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PART I

SPATIALLY INHOMOGENEOUS
POPULATIONS WITH

SEED-BANK





CHAPTER 2
Spatially inhomogeneous populations

with seed-bank: duality, existence,
equilibrium

This chapter is based on the following paper:
F. den Hollander and S. Nandan. Spatially inhomogeneous populations with seed-
banks: I. Duality, existence and clustering. J. Theor. Probab., 35(3):1795–1841, 2021.

Abstract

We consider a system of interacting Moran models with seed-banks. Individuals live in
colonies and are subject to resampling and migration as long as they are active. Each colony
has a seed-bank into which individuals can retreat to become dormant, suspending their
resampling and migration until they become active again. The colonies are labelled by Zd,
d ≥ 1, playing the role of a geographic space. The sizes of the active and the dormant
population are finite and depend on the location of the colony. Migration is driven by a
random walk transition kernel. Our goal is to study the equilibrium behaviour of the system
as a function of the underlying model parameters.

In the present paper we show that, under mild condition on the sizes of the active popu-
lation, the system is well-defined and has a dual. The dual consists of a system of interacting
coalescing random walks in an inhomogeneous environment that switch between an active
state and a dormant state. We analyse the dichotomy of coexistence (= multi-type equi-
libria) versus clustering (= mono-type equilibria), and show that clustering occurs if and
only if two random walks in the dual starting from arbitrary states eventually coalesce with
probability one. The presence of the seed-bank enhances genetic diversity. In the dual this
is reflected by the presence of time lapses during which the random walks are dormant and
do not move.
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§2.1 Background, motivation and outline
Dormancy is an evolutionary trait observed in plants, bacteria and other microbial
populations, where an organism enters a reversible state of low metabolic activity as
a response to adverse environmental conditions. The dormant state of an organism
in a population is characterised by interruption of basic reproduction and phenotypic
development during periods of environmental stress [109, 142]. The dormant organ-
isms reside in what is called a seed-bank of the population. After a varying and
possibly large number of generations, dormant organisms can be resuscitated under
more favourable conditions and reprise reproduction after becoming active by leaving
the seed-bank. This strategy is known to have important implications for the genetic
diversity and overall fitness of the underlying population [109, 108], since the seed-
bank of a population often acts as a buffer against evolutionary forces such as genetic
drift, selection and environmental variability. The importance of dormancy has led to
several attempts to model seed-banks from a mathematical perspective ([16, 14]; see
also [18] for a broad overview).

In [16] and [14], the Fisher-Wright model with seed-bank was introduced and ana-
lysed. In the Fisher-Wright model with seed-bank, individuals live in a colony, are
subject to resampling where they adopt each other’s type, and move in and out of the
seed-bank where they suspend resampling. The seed-bank acts as a repository for the
genetic information of the population. Individuals that reside inside the seed-bank
are called dormant, those that reside outside are called active. Both the long-time be-
haviour and the genealogy of the population were analysed for the continuum model
obtained by letting the size of the colony tend to infinity, called the Fisher-Wright
diffusion with seed-bank.

In [76, 75, 74], the continuum model was extended to a spatial setting in which
individuals live in multiple colonies, labelled by a countable Abelian group playing
the role of a geographic space. In the spatial model with seed-banks, each colony
is endowed with its own seed-bank and individuals are allowed to migrate between
colonies. The goal was to understand the change in behaviour compared to the spatial
model without seed-bank.

To date, most of the results in the literature on seed-bank models are derived only
in the setting of large-colony-size limit, where the evolution in the model is described
by a system of coupled SDE’s. In [48], a multi-colony Fisher-Wright model with
seed-banks was introduced where the colony sizes are finite. However, this model
is restricted to homogeneous population sizes and a finite geographic space. In this
chapter we introduce an individual-based spatial model with seed-banks in continuous
time where the sizes of the underlying populations are finite and vary across colonies.
The latter make the model more interesting from a biological perspective, but raise
extra technical challenges. The key tool that we use to tackle these challenges is
stochastic duality[71, 25]. The spatial model introduced in this chapter fits in the
realm of interacting particle systems, which often exhibit additional structures such
as duality[112, 134]. In particular, our spatial model can be viewed as a hybrid of the
well-known Voter Model and the generalized Symmetric Exclusion Process, 2j-SEP,
j ∈ N/2 [26, 71, 111]. Both the Voter Model and the 2j-SEP enjoy the stochastic
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duality property, and our system inherits this as well: it is dual to a system consisting
of coalescing random walks with repulsive interactions. The resulting dual process
shares striking resemblances with the dual processes of the Voter Model and 2j-SEP,
because the original process is a modified hybrid of them. It has been recognised in the
literature [150, 108, 109, 16, 14] that qualitatively different behaviour may occur when
the exit time of a typical individual from the seed-bank can become large. Our model
can address this phenomenon as well, due to the inhomogeneity in the seed-bank sizes.
Our main goals are the following:

(1) Introduce a model with seed-banks whose size is finite and depends on the geo-
graphic location of the colony. Prove existence and uniqueness of the process via
well-posedness of an associated martingale problem and duality with a system
of interacting coalescing random walks.

(2) Identify a criterion for coexistence (= convergence towards multi-type equilibria)
and clustering (= convergence towards mono-type equilibria). Show that there
is a one-parameter family of equilibria controlled by the density of types.

(3) Identify the domain of attraction of the equilibria.

(4) Identify the parameter regime under which the criterion for clustering is met. In
case of clustering, find out how fast the mono-type clusters grow in space-time.
In case of coexistence, establish mixing properties of the equilibria.

In this chapter we settle (1) and (2). In Chapter 3 we will deal with (4) and we will
partially address (3) in Chapter 4. We focus on the situation where the individuals
can be of two types. The extension to infinitely many types, called the Fleming-
Viot measure-valued diffusion, only requires standard adaptations and will not be
considered here.

The chapter is organised as follows. In Section 2.2 we give a quick definition of the
spatial model and state our main theorems about the well-posedness, the duality and
the clustering criterion. In Section 2.3 we define and analyse a single-colony model.
In Section 2.4 we extend the singe-colony model to the spatial model, prove that the
martingale problem associated with its generator is well-posed, establish duality with
an spatially interacting seed-bank coalescent, demonstrate that the system exhibits a
dichotomy between clustering and coexistence, and formulate a necessary and sufficient
condition for clustering to prevail in terms of the dual, called the clustering criterion.
Sections 2.5–2.7 are devoted to the proof of our main theorems.

§2.2 Main theorems
In Section 2.2.1 we give a quick definition of the spatial system of populations with
seed-banks. In Section 2.2.2 we argue that, under mild conditions on the sizes of the
active population, the system is well-defined and has a dual that consists of finitely
many interacting coalescing random walks. In Section 2.5.1
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§2.2.1 Quick definition of the multi-colony system
We consider the integer lattice Zd, d ≥ 1, as a geographic space, where each i ∈
Zd represents a colony consisting of an active population and a dormant dormant
population. For i ∈ Zd, we write (Ni,Mi) ∈ N2 to denote the size of the active,
respectively, the dormant population at colony i. The sizes of the populations are
preassigned and can vary across different colonies. Further, every individual of a
population carries one of two genetic types: ♥ and ♠. Individuals in the active (resp.
dormant) populations are called active (resp. dormant), and are subject to resampling
and exchange:

(1) Active individuals in any colony resample with active individuals in any colony.

(2) Active individuals in any colony exchange with dormant individuals in the same
colony.

For (1) we assume that each active individual at colony i at rate a(i, j) uniformly
draws an active individual at colony j and adopts its type. For (2) we assume that
each active individual at colony i at rate λ uniformly draws a dormant individual at
colony i and the two individuals trade places while keeping their type (i.e., the active
individual becomes dormant and the dormant individual becomes active). Dormant
individuals do not resample and thereby cause an overall slow-down of the random
genetic drift that arises from (1). Because of this, we refer to the dormant populations
as the seed-banks of the spatial system. Although the exchange rate λ could be made
to vary across colonies, for the sake of simplicity we choose it to be constant.
We put

Ki := Ni
Mi

, i ∈ Zd, (2.1)

for the ratios of the sizes of the active and the dormant population in each colony.
Observe that K−1

i = Mi

Ni
quantifies the relative strength of the seed-bank at colony

i ∈ Zd. We impose the following conditions on the migration kernel a(· , ·):

Assumption 2.A (Homogeneous migration). The migration kernel a(· , ·) satis-
fies:

(1) a(· , ·) is irreducible in Zd.

(2) a(i, j) = a(0, j − i) for all i, j ∈ Zd.

(3) c :=
∑

i∈Zd\{0}

a(0, i) <∞ and a(0, 0) > 0.

Part (2) ensures that the way genetic information moves between colonies is homo-
geneous in the geographic space. Part (3) ensures that the total rate of resampling of
a single individual is finite and that resampling is possible also at the same colony. �

Since it is crucial for our analysis that the population sizes remain constant, we view
migration as a change of types without the individuals actually moving themselves. In
this way, genetic information moves between colonies while the individuals themselves
stay put.
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Remark 2.2.1. In what follows, the geographic space can be any countable Abelian
group. The choice of a(0, 0) = 1

2 in Assumption 2.A has been made only to make our
model fit with the classical single-colony Moran model. The value of a(0, 0) represents
the rate at which individuals resample from their own colony and in principle can be
set to any positive real number.

At each colony i we register the pair (Xi(t), Yi(t)), representing the number of
active, respectively, dormant individuals of type ♥ at time t at colony i. We write
(Ni,Mi) to denote the size of the active, respectively, dormant population at colony
i. The resulting Markov process is an interacting particle system denoted by

(Z(t))t≥0, Z(t) = (Xi(t), Yi(t))i∈Zd , (2.2)

and lives on the inhomogeneous state space

X :=
∏
i∈Zd

[Ni]× [Mi], (2.3)

where [n] = {0, 1, . . . , n}, n ∈ N. It is implicitly assumed that the state space X
is equipped with the natural product topology, under which it becomes compact by
virtue of Tychonoff’s theorem. The space D([0,∞),X ) containing all càdlàg functions
on X is endowed with the Skorokhod topology and plays the role of the ambient prob-
ability space for the process Z. In Section 2.4.1 we carry out the formal mathematical
construction of the process Z. In Section 2.4.2–2.4.3 we will show that, under mild
assumptions on the model parameters, the Markov process in (2.2) is well-defined and
has a dual (Z∗(t))t≥0.

§2.2.2 Well-posedness and duality
Theorem 2.2.2 (Well-posedness and duality). Suppose that Assumption 2.A is
in force. Then the Markov process (Z(t))t≥0 in (2.2) has a factorial moment dual
(Z∗(t))t≥0 living in the state space X∗ ⊂ X consisting of all configurations with finite
mass, and the martingale problem associated with (2.2) is well-posed under either of
the two following conditions:

(a) lim‖i‖→∞ ‖i‖−1 logNi = 0 and
∑
i∈Zd eδ‖i‖a(0, i) <∞ for some δ > 0,

(b) supi∈Zd\{0} ‖i‖−γNi < ∞ and
∑
i∈Zd ‖i‖d+γ+δa(0, i) < ∞ for some γ > 0 and

some δ > 0.

Remark 2.2.3 (Higher moments). Unfortunately, because of conditions (a) and
(b) in Theorem 2.2.2, the migration kernel a(· , ·) is required to have at least d + δ

finite moment for some δ > 0. We believe that this can be relaxed to a weaker moment
condition.

Theorem 2.2.2 provides us with two sufficient conditions under which the system is
well-defined and has a tractable dual. It shows a trade-off : the more we restrict
the tails of the migration kernel, the less we need to restrict the sizes of the active
population. The sizes of the dormant population play no role because all the events
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(resampling, migration and exchange) in our model are initiated by active individuals
and dormant individuals do not feel the spatial extent of the geographic space. The
dual process

Z∗ := (Z∗(t))t≥0, Z∗(t) := (ni(t),mi(t))i∈Zd , (2.4)
is an interacting particle system on the state space

X∗ :=
{

(ni,mi)i∈Zd ∈ X :
∑
i∈Zd

(ni +mi) <∞
}
, (2.5)

and consists of finite collections of particles that switch between an active state and a
dormant state. The variable ni(t) (resp. mi(t)) in (2.4) counts the number of active
(resp. dormant) dual particles present at location i ∈ Zd at time t ≥ 0. The dual
particles perform interacting coalescing random walks on Zd as long as they are in the
active state, with rates that are determined by the population sizes (Ni,Mi)i∈Zd , the
migration kernel a(· , ·) and the exchange rate λ. Theorem 2.4.5, Corollary 2.4.6 and
Theorem 2.4.8 in Section 2.4 contain the fine details.

§2.2.3 Equilibrium: coexistence versus clustering
A natural question that arises in the discussion of any model is whether an equilibrium
exists. To answer this, let us denote by P(X ) the set of all probability distributions
on X , and let δ♥ ∈ P(X ) (resp., δ♠) be the Dirac distribution concentrated at the
configuration (Ni,Mi)i∈Zd ∈ X (resp., (0, 0)i∈Zd). Observe that the process Z is
absorbed at the configuration (Ni,Mi)i∈Zd ∈ X (resp., (0, 0)i∈Zd) when all individuals
in the spatial system are of type-♥ (resp., type-♠), and therefore, δ♥, δ♠ are two
trivial extremal equilibria for the process Z. Indeed, when all individuals in the spatial
system have the same genetic type, neither resampling nor exchange can reintroduce
the missing type, and thereby push the system to an out-of-equilibrium state. This
immediately raises the question of existence of any other equilibrium apart from these
two trivial ones, and is the reason for introducing the following definition:

Definition 2.2.4 (Clustering and Coexistence). We say that the process Z is in
the clustering regime if δ♥ and δ♠ are the only two extremal equilibrium. Otherwise,
we say that the process is in the coexistence regime. �

Remark 2.2.5. In the clustering regime any equilibrium ν ∈ P(X ) of the process Z
is a mixture of δ♥ and δ♠. Thus, in the clustering regime the process Z admits only
mono-type equilibrium. In other words, if the process Z exhibits clustering and is in
equilibrium, all individuals in the spatial system are of type ♥ or of type ♠.

In Section 2.4 we will show that clustering is equivalent to coalescence occurring
eventually with probability 1 in the dual consisting of two particles. This will be the
main route to the dichotomy.

Theorem 2.2.6 (Equilibrium). If the initial distribution of the system is such that
each active and each dormant individual adopts a type with the same probability in-
dependently of other individuals, then the system admits a one-parameter family of
equilibria.
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(a) The family of equilibria is parameterised by the probability to have one of the two
types.

(b) The system converges to a mono-type equilibrium if and only if two random walks
in the dual starting from arbitrary states eventually coalesce with probability one.

Theorem 2.2.6 tells us that the system converges to an equilibrium when it is started
from a specific class of initial distributions, namely, products of binomials. It also
provides a criterion in terms of the dual that determines whether the equilibrium
is mono-type or multi-type. Theorem 2.4.9, Corollary 2.4.10 and Theorem 2.4.12 in
Section 2.4 contain the fine details.

§2.3 Single-colony model and basic theorems
In Section 2.3.1 we define the single-colony model which serves as the base ingredient
for the construction of the multi-colony model that we will introduce in the next
section. In Section 2.3.2 we identify the dual of the single-colony model and analyse
its equilibrium behaviour. In Section 2.3.3 we discuss the genealogy of the population
in the single-colony model in terms of an interacting seed-bank coalescent.

§2.3.1 Definition: resampling and exchange
Consider two populations, called active and dormant, consisting of N and M haploid
individuals, respectively. Individuals in the population carry one of two genetic types:
♥ and ♠. Dormant individuals reside inside the seed-bank, active individuals reside
outside. The dynamics of the single-colony Moran model with seed-bank is as follows:

– Each individual in the active population carries a resampling clock that rings
at rate 1. When the clock rings, the individual randomly chooses an active
individual and adopts its type.

– Each individual in the active population also carries an exchange clock that rings
at rate λ. When the clock rings, the individual randomly chooses a dormant
individual and exchanges state, i.e., becomes dormant and forces the chosen
dormant individual to become active. During the exchange the two individuals
retain their type.

Since the sizes of the two populations remain constant, we only need two variables to
describe the dynamics of the population, namely, the number of a type-♥ individuals
in both populations (see Table 2.1).

Let x and y denote the number of individuals of type ♥ in the active and the
dormant population, respectively. After a resampling event, (x, y) can change to
(x−1, y) or (x+ 1, y), while after an exchange event (x, y) can change to (x−1, y+ 1)
or (x + 1, y − 1). Both changes in the resampling event occur at rate xN−xN . In the
exchange event, however, to see (x, y) change to (x − 1, y + 1), an exchange clock
of a type-♥ individual in the active population has to ring (which happens at rate
λx), and that individual has to choose a type-♠ individual in the dormant population
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Initial state Event Final state Transition rate

(x, y)
Resampling (x− 1, y) x(N−x)/N

(x+ 1, y) x(N−x)/N

Exchange (x− 1, y + 1) λx(M−y)/M

(x+ 1, y − 1) λ(N−x)y/M

Table 2.1: Scheme of transitions in the single-colony model.

(which happens with probability M−y
M ). Hence the total rate at which (x, y) changes

to (x − 1, y + 1) is λxM−yM . By the same argument, the total rate at which (x, y)
changes to (x+ 1, y − 1) is λ(N − x) yM .

For convenience we multiply the rate of resampling by a factor 1
2 , in order to make

it compatible with the Fisher-Wright model. Thus, the generator G of the process is
given by

G = GMor +GExc, (2.6)

where
(GMorf)(x, y) = x(N − x)

2N [f(x− 1, y) + f(x+ 1, y)− 2f(x, y)] (2.7)

describes the Moran resampling of active individuals at rate 1
2 and

(GExcf)(x, y) = λ

M
x(M − y) [f(x− 1, y + 1)− f(x, y)]

+ λ

M
y(N − x) [f(x+ 1, y − 1)− f(x, y)]

(2.8)

describes the exchange between active and dormant individuals at rate λ. From here
onwards, we denote the Markov process associated with the generator G by

z = (z(t))t≥0, z(t) = (X(t), Y (t)), (2.9)

where X(t) and Y (t) are the number of type-♥ active and dormant individuals at time
t, respectively. The process z has state space [N ] × [M ], where [N ] = {0, 1, . . . , N}
and [M ] = {0, 1, . . . ,M}. Note that the process z is well-defined because it is a
continuous-time Markov chain with finitely many states.

§2.3.2 Duality and equilibrium
The classical Moran model [123] is known to be dual to the block-counting process of
the Kingman coalescent. In this section we show that the single-colony Moran model
with seed-bank also has a coalescent dual.

Definition 2.3.1 (Single-colony block-counting process). The block-counting
process of the interacting seed-bank coalescent (defined later in Definition 2.3.5) is the
continuous-time Markov chain

z∗ = (z∗(t))t≥0, z∗(t) = (nt,mt), (2.10)
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taking values in the state space [N ]× [M ] with transition rates

(n,m) 7→


(n− 1,m+ 1) at rate λn

(
1− m

M

)
,

(n+ 1,m− 1) at rate λKm
(
1− n

N

)
,

(n− 1,m) at rate 1
N

(
n
2
)
1l{n≥2},

(2.11)

where K = N
M is the ratio of the sizes of the active and the dormant population. �

The first two transitions in (2.11) correspond to exchange, the third transition to
resampling. Later in this section we describe the associated interacting seed-bank
coalescent process, which gives the genealogy of z.

The following result gives the duality between z and z∗.

Theorem 2.3.2 (Single-colony duality). The process z is dual to the process z∗
via the duality relation

E(X,Y )

[ (X(t)
n )

(Nn)
(Y (t)
m )

(Mm) 1l{n≤X(t),m≤Y (t)}

]
= E(n,m)

[ ( X
n(t))

( N
n(t))

( Y
m(t))

( M
m(t))

1l{n(t)≤X,m(t)≤Y }

]
, t ≥ 0,

(2.12)
where E stands for generic expectation. On the left the expectation is taken over z
with initial state z(0) = (X,Y ) ∈ [N ]× [M ], on the right the expectation is taken over
z∗ with initial state z∗(0) = (n,m) ∈ [N ]× [M ].

Note that the duality relation fixes the factorial moments and thereby the mixed mo-
ments of the random vector (X(t), Y (t)). This enables us to determine the equilibrium
distribution of z.

Although the above duality is new in the literature on seed-banks, the notion of
factorial duality is not uncommon in mathematical models involving finite and fixed
population sizes [57, 73]. Similar types of dualities are often found for other models
too (e.g. self-duality of independent random walks, exclusion and inclusion processes,
etc. [71]). Remarkably, in the special case where N = M = 2j for some j ∈ N/2,
Giardinà et al. (2009) [71, Section 3.2] identified the same duality relation as in (2.12)
as a self-duality for the generalized 2j-SEP on two-sites. This is not surprising given
the fact that the exchange rates between active and dormant individuals defined in
Table 2.1 are precisely the rates (up to rescaling) for the 2j-SEP on two sites. We
refer the reader to Section 2.5.1 to gain further insights into this.

Proposition 2.3.3 (Convergence of moments). For any (X,Y ), (n,m) ∈ [N ] ×
[M ] with (n,m) 6= (0, 0),

lim
t→∞

E(X,Y ) [X(t)nY (t)m] = NnMm X+Y
N+M . (2.13)

Since the vector (X(t), Y (t)) takes values in [N ] × [M ], which has (N + 1)(M + 1)
points, the above proposition determines the limiting distribution of (X(t), Y (t)).

Corollary 2.3.4 (Equilibrium). Suppose that z starts from initial state (X,Y ) ∈
[N ]×[M ]. Then (X(t), Y (t)) converges in law as t→∞ to a random vector (X∞, Y∞)
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whose distribution is given by

L(X,Y )(X∞, Y∞) = X+Y
N+M δ(N,M) +

(
1− X+Y

N+M

)
δ(0,0). (2.14)

Note that the equilibrium behaviour of z is the same as for the classical Moran model
without seed-bank. The fixation probability of type ♥ is X+Y

N+M , which is nothing but
the initial frequency of type-♥ individuals in the entire population. Even though the
presence of the seed-bank delays the time of fixation, because of its finite size it has
no significant effect on the overall qualitative behaviour of the process. We will see in
Section 2.4.1 that the situation is different in the multi-colony model.

§2.3.3 Interacting seed-bank coalescent
In our model, the genealogy of a sample taken from the finite population of N +
M individuals is governed by a partition-valued coalescent process similarly as for
the genealogy of the classical Moran model. However, due the presence of the seed-
bank, blocks of a partition are marked as A (active) and D (dormant). Unlike in the
genealogy of the classical Moran model, the blocks interact with each other. This
interaction is present because of the restriction to finite size of the active and the
dormant population. For this reason, we name the block process an interacting seed-
bank coalescent. For convenience, we will use the word lineage to refer to a block in a
partition.

Let Pk be the set of partitions of {1, 2, . . . , k}. For ξ ∈ Pk, denote the number of
lineages in ξ by |ξ|. Furthermore, for j, k, l ∈ N, define

Mj,k,l =
{
~u ∈ {A,D}j : the numbers of A and D in ~u

are at most k and l, respectively

}
. (2.15)

The state space of the process is PN,M = {(ξ, ~u) : ξ ∈ PN+M , ~u ∈ M|ξ|,N,M}. Note
that PN,M contains only those marked partitions of {1, 2, . . . , N + M} that have at
most N active lineages and M dormant lineages. This is because we can only sample
at most N active and M dormant individuals from the population.

Before we give the formal definition, let us introduce some basic notations. For
π, π′ ∈ PN,M , we say that π � π′ if π′ can be obtained from π by merging two active
lineages. Similarly, we say that π on π′ if π′ can be obtained from π by altering the
state of a single lineage (A → D or D → A). We write |π|A and |π|D to denote the
number of active and dormant lineages present in π, respectively.

Definition 2.3.5 (Interacting seed-bank coalescent). The interacting seed-bank
coalescent is the continuous-time Markov chain with state space PM,N characterised
by the following transition rates:

π 7→ π′ at rate



1
N if π � π′,

λ
(
1− |π|DM

) if π on π′ by change of state of
one lineage in π from A to D,

λK
(
1− |π|AN

) if π on π′ by change of state of
one lineage in π from D to A.

(2.16)
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The factor 1 − |π|DM in the transition rate of a single active lineage when π becomes
dormant reflects the fact that, as the seed-bank gets full, it becomes more difficult for
an active lineage to enter the seed-bank. Similarly, as the number of active lineages
decreases due to the coalescence, it becomes easier for a dormant lineage to leave
the seed-bank and become active. This also tells us that there is a repulsive interac-
tion between the lineages of the same state (A or D). Due to this interaction, it is
tricky to study the coalescent. As N,M get large, the interaction becomes weak. As
N,M →∞, after proper space-time scaling, the coalescent converges weakly to a limit
coalescent where the interaction is no longer present. In fact, it can be shown that
when both the time and the parameters are scaled properly, the coalescent converges
weakly as N,M →∞ to the seed-bank coalescent described in [14].

We can also describe the coalescent in terms of an interacting particle system
with the help of a graphical representation (see Figure 2.1). The interacting particle
system consists of two reservoirs, called active reservoir and dormant reservoir, hav-
ing N and M labeled sites, respectively, each of which can be occupied by at most
one particle. The particles in the active and dormant reservoir are called active and
dormant particles, respectively. The active particles can coalesce with each other, in
the sense that if an active particle occupies a labeled site where an active particle is
present already, then the two particles are glued together to form a single particle at
that site. Active particles can become dormant by moving to an empty site in the
dormant reservoir, while dormant particles can become active by moving to an empty
site in the active reservoir. The transition rates are as follows:

• An active particle tries to coalesce with another active particle at rate 1
2 by

choosing uniformly at random a labeled site in the active reservoir. If the chosen
site is empty, then it ignores the transition, otherwise it coalesces with the active
particle present at the new site.

• An active particle becomes dormant at rate λ by moving to a random labeled
site in the dormant reservoir when the chosen site is empty, otherwise it remains
in the active reservoir.

• A dormant particle becomes active at rate λK by moving to a random labeled
site in the active reservoir when the chosen site is empty, otherwise it remains
in the dormant reservoir.

Clearly, the particles interact with each other due to the finite capacity of the two
reservoirs. If N,M → ∞, then the probability to choose an empty site in a reservoir
tends to 1, and so the system converges (after proper scaling) to an interacting particle
system where the particles move independently between the two reservoirs.

Note that if we define nt = number of active particles at time t and mt = number of
dormant particles at time t, then z∗ = (nt,mt)t≥0 is the block-counting process defined
in Definition 2.3.1. Also, if we remove the labels of the sites in the two reservoirs
and represents the particle configuration by an element of PN,M , then we obtain the
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Active reservoir (N = 6) Dormant reservoir (M = 2)

rate λ(M−m
M

) = λ
2

rate λK(N−n
N

) = 2λ

rate λ(M−m
M

) = λ

Dormant reservoir is full.
X

Figure 2.1: Scheme of transitions for an interacting particle system with an active reservoir
of size N = 6 and a dormant reservoir of size M = 2, so that K = N

M
= 6

2 = 3. The effective
rate for each of n active particles to become dormant is λM−m

M
when the dormant reservoir

has m particles. Similarly, the effective rate for each of m dormant particles to become active
is λK N−n

N
when the active reservoir has n particles.

interacting seed-bank coalescent described in Definition 2.3.5. Even though it is natural
to describe the genealogical process via a partition-valued stochastic process, we will
stick with the interacting particle system description of the dual, since this will be
more convenient for the multi-colony model.

§2.4 Multi-colony model and basic theorems
In this section we consider multiple colonies, each with their own seed-bank. Each
colony has an active population and a dormant population. We take Zd as the under-
lying geographic space where the colonies are located (any countable Abelian group
will do). With each colony i ∈ Zd we associate a variable (Xi, Yi), with Xi and Yi
the number of type-♥ active and dormant individuals, respectively, at colony i. Let
(Ni,Mi) denote the size of the active and the dormant population at colony i. In each
colony active individuals are subject to resampling and migration, and to exchange
with dormant individuals that are in the same colony. Dormant individuals are not
subject to resampling and migration.

Since it is crucial for our duality to keep the population sizes constant, we consider
migration of types without the individuals actually moving themselves. To be precise,
by a migration from colony j to colony i we mean that an active individual from colony
i randomly chooses an active individual from colony j and adopts its type. In this
way, the genetic information moves from colony j to colony i, while the individuals
themselves stay put.

In Section 2.4.1 we introduce the multi-colony model. Our focus is on well-
posedness, duality and convergence to equilibrium. In Section 2.4.2 we analyse the
associated dual process. In Section 2.4.3 we deal with the well-posedness and equilib-
rium behaviour of the spatial process. Finally, in Section 2.4.4 we provide a necessary
and sufficient criterion for clustering.
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§2.4.1 Definition: resampling, exchange and migra-
tion

We assume that each active individual at colony i resamples from colony j at rate
a(i, j), adopting the type of a uniformly chosen active individual at colony j. Here,
the migration kernel a(·, ·) is assumed to satisfy Assumption 2.A. After a migration
to colony i, the only variable that is affected is Xi, the number of type-♥ active
individuals at colony i. The final state can be either Xi − 1 or Xi + 1 depending on
whether a type-♥ active individual from colony i chooses a type-♠ active individual
from another colony or a type-♠ active individual from colony i chooses a type-♥
active individual from another colony. The rate at which Xi changes to Xi− 1 due to
a migration from colony j is

a(i, j)Xi
Nj−Xj
Nj

,

while the rate at which Xi changes to Xi + 1 due to a migration from colony j is

a(i, j)(Ni −Xi)XjNj .

Note that for i = j the migration rate is

a(i, i)Xi
Ni−Xi
Ni

= Xi(Ni−Xi)
2Ni , (2.17)

which is the same as the effective birth and death rate in the single-colony Moran
model. Thus, the resampling within each colony is already taken care of via the
migration.

It remains to define the associated exchange mechanism between the active and
the dormant individuals in a colony. The exchange mechanism is the same as in the
single-colony model, i.e., in each colony each active individual at rate λ performs
an exchange with a dormant individual chosen uniformly from the seed-bank of that
colony. For simplicity, we take the exchange rate λ to be the same in each colony.

The state space X of the process is

X :=
∏
i∈Zd
{0, 1, . . . , Ni} × {0, 1, . . . ,Mi} =

∏
i∈Zd

[Ni]× [Mi]. (2.18)

A configuration η ∈ X is denoted by η = (Xi, Yi)i∈Zd , with Xi ∈ [Ni] and Yi ∈ [Mi].

Initial state Event Final state Transition rate

(Xi, Yi)i∈Zd

Migration from
colony j to i

(· · · , (Xi − 1, Yi), · · · ) a(i,j)Xi(Nj−Xj)/Nj

(· · · , (Xi + 1, Yi), · · · ) a(i,j)(Ni−Xi)Xj/Nj

Exchange at colony i (· · · , (Xi − 1, Yi + 1), · · · ) λXi(Mi−Yi)/Mi

(· · · , (Xi + 1, Yi − 1), · · · ) λ(Ni−Xi)Yi/Mi

Table 2.2: Scheme of transitions in the multi-colony model.

For each i ∈ Zd, let ~δi,A and ~δi,D be the configurations defined as

~δi,A := (1l{n=i}, 0)n∈Zd , ~δi,D := (0, 1l{n=i})n∈Zd , (2.19)
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and for two configurations η1 = (X̄i, Ȳi)i∈Zd and η2 = (X̂i, Ŷi)i∈Zd , η1 ± η2 :=
(Xi, Yi)i∈Zd is defined component-wise by

Xi = X̄i ± X̂i, Yi = Ȳi ± Ŷi. (2.20)

Throughout the remainder of this chapter, we adopt the convention given in (2.20) for
addition and subtraction of configurations in X .

The generator L for the process, acting on functions in

D =
{
f ∈ C(X ) : f depends on finitely many coordinates

}
, (2.21)

is given by
L = LMig + LRes + LExc, (2.22)

where

(LMigf)(η) =
∑
i∈Zd

∑
j∈Zd,
j 6=i

a(i,j)
Nj

{
Xi(Nj −Xj)

[
f(η − ~δi,A)− f(η)

]
+Xj(Ni −Xi)

[
f(η + ~δi,A)− f(η)

]} (2.23)

describes the resampling of active individuals in different colonies (= migration),

(LResf)(η) =
∑
i∈Zd

Xi(Ni−Xi)
2Ni

[
f(η − ~δi,A) + f(η + ~δi,A)− 2f(η)

]
(2.24)

describes the resampling of active individuals in the same colony, and

(LExcf)(η) =
∑
i∈Zd

λ

Mi

{
Xi(Mi − Yi)

[
f(η − ~δi,A + ~δi,D)− f(η)

]
+ Yi(Ni −Xi)

[
f(η + ~δi,A − ~δi,D)− f(η)

]} (2.25)

describes the exchange of active and dormant individuals in the same colony.
From now on, we denote the process associated with the generator L by

Z = (Z(t))t≥0, Z(t) = (Xi(t), Yi(t))i∈Zd , (2.26)

with Xi(t) and Yi(t) representing the number of type-♥ active and dormant individuals
at colony i at time t, respectively. Since Z is an interacting particle system, in order to
show existence and uniqueness of the process, we can in principle follow the method
described by Liggett in [112, Chapter I, Section 3]. However, for Liggett’s method
to work, a uniform bound on the sizes (Ni,Mi)i∈Zd is needed that we want to avoid.
Fortunately, if L is a Markov pregenerator (see [112, Definition 2.1]), then we can
construct the process by providing a unique solution to the martingale problem for L.
The following proposition tells us that L is indeed a Markov pregenerator and thus
prepares the ground for proving the well-posedness of the martingale problem for L.

Proposition 2.4.1 (Pregenerator). The generator L defined in (2.22), acting on
functions in D defined in (2.21), is a Markov pregenerator.

The existence of solutions to the martingale problem will be shown by using the
techniques described in [112]. In order to establish uniqueness of the solution, we will
need to exploit the dual process.
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§2.4.2 Spatially interacting seed-bank coalescent
The dual process is a block-counting process associated to a spatial version of the
interacting seed-bank coalescent described in Section 2.3.3. We briefly describe the
spatial coalescent process in terms of an interacting particle system.

At each site i ∈ Zd there are two reservoirs, an active reservoir and a dormant
reservoir, with Ni ∈ N and Mi ∈ N labeled locations, respectively. Each location in a
reservoir can accommodate at most one particle. As before, we refer to the particles in
an active and dormant reservoir as active particles and dormant particles, respectively.
The dynamics of the interacting particle system is as follows (see Figure 2.2).

t

N = 4,M = 3 N = 2,M = 2 N = 2,M = 1

Figure 2.2: Scheme of transitions in the interacting particle system. Each block depicts the
reservoirs located at sites of Zd. The blue lines represent the evolution of active particles, the
red lines represent the evolution of dormant particles.

• An active particle at site i ∈ Zd becomes dormant at rate λ by moving to a
random labeled location (out of Mi many) in the dormant reservoir at site i

when the chosen labeled location is empty, otherwise it remains in the active
reservoir.

• A dormant particle at site i ∈ Zd becomes active at rate λKi with Ki = Ni
Mi

by
moving to a random labeled location (out of Ni many) in the active reservoir
at site i when the chosen labeled location is empty, otherwise it remains in the
dormant reservoir.

• An active particle at site i chooses a random labeled location (out of Nj many)
from the active reservoir at site j at rate a(i, j) and does the following:

– If the chosen location in the active reservoir at site j is empty, then the
particle moves to site j and thereby migrates from the active reservoir at
site i to the active reservoir at site j.

– If the chosen location in the active reservoir at site j is occupied by a
particle, then it coalesces with that particle.
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Note that an active particle can migrate between different sites in Zd and can coalesce
with another active particle even when they are at different sites in Zd. For simpli-
city, we will impose the same assumptions on the migration kernel a(· , ·) as stated
in Assumption 2.A. A configuration (ηi)i∈Zd of the particle system is an element of∏
i∈Zd{0, 1}Ni × {0, 1}Mi . For i ∈ Zd, ηi represents the state of the labeled locations

in the active and the dormant reservoir at site i (1 means occupied by a particle, 0
means empty).

Below we give the definition of the block-counting process associated to the spatial
coalescent process described above. Although it is an interesting problem to construct
the block-counting process starting from a configuration with infinitely many particles,
we will restrict ourselves to configurations with finitely many particles only, because
this makes the state space countable. Thus, the block-counting process is a continuous-
time Markov chain on a countable state space and hence, in the definition below, it
suffices to specify the possible transitions and their respective rates only.

Definition 2.4.2 (Dual). The dual process

Z∗ = (Z∗(t))t≥0, Z∗(t) = (ni(t),mi(t))i∈Zd , (2.27)

is a continuous-time Markov chain with state space

X∗ :=
{

(ni,mi)i∈Zd ∈
∏
i∈Zd

[Ni]× [Mi] :
∑
i∈Zd

(ni +mi) <∞
}

(2.28)

and with transition rates

(nk,mk)k∈Zd →

(nk,mk)k∈Zd − ~δi,A
at rate 2a(i,i)

Ni

(
ni
2
)
1l{ni≥2}

+
∑

j∈Zd\{i}

nia(i,j)nj
Nj

for i ∈ Zd,

(nk,mk)k∈Zd − ~δi,A + ~δi,D at rate λni(Mi−mi)
Mi

for i ∈ Zd,

(nk,mk)k∈Zd + ~δi,A − ~δi,D at rate λ(Ni−ni)mi
Mi

for i ∈ Zd,

(nk,mk)k∈Zd − ~δi,A + ~δj,A at rate nia(i,j)(Nj−nj)
Nj

for i 6= j ∈ Zd,
(2.29)

where the configurations ~δi,A, ~δi,D ∈ X∗ ⊂ X are as in (2.19), and additions and
subtractions of configurations are performed in accordance with (2.20). �

In (2.27) the coordinates ni(t) and mi(t) denote the number of active and dormant
dual particles at site i ∈ Zd at time t. The first transition describes the coalescence of
an active particle at site i with other active particles elsewhere. The second and third
transition describe the movement of particles between the active and the dormant
reservoir at site i. The fourth transition describes the migration of an active particle
from site i to site j. The following lemma tells us that the dual process Z∗ is a well-
defined and non-explosive (equivalent to uniqueness) Feller process on the countable
state space X∗.
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Lemma 2.4.3 (Uniqueness of dual). There exists a unique minimal Feller process
(Z∗(t))t≥0 on X∗ with transition rates given in (2.29).

Before we proceed we recall the definition of the martingale problem.

Definition 2.4.4 (Martingale problem). Suppose that (L,D) is a Markov pregen-
erator, and let η ∈ X . A probability measure Pη (or, equivalently, a process with law
Pη) on D([0,∞),X ) is said to solve the martingale problem for L with initial point η
if

(a) Pη[ξ(·) ∈ D([0,∞),X ) : ξ0 = η] = 1.

(b) (f(ηt) −
∫ t

0 (Lf)(ηs) ds)s≥0 is a martingale relative to (Pη, (Ft)t≥0) for all f ∈
D, where (ηt)t≥0 is the coordinate process on D([0,∞),X ) and (Ft)t≥0 is the
filtration given by Ft := σ(ηs | s ≤ t) for t ≥ 0.

�

The following theorem gives the duality relation between the dual process Z∗ and
any solution to the martingale problem for (L,D). This type of duality is sometimes
referred to as martingale duality.

Theorem 2.4.5 (Duality relation). Let the process Z with law Pη be a solution to
the martingale problem for (L,D) starting from initial state η = (Xi, Yi)i∈Zd ∈ X . Let
Z∗ be the dual process with law Pξ starting from initial state ξ = (ni,mi)i∈Zd ∈ X∗.
For t ≥ 0, let Γ(t) be the random variable defined by

Γ(t) := max
{
‖i‖ : i ∈ Zd, ni(s) +mi(s) > 0 for some 0 ≤ s ≤ t

}
. (2.30)

Suppose that the sizes (Ni)i∈Zd of the active populations are such that, for any T > 0,∑
i∈Zd

Ni Pξ
(
Γ(T ) ≥ ‖i‖

)
<∞. (2.31)

Then, for any t ≥ 0,

Eη
[ ∏
i∈Zd

(Xi(t)ni
)

(Nini)
(Yi(t)mi

)
(Mimi)

1l{ni≤Xi(t),mi≤Yi(t)}
]

= Eξ
[ ∏
i∈Zd

( Xi
ni(t)

)
( Ni
ni(t)

)
( Yi
mi(t)

)
( Mi
mi(t)

)1l{ni(t)≤Xi,mi(t)≤Yi}
]
,

(2.32)
where the expectations are taken with respect to Pη and Pξ, respectively.

Note that the duality function is a product over all colonies of the duality function
that appeared in the single-colony model. The infinite products are well-defined: all
but finitely many factors are 1, because of our assumption that there are only finitely
many particles in the dual process. Also note that there is no restriction on (Mi)i∈Zd ,
the sizes of the dormant populations. This is because dormant individuals do not
migrate and therefore do not feel the spatial extent of the system.

At first glance it may seem that (2.31) imposes a severe restriction on (Ni)i∈Zd , the
sizes of the active populations. However, this is not the case. The following corollary
provides us with a large class of active population sizes for which Theorem 2.4.5 is
true under mild assumptions on the migration kernel a(· , ·).
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Corollary 2.4.6 (Duality criterion). Suppose that Assumption 2.A is in force.
Then (2.31), and consequently the duality relation in (2.32), hold for every (Ni)i∈Zd ∈
N , where

(a) either

N :=
{

(Ni)i∈Zd ∈ NZd : lim
‖i‖→∞

1
‖i‖

logNi = 0
}

(2.33)

when
∑
i∈Zd

eδ‖i‖a(0, i) <∞ for some δ > 0,

(b) or

N :=
{

(Ni)i∈Zd ∈ NZd : sup
i∈Zd\{0}

Ni
‖i‖δ

<∞

}
(2.34)

when
∑
i∈Zd
‖i‖γa(0, i) <∞ for some δ > 0 and some γ > d+ δ.

Corollary 2.4.6 shows a trade-off : the more we restrict the tails of the migration kernel,
the less we need to restrict the sizes of the active populations.

§2.4.3 Well-posedness and equilibrium
Well-posedness. We use a martingale problem for the generator L defined in (2.22),
in the sense of [58, p.173], to construct Z. The following proposition gives existence
of solutions for any choice of the reservoir sizes. As for the uniqueness of solutions, we
will see that a restriction on the sizes of the active populations is required.

Proposition 2.4.7 (Existence). Let L be the generator defined in (2.22) acting on
the set of local functions D defined in (2.21). Then for all η ∈ X there exists a solution
Pη (a probability measure on D([0,∞),X )) to the martingale problem of (L,D) with
initial state η.

The following theorem gives the well-posedness of the martingale problem for (L,D)
under a restricted class of sizes of the active populations and thus proves the existence
of a unique Feller Markov process describing our multi-colony model.

Theorem 2.4.8 (Well-posedness). Let (Ni)i∈Zd ∈ N and (Mi)i∈Zd ∈ NZd , and let
L be the generator defined in (2.22) acting on the set of local functions D defined in
(2.21). Then the following hold:

(a) For all η ∈
∏
i∈Zd

[Ni] × [Mi] there exists a unique solution Z in D([0,∞),X ) of

the martingale problem for (L,D) with initial state η.

(b) Z is Feller and strong Markov, and its generator is an extension of (L,D).

In view of the above result, from here onwards, we implicitly assume that the
restriction on (Ni)i∈Zd to N is always in force.
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Equilibrium. Let us set Zi(t) := (Xi(t), Yi(t)) for i ∈ Zd and denote by µ(t) the
distribution of Z(t). Further, for each θ ∈ [0, 1] and i ∈ Zd, let νiθ be the probability
measure on [Ni]× [Mi] defined as

νiθ := Binomial(Ni, θ)⊗ Binomial(Mi, θ). (2.35)

For θ ∈ [0, 1], let νθ be the distribution on X defined by νθ :=
⊗
i∈Zd

νiθ and set

J :=
{
νθ | θ ∈ [0, 1]

}
. (2.36)

Let D : X × X∗ → [0, 1] be the function defined by

D((Xk, Yk)k∈Zd ; (nk,mk)k∈Zd) :=
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1l{ni≤Xi,mi≤Yi}. (2.37)

Theorem 2.4.9 (Convergence to equilibrium). Suppose that µ(0) = νθ ∈ J for
some θ ∈ [0, 1]. Then there exists a probability measure ν determined by the parameter
θ such that

(a) lim
t→∞

µ(t) = ν.

(b) ν is an equilibrium for the process Z.
(c) Eν [D(Z(0); η)] = lim

t→∞
Eη[θ|Z∗(t)|], where D(· , ·) is defined in (2.37), the right

expectation is taken w.r.t. the dual process Z∗ started at configuration η =
(ni,mi)i∈Zd ∈ X∗ and |Z∗(t)| :=

∑
i∈Zd

[ni(t) + mi(t)] is the total number of dual

particles present at time t.

Corollary 2.4.10. Let ν be the equilibrium measure of Z in Theorem 2.4.9 corres-
ponding to θ ∈ [0, 1]. Then

Eν
[
Xi(0)
Ni

]
= Eν

[
Yi(0)
Mi

]
= θ. (2.38)

§2.4.4 Clustering criterion
We next analyse the long-time behaviour of the multi-colony model. Our interest
is to capture the nature of the equilibrium. To be precise, we investigate whether
coexistence of different types is possible in equilibrium. The measures

⊗
i∈Zd δ(0,0)

and
⊗

i∈Zd δ(Ni,Mi) are the trivial equilibria where the system concentrates on only
one of the two types. When the system converges to an equilibrium that is not a
mixture of these two trivial equilibria, we say that coexistence happens. For i ∈ Zd,
let us denote the frequency of type-♥ active and dormant individuals at colony i at
time t by xi(t) := Xi(t)

Ni
and yi(t) := Yi(t)

Mi
respectively.

Definition 2.4.11 (Clustering and Coexistence). The system is said to exhibit
clustering if the following hold:

63



2. Spatially inhomogeneous populations: duality, existence, equilibrium

C
ha

pt
er

2

(a) lim
t→∞

Pµ(xi(t) ∈ {0, 1}) = 1, lim
t→∞

Pµ(yi(t) ∈ {0, 1}) = 1,

(b) lim
t→∞

Pµ(xi(t) 6= xj(t)) = 0, lim
t→∞

Pµ(yi(t) 6= yj(t)) = 0,

(c) lim
t→∞

Pµ(xi(t) 6= yj(t)) = 0,

for all i, j ∈ Zd and any initial distribution µ ∈ P(X ) such that the process Z in
(2.2) with initial distribution µ converges to an equilibrium as t→∞. Otherwise, the
system is said to exhibit coexistence. �

Observe that the above definition and Definition 2.2.4 are equivalent. Indeed, the
above conditions make sure that if an equilibrium exists, then it is a mixture of the
two trivial equilibria.

The following criterion, which follows from Corollary 2.4.6, gives an equivalent
condition for clustering.

Theorem 2.4.12 (Clustering criterion). The system clusters if and only if in the
dual process defined in Definition 2.4.2 two particles, starting from any locations in Zd
and any states (active or dormant), coalesce with probability 1.

Note that the system clusters if and only if the genetic variability at time t between
any two colonies converges to 0 as t→∞. From the duality relation in Theorem 2.4.5
it follows that this quantity is determined by the state of the dual process starting
from two particles.

§2.5 Proofs: duality and equilibrium for the single-
colony model

Section 2.5.1 contains the proof of Theorem 2.3.2, which follows the algebraic approach
to duality described in [25, 148]. Section 2.5.2 contains the proof of Proposition 2.3.3
and Corollary 2.3.4, which uses the duality in the single-colony model.

§2.5.1 Duality and change of representation
Before we proceed with the proof of Theorem 2.3.2, and other results related to
stochastic duality, it is worth stressing the importance of duality theory. Though ori-
ginally introduced in the context of interacting particle systems, over the last decade
duality theory has gained popularity in various fields, ranging from statistical physics
and stochastic analysis to population genetics. One reason behind this wide interests
is the simplification that duality provides: it often allows one to extract information
about a complex stochastic process through a simpler process. To date, in the literat-
ure there exist two systematic approaches towards duality, namely, pathwise construc-
tion and Lie-algebraic framework. The former of the two approaches is more practical
and widespread in the context of mathematical population genetics [77, 55, 88, 90],
while the latter has been developed more recently and reveals deeper mathematical
structures behind duality, and often also provides a larger class of duality functions
(see e.g., [25], [67], [80], [148] for a general overview and further references). In what
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follows, we adopt the Lie-algebraic framework suggested by Carinci et al. (2015)[25]
and prepare the ground for this setting. The downside is that this approach does
not capture the underlying genealogy of the original process. However, it does offer
the opportunity to obtain a larger class of duality functions by applying symmetries
from the Lie algebra to an already existing duality function [71]. In this exposition we
refrain from exploring the latter aspect of the Lie-algebraic framework.

We start with briefly recalling that a (real) Lie algebra g is a linear space over
R endowed with a so-called Lie bracket [· , ·] : g × g → g that is bilinear, skew-
symmetric and satisfies the Jacobi identity [148]. The requirement of the bilinearity
and skew-symmetry uniquely characterizes a Lie bracket by its action on a basis of
g. An example of a (real) Lie algebra is the well-known su(2)-algebra, which is the
3-dimensional vector space over R defined by the action of a Lie bracket on its basis
elements {J+, J−, J0} as

[J0, J+] = J+, [J0, J−] = −J−, [J−, J+] = −2J0. (2.39)

For α ∈ N, let Vα be the linear space of all functions f : [α]→ R, and let gl(Vα) denote
the space of all linear operators on Vα. Note that gl(Vα) is a (1 + α)2-dimensional
Lie algebra with the natural choice of Lie bracket given by [A,B] := AB − BA for
A,B ∈ gl(Vα). Let us define the operators Jα,±, Jα,0, Aα,±, Aα,0 ∈ gl(Vα) acting on
f : [α]→ R as

Jα,+f(n) = (α− n)f(n+ 1), Jα,−f(n) = nf(n− 1), Jα,0f(n) = (n− α
2 )f(n),

Aα,+ = Jα,− − Jα,+ − 2Jα,0, Aα,− = Jα,+, Aα,0 = Jα,+ + Jα,0. (2.40)

It is straightforward to see that

[Aα,0, Aα,±] = ±Aα,±, [Aα,−, Aα,+] = −2Aα,0, (2.41)

which are the same commutation relations as in (2.39). Thus, for each α ∈ N,
the Lie homomorphism φα : su(2) → gl(Vα) defined by its action on the generators
{J+, J−, J0} given by

J+ 7→ Aα,+, J− 7→ Aα,−, J0 7→ Aα,0, (2.42)

is a finite-dimensional representation of su(2). Similarly, we can verify that, for each
α ∈ N,

{Jα,+, Jα,−, Jα,0}
form a representation of the dual su(2)-algebra (defined by the commutation relations
in (2.39), but with opposite signs).

Below we introduce the notion of duality between two operators and prove a lemma
that will be crucial in the proof of duality of both the single-colony and the multi-
colony model. The relevance to our context of the above discussion on su(2) and its
dual algebra will become clear as we go along.

Definition 2.5.1 (Operator duality). Let A and B be two operators acting on
functions f : Ω → R and g : Ω̂ → R respectively. We say that A is dual to B with
respect to the duality function D : Ω×Ω̂→ R, denoted by A D−→ B, if (AD(·, y))(x) =
(BD(x, ·))(y) for all (x, y) ∈ Ω× Ω̂. �
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The following lemma intertwines the su(2) and its dual algebra with a duality function.

Lemma 2.5.2 (Single-colony intertwiner). For α ∈ N, let dα : [α] × [α] → [0, 1]
be the function defined by

dα(x, n) =
(
x
n

)(
α
n

)1l{n≤x}. (2.43)

Then the following duality relations hold:

Jα,+
dα−→ Aα,+, Jα,−

dα−→ Aα,−, Jα,0
dα−→ Aα,0. (2.44)

Proof. By straightforward calculations, it can be shown that dα(x, n) satisfies the
relations
(α− x) dα(x+ 1, n) = n [dα(x, n− 1)− dα(x, n)] + (α− n) [dα(x, n)− dα(x, n+ 1)],

x dα(x− 1, n) = (α− n) dα(x, n+ 1),
x dα(x, n) = (α− n) dα(x, n+ 1) + ndα(x, n),

(2.45)
from which the above dualities in (2.44) follow immediately.

Remark 2.5.3 (Seed-bank and su(2)-algebra). The basic idea behind the algeb-
raic approach to duality is to write the generator of a given process in terms of simple
operators that form a representation of some known Lie algebra and to make an An-
satz to obtain an intertwiner of the chosen representation. The intertwiner dα in the
above lemma was first identified in [73, Lemma 1] as a duality function in disguise for
the classical duality between the Moran model and the block-counting process of King-
man’s coalescent. Recently, in [25] this duality was put in the algebraic framework by
deriving it from an intertwining via dα of two representations of the Heisenberg algebra
H (1). The connection of dα to the su(2)-algebra was also made in [71, Section 3.2],
where the authors obtained a self-duality function of 2j-SEP factorized in terms of dα
by considering symmetries related to the su(2)-algebra. The relation of our seed-bank
model to the su(2)-algebra becomes clear once we realize that the seed-bank compon-
ent in our single-colony model is an inhomogeneous version of the 2j-SEP on two-sites.
Thus, it is natural to expect that the classical duality of Moran model can be retrieved
from representations of su(2)-algebra as well. The above lemma indeed provides the
ingredients to establish the duality of our single-colony model from representations of
the su(2)-algebra. Although it is possible to guess the dual process of the single-colony
model without going into the Lie-algebraic framework, the true usefulness of this ap-
proach lies in identifying the dual of the spatial model, where such speculation is no
longer feasible.

Proof of Theorem 2.3.2. Recall that both Z = (X(t), Y (t))t≥0 and Z∗ = (nt,mt)t≥0
live on the state space Ω = [N ]× [M ]. Let D : Ω×Ω→ [0, 1] be the function defined
by

D
(
(X,Y ); (n,m)

)
=
(
X
n

)(
N
n

) (Ym)(
M
m

)1l{n≤X,m≤Y } = dN (X,n)dM (Y,m), (X,Y ), (n,m) ∈ Ω.

(2.46)
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Let G = GMor + GExc be the generator of the process Z, where GMor, GExc are as in
(2.7)–(2.8). Also note from Definition 2.4.2 that the generator Ĝ of the dual process
is given by Ĝ = GKing +GExc where GKing : C(Ω)→ C(Ω) is defined as

(GKingf)(n,m) = n(n− 1)
2N [f(n− 1,m)− f(n,m)], (n,m) ∈ Ω. (2.47)

Since Ω is countable, it is enough to show the generator criterion for duality, i.e.,(
GD( · ; (n,m))

)
(X,Y ) =

(
ĜD((X,Y ); · )

)
(n,m), (X,Y ), (n,m) ∈ Ω. (2.48)

In our notation, (2.48) translates into G
D−→ Ĝ. It is somewhat tedious to verify

(2.48) by direct computation. Rather, we will write down a proof with the help of the
elementary operators defined in (2.40). This approach will also reveal the underlying
change of representation of the two operators G, Ĝ that is embedded in the duality.

Note that

GKing = 1
2N

[
(AN,+1 −AN,−1 + 2AN,01 )AN,01 + N

2 (AN,+1 +AN,−1 −N)
]
,

GMor = 1
2N

[
JN,01 (JN,+1 − JN,−1 + 2JN,01 ) + N

2 (JN,+1 + JN,−1 −N)
]
,

GExc = λ
M

[
JN,+1 JM,−

2 + JN,−1 JM,+
2 + 2JN,01 JM,0

2 − NM
2

]
= λ

M

[
AN,+1 AM,−

2 +AN,−1 AM,+
2 + 2AN,01 AM,0

2 − NM
2

]
,

(2.49)

where the subscripts indicate which variable of the associated function the operators
act on. For example, JN,+1 and JM,+

2 act on the first and second variable, respectively.
So, for a function f : [N ]× [M ]→ R, we have (JN,+1 f)(n,m) = (JN,+f( · ; m))(n) and
(JM,+

2 f)(n,m) = (JM,+f(n ; · ))(m). The equivalent version of Lemma 2.5.2 holds for
these operators with subscript as well, except that the duality function is D. In other
words, JN,+1

D−→ AN,+1 , JM,+
2

D−→ AM,+
2 , and so on. Using these duality relations and

the representations in (2.49), we have GMor
D−→ GKing and GExc

D−→ GExc, where we
use:

• Two operators acting on different sites commute with each other.

• For some duality function d and operators A,B, Â, B̂, if A d−→ Â, B
d−→ B̂,

then, for any constants c1, c2, AB d−→ B̂Â and c1A+ c2B
d−→ c1Â+ c2B̂.

Since G = GMor + GExc and Ĝ = GKing + GExc, we have G D−→ Ĝ, which proves the
claim.

§2.5.2 Equilibrium
Proof of Proposition 2.3.3. For x ∈ R and r ∈ N, let (x)r be the falling factorial
defined as

(x)r = x(x− 1)× · · · × (x− r + 1), (2.50)
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where we put (x)r = 1 when r = 0. For any n ∈ N0, we can write xn as

xn =
n∑
j=0

cn,j (x)j , (2.51)

where the constants cn,j (known as the Stirling numbers of the second kind) are
unique and depend only on n and j ∈ [n]. Let (n,m) ∈ Ω = [N ] × [M ] be such that
(n,m) 6= (0, 0), and let (nt,mt)t≥0 be the dual process in Definition 2.4.2. It follows
from (2.51) and Theorem 2.3.2 that

lim
t→∞

E(X,Y )[X(t)nY (t)m]

=
n∑
i=0

m∑
j=0

cn,icm,j lim
t→∞

E(X,Y )[(X(t))i(Y (t))j ]

=
n∑
i=0

m∑
j=0

cn,icm,j(N)i(M)j lim
t→∞

E(X,Y )[D((X(t), Y (t)); (i, j))]

=
n∑
i=0

m∑
j=0

cn,icm,j(N)i(M)j lim
t→∞

E(i,j)[D((X,Y ); (nt,mt))],

(2.52)

where D : Ω× Ω→ [0, 1] is the duality function in Theorem 2.3.2, defined by

D((X,Y ); (n,m)) = (Xn)
(Nn)

(Ym)
(Mm)1l{n≤X,m≤Y } ≡ (X)n(Y )m

(N)n(M)m , (2.53)

and the expectation in the last line of (2.52) is with respect to the dual process. Let
T be the first time at which there is only one particle left in the dual, i.e., T = inf{t >
0: nt + mt = 1}. Note that, for any initial state (i, j) ∈ Ω \ {(0, 0)}, T < ∞ with
probability 1, and the distribution of (nt,mt) converges as t → ∞ to the invariant
distribution N

N+M δ(1,0) + M
N+M δ(0,1). So, for any (i, j) ∈ Ω \ {(0, 0)},

lim
t→∞

E(i,j)[D((X,Y ); (nt,mt))]

= lim
t→∞

E(i,j)[D((X,Y ); (nt,mt)) | T ≤ t]P(i,j)(T ≤ t)

+ lim
t→∞

E(i,j)[D((X,Y ); (nt,mt)) | T > t]︸ ︷︷ ︸
≤1

P(i,j)(T > t)

= lim
t→∞

[
X
N P(i,j)(nt = 1,mt = 0) + Y

M P(i,j)(nt = 0,mt = 1)
]

= X

N

N

N +M
+ Y

M

M

N +M
= X + Y

N +M
,

(2.54)
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where we use that the second term after the first equality converges to 0 because
T <∞ with probability 1. Combining (2.54) with (2.52), we get

lim
t→∞

E(X,Y )[X(t)nY (t)m]

=
n∑
i=0

m∑
j=0

cn,icm,j(N)i(M)j lim
t→∞

E(i,j)[D((X,Y ); (nt,mt))]

= X + Y

N +M

(
n∑
i=0

cn,i(N)i

) m∑
j=0

cm,j(M)j

+
(

1− X+Y
N+M

)
cn,0cm,0

= NnMm X + Y

N +M
,

(2.55)

where the last equality follows from (2.51) and the fact that cn,0cm,0 = 0 when (n,m) 6=
(0, 0).

Proof of Corollary 2.3.4. Note that the distribution of a two-dimensional random vec-
tor (Z1, Z2) taking values in [N ]× [M ] is determined by the mixed moments E[Zi1Z

j
2 ],

i, j ∈ [N ] × [M ]. For i ∈ I = [NM ], let pi = P((Z1, Z2) = f−1(i)), where f : [N ] ×
[M ] → I is a bijection. For i ∈ I, let ci = E[Zx1Z

y
2 ], where (x, y) = f−1(i). We can

write ~c = A~p, where ~p = (pi)i∈I ,~c = (ci)i∈I and A is an invertible (N + 1)(M + 1)×
(N + 1)(M + 1) matrix. Hence, ~p = A−1~c is uniquely determined by the mixed mo-
ments, and convergence of the mixed moments of (X(t), Y (t)) as shown in Proposition
2.3.3 is enough to conclude that (X(t), Y (t)) converges in distribution as t→∞ to a
random vector (X∞, Y∞) taking values in [N ]× [M ]. The distribution of (X∞, Y∞) is
also uniquely determined, and is given by X+Y

N+M δ(N,M) + (1− X+Y
N+M )δ(0,0).

§2.6 Proofs: duality and well-posedness for the multi-
colony model

In Section 2.6.1, we give the proof of Lemma 2.4.3 on the existence and uniqueness of
the dual process. In Section 2.6.2, we introduce equivalent versions for the multi-colony
setting of the operators defined in (2.40) for the single-colony setting, and use these to
prove Theorem 2.4.5 and Corollary 2.4.6. In Section 2.6.3 we prove Proposition 2.4.1,
Proposition 2.4.7 and Theorem 2.4.8.

§2.6.1 Uniqueness of dual
Proof of Lemma 2.4.3. Note that the rate-matrix is nothing but the dual generator
Ldual obtained from the rates specified in (2.29). The action of Ldual on a function
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f : X∗ → R is given by

(Ldualf)(ξ) =
∑
i∈Zd

[
ni(ni−1)

2Ni + ni
∑
j∈Zd,
j 6=i

a(i, j) njNj
][
f(ξ − ~δi,A)− f(ξ)

]
+
∑
i∈Zd

λni
(Mi−mi)

Mi

[
f(ξ − ~δi,A + ~δi,D)− f(ξ)

]
+
∑
i∈Zd

λ(Ni − ni) miMi

[
f(ξ + ~δi,A − ~δi,D)− f(ξ)

]
+
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)ni Nj−njNj

[
f(ξ − ~δi,A + ~δj,A)− f(ξ)

]
,

(2.56)

where ξ = (ni,mi)i∈Zd ∈ X∗ and the configurations ~δi,A, ~δi,D ∈ X∗ ⊂ X are as in (2.19).
It is enough to show that Ldual satisfies the well-known Foster-Lyapunov criterion for
stability (see for e.g. [122, Theorem 2.1] or [31, Theorem (1.11)] for Markov processes
on countable state spaces), i.e.,

(LdualV )(ξ) ≤ pV (ξ) ∀ξ ∈ X∗, (2.57)

for some p > 0 with V : X∗ → (0,∞) a function such that there exist (Ek)k∈N with
Ek ↑ X∗ and infx 6∈Ek V (x)→∞ as k →∞.

Let us define the function V : X∗ → (0,∞) as

V ((ni,mi)i∈Zd) := 1 +
∑
i∈Zd

(ni +mi), (ni,mi)i∈Zd ∈ X∗, (2.58)

and, for k ∈ N, set

Ek :=
{

(ni,mi)i∈Zd ∈ X∗ :
∑
i∈Zd

ni +mi ≤ k
}
. (2.59)

Since X∗ contains configurations with finitely many particles, V is well-defined. It is
straightforward to see that

Ek ↑ X∗, lim
k→∞

inf
x6∈Ek

V (x) =∞. (2.60)

Let ξ = (ni,mi)i∈Zd ∈ X∗ be arbitrary. Note that, for any i, j ∈ Zd with i 6= j,

[V (ξ − ~δi,A)− V (ξ)] = −1l{ni≥1},

[V (ξ + ~δi,A − ~δi,D)− V (ξ)](Ni − ni)mi = 0,
[V (ξ − ~δi,A + ~δi,D)− V (ξ)]ni(Mi −mi) = 0,
[V (ξ − ~δi,A + ~δj,A)− V (ξ)]ni(Nj − nj) = 0

(2.61)
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and so by using (2.56) we obtain

|(LdualV )(ξ)| ≤
∑
i∈Zd

[
ni(ni−1)

2Ni + ni
∑
j∈Zd,
j 6=i

a(i, j) njNj
]
|V (ξ − ~δi,A)− V (ξ)|

≤
∑
i∈Zd

[
ni
2 + ni

∑
j∈Zd

a(i, j)
]
≤ max{1, c}

∑
i∈Zd

ni ≤ max{1, c}V (ξ),

(2.62)
where c =

∑
i∈Zd a(0, i) <∞. Hence, setting p := max{1, c} > 0, we have that

(LdualV )(ξ) ≤ |(LdualV )(ξ)| ≤ p V (ξ), (2.63)

which proves the claim.

§2.6.2 Duality relation
Generators and intertwiners. Let f ∈ C(X ) and η = (Xi, Yi)i∈Zd ∈ X , and
let ~δi,A, ~δi,D be as in (2.19). Define the action of the multi-colony operators as in
Table 2.3.

Operators acting on variable Xi, i ∈ Zd Operators acting on variable Yi, i ∈ Zd

JNi,+i,A f(η) = (Ni −Xi)f(η + ~δi,A) JMi,+
i,D f(η) = (Mi − Yi)f(η + ~δi,D)

JNi,−i,A f(η) = Xif(η − ~δi,A) JMi,−
i,D f(η) = Yif(η − ~δi,D)

JNi,0i,A f(η) = (Xi − Ni
2 )f(η) JMi,0

i,D f(η) = (Yi − Mi

2 )f(η)

ANi,+i,A = JNi,−i,A − JNi,+i,A − 2JNi,0i,A AMi,+
i,D = JMi,−

i,D − JMi,+
i,D − 2JMi,0

i,D

ANi,−i,A = JNi,+i,A AMi,−
i,D = JMi,+

i,D

ANi,0i,A = JNi,+i,A + JNi,0i,A AMi,0
i,D = JMi,+

i,D + JMi,0
i,D

Table 2.3: Action of operators on f ∈ C(X ).

The same duality relations as in Lemma 2.5.2 hold for these operators as well. The
only difference is that the duality function becomes the site-wise product of the duality
functions appearing in the single-colony model.

Lemma 2.6.1 (Multi-colony intertwiner). Let D : X ×X∗ → [0, 1] be the function
defined by

D((Xk, Yk)k∈Zd ; (nk,mk)k∈Zd) =
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1l{ni≤Xi,mi≤Yi}, (2.64)

where (Xk, Yk)k∈Zd ∈ X and (nk,mk)k∈Zd ∈ X∗. Then, for every i ∈ Zd and s ∈
{0,+,−},

JNi,si,A
D−→ ANi,si,A , JMi,s

i,D
D−→ AMi,s

i,D . (2.65)
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Proof. The proof is exactly the same as the proof of Lemma 2.5.2.

Proposition 2.6.2 (Generator criterion). Let L be the generator defined in (2.22),
and L̂ the generator of the dual process defined in Definition 2.4.2. Furthermore, let
D : X × X∗ → [0, 1] be the function defined in Lemma 2.6.1. Then L

D−→ L̂.

Proof. Recall that L = LMig + LRes + LExc, where LMig, LRes, LEx are defined in
(2.23)–(2.25). In terms of the operators defined earlier, these have the following rep-
resentations:

LMig =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i,j)
Nj

[(
JNi,+i,A − JNi,−i,A + 2JNi,0i,A

)
J
Nj ,0
j,A + Nj

2

(
JNi,+i,A + JNi,−i,A −Ni

)]
,

LRes =
∑
i∈Zd

1
2Ni

[
JNi,0i,A

(
JNi,+i,A − JNi,−i,A + 2JNi,0i,A

)
+ Ni

2

(
JNi,+i,A + JNi,−i,A −Ni

)]
,

LExc =
∑
i∈Zd

λ
Mi

[
JNi,+i,A JMi,−

i,D + JNi,−i,A JMi,+
i,D + 2JNi,0i,A JMi,0

i,D − NiMi

2

]
=
∑
i∈Zd

λ
Mi

[
ANi,+i,A AMi,−

i,D +ANi,−i,A AMi,+
i,D + 2ANi,0i,A AMi,0

i,D − NiMi

2

]
.

(2.66)
Similarly, the generator L̂ of the dual process defined in Definition 2.4.2 acting on
f ∈ C(X∗) is given by L̂ = L̂Mig + LExc + LKing, where

L̂Migf(ξ) =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i,j)
Nj

{
ni(Nj − nj)[f(ξ − ~δi,A + ~δj,A)− f(ξ)]

+ ninj [f(ξ − ~δi,A)− f(ξ)]
}
,

LKingf(ξ) =
∑
i∈Zd

ni(ni−1)
2Ni [f(ξ − ~δi,A) + f(ξ + ~δi,A)− 2f(ξ)],

(2.67)

for ξ = (ni,mi)i∈Zd ∈ X∗. The representations of these operators are

L̂Mig =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i,j)
Nj

[
A
Nj ,0
j,A

(
ANi,+i,A −ANi,−i,A + 2ANi,0i,A

)

+ Nj
2

(
ANi,+i,A +ANi,−i,A −Ni

) ]
,

LKing =
∑
i∈Zd

1
2Ni

[(
ANi,+i,A −ANi,−i,A + 2ANi,0i,A

)
ANi,0i,A + Ni

2

(
ANi,+i,A +ANi,−i,A −Ni

)]
.

(2.68)
From Lemma 2.6.1 and the representations in (2.66)–(2.68), we see that LMig

D−→
L̂Mig, LRes

D−→ LKing and LEx
D−→ LEx, which yields L D−→ L̂.

As shown in [91, Proposition 1.2], the generator criterion is enough to get the
required duality relation of Theorem 2.4.5 when both L and L̂ are Markov generators
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of Feller processes. Since it is not a priori clear whether L (or its extension) is a
Markov generator, we need to use [58, Theorem 4.11, Corollary 4.13].

Proof of duality relation.

Proof of Theorem 2.4.5. We combine [58, Theorem 4.11 and Corollary 4.13] and rein-
terpret these in our context:

• Let (ηt)t≥0 and (ξt)t≥0 be two independent processes on E1 and E2 that are
solutions to the martingale problem for (L1,D1) and (L2,D2) with initial states
x ∈ E1 and y ∈ E2. Assume that D : E1 × E2 → R is such that D( · ; ξ) ∈ D1
for any ξ ∈ E2 and D(η ; ·) ∈ D2 for any η ∈ E1. Also assume that for each
T > 0 there exists an integrable random variable UT such that

sup
0≤s,t≤T

|D(ηt; ξs)| ≤ UT , sup
0≤s,t≤T

|(L1D( · ; ξs))(ηt)| ≤ UT ,

sup
0≤s,t≤T

|(L2D(ηt; · ))(ξs)| ≤ UT .
(2.69)

If (L1D( · ; y))(x) = (L2D(x ; · ))(y), then Ex[D(ηt; y)] = Ey[D(x, ξt)] for all
t ≥ 0.

To apply the above, pick E1 = X , E2 = X∗, L1 = L, L2 = Ldual, D1 = D, D2 = C(X∗),
where Ldual is the generator of the dual process Z∗ and set D to be the function
defined in Lemma 2.6.1. Note that, since D contains local functions only, D( · ; ξ) ∈ D
for any ξ ∈ X∗ and, since X∗ is countable, D(η ; · ) ∈ C(X∗) for any η ∈ X . Fix
x = (Xi, Yi)i∈Zd ∈ X and y = (ni,mi)i∈Zd ∈ X∗. Note that, by Proposition 2.6.2,
(L1D( · ; y))(x) = (L2D(x ; · ))(y). Pick (ξt)t≥0 to be the process Z∗ with initial state
y. Note that (ξt)t≥0 is the unique solution to the martingale problem for (Ldual, C(X∗))
with initial state y. Let (ηt)t≥0 denote any solution Z to the martingale problem for
(L,D) with initial state x. Fix T > 0 and note that, for 0 ≤ s, t < T ,

(L1D( · ; ξs))(ηt) =
∑
i∈Zd

Xi(t)
[ ∑
j∈Zd

a(i, j)Nj−Xj(t)Nj

][
D(ηt − ~δi,A; ξs)−D(ηt; ξs)

]
+
∑
i∈Zd

(Ni −Xi(t))
[ ∑
j∈Zd

a(i, j)Xj(t)Nj

][
D(ηt + ~δi,A; ξs)−D(ηt; ξs)

]
+
∑
i∈Zd

λXi(t)Mi−Yi(t)
Mi

[
D(ηt − ~δi,A + ~δi,D; ξs)−D(ηt; ξs)

]
+
∑
i∈Zd

λ(Ni −Xi(t))Yi(t)Mi

[
D(ηt + ~δi,A − ~δi,D; ξs)−D(ηt; ξs)

]
(2.70)
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and

(L2D(ηt ; · ))(ξs) =
∑
i∈Zd

ni(s)
[
ni(s)−1

2Ni +
∑
j∈Zd,
j 6=i

a(i,j)nj(s)
Nj

][
D(ηt; ξs − ~δi,A)−D(ηt; ξs)

]
+
∑
i∈Zd

λni(s)Mi−mi(s)
Mi

[
D(ηt; ξs − ~δi,A + ~δi,D)−D(ηt; ξs)

]
+
∑
i∈Zd

λ(Ni − ni(s)) mi(s)Mi

[
D(ηt; ξs + ~δi,A − ~δi,D)−D(ηt; ξs)

]
+
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i, j)ni(s)Nj−nj(s)Nj

[
D(ηt; ξs − ~δi,A + ~δj,A)−D(ηt; ξs)

]
.

(2.71)
The random variable Γ(t) defined in Theorem 2.4.5 is stochastically increasing in
time t, and if we change the configuration ηt outside the box [0,Γ(s)]d ∩ Zd, then
the value of D(ηt; ξs) does not change. Consequently, all the summands in (2.70) for
‖i‖ > Γ(s), i ∈ Zd, are 0, and since Γ(s) ≤ Γ(T ) we have the estimate

|(L1D( · ; ξs))(ηt)| ≤ 2(c+ λ)
∑
i∈Zd

‖i‖≤Γ(s)

Ni ≤ 2(c+ λ)
∑
i∈Zd

‖i‖≤Γ(T )

Ni, (2.72)

where c =
∑
i∈Zd a(0, i). Now, by Definition 2.4.2, the process (ξt)t≥0 is the interact-

ing particle system with coalescence in which the total number of particles can only
decrease in time, and so

∑
i∈Zd(ni(s)+mi(s)) ≤ N , where N =

∑
i∈Zd(ni+mi). Also,

since s ≤ T , for i ∈ Zd with ‖i‖ > Γ(T ) we have ni(s) = mi(s) = 0. Hence, from
(2.71) we get

|(L2D(ηt ; · ))(ξs)| ≤ 2(c+ λ)N + 2λ
∑
i∈Zd

‖i‖≤Γ(T )

Ni. (2.73)

Define the random variable UT by

UT = 1 + 2(c+ λ)N + 2(c+ λ)
∑
i∈Zd

‖i‖≤Γ(T )

Ni. (2.74)

Then, combining (2.72)–(2.73) with the fact that the function D takes values in [0, 1],
we see that UT satisfies all the conditions stated in (2.69), while the assumption in
(2.31) of Theorem 2.4.5 ensures the integrability of UT .

Proof of duality criterion.

Proof of Corollary 2.4.6. Let ξ = (ni,mi)i∈Zd ∈ X∗ and T > 0 be fixed. By Theorem
2.4.5, it suffices to show that, for any (Ni)i∈Zd ∈ N ,∑

i∈Zd
Ni Pξ(Γ(T ) ≥ ‖i‖) <∞, (2.75)
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where Pξ is the law of the dual process Z∗ started from initial state ξ. Let n =∑
i∈Zd(ni+mi) be the initial number of particles, and let N(t) be the total number of

migration events within the time interval [0, t]. We will construct a Poisson process N∗
via coupling such that N(t) ≤ N∗(t) for all t ≥ 0 with probability 1. For this purpose,
let us consider n independent particles performing a random walk on Zd according
to the migration kernel a(·, ·). For each k = 1, . . . , n, let ξk(t) and ξ∗k(t) denote the
position of the k-th dependent and independent particle at time t, respectively. We
take ξk(0) = ξ∗k(0) and couple each k-th interacting particle with the k-th independent
particle as below:

• If the independent particle makes a jump from site ξ∗k(t) to j∗ ∈ Zd, then the
dependent particle jumps from ξk(t) to j = ξk(t) + (j∗ − ξ∗k(t)) with probability
pk(t) given by

pk(t) =


1− nj(t)

Nj
if the dependent particle is in an
active and non− coalesced state,

0 otherwise,
(2.76)

where nj(t) is the number of active particles at site j.

• The dependent particle does the other transitions (waking up, becoming dormant
and coalescence) independently of the previous migration events, with the pre-
scribed rates defined in Definition 2.4.2.

Note that, since the migration kernel is translation invariant, under the above
coupling the effective rate at which a dependent particle migrates from site i to j is
nia(i, j)(1− nj

Nj
) when there are ni and nj active particles at site i and j, respectively.

Also, if Nk(t) and N∗k (t) are the number of migration steps made within the time
interval [0, t] by the k-th dependent and independent particle, respectively, then under
this coupling Nk(t) ≤ N∗k (t) with probability 1. Set N∗(·) =

∑n
k=1N

∗
k (·). Then,

clearly,

N(·) =
n∑
k=1

Nk(·) ≤ N∗(·) with probability 1. (2.77)

Also, N∗ is a Poisson process with intensity cn, since each independent particle mi-
grates at a total rate c.

Let Yl, Xl ∈ Zd denote the step at the l-th migration event in the dependent and
independent particle systems, respectively. Note that (Xl)l∈N are i.i.d. with distribu-
tion (a(0, i))i∈Zd . Since, under the above coupling, a dependent particle copies the
step of an independent particle with a certain probability (possibly 0), and Γ(0) is
the minimum length of the box within which all n dependent particles at time 0 are
located, we have, for any t ≥ 0,

Γ(t) ≤ Γ(0) +
N(t)∑
l=1
|Yl| ≤ Γ(0) +

N∗(t)∑
l=1
|Xl|. (2.78)

Therefore
Pξ(Γ(T ) ≥ k) ≤ P

(
SN∗(T ) ≥ k − Γ(0)

)
∀ k ≥ 0, (2.79)
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where SN∗(T ) =
∑N∗(T )
l=1 |Xl|.

To prove part (a), note that E[eδSN∗(T ) ] <∞ and so, by Chebyshev’s inequality,

P(SN∗(T ) ≥ x) = P(eδSN∗(T ) ≥ eδx) ≤ E[eδSN∗(T ) ] e−δx. (2.80)

Thus, the inequality in (2.79) reduces to

Pξ(Γ(T ) ≥ k) ≤ V e−δk ∀ k ≥ 0, (2.81)

where
V = E

[
exp{δΓ(0) + δSN∗(T )}

]
<∞. (2.82)

For k ∈ N, let αk = #{i ∈ Zd : ‖i‖∞ = k}. Then,

αk = (2k + 1)d − (2k − 1)d ≤ 4dkd−1. (2.83)

Hence ∑
i∈Zd\{0}

Ni Pξ(Γ(T ) ≥ ‖i‖) ≤
∑
k∈N

ckαk Pξ(Γ(T ) ≥ k)

≤
∑
k∈N

ck4dkd−1 Pξ(Γ(T ) ≥ k),
(2.84)

where ck = sup{Ni : ‖i‖∞ = k, i ∈ Zd}. Since, under the assumption of part (a),
limk→∞

1
k log ck = 0, there exists a K ∈ N such that ck ≤ eδk/2 for all k ≥ K. Hence,

using (2.81), we find that

∑
i∈Zd

Ni Pξ(Γ(T ) ≥ ‖i‖) ≤ N0 +
K−1∑
k=1

ckαk + 4dV
∞∑
k=K

kd−1 e−δk/2 <∞, (2.85)

which settles part (a).
To prove part (b), note that, under the assumption

∑
i∈Zd ‖i‖γa(0, i) <∞ for some

γ > d+ δ, we have E[SγN∗(T )] <∞, and since SN∗(T ) is a positive random variable, we
get

P(SN∗(T ) ≥ x) ≤ E[SγN∗(T )]x
−γ . (2.86)

From (2.79) we get

Pξ(Γ(T ) ≥ k) ≤ V

(k − Γ(0))γ ∀ k > Γ(0), (2.87)

where V = E[SγN∗(T )]. By the assumption of part (b), there exists a C > 0 such that

ck = sup{Ni : ‖i‖∞ = k, i ∈ Zd} ≤ Ckδ (2.88)

and so using (2.84), we obtain∑
i∈Zd

Ni Pξ(Γ(T ) ≥ ‖i‖) ≤ N0 +
∑

k≤Γ(0)

ckαk + 4dCV
∑

k>Γ(0)

kd+δ−1

(k − Γ(0))γ <∞, (2.89)

which settles part (b).
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§2.6.3 Well-posedness
In this section we prove Proposition 2.4.1, Proposition 2.4.7 and Theorem 2.4.8.

Existence. Since the state space X is compact, the theory described in [112, Chapter
I, Section 3] is applicable in our setting without any significant changes. The inter-
acting particle systems in [112] have state space WS , where W is a compact phase
space and S is a countable site space. In our setting, the site space is S = Zd, but the
phase space differs at each site, i.e., [Ni]× [Mi] at site i ∈ Zd. The general form of the
generator of an interacting particle system in [112] is

(Ωf)(η) =
∑
T

∫
WT

cT (η,dξ)[f(ηξ)− f(η)], η ∈ X , (2.90)

where the sum is taken over all finite subsets T of S, and ηξ is the configuration

ηξi =
{
ξi if i ∈ T,
ηi else.

(2.91)

For finite T b X , cT (η, dξ) is a finite positive measure on WT = WT . To make the lat-
ter compatible with our setting, we define WT =

∏
i∈T [Ni]× [Mi]. The interpretation

is that η is the current configuration of the system, cT (η,WT ) is the total rate at which
a transition occurs involving all the coordinates in T , and cT (η, dξ)/cT (η,WT ) is the
distribution of the restriction to T of the new configuration after that transition has
taken place. Fix η = (Xi, Yi)i∈Zd ∈ X . Comparing (2.90) with the formal generator
L defined in (2.22), we see that the form of cT (·, ·) is as follows:

(a) cT (η, dξ) = 0 if |T | ≥ 2.
(b) For |T | = 1, let T = {i} for some i ∈ Zd. Then cT (η, ·) is the measure on

[Ni]× [Mi] given by

cT (η, ·) = Xi

[ ∑
j∈Zd

a(i, j)Nj−XjNj

]
δ(Xi−1,Yi)(·)

+ (Ni −Xi)
[ ∑
j∈Zd

a(i, j)XjNj
]
δ(Xi+1,Yi)(·)

+ λXi
Mi−Yi
Mi

δ(Xi−1,Yi+1)(·) + λ(Ni −Xi) YiMi
δ(Xi+1,Yi−1)(·).

(2.92)
Note that the total mass is

cT (η,WT ) = Xi

[ ∑
j∈Zd

a(i, j)Nj−XjNj

]
+ (Ni −Xi)

[ ∑
j∈Zd

a(i, j)XjNj
]

+ λXi
Mi − Yi
Mi

+ λ(Ni −Xi) YiMi
.

(2.93)

Lemma 2.6.3 (Bound on rates). Let c =
∑
i∈Zd a(0, i) < ∞. For a finite set

T b Zd, let cT = supη∈X cT (η,WT ). Then cT ≤ (c + λ)1l{|T |=1} supi∈T Ni with
c =

∑
i∈Zd a(0, i).
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Proof. Clearly, cT = 0 if |T | ≥ 2. So let T = {i} for some i ∈ Zd. We see that, for
η = (Xk, Yk)k∈Zd , cT (η,WT ) ≤ cXi + c(Ni −Xi) + λXi + λ(Ni −Xi) = (c + λ)Ni =
(c+ λ) supi∈T Ni.

Proof of Proposition 2.4.1. By [112, Proposition 6.1 of Chapter I], it suffices to show
that ∑

T3 i
cT <∞ ∀ i ∈ S, (2.94)

where the sum is taken over all finite subsets T b S containing i ∈ S. Since in our
case S = Zd, we let i ∈ Zd be fixed. By Lemma 2.6.3, the sum reduces to c{i}, and
clearly c{i} ≤ (c+ λ)Ni <∞.

Proof of Proposition 2.4.7. By [112, Proposition 6.1 and Theorem 6.7 of Chapter I],
to show existence of solutions to the martingale problem for (L,D), it is enough to
prove that (2.94) is satisfied. But we already showed this in the proof of Proposition
2.4.1.

Uniqueness. Before we turn to the proof of Theorem 2.4.8, we state and prove the
following proposition, which, along with the duality established in Corollary 2.4.6, will
play a key role in the proof of the uniqueness of solutions to the martingale problem.

Proposition 2.6.4 (Separation). Let D : X × X∗ → [0, 1] be the duality function
defined in Lemma 2.6.1. Define the set of functions M = {D( · ; ξ) : ξ ∈ X∗}. Then
M is separating on the set of probability measures on X .

Proof. Let P be a probability measure on X =
∏
i∈Zd [Ni] × [Mi]. It suffices to show

that the finite-dimensional distributions of P are determined by {
∫
X f dP : f ∈ M}.

Note that it is enough to show the following:

• Let X = (X1, X2, . . . , Xn) ∈
∏n
i=1[Ni] be an n-dimensional random vector with

some distribution PX on
∏n
i=1[Ni]. Then PX is determined by the family

F =
{
E

[
n∏
i=1

(Xiαi)
(Niαi)

]
: (αi)1≤i≤n ∈

n∏
i=1

[Ni]
}
. (2.95)

By (2.51), the family F is equivalent to the family

F∗ =
{
E

[
n∏
i=1

Xαi
i

]
: (αi)1≤i≤n ∈

n∏
i=1

[Ni]
}

(2.96)

containing the mixed moments of (X1, . . . , Xn). Since X takes a total of N =∏n
i=1(Ni + 1) many values, we can write the distribution PX as the N -dimensional

78



§2.6. Proofs: duality and well-posedness for the multi-colony model

C
hapter

2

vector ~p = (p1, . . . , pN ), where pi = PX(X = f−1(i)) and f :
∏n
i=1[Ni] → {1, . . . , N}

is the bijection defined by

f(x1, x2, . . . , xn) =
n−1∑
i=1

 n∏
j=i+1

(Nj + 1)

xi+xn+1, (x1, . . . , xn) ∈
n∏
i=1

[Ni]. (2.97)

Note that F∗ also contains N elements, and so we can write F∗ as the N -dimensional
vector ~e = (e1, . . . , eN ), where ei = E[

∏n
k=1X

αk
k ], (α1, . . . , αn) = f−1(i). We show

that there exists an invertible linear operator that maps ~p to ~e. Indeed, for i = 1, . . . , n,
define the (Ni + 1)× (Ni + 1) Vandermonde matrix Ai,

Ai =


1 1 1 . . . 1
α1 α2 α3 . . . αNi+1
α2

1 α2
2 α2

3 . . . α2
Ni+1

...
...

... . . . ...
αNi1 αNi2 αNi3 . . . αNiNi+1

 , (α1, α2 . . . , αNi+1) = (0, 1, . . . , Ni).

(2.98)
Being Vandermonde matrices, all Ai are invertible. Finally, define the N ×N matrix
A by A = A1 ⊗ A2 ⊗ · · · ⊗ An, where ⊗ denotes the Kronecker product for matrices.
Then A is invertible because all Ai are. Also, we can check that A~p = ~e, and hence
the distribution of X given by ~p = A−1~e is uniquely determined by ~e, i.e., the family
F∗.

Proof of Theorem 2.4.8. We use [58, Proposition 4.7], which states the following (re-
interpreted in our setting):

• Let S1 be compact and S2 be separable. Let x ∈ S1, y ∈ S2 be arbitrary and
D : S1×S2 → R be such that the set {D( · ; z) : z ∈ S2} is separating on the set
of probability measures on S1. Assume that, for any two solutions (ηt)t≥0 and
(ξt)t≥0 of the martingale problem for (L1,D1) and (L2,D2) with initial states x
and y, the duality relation holds: Ex[D(ηt, y)] = Ey[D(x, ξt)] for all t ≥ 0. If
for every z ∈ S2 there exists a solution to the martingale problem for (L2,D2)
with initial state z, then for every η ∈ S1 uniqueness holds for the martingale
problem for (L1,D1) with initial state η.

Pick S1 = X , S2 = X∗, (L1,D1) = (L,D) and (L2,D2) = (Ldual, C(X∗)), where Ldual is
the generator of the dual process Z∗. Note that in our setting the martingale problem
for (Ldual, C(X∗)) is already well-posed (the unique solution is the dual process Z∗
in Lemma 2.4.3). Hence, combining the above observations with Proposition 2.6.4
and Corollary 2.4.6, we get uniqueness of the solutions to the martingale problem for
(L,D) for every initial state η ∈ X .

The second claim follows from [112, Theorem 6.8 of Chapter I].
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§2.7 Proofs: equilibrium and clustering criterion for
the multi-colony model

In Section 2.7.1 we prove Theorem 2.4.9 and Corollary 2.4.10. In Section 2.7.2 we
derive expressions for the single-site genetic variability in terms of the dual process.
In Section 2.7.3 we use one dual particle to write down expressions for first moments. In
Section 2.7.4 we use two dual particles to write down expressions for second moments.
In Section 2.7.5 we use these expressions to prove Theorem 2.4.12.

§2.7.1 Convergence to equilibrium
Proof of Theorem 2.4.9. Since the state space X is compact and thus the set of all
probability measures on X is compact as well, by Prokhorov’s theorem. It there-
fore suffices to prove convergence of the finite-dimensional distributions of Z(t) =
(Xi(t), Yi(t))i∈Zd . Now recall from the proof of Proposition 2.6.4 that the distribu-
tion of an n-dimensional random vector X(t) := (X1(t), . . . , Xn(t)) taking values in∏n
l=1[Nl] is determined by

Ft =
{
E

[
n∏
l=1

(Xl(t)αl
)

(Nlαl)

]
: (αl)1≤l≤n ∈

n∏
l=1

[Nl]
}
. (2.99)

In fact, the distribution of X(t) converges if and only if

lim
t→∞

E
[ n∏
l=1

(Xl(t)αl
)

(Nlαl)
]

exists ∀ (αl)1≤l≤n ∈
n∏
l=1

[Nl]. (2.100)

Since our duality function is given by

D((Xk, Yk)k∈Zd ; (nk,mk)k∈Zd) =
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1l{ni≤Xi,mi≤Yi}, (2.101)

it suffices to show that limt→∞ Eνθ [D(Z(t); η)] exists for all η ∈ X∗. Let η ∈ X∗ be
fixed. By duality, we have

Eνθ [D(Z(t); η)] =
∫
X
Eξ[D(Z(t); η)] dνθ(ξ)

=
∫
X
Eη[D(ξ;Z∗(t))] dνθ(ξ) = Eη

[∫
X
D(ξ;Z∗(t)) dνθ(ξ)

]
,

(2.102)

where Eξ denotes expectation w.r.t. the law of Z(t) started at configuration ξ ∈ X ,
Z∗(t) = (ni(t),mi(t))i∈Zd is the dual process started at configuration η, and Eη denotes
expectation w.r.t. the law of the dual process. A straightforward computation shows
that if V is a random variable with distribution Binomial(N, p), then E

[(
V
n

)
/
(
N
n

)]
= pn

for 0 ≤ n ≤ N . Since (Xi(0), Yi(0))i∈Zd are all independent under νθ with Binomials
as marginal distributions, we have

Eνθ [D(Z(t); η)] = Eη
∏
i∈Zd

θni(t) θmi(t)

 = Eη[θ|Z∗(t)|], (2.103)
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where |Z∗(t)| :=
∑
i∈Zd ni(t) + mi(t) is total number of particles in the dual process

at time t. Now, since the dual process is coalescing, |Z∗(t)| is decreasing in t. Since
θ ∈ [0, 1], we see that Eνθ [D(Z(t); η)] is increasing in t. Thus, limt→∞ Eνθ [D(Z(t); η)]
exists, which proves the existence of an equilibrium measure ν such that the distribu-
tion of Z(t) weakly converges to ν. Also, by definition,

Eν [D(Z(0); η)] = lim
t→∞

Eνθ [D(Z(t); η)] = lim
t→∞

Eη[θ|Z∗(t)|]. (2.104)

Proof of Corollary 2.4.10. This follows by choosing η = ~δi,A and η = ~δi,D in the last
part of Theorem 2.4.9 and noting that Eη[θ|Z∗(t)|] = θ when |η| = 1.

§2.7.2 Genetic variability (heterozygosity)
For i, j ∈ Zd and t ≥ 0, define

∆i,j(t) = ∆(i,A),(j,A)(t) + ∆(i,A),(j,D)(t), (2.105)

where

∆(i,A),(j,A)(t) =


Xi(t)(Nj−Xj(t))

NiNj
+ Xj(t)(Ni−Xi(t))

NjNi
if i 6= j,

2Xi(t)(Ni−Xi(t))
Ni(Ni−1) if i = j and Ni 6= 1,

0 otherwise,

(2.106)

is the genetic variability (mostly referred to as ‘sample heterozygosity’ in population
genetics) at time t between the active populations of colony i and j, i.e., the probability
that two individuals drawn randomly from the two populations at time t are of different
type, and

∆(i,A),(j,D)(t) = Xi(t)(Mj−Yj(t))
NiMj

+ (Ni−Xi(t))Yj(t)
NiMj

(2.107)

is the genetic variability at time t between the active population of colony i and the
dormant population of colony j. Note that the conditions in Definition 2.4.11 are
equivalent to

lim
t→∞

Eµ[∆i,j(t)] = 0 ∀ i, j ∈ Zd, (2.108)

where the expectation is taken conditional on an arbitrary initial distribution µ for
which the system admits convergence to an equilibrium. To simplify notations, we
suppress the subscript µ while taking expectations w.r.t. the law of the process Z
with initial distribution µ. We use the dual process to compute E(∆(i,A),(j,A)(t)) and
E(∆(i,A),(j,D)(t)), namely,

E(∆(i,A),(j,A)(t)) =

E
[
Xi(t)
Ni

]
+ E

[
Xj(t)
Nj

]
− 2E

[
Xi(t)Xj(t)
NiNj

]
if i 6= j,

2
(
E
[
Xi(t)
Ni

]
− E

[
Xi(t)(Xi(t)−1)
Ni(Ni−1)

])
otherwise,

(2.109)
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and
E[∆(i,A),(j,D)(t)] = E

[
Xi(t)
Ni

]
+ E

[
Yj(t)
Mj

]
− 2E

(
Xi(t)Yj(t)
NiMj

)
. (2.110)

Thus, in terms of the duality function D defined in Lemma 2.6.1,

E[∆(i,A),(j,A)(t)] = E
[
D(Z(t);~δi,A)

]
+ E

[
D(Z(t);~δj,A)

]
− 2E

[
D(Z(t);~δi,A + ~δj,A)

]
,

(2.111)

where ~δi,A, ~δj,A are defined in (2.19). Similarly,

E[∆(i,A),(j,D)(t))] = E
[
D(Z(t);~δi,A)

]
+ E

[
D(Z(t);~δj,D)

]
− 2E

[
D(Z(t);~δi,A + ~δj,D)

]
.

(2.112)

Since, by the duality relation in (2.32),

E
[
D(Z(t);Z∗(0))

]
= E

[
D(Z(0);Z∗(t))

]
, (2.113)

we have

E~δi,A
[
E
[
D(Z(0);Z∗(t))

]]
= E

[
Xi(t)
Ni

]
, E~δi,D

[
E
[
D(Z(0);Z∗(t))

]]
= E

[
Yi(t)
Mi

]
,

E~δi,A+~δj,A
[
E
[
D(Z(0);Z∗(t))

]]
=

E
[
Xi(t)(Xi(t)−1)
Ni(Ni−1)

]
if i = j,

E
[
Xi(t)Xj(t)
NiNj

]
otherwise,

E~δi,A+~δj,D
[
E
[
D(Z(0);Z∗(t))

]]
= E

[
Xi(t)Yj(t)
NiMj

]
,

(2.114)
where the expectation in the left-hand side is taken with respect to the dual process
(Z∗(t))t≥0 = Z∗ defined in Definition 2.4.2. Combining the above with (2.111)–(2.112),
we get

E[∆(i,A),(j,A)(t)] =
(
E~δi,A

[
E
[
D(Z(0);Z∗(t))

]]
− E~δi,A+~δj,A

[
E
[
D(Z(0);Z∗(t))

]])
+
(
E~δj,A

[
E
[
D(Z(0);Z∗(t))

]]
− E~δi,A+~δj,A

[
E
[
D(Z(0);Z∗(t))

]])
(2.115)

and

E[∆(i,A),(j,D)(t)] =
(
E~δi,A

[
E
[
D(Z(0);Z∗(t))

]]
− E~δi,A+~δj,D

[
E
[
D(Z(0);Z∗(t))

]])
+
(
E~δj,D

[
E
[
D(Z(0);Z∗(t))

]]
− E~δi,A+~δj,D

[
E
[
D(Z(0);Z∗(t))

]])
.

(2.116)
In Sections 2.7.3–2.7.4 we derive expressions for the terms appearing in (2.115)–(2.116).

§2.7.3 Dual: single particle
We saw earlier that, in order to compute the first moment of Xi(t) and Yi(t), we
need to put a single particle at site i in the active and the dormant state as initial
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configurations, respectively. This motivates us to analyse the dual process when it
starts with a single particle. The generator Ldual of the dual process can be written
as

Ldual = LCoal + LAD + LDA + LMig, (2.117)
where

(LCoalf)(ξ) =
∑
i∈Zd

ni(ni−1)
2Ni [f(ξ − ~δi,A)− f(ξ)] (2.118)

+
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i,j)
Nj

ninj [f(ξ − ~δi,A)− f(ξ)], (2.119)

(LADf)(ξ) =
∑
i∈Zd

λni(Mi−mi)
Mi

[f(ξ − ~δi,A + ~δi,D)− f(ξ)], (2.120)

(LDAf)(ξ) =
∑
i∈Zd

λmi(Ni−ni)
Mi

[f(ξ + ~δi,A − ~δi,D)− f(ξ)], (2.121)

(LMigf)(ξ) =
∑
i∈Zd

∑
j∈Zd
j 6=i

a(i,j)
Nj

ni(Nj − nj)[f(ξ − ~δi,A + ~δj,A)− f(ξ)], (2.122)

for f ∈ C(X∗) and ξ = (ni,mi)i∈Zd ∈ X∗.
When there is a single particle in the system at time 0, and consequently at any

later time, the only parts of the generator that are non-zero are LAD, LDA and LMig.
Here, LAD turns an active particle at site i into a dormant particle at site i at rate
λ, LDA turns a dormant particle at site i into an active particle at site i at rate λKi,
with Ki = Ni

Mi
, while LMig moves an active particle at site i to site j 6= i at rate a(i, j).

Let us denote the state of the particle at time t by Θ(t) ∈ Zd×{A,D}, where the first
coordinate of Θ(t) is the location of the particle and the second coordinate indicates
whether the particle is active (A) or dormant (D). Let Pξ be the law of the process
(Θ(t))t≥0 with initial state ξ.

Lemma 2.7.1 (First moments).

E
[
Xi(t)
Ni

]
=
∑
k∈Zd

E
[Xk(0)

Nk

]
P(i,A)(ξ(t) = (k,A)) + E

[Yk(0)
Mk

]
P(i,A)(ξ(t) = (k,D)),

E
[
Yi(t)
Mi

]
=
∑
k∈Zd

E
[Xk(0)

Nk

]
P(i,D)(ξ(t) = (k,A)) + E

[Yk(0)
Mk

]
P(i,D)(ξ(t) = (k,D)).

(2.123)

Proof. Recall that, via the duality relation,

E
[
Xi(t)
Ni

]
= E~δi,A

E[ ∏
k∈Zd

(
Xk(0)
nk(t)

)
( Nk
nk(t))

(
Yk(0)
mk(t)

)
( Mk
mk(t))

1l{nk(t)≤Xk(0),mk(t)≤Yk(0)}

] , (2.124)

where the expectation in the right-hand side is taken with respect to the dual process
with initial state ~δi,A (a single active particle at site i), which has law P(i,A). Since
the term inside the expectation is equal to Xk(0)

Nk
or Yk(0)

Mk
, depending on whether
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ξ(t) = (k,A) or ξ(t) = (k,D), the claim follows immediately. The same argument
holds for E[Yi(t)Mi

] with initial condition (i,D) in the dual process.

§2.7.4 Dual: two particles
We need to find expressions for the second moments appearing in (2.109)–(2.110)
in order to fully specify E(∆(i,A),(j,A)(t)) and E(∆(i,A),(j,D)(t)). This requires us to
analyse the dual process starting from two particles. Unlike for the single-particle
system, now all parts of the generator Ldual (see (2.117)) are non-zero, until the two
particles coalesce into a single particle. The two particles repel each other: one particle
discourages the other particle to come to the same location. The rates in the two-
particle system are:

• (Migration) An active particle at site i migrates to site j at rate a(i, j) if there
is no active particle at site j, otherwise at rate a(i, j)(1− 1

Nj
).

• (Active to Dormant) An active particle at site i becomes dormant at site i at
rate λ if there is no dormant particle at site i, otherwise at rate λ(1− 1

Mi
).

• (Dormant to Active) A dormant particle at site i becomes active at site i at
rate λKi if there is no active particle at site i, otherwise at rate λ(Ki − 1

Mi
).

• (Coalescence) An active particle at site i coalesces with another active particle
at site j at rate a(i,j)

Nj
.

Note that after coalescence has taken place, there is only one particle left in the system,
which evolves as the single-particle system.

Let (ξ1(t), ξ2(t), c(t)) ∈ S∗ × S∗ × {0, 1} be the configuration of the two-particle
system at time t, where S∗ = Zd×{A,D}. Here ξ1(t) and ξ2(t) represent the location
and state of the two particles. The variable c(t) takes value 1 if the two particles
have coalesced into a single particle by time t, and 0 otherwise. It is necessary to add
the extra variable c(t) to the configuration in order to make the process Markovian
(the rates depend on whether there are one or two particles in the system). To avoid
triviality we assume that c(0) = 0 with probability 1, i.e., two particles at time 0 are
always in a non-coalesced state. We denote the law of the process (ξ1(t), ξ2(t), c(t))t≥0
by Pξ, where the initial condition is ξ ∈ S∗ × S∗. It is to be noted that, since the
number of active and dormant particles at a site i at any time are limited by Ni and
Mi, respectively, the two-particle system is not defined whenever it is started from an
initial configuration violating the maximal occupancy of the associated sites. Let τ be
the first time at which the coalescence event has occurred, i.e.,

τ = inf{t ≥ 0: c(t) = 1}. (2.125)
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Note that, conditional on τ < t, ξ1(s) = ξ2(s) for all s ≥ t with probability 1. Define,

M(i,α),(j,β)(t) =



Xi(t)(Xi(t)−1)
Ni(Ni−1) if i = j and α = β = A,

Xi(t)Xj(t)
NiNj

if i 6= j and α = β = A,

Yi(t)(Yi(t)−1)
Mi(Mi−1) if i = j and α = β = D,

Yi(t)Yj(t)
MiMj

if i 6= j and α = β = D,

Xi(t)Yj(t)
NiMj

if α = A and β = D,

Yi(t)Xj(t)
MiNj

otherwise,

(2.126)

where i, j ∈ Zd and α, β ∈ {A,D}. To avoid ambiguity, we set M(i,α),(j,β)(·) = 0 when
((i, α), (j, β)) is not a valid initial condition for the two-particle system.

Lemma 2.7.2 (Second moments). For every valid initial condition ((i, α), (j, β)) ∈
(Zd × {A,D})2 of the two-particle system,

E
[
M(i,α),(j,β)(t)

]
= Q((i, α), (j, β), t) +

∑
k∈Zd

E
[Xk(0)

Nk

]
P((i,α),(j,β))(ξ1(t) = (k,A), τ < t

)
+
∑
k∈Zd

E
[Yk(0)
Mk

]
P((i,α),(j,β))(ξ1(t) = (k,D), τ < t

)
,

(2.127)
where

Q((i, α), (j, β), t)

=
∑
k∈Zd

E
[Xk(0)(Xk(0)−1)

Nk(Nk−1)
]
P((i,α),(j,β))(ξ1(t) = ξ2(t) = (k,A), τ ≥ t)

+
∑
k,l∈Zd
k 6=l

E
[Xk(0)Xl(0)

NkNl

]
P((i,α),(j,β))(ξ1(t) = (k,A), ξ2(t) = (l, A), τ ≥ t)

+
∑
k,l∈Zd

E
[Xk(0)Yl(0)

NkMl

]
P((i,α),(j,β))(ξ1(t) = (k,A), ξ2(t) = (l,D), τ ≥ t)

+
∑
k∈Zd

E
[Yk(0)(Yk(0)−1)

Mk(Mk−1)
]
P((i,α),(j,β))(ξ1(t) = ξ2(t) = (k,D), τ ≥ t)

+
∑
k,l∈Zd
k 6=l

E
[Yk(0)Yl(0)

MkMl

]
P((i,α),(j,β))(ξ1(t) = (k,D), ξ2(t) = (l,D), τ ≥ t).

(2.128)

Proof. Note that M(i,α),(j,β)(t) = D(Z(t);~δi,α+~δj,β), where D is the duality function.
So, via the duality relation, we have

E
[
M(i,α),(j,β)(t)

]
= E~δi,α+~δj,β

E[ ∏
k∈Zd

(
Xk(0)
nk(t)

)
( Nk
nk(t))

(
Yk(0)
mk(t)

)
( Mk
mk(t))

]
1l{nk(t)≤Xk(0),mk(t)≤Yk(0)}

 ,
(2.129)
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where the expectation in the right-hand side is taken with respect to the dual process
when the initial condition has one particle at site i with state α and one particle at
site j with state β, which has law P((i,α),(j,β)). Depending on the configuration of the
process at time t, the right-hand side of (2.129) equals the desired expression.

The following lemma provides a nice comparison between the one-particle and
two-particle system.

Lemma 2.7.3 (Correlation inequality). Let (ξ(t))t≥0 and (ξ1(t), ξ2(t), c(t))t≥0 be
the processes defined in Section 2.7.3 and 2.7.4, respectively, and τ the first time of
coalescence defined in (2.125). Then, for any valid initial condition ((i, α), (j, β)) ∈
(Zd × {A,D})2 of the two-particle system and any (k, γ) ∈ Zd × {A,D},

P(i,α)(ξ(t) = (k, γ)) ≥ P((i,α),(j,β))(ξ1(t) = (k, γ), τ < t). (2.130)

Proof. Let α = A and i, j, k ∈ Zd be fixed. Let η = Z(0) be the initial configuration
defined as,

(Xn(0), Yn(0)) =


(Nk, 0) if n = k and γ = A,

(0,Mk) if n = k and γ = D,

(0, 0) otherwise,
∀n ∈ Zd. (2.131)

Combining Lemma 2.7.1 and Lemma 2.7.2, we get

Eη
[
Xi(t)
Ni
−M(i,A),(j,β)(t)

]
=
∑
n∈Zd

Xn(0)
Nn

[
P(i,A)(ξ(t) = (n,A))− P((i,A),(j,β))(ξ1(t) = (n,A), τ < t)

]
+
∑
n∈Zd

Yn(0)
Mn

[
P(i,A)(ξ(t) = (n,D))− P((i,A),(j,β))(ξ1(t) = (n,D), τ < t)

]
−Q((i, A), (j, β), t)

=
[
P(i,A)(ξ(t) = (k, γ))− P((i,A),(j,β))(ξ1(t) = (k, γ), τ < t)

]
−Q((i, A), (j, β), t).

(2.132)
Since Q((i, A), (j, β), t) ≥ 0 and the left-hand quantity is positive, we get

P(i,A)(ξ(t) = (k, γ)) ≥ P((i,A),(j,β))(ξ1(t) = (k, γ), τ < t). (2.133)

Replacing the left-quantity in (2.132) with Eη
[Yi(t)
Mi
−M(i,D),(j,β)(t)

]
and using the

same arguments, we see that the inequality for α = D follows.

§2.7.5 Proof of clustering criterion
Proof of Theorem 2.4.12. “⇐=” First we show that, if ((i, A), (j, β)) ∈ (Zd×{A,D})2

is a valid initial condition for the two-particle system, then

lim
t→∞

E
[
Xi(t)
Ni

−M(i,A),(j,β)(t)
]

= 0, lim
t→∞

E
[
Yj(t)
Mj

−M(i,A),(j,β)(t)
]

= 0. (2.134)
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Combining Lemma 2.7.1 and Lemma 2.7.2, we have

E
[
Xi(t)
Ni
−M(i,A),(j,β)(t)

]
=
∑
k∈Zd

E
[Xk(0)

Nk

][
P(i,A)(ξ(t) = (k,A))− P((i,A),(j,β))(ξ1(t) = (k,A), τ < t)

]
+
∑
k∈Zd

E
[Yk(0)
Mk

][
P(i,A)(ξ(t) = (k,D))− P((i,A),(j,β))(ξ1(t) = (k,D), τ < t)

]
−Q((i, A), (j, β), t).

(2.135)
Using Lemma 2.7.3 and the fact that Q((i, A), (j, β), t) ≥ 0, we have the following:

E
[
Xi(t)
Ni

−M(i,A),(j,α)(t)
]

≤
∑

S∈{A,D}
k∈Zd

∣∣P(i,A)(ξ(t) = (k, S))− P((i,A),(j,β))(ξ1(t) = (k, S), τ < t)
∣∣

=
∑

S∈{A,D}
k∈Zd

[
P(i,A)(ξ(t) = (k, S))− P((i,A),(j,β))(ξ1(t) = (k, S), τ < t)

]
= 1− P((i,A),(j,β))(τ < t) = P((i,A),(j,β))(τ ≥ t).

(2.136)
Since, by assumption, τ < ∞ with probability 1 irrespective of the initial configura-
tion of the two-particle system, and since the left-hand quantity is positive, we have
E
[Xi(t)
Ni
−M(i,A),(j,β)(t)

]
→ 0 as t → ∞. By a similar argument the other part of

(2.134) is proved as well.
If ((i, A), (j, A)) is a valid initial condition for the two-particle system, then by

using (2.115)–(2.116) and (2.134), we have

lim
t→∞

E
(

∆(i,A),(j,A)(t)
)

= lim
t→∞

E
[
Xi(t)
Ni
−M(i,A),(j,A)(t)

]
+ lim
t→∞

E
[
Xj(t)
Nj
−M(j,A),(i,A)(t)

]
= 0.

(2.137)

If ((i, A), (j, A)) is not a valid initial condition, then we must have that i = j and
Ni = 1, and so ∆(i,A),(j,A)(t) = 0 by definition. Thus, for any i, j ∈ Zd,

lim
t→∞

E
[
∆(i,A),(j,A)(t)

]
= 0. (2.138)

Since ((i, A), (j,D)) is always a valid initial condition for the two-particle system, we
also have

lim
t→∞

E
[
∆(i,A),(j,D)(t)

]
= lim
t→∞

E
[
Xi(t)
Ni
−M(i,A),(j,D)(t)

]
+ lim
t→∞

E
[
Yj(t)
Mj
−M(i,A),(j,D)(t)

]
= 0,

(2.139)
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and hence from (2.105) we have that, for any i, j ∈ Zd, E(∆i,j(t)) → 0 as t → ∞,
which proves the claim.

“=⇒” Suppose that the system is in the clustering regime. Fix θ ∈ (0, 1), and let the
distribution of Z(0) be νθ, where

νθ =
⊗
i∈Zd

(Binomial(Ni, θ)⊗ Binomial(Mi, θ)). (2.140)

We will prove via contradiction that in the dual two particles with arbitrary valid
initial states coalesce with probability 1, i.e., τ < ∞ with probability 1. Indeed,
suppose that this is not true, i.e., for some valid initial configuration (ξ1, ξ2) ∈ S∗×S∗
of the two-particle system we have P(ξ1,ξ2)(τ = ∞) > 0, where S∗ = Zd × {A,D}.
Since the dual process with two particles is irreducible (any valid configuration is
accessible), we have Pξ(τ = ∞) > 0 for any valid initial condition ξ ∈ S∗ × S∗. Let
ρ := P((i,A),(i,D))(τ =∞) > 0, where i ∈ Zd is fixed. Note that ((i, A), (i,D)) is always
a valid initial condition for the two-particle system, since Ni,Mi ≥ 1. Let P(i,A) be
the law of the single-particle process (ξ(t))t≥0 started with initial condition (i, A).

Since, by assumption the process Z in (2.2) exhibits clustering and we know by
Theorem 2.4.9 that starting from initial distribution νθ, the process Z converges in
law to an equilibrium µθ, we must have

µθ = (1− θ)δ♠ + θδ♥, (2.141)

where δ♥ (resp. δ♠) is the Dirac distribution concentrated at (Ni,Mi)i∈Zd ∈ X (resp.
(0, 0)i∈Zd ∈ X ). Thus,

lim
t→∞

Eνθ
[
∆(i,A),(i,D)(t)

]
= Eµθ

[
∆(i,A),(i,D)(t)

]
= 0 (2.142)

Therefore, we must have

lim
t→∞

Eνθ
[
Xi(t)(Mi−Yi(t))

NiMi

]
= 0. (2.143)

Since ((i, A), (i,D)) is a valid initial condition for the two-particle system, by using
(2.135) with νθ as initial distribution we get

Eνθ
[
Xi(t)(Mi−Yi(t))

NiMi

]
= Eνθ

[
Xi(t)
Ni
−M(i,A),(i,D)(t)

]
=
∑
n∈Zd

Eνθ
[
Xn(0)
Nn

] [
P(i,A)(ξ(t) = (n,A))− P((i,A),(i,D))(ξ1(t) = (n,A), τ < t)

]
+
∑
n∈Zd

Eνθ
[
Yn(0)
Mn

] [
P(i,A)(ξ(t) = (n,D))− P((i,A),(i,D))(ξ1(t) = (n,D), τ < t)

]
− Eνθ

[
Q((i, A), (i,D), t)

]
,

(2.144)
whereQ(·, ·, ·) is defined as in Lemma (2.7.2). Since, under νθ, (Xn(0))n∈Zd , (Yn(0))n∈Zd
are all independent of each other andXn(0) and Yn(0) have distributions Binomial(Nn, θ)

88



§2.7. Proofs: equilibrium and clustering criterion for the multi-colony model

C
hapter

2

and Binomial(Mn, θ), respectively, we have

Eνθ
[
Xn(0)
Nn

]
= Eνθ

[
Yn(0)
Mn

]
= θ,

Eνθ
[
Xn(0)(Xn(0)−1)
Nn(Nn−1)

]
= θ2 if Nn 6= 1,

Eνθ
[
Yn(0)(Yn(0)−1)
Mn(Mn−1)

]
= θ2 if Mn 6= 1.

(2.145)

Hence Eνθ [Q((i, A), (i,D), t)] = θ2 P((i,A),(i,D))(τ ≥ t), and thus (2.144) reduces to

Eνθ
[
Xi(t)(Mi−Yi(t))

NiMi

]
= θ

[
1− P((i,A),(i,D))(τ < t)

]
− θ2 P((i,A),(i,D))(τ ≥ t)

= θ(1− θ)P((i,A),(i,D))(τ ≥ t).
(2.146)

By (2.143), the left-hand side of (2.146) tends to 0 as t → ∞. Because θ ∈ (0, 1), we
have

ρ = lim
t→∞

P((i,A),(i,D))(τ ≥ t) = 0, (2.147)

which is a contradiction.
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