi)i∈Zd ∈ EK is the discrete-time Markov
chain on the state space G = Zd × {0, 1} with transition probabilities

(i, 1) −→
{

(j, 1) w.p. (1− qs)p̂(j − i), j ∈ Zd,
(i, 0) w.p. qs,

(i, 0) −→
{

(i, 0) w.p. 1− ω(i),
(i, 1) w.p. ω(i),

(4.27)

where i ∈ Zd, and the parameters qs, ω := (ω(k))k∈Zd and p̂ := (p̂(k))k∈Zd are
determined by the exchange rate λ, the environment e, the migration kernel a(· , ·),
and the ellipticity constant K ≥ 2, as follows:

qs := λ

c+ λ+ λK
, ω(i) := λKi

c+ λ+ λK
= λNi
Mi(c+ λ+ λK) ,

p̂(i) := λK

c+ λK
1l{i=0} + a(0, i)

c+ λK
1l{i 6=0},

i ∈ Zd, (4.28)

where c is the speed of migration defined in condition (3) of Assumption 2.A. We
denote by Qe(· , ·) : G×G→ [0, 1] the 1-step transition kernel of the chain Θ̂e, defined
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(x4, 0)

(x4, 1)

(x5, 0)

(x5, 1)

(x6, 0)

(x6, 1)

(x7, 0)

(x7, 1)

Dormant layer

Active layer
(1− qs)p̂(x6 − x4)

qs
ω(x4)

1− ω(x4)

Figure 4.1: A schematic representation of the transition probabilities of a particle moving on
the d-dimensional strip Zd × {0, 1} according to Θ̂e. The particle is allowed to migrate in
the bottom layer and while doing so remains in active state. However, the particle becomes
dormant by entering the top layer, and thus can not migrate.

as
Qe(η, ξ) := P̂ e

η (Θ̂e
1 = ξ), η, ξ ∈ G, (4.29)

where P̂ e
η is the canonical law of Θ̂e started at η. �

Remark 4.3.2 (Well-posedness). Observe that p̂(·) defines a probability distri-
bution on Zd and inherits the role of the migration kernel a(0, ·). By the uniform
ellipticity of the environment e ∈ EK, it follows that ω ∈ [δ, 1− δ]Zd for some δ ∈ (0, 1

2 )
determined by c, λ and K. Thus, the transition probabilities in (4.27) are well-defined.
From (4.28) we see that ω is the only parameter that depends on e and plays the role
of random environment for Θ̂e, while qs takes over the role of λ, which is the rate of
becoming dormant from the active state in the continuous-time process Θe.

The subordinate Markov chain Θ̂e describes the evolution of a particle moving on
the d-dimensional strip Zd×{0, 1} in discrete time. The coordinates Xe

n and αe
n give,

respectively, the location in Zd and the state (active or dormant) at time n ∈ N0 of the
particle evolving in the environment e according to the transition probabilities given in
(4.27). In each step, the particle in the active state, with probability (1−qs), performs
random walk on Zd according to the increment distribution p̂(·), while, with probability
qs, it becomes dormant from the active state. The particle does not move in the
dormant state and becomes active with a location-dependent probability determined
by the environment e. The following property of the law of Θ̂e is a consequence of the
translation-invariance of Zd and the migration kernel a(· , ·). The proof follows from
an easy calculation of the transition probabilities of Θ̂e given in (4.27), and is omitted
for briefness.

Lemma 4.3.3 (Translation-invariance). For any (i, α), (j, β) ∈ G and n ∈ N0,

P̂ e
(0,α)(Θ̂e

n = (j, β)) = P̂
T−ie
(i,α) (Θ̂T−ie

n = (i+ j, β)). (4.30)
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The connection between the discrete-time Markov chain Θ̂e and the continuous-
time Markov process Θe becomes apparent in the next lemma.

Lemma 4.3.4 (Uniformisation by Poisson clock). Let e ∈ EK be a uniformly
elliptic environment and (Nt)t≥0 be a Poisson process with rate c + λ + λK that is
independent of the subordinate Markov chain Θ̂e. Then, under the assumption that
the process Θe (see Definition 4.2.3) and the Markov chain Θ̂e have the same initial
distribution,

(Θe(t))t≥0
d= (Θ̂e

Nt)t≥0. (4.31)
In particular, for η, ξ ∈ G,

pet(η, ξ) = e−(c+λ+λK)t
∞∑
n=0

[(c+λ+λK)t]n
n! Qne (η, ξ), (4.32)

where pet(· , ·) and Qe(· , ·) are as in Definition 4.2.3 and Definition 4.3.1, respectively.

Proof. Let Je denote the infinitesimal generator of the process Θe. The action of Je
on a bounded function f ∈ Fb(G) is given by

(Jef)(i, α) =

λ[f(i, 0)− f(i, 1)] +
∑
j∈Zd

a(i, j)[f(j, 1)− f(i, 1)], if α = 1,

λKi[f(i, 1)− f(i, 0)], if α = 0,
(4.33)

where (i, α) ∈ G. Since e is uniformly elliptic and the total speed of migration given
by c is finite by virtue of Assumption 2.A, it is easily seen that Je is a bounded op-
erator. Thus (exp{Jet})t≥0 defines the semigroup of Θe. In particular, the transition
probability kernel pet(· , ·) expands as

pet(· , ·) =
∞∑
n=0
J ne (· , ·) tnn! , (4.34)

where the generator Je is viewed as a matrix. The claim follows from this expansion
of pet(· , ·) and the observation that

Je = (c+ λ+ λK)[Qe − I], (4.35)

where I is the identity operator (viewed as a matrix). Note that in (4.35) the
translation-invariance of the migration kernel a(· , ·) is used.

Below we define the “environment process” associated to the subordinate Markov
chain Θ̂e. This process is defined in the same way as for RWRE on a strip (see e.g.,
[53, Definition 2.2]).

Definition 4.3.5 (Auxiliary environment process). Let Θ̂e = (Xe
n, α

e
n)n∈N0 with

the canonical law P̂ e
(0,α) be the subordinate Markov chain (see Definition 4.3.1) started

at (0, α) ∈ G in environment e ∈ EK. The auxiliary environment process W having
initial distribution δ(e,α) is the discrete-time process on ΩK := EK × {0, 1} given by

W := (Wn)n∈N0 , Wn := (en, αn) with en := TXe
n
e, αn := αe

n, (4.36)
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and is defined on the same probability space of Θ̂e. �

It is trivial to check that, for any (e, α) ∈ ΩK, W is a Markov chain on the state space
ΩK under the law P̂ e

(0,α), with initial distribution δ(e,α) (by Lemma 4.3.3, also under
the law P̂ e

(i,α), i ∈ Zd, with initial distribution δ(Tie,α)).
The action of the Markov kernel operator R associated to W on a bounded function

f ∈ Fb(ΩK) is given by

Rf(e, α) := Êe
(0,α)[f(W1)] =

∑
(j,β)∈G

Qe((0, α), (j, β))f(Tje, β), (4.37)

where (e, α) ∈ ΩK and Qe(· , ·) is the 1-step transition kernel of Θ̂e defined in (4.29).
In particular,

Rf(e, α) =

qs f(e, 0) + (1− qs)
∑
j∈Zd

p̂(j)f(Tje, 1), if α = 1,

ω(0)f(e, 1) + [1− ω(0)]f(e, 0), if α = 0,
(4.38)

where qs, p̂(·) and ω := (ω(k))k∈Zd are defined in terms of e and the other parameters
in (4.28).

The Markov chain W describes the state of the environment from the point of
view of a particle that moves on the d-dimensional strip Zd × {0, 1} according to the
chain Θ̂e. The definition of the process differs from the standard definition usually
encountered in the literature on RWRE. This is because the particle moves on two
copies of Zd instead of one, and in order to preserve the Markov property we need an
extra variable describing the layer on which the particle is present.

The state space ΩK of the auxiliary environment process W , even though compact,
is huge. Thus, at first glance, obtaining any useful information from W might seem
to be an impossible task. In general, this difficulty is overcome by taking initial
samples of the environment from an ergodic and translation-invariant law. In such
settings, it often becomes possible to construct “by hand” an invariant distribution
that is absolutely continuous w.r.t. the initial law. Invariant distributions having such
characteristics, which guarantees its uniqueness as well (see e.g. [22, 100]), are an
extremely powerful tool for deriving many interesting properties, such as laws of large
numbers, central limit theorems etc., for the relevant process. In the next section we
find an invariant distribution Q with such a property and prove weak convergence of
W to the invariant distribution in the quenched setting.

§4.3.2 Stationary environment process and weak con-
vergence

In this section we address the question of whether the auxiliary environment process
W admits an invariant distribution that is “equivalent” to its initial distribution. The
following result provides a positive answer:
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Theorem 4.3.6 (Invariant distribution of environment process). Let Q be the
probability measure on (ΩK,Σ⊗ 2{0,1}) defined by

dQ{(e, α)} := u(e, α)
1 + ρ

dP̄{e}, (4.39)

where the law P̄ defined on (EK,Σ) is as in Assumption 4.B, ρ := Ē
[
M0
N0

]
, and the

density u : ΩK → (0,K] is given by

u((Nk,Mk)k∈Zd , α) =
{

1 if α = 1,
M0
N0

if α = 0.
(4.40)

The following hold:

(1) The environment process W in Definition 4.3.5 is stationary and ergodic under
the probability law Q.

(2) Under condition (1) in Assumption 4.A, Q is reversible.

Remark 4.3.7 (Validity in all dimensions). Part (1) of Theorem 4.3.6 holds
without the imposition of condition (1) in Assumption 4.A. It essentially follows from
the translation-invariance and ergodicity of the law P̄. Moreover, both part (1) and
part (2) are valid in all dimensions d ≥ 1. Assumption 2.A is crucial for the proof and
can not be removed in a straightforward way.

The proof of Theorem 4.3.6 is mostly computational and is deferred to Appendix B.1.
As an application of this result, in Appendix B.1 we also give a proof of strong law of
large numbers for the subordinate Markov chain Θ̂e (recall Definition 4.3.1), which is
a result of independent interest.

Before we proceed further, let us explain what we mean by “equivalence” of the
invariant distribution Q in the theorem and the initial law P̄ of the environment. In
the literature on RWRE, this phenomenon is called “equivalence between the static
and the dynamic points of view”.

Lemma 4.3.8 (Equivalence of Q and P̄). Let Q, P̄ be as in Theorem 4.3.6. Then,
for any measurable A ⊆ ΩK = EK × {0, 1}, the following are equivalent:

(1) Q(A) = 1.

(2) There exists a Σ-measurable A′ ⊆ EK such that P̄(A′) = 1 and A′ × {0, 1} ⊆ A.

Proof. Let θ := 1
1+Ē[M0/N0] ∈ (0, 1), and let µ be the probability measure on (EK,Σ)

defined by
µ(E) = θ

1−θ

∫
E

M0
N0

dP̄{(Nk,Mk)k∈Zd}, E ∈ Σ. (4.41)

Clearly, for any E ∈ Σ,

µ(E) = 1 if and only if P̄(E) = 1. (4.42)
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Suppose that (1) holds for some measurable A ⊆ ΩK. Note from (4.39) that

1 = Q(A) = θ P̄(A1) + (1− θ)µ(A0), (4.43)

where
A0 := {e : (e, 0) ∈ A}, A1 := {e : (e, 1) ∈ A}. (4.44)

Since θ ∈ (0, 1), this implies P̄(A1) = µ(A0) = 1 . Defining A′ = A0 ∩A1, we see that
(2) follows from (4.42).

Similarly, if (2) holds, then by (4.42), Q(A′ ×{0, 1}) = θ P̄(A′) + (1− θ)µ(A′) = 1.
Thus, Q(A) ≥ Q(A′ × {0, 1}) = 1 and so (1) is proved.

Our next goal is to prove weak convergence of the environment process W to the
stationary law Q under the quenched law P̂ e

(0,α) for P̄-a.s. every realisation of the
environment e ∈ EK. In particular, we have the following result:

Theorem 4.3.9 (Weak convergence of auxiliary environment). Suppose that
conditions (1)–(2) in Assumption 4.A hold. Let fA : EK → R and fD : EK → R be two
bounded Σ-measurable functions. Then, for P̄-a.s. every realisation of e ∈ EK and any
α ∈ {0, 1},

lim
n→∞

Êe
(0,α)[h(en, αn)] =

∫
EK×{0,1}

h(e′, β) dQ(e′, β), (4.45)

where h is the function (e, α) 7→ αfA(e) + (1 − α)fD(e), W = (en, αn)n∈N0 is the
auxiliary environment process with law P̂ e

(0,α) defined in Definition 4.3.5, and Q is the
stationary law of W given in (4.39).

The proof of Theorem 4.3.9 is a consequence of the proposition stated below. This
proposition is an analogue of the “fundamental theorem of Markov chains on countable
state spaces” because it addresses Markov chains on general state spaces. We believe
that this result is already known in the literature (see e.g., [114] or [23, 89, 35]) on
ergodic theory on Markov chains, but we have been unable to find a reference with
an explicit proof of the statement. For the sake of completeness, the proof is given in
Appendix B.2.

Proposition 4.3.10 (Fundamental theorem of MC). Let (Ω,Σ,Q) be a prob-
ability space, where the σ-field Σ is countably generated. Let W := (Wn)n∈N0 be a
Markov chain on the state space Ω, and assume that Q is a reversible and ergodic
stationary distribution for W . If −1 is not an eigenvalue of the Markov kernel oper-
ator R : L∞(Ω,Q) → L∞(Ω,Q) associated to W , then for every bounded measurable
function f ∈ Fb(Ω) and Q-a.s. every w ∈ Ω,

lim
n→∞

Ew[f(Wn)] =
∫

Ω
f dQ, (4.46)

where the expectation on the left is taken w.r.t. the law of W started at w.

Remark 4.3.11 (Convergence in total variation). The above proposition only
establishes weak convergence and gives no information on the rate of convergence in
(4.46). Under more stringent classical conditions on W , such as Harris recurrence or a
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Doeblin criterion (see e.g., [121, 129] and [135, 104] for further references), uniqueness
of the law Q holds and the chain converges in total variation norm from all initial
starting points. The existence of a spectral gap of the operator R results in geometric
ergodicity, where the convergence takes place at an exponential rate (see e.g., [98]).
However, under the assumption of only aperiodicity and φ-irreducibility of the Markov
chain W , convergence in total variation holds only for Q-a.s. all initial points.

Although in the above remark we discuss convergence of a Markov chain in total vari-
ation norm, the reader should not hope for such a strong convergence of the auxiliary
environment process W given in Definition 4.3.5. Indeed, the process W is a highly
“singular” Markov chain living on a huge state space ΩK and admits infinitely many in-
variant distributions (e.g., take P̄ = δe, where e = (N,M)i∈Zd is a translation-invariant
environment with (N,M) ∈ N2, and construct Q by (4.39)). Thus, it is very unlikely
for W to be Harris recurrent, or to satisfy Doeblin-type conditions for that matter.

Proof of Theorem 4.3.9. By condition (1) of Assumption 4.A and Theorem 4.3.6, we
see that Q is a reversible and ergodic distribution for the auxiliary environment process
W . Observe from Proposition 4.3.10, if we are able to prove that −1 is not an eigen-
value of the Markov kernel operator R : L∞(ΩK,Q) → L∞(ΩK,Q) given in (4.38),
then we can find a measurable E ⊆ ΩK such that Q(E) = 1 and, for all (e, α) ∈ E,
(4.45) holds for the function h. In particular, using Lemma 4.3.8 we can find a meas-
urable E′ ⊂ EK with P̄(E′) = 1 and (4.45) holds for all (e, α) ∈ E′ × {0, 1}. Thus, the
proof is complete once we show that −1 is not an eigenvalue of R when viewed as an
operator on L∞(ΩK,Q). We prove this in Lemma 4.3.12 stated below.

Lemma 4.3.12 (Trivial peripheral point-spectrum). Let R be the Markov kernel
operator (see (4.38)) of the auxiliary environment process W , and Q be the invariant
distribution of W given in Theorem 4.3.6. If condition (2) in Assumption 4.A holds,
then −1 is not an eigenvalue of the kernel operator R : L∞(ΩK,Q)→ L∞(ΩK,Q).

Proof. Let g ∈ L∞(ΩK,Q) be such that

Rg = −g Q-a.s. (4.47)

We show g = 0 a.s. As we will see below, this will follow from condition (2) in As-
sumption 4.A, which ensures that the increment distribution p̂(·) defined in terms of
a(· , ·) in (4.28) does not admit any non-constant and nonnegative bounded subhar-
monic function. With this aim, let A ⊆ ΩK be measurable with Q(A) = 1 and such
that (4.47) holds for all (e, α) ∈ A. Without loss of generality, we can also assume
that

|g(e, α)| ≤ ‖g‖∞ ∀ (e, α) ∈ A. (4.48)
By Lemma 4.3.8, there exists a measurable A′ ⊆ EK such that P̄(A′) = 1 and (4.47)
holds for all (e, α) ∈ A′ × {0, 1} ⊆ A. Using (4.38), we compute Rg and obtain from
(4.47) that

g(e, 0) = −
[
ω(0)g(e, 1) + (1− ω(0))g(e, 0)

]
,

g(e, 1) = −
[
qs g(e, 0) + (1− qs)

∑
j∈Zd

p̂(j)g(Tje, 1)
], e ∈ A′, (4.49)
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where, as before, ω, p̂ and qs are defined by (4.28) in terms of e and the other para-
meters. Now, using the translation invariance of P̄, we also have

P̄(Binv) = 1, Binv :=
⋂
j∈Zd

T−1
j (A′) ⊆ A′, (4.50)

where, trivially, Binv is a translation-invariant set. We get from (4.49) that

g(e, 0) = − ω(0)
2− ω(0)g(e, 1),∑

j∈Zd
p̂(j)g(Tje, 1) = −

[ 2− (1 + qs)ω(0)
(2− ω(0))(1− qs)

]
g(e, 1),

(4.51)

for all e ∈ Binv. By ellipticity (see Definition 4.2.7) of e ∈ Binv, we can find a δ ∈ (0, 1
2 )

such that δ < ω(0) < 1−δ for all ω = (ω(k))k∈Zd determined by e ∈ Binv. In particular,
setting

C := 1
1− qs

[
1− 1−δ

1+δ qs

]
, (4.52)

we see that
2− (1 + qs)ω(0)

(2− ω(0))(1− qs)
≥ C, (4.53)

and also C > 1 as δ ∈ (0, 1
2 ). Combining the above with (4.51), we have∣∣∣ ∑

j∈Zd
p̂(j)g(Tje, 1)

∣∣∣ =
∣∣∣ 2−(1+qs)ω(0)

(2−ω(0))(1−qs)

∣∣∣|g(e, 1)| ≥ C|g(e, 1)|, e ∈ Binv. (4.54)

Using the triangle inequality, we get∑
j∈Zd

p̂(j)|g(Tje, 1)| ≥ C|g(e, 1)|, e ∈ Binv. (4.55)

Because Binv is translation-invariant, the above implies that for any e ∈ Binv and all
i ∈ Zd, ∑

j∈Zd
p̂(j)|g(Ti+je, 1)| ≥ C|g(Tie, 1)|. (4.56)

Since C > 1, the above equation tells that, for a fixed e ∈ Binv, the map i 7→ |g(Tie, 1)|
is a bounded (recall (4.48)) non-negative subharmonic function for p̂(·). Now, by con-
dition (2) in Assumption 4.A, a random walk on Zd with increment distribution p̂(·)
defined as in (4.27) is irreducible and recurrent (see e.g., [107, Chapter 4]). Therefore,
any bounded nonnegative subharmonic function of p̂(·) on Zd(d ≤ 2) must be a con-
stant (by an application of Doob’s submartingale convergence theorem). In particular,
for any e ∈ Binv and all i ∈ Zd,

|g(Tie, 1)| = |g(e, 1)|. (4.57)

Since C > 1, the only way in which (4.56) complies with (4.57), is when |g(e, 1)| = 0,
so (4.51) implies that g(e, 0) = 0 as well. Thus, g = 0 on Binv × {0, 1} and, since
P̄(Binv) = 1, we see by Lemma 4.3.8 that Q(Binv × {0, 1}) = 1.
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Remark 4.3.13 (Peripheral point-spectrum in L1). Using [89, Lemma 2], we can
actually show that −1 is not an eigenvalue of R in L1(ΩK,Q) as well. But convergence
of R2nf may fail as n→∞, when it is merely assumed that f ∈ L1(ΩK,Q) (see e.g.,
[131]), and therefore Proposition 4.3.10 does not hold in general for such f .

§4.3.3 Transference of convergence: discrete to con-
tinuous

In this section we prove Theorem 4.2.11 and Corollary 4.2.12 by utilising the results
derived in the Section 4.3.2.

Before we start with the proof of Theorem 4.2.11, let us briefly elaborate on its
statement. In Section 4.3.1 we introduced in Definition 4.3.5 the discrete-time auxili-
ary environment process W associated to the subordinate Markov chain Θ̂e. We can
also, in a similar fashion, extend the definition of W to construct a continuous-time en-
vironment process w := (wt)t≥0 for the single-particle dual Θe (recall Definition 4.2.3).
Indeed, we obtain the process w by simply putting

wt := (et, αt) with et := Txe
t
e, αt := αe

t , (4.58)

for each t ≥ 0, where Θe = (xet , αe
t)t≥0 is as in Definition 4.2.3. Upon closer inspection

of (4.10) and the definition of w, we see that Theorem 4.2.11 basically states that

lim
t→∞

Ee
(0,α)[αtfA(et) + (1− αt)fD(et)] = θ (4.59)

for P̄-a.s. every realisation of the environment e, where fA, fD and θ are as in the
theorem. In other words, (4.59) is equivalent to saying that the process w converges
in distribution to the law Q given in (4.39) for P̄-a.s. every realisation of e ∈ EK and
any α ∈ {0, 1}.

Proof of Theorem 4.2.11. From Lemma 4.3.4, we observe that

pet((0, α), (j, β)) =
∞∑
n=0

P̂ e
(0,α)(Θ̂e

n = (j, β))P(Nt = n), (j, β) ∈ G, e ∈ EK, t ≥ 0,

(4.60)
where pet(· , ·) is as in Definition 4.2.3, Θ̂e = (Θ̂e

n)n∈N0 is the subordinate Markov chain
with law P̂ e

(0,α) (see Definition 4.3.1) and (Nt)t≥0 is the Poisson process mentioned in
the lemma, which is independent of Θ̂e. Thus, using the above, the left-hand side of
(4.23), which we abbreviate by l((e, α), t) for any t ≥ 0, can be written as

l((e, α), t) =
∑

(j,β)∈G

[ ∑
n∈N0

P̂ e
(0,α)(Θ̂e

n = (j, β))P(Nt = n)
]{
βfA(Tje) + (1− β)fD(Tje)

}
=
∑
n∈N0

[ ∑
(j,β)∈G

P̂ e
(0,α)(Wn = (Tje, β))

{
βfA(Tje) + (1− β)fD(Tje)

}]
P(Nt = n)

=
∑
n∈N0

Êe
(0,α)

[
h(Wn)

]
P(Nt = n),

(4.61)
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where the interchange of the order of summation in the second equality is justified by
Fubini’s theorem, (Wn)n∈N0 is the auxiliary environment process (see Definition 4.3.5),
and h : EK × {0, 1} → R is the map (e, α) 7→ αfA(e) + (1 − α)fD(e). By virtue of
Theorem 4.3.9, we can find a measurable B ∈ Σ with P̄(B) = 1 such that, for all e ∈ B
and any α ∈ {0, 1},

lim
n→∞

Êe
(0,α)

[
h(Wn)

]
=
∫

ΩK

h(b, β) dQ(b, β) = θ, (4.62)

where θ is as in (4.24). Fix e ∈ B, α ∈ {0, 1} and ε > 0. By virtue of the above,
we can find Ne ∈ N such that, for all n ≥ Ne, |Êe

(0,α)
[
h(Wn)

]
− θ| < ε. Finally, from

(4.61), we get

|l((e, α), t)− θ| ≤
∞∑
n=0

∣∣Êe
(0,α)

[
h(Wn)

]
− θ
∣∣P(Nt = n)

≤ 2‖h‖∞ P(Nt < Ne) + εP(Nt ≥ Ne)
≤ 2‖h‖∞ P(Nt < Ne) + ε.

(4.63)

Since Nt →∞ with probability 1 as t→∞, letting t→∞ in the above, we see

lim sup
t→∞

|l((e, α), t)− θ| ≤ ε. (4.64)

As ε > 0 is arbitrary, we get that

lim
t→∞

l((e, α), t) = θ (4.65)

for all e ∈ B and α ∈ {0, 1}. This proves the claim in (4.23).

Proof of Corollary 4.2.12. The proof basically follows from the translation-invariance
of P̄ and Lemma 4.3.3. Indeed, using Theorem 4.2.11, we can find a measurable B ∈ Σ
such that P̄(B) = 1 and, for all e ∈ B, α ∈ {0, 1},

lim
t→∞

∑
(j,β)∈G

pet((0, α), (j, β))
[
βfA(Tje) + (1− β)fD(Tje)

]
= θ, (4.66)

where θ is as in (4.24). LettingBinv := ∩j∈ZdT−1
j B, we see thatBinv ∈ Σ is translation-

invariant and P̄(Binv) = 1. In particular, for any e ∈ Binv and all (i, α) ∈ Zd × {0, 1},

lim
t→∞

∑
(j,β)∈G

pTiet ((0, α), (j, β))
[
βfA(Tj(Tie)) + (1− β)fD(Tj(Tie))

]
= θ. (4.67)

Also, using Lemma 4.3.3–4.3.4, we see that, for any t ≥ 0 and (j, β) ∈ Zd × {0, 1},

pTiet ((0, α), (j, β)) = pet((i, α), (i+ j, β)), ∀i ∈ Zd, α ∈ {0, 1}. (4.68)

Combining the last two equations, for all (i, α) ∈ Zd × {0, 1}, we get

lim
t→∞

∑
(j,β)∈G

pet((i, α), (i+ j, β))
[
βfA(Ti+je) + (1− β)fD(Ti+je)

]
= θ, (4.69)
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which after a change of variable in the summation translates to

lim
t→∞

∑
(j,β)∈G

pet((i, α), (j, β))
[
βfA(Tje) + (1− β)fD(Tje))

]
= θ. (4.70)

The proof is complete by the observation that P̄(Binv) = 1, and the above holds for
any e ∈ Binv.

§4.4 Proof of main theorems
In this section we prove the two main results given in Section 4.2.2–4.2.3. In Sec-
tion 4.4.1, we derive a consistency property of the general dual Ze

∗ of the process Ze.
Using this preliminary result on the dual, in Section 4.4.2 we prove Theorem 4.2.4,
Corollary 4.2.5, and using Theorem 4.2.4 and the previous homogenisation result on
the single-particle dual Θe (see Definition 4.3.1), we prove Theorem 4.2.9.

§4.4.1 Preliminaries: consistency of dual process
We start by recalling from Chapter 2 the duality relation between the spatial process
Ze and the dual process Ze

∗ that will be needed for the proof of our main theorems.

Theorem 4.4.1 (Duality relation, [Corollary 2.4.6, Chapter 2]). Suppose that
Assumption 2.A is in force. Then, for every admissible environment e = (Ni,Mi)i∈Zd ∈
A, the following duality relation holds between the two processes Ze and Ze

∗:

EU [De(Ze(t), V )] = EV∗ [De(U,Ze
∗(t))], t ≥ 0. (4.71)

Here the expectation on the left (right) side is taken w.r.t. the law of Ze (Ze
∗) started

at U ∈ X e (V ∈ X e
∗ ), and De : X e ×X e

∗ → [0, 1] is the duality function defined by

De(U, V ) =
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1lni≤Xi,mi≤Yi , (4.72)

with U = (Xi, Yi)i∈Zd ∈ X e and V = (ni,mi)i∈Zd ∈ X e
∗ .

The next lemma establishes the relation between the process Θe and the general
dual Ze

∗. We omit the proof for brevity, as this easily follows from the fact that any
injective transformation preserves the Markov property and a unique such transform-
ation exists that maps Θe to the dual process Ze

∗ started at a configuration consisting
of only a single particle.

Lemma 4.4.2 (Relation between Θe and Ze
∗). For i ∈ Zd, let ~δi,A (resp. ~δi,D)

∈ X e
∗ denote the configuration containing a single active (resp. dormant) particle at

location i. Formally,

~δi,A := (1l{n=i}, 0)n∈Zd , ~δi,D := (0, 1l{n=i})n∈Zd , (4.73)
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and for η = (i, α) ∈ Zd × {0, 1}, let ~δη := 1lα=1 ~δi,A + 1lα=0 ~δi,D. If Pϕe denotes the law
of Ze

∗ started at ϕ ∈ X e
∗ , then, for all t ≥ 0,

pet(η, ξ) = P
~δη
e (Ze

∗(t) = ~δξ), η, ξ ∈ Zd × {0, 1}, (4.74)

where pet(· , ·) is as in Definition 4.2.3.

The following lemma, which is essentially a consequence of Assumption 2.A, tells
us that any bounded harmonic function of the single-particle dual process Θe is a
constant.

Lemma 4.4.3 (Constant harmonics). Let Θe = (Θe(t))t≥0 be the process defined
in Definition 4.2.3 started at η ∈ G with law P e

η , where G = Zd × {0, 1} and e :=
(Ni,Mi)i∈Zd . Let f : G→ R be a bounded harmonic function for P e

η , i.e.,

Ee
η[f(Θe(t))] = f(η) for all η ∈ G, t ≥ 0. (4.75)

Then f is constant.

Proof. Let Je be the infinitesimal generator of the process Θe. The action of Je on f
can be written in the following concise expression:

(Jef)(i, α) := (αλ+ (1−α)λKi)[f(i, 1−α)− f(i, α)] +α
∑
j∈Zd

a(i, j)[f(j, α)− f(i, α)],

(4.76)
where (i, α) ∈ G. Since f is harmonic, (Jef) ≡ 0 and, using the above, we have
f(i, α) = f(i, 1−α) for all (i, α) ∈ G, which in turn implies that the function i 7→ f(i, 1)
is harmonic for a(· , ·). Applying the Choquet-Deny theorem to the irreducible and
translation-invariant kernel a(· , ·), we get the result.

By using the duality relation stated in Theorem 4.4.1 and exploiting the clustering
criterion given in Theorem 2.4.12 of Chapter 2, we obtain that coalescence of two dual
particles with probability 1 is equivalent to coalescence of any number of dual particles
with probability 1.

Theorem 4.4.4 (Lineage consistency). Let Pϕe denote the law of the dual process
Ze
∗ started at ϕ := (ni,mi)i∈Zd ∈ X e

∗ and evolving in environment e := (Ni,Mi)i∈Zd .
Let τ be first time when all particles have coalesced into a single particle in the dual
process, i.e.,

τ := inf{t ≥ 0 : |Ze
∗(t)| = 1}, (4.77)

where |ϕ| :=
∑
i∈Zd

(ni + mi) is the total number of initial dual particles. Then the

following are equivalent:

(a) Pϕe (τ <∞) = 1 for all ϕ ∈ X e
∗ with |ϕ| = 2.

(b) Pςe(τ <∞) = 1 for all ς ∈ X e
∗ with |ς| ≥ 2.
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Proof. By irreducibility of the dual process Ze
∗, it suffices to prove the equivalence

of the two statements for fixed ϕ, ς ∈ X e
∗ such that |ϕ| = 2 and n := |ς| ≥ 2. If

n = 2, then there is nothing to prove. So assume that n > 2. It is straightforward to
see from irreducibility and the Markov property of Ze

∗ that if Pϕe (τ = ∞) > 0, then
Pςe(τ =∞) ≥ Pςe(Z∗(t) = ϕ)Pϕe (τ =∞) > 0. Hence (b) implies (a).

To prove that (a) implies (b), assume Pϕe (τ < ∞) = 1 and, for t ≥ 0, set It :=
|Ze
∗(t)|. Note that, since Ze

∗ is a coalescent process, It is an integer-valued bounded
random variable that is decreasing in t a.s. Thus, I := lim

t→∞
It exists a.s. and it is

enough to prove that I = 1 a.s. To this purpose, let θ ∈ (0, 1) be fixed arbitrarily, and
let Ze be the spatial process started at the initial distribution µe

θ given by

µe
θ :=

⊗
i∈Zd

Binomial(Ni, θ)⊗ Binomial(Mi, θ). (4.78)

By Theorem 2.4.9 of Chapter 2, the process Ze converges to an equilibrium νθ. Also,
by our assumption that Pϕe (τ <∞) = 1 and Theorem 2.4.12 of Chapter 2, we have

νθ = (1− θ)δ♠ + θδ♥, (4.79)

where δ♥ (resp. δ♠) is the Dirac distribution concentrated at the all type-♥ config-
uration e ∈ X e (resp. the all type-♠ configuration (0, 0)i∈Zd ∈ X e). Furthermore, if
De(· , ·) is the duality function in (4.72), then combining Theorem 2.4.9 of Chapter 2
and the above we get

θ = Eνθ
[
De(Ze(0), ς)

]
= lim
t→∞

Eςe
[
θIt
]

= Eςe
[
θI
]

(bounded convergence), (4.80)

which implies that Eςe
[
θ(1 − θI−1)

]
= 0. Since θ ∈ (0, 1), we have that I = 1 almost

surely.

§4.4.2 Proofs: clustering in fixed and random envir-
onment

We are now ready to prove the two main theorems.

Proof of Theorem 4.2.4. To show that (a) implies (b), suppose that µe
t converges

weakly to ν ∈ P(X e) as t → ∞. Let θe := Eν
[Xe

0 (0)
N0

]
∈ [0, 1] be fixed. Since the

system is in the clustering regime by assumption, δ♠ and δ♥ are the only two extremal
equilibria for the process Ze. Hence, we must have that

ν = (1− θe)δ♠ + θeδ♥, (4.81)

where δ♥ (resp. δ♠) is the Dirac distribution concentrated at the all type-♥ configur-
ation e ∈ X e (resp. (0, 0)i∈Zd ∈ X e). We show that f e ≡ θe, which will settle (b) along
with the last statement of the theorem. To this end, for each t ≥ 0, let f et : G→ [0, 1]
be defined as

f et (η) :=
∑

(j,β)∈G

pet(η, (j, β))
∫
X e

[
β
Xj
Nj

+ (1− β) YjMj

]
dµe{(Xk, Yk)k∈Zd}, η ∈ G.

(4.82)
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Let η = (i, α) ∈ G be arbitrary, and let Ze
∗ := (Ze

∗(t))t≥0 be the dual process started
at ~δη := 1lα=1 ~δi,A + 1lα=0 ~δi,D, where for each i ∈ Zd the configurations ~δi,A, ~δi,D ∈ X e

∗
are defined as in (4.73). In other words, ~δη is the configuration with a single dual
particle located at i ∈ Zd with state α. Recall from Definition 4.2.3 that the time-t
transition kernel pet(· , ·) of the single-particle dual process Θe is defined as

pet(η, ζ) := P e
η (Θe(t) = ζ), η, ζ ∈ G. (4.83)

Using Lemma 4.4.2 and appealing to the monotone convergence theorem, we get from
(4.82) that

f et (η) =
∫
X e

E
~δη
e

[
De(z, Ze

∗(t))
]

dµe{z}, (4.84)

where the expectation is w.r.t. the law of the dual process Ze
∗, and De(· , ·) is the

duality function in (4.72). Furthermore, applying the duality relation between Ze and
Ze
∗ to the above identity, we get

f et (η) = Eµe

[
De(Ze(t), ~δη)

]
=
∫
X e

De(z, ~δη) dµe
t{z}. (4.85)

However, since µe
t
weak−→ ν as t→∞, combining the above with (4.81), we see that

f e(η) = lim
t→∞

f et (η) =
∫
X e

De(z, ~δη) dν{z} = θe, (4.86)

and hence the claim is proved.
To prove the converse, for t ≥ 0, let f et : G → [0, 1] be as in (4.82). Applying

Fubini’s theorem to (4.84), for any η ∈ G we have

f et (η) = E
~δη
e

[ ∫
X e

De(z, Ze
∗(t)) dµe{z}

]
. (4.87)

Using the Markov property of Ze
∗, we note that, for t, s ≥ 0 and η ∈ G,

f es+t(η) =
∑
ζ∈G

pes(η, ζ)f et (ζ). (4.88)

Since by assumption f e(η) = lim
t→∞

f et (η) exists for any η ∈ G, letting t → ∞ in the
above identity, we obtain

f e(η) = lim
t→∞

∑
ζ∈G

pes(η, ζ)f et (ζ) =
∑
ζ∈G

pes(η, ζ)
[

lim
t→∞

f et (ζ)
]

(dominated convergence)

=
∑
ζ∈G

pes(η, ζ)f e(ζ) = Ee
η

[
f e(Θe(s))

]
.

(4.89)
Hence, in particular, f e is harmonic for the process (Θe(t))t≥0 and thus, by Lemma 4.4.3,
f e ≡ θe for some θe ∈ [0, 1]. It only remains to show that µe

t converges weakly as
t → ∞. This is equivalent to showing that, for any ϕ ∈ X e

∗ , lim
t→∞

Eµe

[
De(Ze(t), ϕ)

]
exists. Because P(X e) is compact (as X e is) in the topology of weak convergence,
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(µe
t)t≥0 is tight. Finally, the existence of the limit ensures the convergence of the as-

sociated finite-dimensional distributions, because the family of functions {De( · , ϕ) :
ϕ ∈ X e

∗} fixes the mixed moments of the finite-dimensional distributions of Ze (see
Proposition 2.6.4 in Chapter 2), and therefore is convergence determining. Let ϕ =
(ni,mi)i∈Zd ∈ X e

∗ be fixed, and Ze
∗ be the dual process started at ϕ. First note that

if |ϕ| =
∑
i∈Zd(ni + mi) = 1, then the limit exists and equals θe by our assumption.

Indeed, if |ϕ| = 1, then ϕ = ~δζ for some ζ ∈ G. As a consequence of duality and
(4.84), we see that Eµe

[
De(Ze(t), ϕ)

]
= f et (ζ) and hence

lim
t→∞

Eµe

[
De(Ze(t), ϕ)

]
= lim
t→∞

E
~δζ
e

[ ∫
X e

De(z, Ze
∗(t)) dµe{z}

]
= lim
t→∞

f et (ζ) = f e(ζ) = θe.

(4.90)
Now, let us fix ϕ ∈ X e

∗ such that |ϕ| ≥ 2. Since the system is in the clustering regime,
by virtue of Theorem 2.4.12 stated in Chapter 2, condition (a) in Theorem 4.4.4 is
satisfied. Hence from part (b) of Theorem 4.4.4 it follows that τ <∞ a.s., where

τ := inf{t ≥ 0 : |Ze
∗(t)| = 1}. (4.91)

Using duality and the strong Markov property of the dual process, we see that

lim
t→∞

Eµe

[
De(Ze(t), ϕ)

]
Fubini= lim

t→∞
Eϕe
[ ∫
X e

De(z, Ze
∗(t)) dµe{z}

]
= lim
t→∞

Eϕe
[ ∫
X e

De(z, Ze
∗(t)) dµe{z}; τ ≤ t

]
+ lim
t→∞

Eϕe
[ ∫
X e

De(z, Ze
∗(t)) dµe{z} | τ > t

]
︸ ︷︷ ︸

≤1

Pϕe (τ > t)

= lim
t→∞

Eϕe
[
EZ

e
∗(τ)

e

[ ∫
X e

De(z, Ze
∗(t− τ)) dµe{z}

]
; τ ≤ t

]
= lim
t→∞

Eϕe
[∑
ζ∈G

f et−τ (ζ)1l{Ze
∗(τ)=~δζ}; τ ≤ t

]
,

(4.92)

where we use that the second term after the first equality converges to 0 because
τ <∞ a.s., and the last equality follows from (4.84) and the fact that Ze

∗(τ) = ~δζ for
some ζ ∈ G. Finally, by an application of the dominated convergence theorem, we get

lim
t→∞

Eµe

[
De(Ze(t), ϕ)

]
= Eϕe

[∑
ζ∈G

(
lim
t→∞

f et−τ (ζ)
)
1l{Ze

∗(τ)=~δζ}; τ <∞
]

= Eϕe
[∑
ζ∈G

f e(ζ)1l{Ze
∗(τ)=~δζ}; τ <∞

]
= θe Pϕe (τ <∞) (since f e ≡ θe)

= θe.

(4.93)

This shows that there exists ν ∈ P(X e) such that µe
t converges weakly to ν as t→∞.

Since the system clusters by assumption, we must have

ν = (1− θe)δ♠ + θeδ♥, (4.94)
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where δ♥ (resp. δ♠) is the Dirac distribution concentrated at the all type-♥ configur-
ation e ∈ X e (resp. the all type-♠ configuration (0, 0)i∈Zd ∈ X e).

Proof of Corollary 4.2.5. The proof basically exploits Theorem 4.2.4 and the fact that
the particle associated to the process Θe eventually leaves any finite region of the state
space G = Zd × {0, 1} with probability 1. It suffices to prove that condition (b) in
Theorem 4.2.4 is satisfied. Let f : Zd × {0, 1} → [0, 1] be the map

f(i, α) := αEµe

[Xe
i (0)
Ni

]
+ (1− α)Eµe

[Y e
i (0)
Mi

]
, (i, α) ∈ Zd × {0, 1}, (4.95)

and let ε > 0 be arbitrary. By (4.10), there exists N ∈ N such that, for all i ∈
Zd, ‖i‖ > N and α ∈ {0, 1}, |f(i, α)− θe| < ε. Thus, if pet(· , ·) is the time-t transition
kernel of the process (Θe(t))t≥0 in Definition 4.2.3, then for any η ∈ G and t ≥ 0,∣∣∣∣∣∣

∑
(j,β)∈G

pet(η, (j, β))
{
β Eµe

[Xe
j (0)
Nj

]
+ (1− β)Eµe

[Y e
j (0)
Mj

]}
− θe

∣∣∣∣∣∣
≤

∑
(j,β)∈G,
‖j‖≤N

pt(η, (j, β))
∣∣f(j, β)− θe

∣∣︸ ︷︷ ︸
≤2

+
∑

(j,β)∈G,
‖j‖>N

pet(η, (j, β))
∣∣f(j, β)− θe

∣∣︸ ︷︷ ︸
≤ε

≤ 2P e
η (Θe(t) ∈ ΛN × {0, 1}) + ε P e

η (Θe(t) /∈ ΛN × {0, 1}),

(4.96)

where ΛN := Zd ∩ [0, N ]d, and P e
η denotes the law of (Θe(t))t≥0 started at η. Since

ΛN is finite, lim
t→∞

P e
η (Θe(t) ∈ ΛN × {0, 1}) = 0, and so letting t→∞ in (4.96), we get

lim sup
t→∞

∣∣∣∣∣∣
∑

(j,β)∈G

pet(η, (j, β))
{
β Eµe

[Xe
j (0)
Nj

]
+ (1− β)Eµe

[Y e
j (0)
Mj

]}
− θe

∣∣∣∣∣∣ ≤ ε. (4.97)

As ε is arbitrary, we see that

lim
t→∞

∑
(j,β)∈G

pet(η, (j, β))f(j, β) = θe (4.98)

and hence the claim follows from Theorem 4.2.4.

Proof of Theorem 4.2.9. We exploit Theorem 4.2.4 and the homogenisation result in
Corollary 4.2.12. We see that, because of conditions (1)–(2) in Assumption 4.A and
ellipticity of the environments e ∈ EK, the process Ze is in the clustering regime for
every environment e ∈ EK. Also, by virtue of Corollary 4.2.12 and the assumption in
(4.18) on initial distributions, there exists B ∈ Σ such that P̄(B) = 1, and for all e ∈ B
condition (b) of Theorem 4.2.4 holds. Furthermore, we see from Corollary 4.2.12, that
the limiting value in that condition is independent of the environment e, and is given
by (4.19). Hence the result follows.
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