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CHAPTER 1
Introduction

The present thesis consists of two parts. Part I focusses on the study of a particular
class of interacting particle systems that describe genetic evolution of spatially struc-
tured populations with seed-banks. Part II focusses on the study of the hydrodynamic
scaling limit of three interacting particle systems that incorporate dormancy and on
the analysis of their non-equilibrium behaviour in the presence of boundary reservoirs.
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1 §1.1 Introduction to Part I
Probability theory is the area of mathematics that aims at understanding the intrinsic
stochastic nature of real-world phenomena by means of the abstract language of math-
ematics. Within this area, population genetics takes a special place because it brings
together mathematics and biology. The primary goal of mathematical population
genetics is to understand via tailored mathematical models how evolutionary forces,
demographic factors, etc., affect the genealogy and frequency distribution of genotypes
in biological populations.

We give a brief overview of the basic concepts that are central to understanding of
the genetic evolution of a population in Section 1.1.1. We borrow from [82, 45].

§1.1.1 Bits and pieces of genetics
Among the numerous factors that contribute to the evolution of a population res-
ampling, mutation, natural selection, recombination and migration play a central role.

Resampling (or reproduction, in which individuals transfer their gene type to fu-
ture generations) is the most basic biological activity of almost any living organism. A
biologist would prefer to use the word “random genetic drift” to describe the evolution-
ary effect of resampling in a panmictic population, where every individual is equally
likely to be the parent of an offspring. Many populations, such as humans, birds, etc.,
do not seem to exhibit panmixia when mating is categorised on the basis of certain
phenotypical characteristics only, but they often appear to do so when the traits un-
der investigations are genotypes [82]. Therefore the assumption of a population being
panmictic (or homogeneously mixing), which we adopt throughout this thesis, is reas-
onable in many circumstances. Resampling (or random mating) in a population is a
source of stochasticity that pervades the gene pool of subsequent generations. It in-
duces random fluctuations of various genotype frequencies in a natural way and drives
the population towards forming a homozygous gene pool, i.e., a gene pool containing
only a single genotype.

Mutation introduces novel gene types into a population. It is the molecular equi-
valent of errors that typically occur when humans carry out complex activities. In the
process of replication of genetic material during resampling, spontaneous local changes
may occur in the allelic composition of genes. These errors in the reproduction of ge-
netic material give rise to different genotypes. Mutations can also occur during the
reparation of damaged cells. Both beneficial and deleterious mutations are rare, but
usually have significant evolutionary effects on the population.

The concept of natural selection in evolutionary theory was introduced by Charles
Darwin in the mid 19th century. Selection is a force of nature that acts as a further
propellant in creating a homozygous gene pool, containing only the advantageous gen-
otypes of a population. Under the influence of selection, fitter types in a population
have certain advantages while competing for inheritance, and cause the population to
adapt more efficiently to environmental changes over time.

Recombination is a phenomena observed in populations consisting of diploid indi-
viduals. Diploid individuals carry two copies of genetic material in their cells instead
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of one (the latter occurs in populations consisting of haploid individuals). Offspring of
diploid populations, such as humans, have two parents. During reproduction, instead
of inheriting a single identical copy of the genetic material from each parent, they
inherit a recombined version in which the two copies of the parental genes undergo
molecular changes via exchange of material between them. Therefore, even though a
recombination event affects the genotype frequencies in an offspring, it does not alter
the overall frequency of the alleles that constitute a specific genotype. In this thesis, we
will only be concerned with the evolutionary behaviour of haploid populations where
recombination is of no relevance.

The demography of populations is in general structured, in the sense that they
admit a carrying capacity imposed by the surrounding habitat. Even biological cells
always arrange themselves in a certain spatial order and this affects the transfer of
genetic material. In population genetics the term migration, or more precisely, migra-
tion of genetic material is therefore construed in the broadest possible sense. A major
goal of population genetics is to gain a better understanding of the effect of population
structure on evolutionary quantities, such as the heterozygosity in a population, the
fixation probability, (i.e., the likelihood of a specific genotype overtaking an entire pop-
ulation) etc. In this thesis, we analyse the role of migration in structured populations
with varying capacities. For this purpose, we only consider a conservative migration
that preserves the local population sizes. This particular choice of migration may not
seem the most sensible from a pragmatic point of view. However, as we will see later,
the assumption of conservative migration allows for a considerable simplification of
the underlying mathematics.

In recent years, researchers in population genetics have started to analyse popula-
tions with a seed-bank in which individuals temporarily become dormant. Dormancy
refers to the ability of an organism to enter into a reversible state of reduced meta-
bolic activity in response to adverse environmental conditions. In the dormant state,
organisms refrain from reproduction, and other phenotypic development, until they
become active again. While dormancy is a trait found mostly in microbial popula-
tions, the natural analogue of dormancy in plant populations is the suspension of seed
germination in difficult ecological circumstances. Several experiments suggest that
populations exhibiting dormancy have better heterogeneity, survival fitness and resi-
lience [149, 157]. Dormancy appears to be ubiquitous to many forms of life, and to
be an important evolutionary trait [109, 142]. The direct effect of this trait is not
easily detected when viewed on the evolutionary time scale. Various attempts have
been made to better understand dormancy from a mathematical perspective (see e.g.
[108, 18] for a broad overview).

§1.1.2 Mathematics of evolution
Now that the reader knows what basic evolutionary biology is all about and what
it consists of, we shift our focus towards the mathematical aspects. In this thesis,
we only deal with stochastic models of genetic evolution that incorporate resampling,
migration and dormancy in spatially structured populations. For models that include
other evolutionary forces, such as mutation, selection, recombination, etc., we refer
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1 the reader to [153, 124, 87, 57, 5].

Fisher-Wright model. The mathematics of population genetics starts with the
pioneering works of Fisher [61], Wright [153, 154] and Moran [123, 124]. Fisher and
Wright introduced a classical model – later called the Fisher-Wright model – that
describes the evolution of a panmictic population of constant and finite size under the
sole influence of resampling. In this model, the offspring of the population follows a
multinomial sampling distribution, reflecting the panmictic nature of the population,
and the offspring replaces the entire parent generation at discrete instants of time.
Under the model dynamics, each offspring inherits the genetic type of an arbitrarily
chosen parent and the total number of offspring produced in each generation is the
same as the total size of the parent population. Therefore, in this model the initial
population size is conserved over time. This type of modelling is suitable for seasonally
breeding small populations, such as plants, animals, etc., with a fixed average life span,
in which the successive generations are non-overlapping. The Fisher-Wright model
is computationally intensive, but it encompasses evolutionary behaviour of haploid
populations as well as diploid populations. The application of the model to diploid
populations is valid only if the population is panmictic and monoecious (such as plant
populations where self-fertilisation can occur) with size 2N , whereN ∈ N is interpreted
as the true size of the population.

Moran model. In many biological populations, such as microbes, humans, etc.,
the assumption of non-overlapping generations breaks down and evolution takes place
in continuous time. In such scenarios, discrete-time mathematical models do not
approximate the evolutionary behaviour of the population well enough and a need for
continuous-time models arises. In 1958 Moran introduced a mathematical model [123]
– later called the Moran model – that is a continuous-time birth and death process with
finite state space, and describes the genetic evolution of a panmictic haploid population
with finite size. This model, although less popular among biologists, retains all the
basic qualitative features of the Fisher-Wright model. Moreover, one advantage in
working with this model is that it is analytically more tractable. In this thesis, the
Moran model will serve as the primary building block for the modelling of resampling,
migration and dormancy in spatially structured populations. Therefore it is useful to
take a closer look at its ingredients.

In the Moran model, one considers a finite population of N ∈ N reproductively
(via resampling) active haploid individuals. Each individual initially carries a gen-
otype that comes from the gene pool or type space (the collection of all potential
genotypes) of the population. For simplicity, we assume that the type space contains
only two genotypes, say ♥ and ♠. Models that deal with populations having infinitely
many genotypes are known as Fleming-Viot processes (see e.g. [42]) and will not be
considered here. According to the Moran dynamics, the population evolves over time
via resampling as follows (see Fig. 1.1):

• Each individual in the population carries a resampling clock that rings after a
random time with exponential distribution of mean 2. When the clock rings, the
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individual chooses a parent from the N individuals (possibly itself) uniformly at
random and adopts its type.

An equivalent and perhaps more natural description is:

• Each (unordered) pair of individuals in the population carries a clock that rings
after a random time with exponential distribution of mean 2. When a clock rings,
one of the two individuals gives birth to an offspring and the other individual
dies.

We will stick to the former description of the model because it is mathematically more
convenient. Note that the individuals are assumed to have an equal birth and death
rate, which, similarly as in the Fisher-Wright model, forces the total population size
to remain constant over time. Also observe that the rate of resampling is chosen to be
1
2 . This choice is made only to make the Moran model run at the same time scale as
the Fisher-Wright model and has no other reasoning behind it. In population genetics,
one is usually interested in the collective behaviour of an evolving population in which
the genotypic information on a specific individual hardly matters. Because of this, we
may choose not to label each individual of the population and instead to focus on the
genetic configuration of the population as a whole. Since the individuals carry one

♠

♠

♠

♠

♠

♠

♠

♠

♥

♠

♠

♠

♥

♥

♠

♠

♠

♠

♠

♠
t

♥

♥

♥

♠

♠

♠

♠

♠

♠

♠

♠

♠

Figure 1.1: A schematic representation of a haploid population evolving under Moran dynam-
ics. Individuals carry one of two types: ♥ and ♠. Red dots in the continuous time line stand
for a resampling event. The arrows indicate simultaneous birth and death event involved in
a pair of individuals.

of two genotypes and the population size is a conserved quantity, we need only one
variable in order to fully specify the overall genetic evolution of the finite population,
namely, the number of individuals having a particular type. Let us denote by X(t)
the number of type-♥ individuals in the population at time t. Since the time lapses
between successive resampling events are assumed to be exponentially distributed and
the population is panmictic, we see that

z := (X(t))t≥0 (1.1)

becomes a continuous-time Markov process with state space [N ] := {0, 1, . . . , N}.
As is the case with any Markov process, the time evolution of z is characterised by
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1 its behaviour in an infinitesimal time interval. Mathematically, this information is
contained in the so-called infinitesimal generator of the process z. As the concept of
the generator of a Markov process will be frequently exploited in various parts of this
thesis, we briefly elaborate on the connection between an infinitesimal generator and
a Markov process. In order to avoid technicalities, we will skip the subtleties behind
the estimation.

Markov generator. The generator of a time-homogeneous Feller Markov process
Z := (Zt)t≥0 is a linear operator G defined on a suitable dense subspace dom(G)
(referred to as the domain of G) of a Banach space V (a normed and complete linear
space) containing functions (often assumed to be continuous and bounded) on the state
space X of the process Z, which often is an uncountable set. Due to the Markovian
nature of Z, the canonical law of Z is determined by the family of one-dimensional
distributions (µt)t≥0, where µt is the distribution of Zt. These one-dimensional dis-
tributions, in turn, can be fully characterised by a one-parameter family of linear
contraction operators – the so-called semigroup (St)t≥0 associated with Z – that are
defined on V . The relation between the contractions (St)t≥0 and the distributions
(µt)t≥0 comes from a topological duality (cf. [112, Theorem 1.5, Chapter I]) and is
given by ∫

X
Stf dµ0 =

∫
X
f dµt, f ∈ V, t ≥ 0. (1.2)

In particular, taking µ0 to be the Dirac distribution concentrated at z ∈ X , we see
that

(Stf)(z) = Ez[f(Zt)], f ∈ V, t ≥ 0, (1.3)

where Ez denotes the expectation taken w.r.t. the law of Z started at z. Therefore,
constructing the canonical law of Z is equivalent to specifying the semigroup (St)t≥0.
This is where the densely defined linear operator G becomes relevant.

In order to construct the semigroup (St)t≥0 of the Markov process Z, one can
appeal to the Hille-Yosida theorem (cf. [58, Theorem 2.6]), which provides a neces-
sary and sufficient criterion on G to generate the semigroup. Alternatively, one can
obtain the associated semigroup by formulating a well-posed Martingale Problem for
the generator G (cf. [112, Section 5, Chapter I]). In this thesis we will adopt the latter
approach in order to extend the Moran model to the context of spatially structured
populations. The generator and the semigroup are related by

Gf = lim
t↓0

Stf − f
t

, f ∈ dom(G) ⊆ V, (1.4)

where the above convergence is in the chosen Banach space V . In general, it is not
easy to specify the full domain dom(G) of the generator G explicitly. However, if the
state space X of the process Z is a countable set equipped with the discrete topology,
then in most situations both dom(G) and V can be taken as Fb(X ), the space of all
bounded functions on X endowed with the sup norm ‖ · ‖∞, which is defined as

‖f‖∞ := sup
z∈X
|f(z)|, f ∈ Fb(X ). (1.5)
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In case of the Moran model, the generator GMor of the Markov process z defined
in (1.1) is given by

GMorf(x) = (N−x)x
2N [f(x+ 1)− f(x)] + x(N−x)

2N [f(x− 1)− f(x)], (1.6)

where x ∈ [N ] and f ∈ Fb([N ]). To see how this expression comes about, we can use
(1.3)–(1.4) to write

GMorf(x) = lim
t→0

Ex[f(Xt)]− f(x)
t

= lim
t→0

Ex
[
f(Xt)− f(X0)

t

]
. (1.7)

In other words, GMorf(x) is the average infinitesimal rate of change of the observable f
when the population evolving via the Moran dynamics initially contains x individuals
of type ♥. In an infinitesimal time interval, the number x of type-♥ individuals
increases by 1 if a type-♠ individual in the population chooses a type-♥ individual as
its parent, and decreases by 1 if a type-♥ individual chooses a type-♠ individual as
its parent. The former event reflects the change [f(x + 1) − f(x)] of the observable
f and happens at a cumulative average rate (N−x)x

2N , the latter event reflects the
change [f(x − 1) − f(x)] of the observable f and happens at the same rate x(N−x)

2N .
The reason for the rates being equal can be explained as follows. Each individual in
the population resamples at rate 1

2 . For the former event to occur, an individual of
type ♠ must resample, which happens at total rate given by (N−x)

2 , the number of
type-♠ individuals during resampling multiplied by the resampling rate, and while
resampling this individual must pick uniformly at random a type-♥ individual, which
has probability x

N . Therefore, the cumulative rate of occurrence of the former event
is x(N−x)

2N . A similar argument applies to the latter event.

Genealogy in the Moran model. The Moran model is particularly popular in
population genetics because it is equivalent to a birth and death process, which is well
understood in the Markov process literature. Many quantities of biological interests,
such as the probability of two randomly chosen individuals being identical by descent,
the amount of heterozygosity in the population, etc., can be explicitly computed.

Another advantage in the Moran model is that the genealogy (i.e., the process
that tracks the ancestral lineages of individuals backwards in time) of finitely many
individuals sampled from the panmictic Moran population is exactly governed by the
so-called Kingman coalescent process (cf. [96]). This is in contrast to the Fisher-Wright
model, where the individual ancestral lines inherit the Kingman coalescent structure
only in the large-population-size limit, and when viewed on a time scale proportional
to the size of the population. The method of analysing the evolution of a popula-
tion by tracing individual genealogies all the way back to their ancestors was initiated
by Kingman [96], who introduced the aforementioned coalescent process. The gene-
alogical approach to studying evolutionary stochastic processes is now a widespread
technique in population genetics. The pioneering work in [96] has in fact inspired
the current development of coalescent theory that encompasses not only the Kingman
coalescent, but also other coalescent processes [137, 7], such as the β-coalescent, the
Λ-coalescent, etc.
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1 The Kingman coalescent process

C := (Ct)t≥0 (1.8)

is a continuous-time Markov process and takes values in the set of all partitions of the
natural numbers. A state of the partition-valued process is a mathematical represent-
ation of the genealogical relation between individuals of a population that reproduce
by resampling. In particular, a block in the time-t state Ct stands for an ancestor of
the individuals that are alive in the evolved Moran population at time t. The indi-
viduals that descend from the ancestor specified by a block are marked by the natural
numbers within the block. The coalescent process C evolves backwards in time, while
the population in the Moran process evolves forwards in time. In the time evolution
of the process, each pair of blocks in a partition coalesces at rate 1 to form a new
partition containing one block less than before. This process appropriately describes
the genealogy of individuals as long as we assume that the individuals reproduce in-
dependently at rate 1

2 and measure time in units of length N , where N is the size of
the constituent population.

In [55] (see also [138, 77]) the connection between the genealogy in a Moran pop-
ulation and the Kingman coalescent was established in a mathematical framework,
where a “particle model” representation of an infinite population model is obtained
via the so-called “look-down” construction. The look-down construction demonstrates
that a population of any finite size evolving according to the Moran dynamics can be
consistently embedded into the infinite population model (cf. [55, Lemma 2.1]). In this
formulation of the Moran model, one obtains a strong (pathwise) form of stochastic
duality between the Moran process and the Kingman coalescent process. The strong
duality, in turn, implies what is known as a weak stochastic duality between the Moran
process z and the block-counting process

C̄ := (|Ct|)t≥0 (1.9)

associated to the Kingman coalescent process. Here, for a partition R of natural
numbers, |R| denotes the number of blocks in R. Let us elaborate a bit on the notion
of weak stochastic duality and on the process C̄, as these will be central to the theme
of this thesis.

Stochastic duality. The concept of weak stochastic duality relates two Markov
processes in an intertwined state. More precisely, we say that two Markov processes
(Kt)t≥0 and (Lt)t≥0, taking values in their respective state spaces, say Ω and Ω̂,
are dual to each other w.r.t. a (bounded and measurable) duality function D(· , ·) :
Ω× Ω̂→ R if the following intertwining relation is satisfied:

Ek[D(Kt, l)] = El[D(k, Lt)], ∀t ≥ 0, (k, l) ∈ Ω× Ω̂, (1.10)

where the expectation in the left-hand (resp. right-hand) side is taken w.r.t. the law
of the process (Kt)t≥0 (resp. (Lt)t≥0) started at k ∈ Ω (resp. l ∈ Ω̂). When the
duality function is nice enough, the above relation can be characterised in terms of
the infinitesimal generators of the two processes. In particular, one can see from [91,
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Proposition 1.2] that if, for all (k, l) ∈ Ω × Ω̂, the two functions D(· , l) : Ω → R and
D(k, ·) : Ω̂→ R are in the domain of the infinitesimal generators K̂ and L̂ of the two
respective Markov processes, then the relation in (1.10) holds if and only if

(K̂D(· , l))(k) = (L̂D(k, ·))(l), ∀(k, l) ∈ Ω× Ω̂. (1.11)

In the case where the generators K̂ and L̂ are equal and belong to the same Markov
process, the latter is said to be self-dual w.r.t. the duality function D(· , ·).

The notion of weak stochastic duality discussed above is very general and has
developed into a powerful technique for analysing Markov processes. A sample of
references for an overview on this topic is [71, 25, 24, 91]. In population genetics,
weak stochastic duality between two Markov processes often originates from a strong
pathwise duality, where the dual process is graphically constructed by looking at the
original process backwards in time. This is because, in certain special situations, the
original Markov process models the evolution of a biological population in such a way
that the underlying genealogical process also is Markovian. These dualities are referred
to as sampling duality relations in the literature on population genetics, because the
associated duality function can be seen as a formula for sampling individuals from
the population. The Moran model is no exception in this respect. Indeed, the pro-
cess z in (1.1) is in a sampling duality relation with the block-counting process C̄ in
(1.9). The duality relation, as is demonstrated in [55], comes from a strong pathwise
duality between the Moran process and the Kingman coalescent process. In practice,
stochastic duality is relevant in the context of Markov processes only. Let us therefore
point out that C̄ is in fact a pure death Markov process with values in the set N of all
natural numbers. The process C̄ has transition rates

n 7→ n− 1 at rate
(
n

2

)
1l{n≥2}, n ∈ N. (1.12)

The sampling duality relation between the process z started at a state x ∈ [N ], N ∈ N,
and the block-counting process C̄ started at n ∈ N is given by

Ex

[(
Xt
n

)(
N
n

) 1l{n≤Xt}

]
= En

[(
x
|Ct|
)(

N
|Ct|
)1l{|Ct|≤x}

]
, t ≥ 0, (1.13)

where the expectation on the left-hand side is taken w.r.t. the law of the Moran
process z and the expectation on the right-hand side is taken w.r.t. the law of the
block-counting process C̄. In words, the above relation says: the probability that n
individuals sampled from the time-t Moran population of size N have type ♥ is the
same as the probability that all ancestors identified by tracing the n sampled lineages
backwards in time from time t to time 0 have type ♥.

The weak form of the above duality conceals the embedded coalescent structure
in the backwards time evolution of the lineages. Therefore it gives little insight into
the dual process. However, this form of duality is more pronounced in the literature,
because it allows for the possibility of constructing multiple duality functions and
dual processes for a single Markov process. This is usually achieved by studying
the so-called Lie-algebraic structure of the associated infinitesimal generator (see e.g.,
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1 [71]). The general principle in the algebraic framework of duality is to express the
Markov generator of the original process in terms of elementary algebraic operators
that constitute some well-known Lie algebra, and perform an Ansatz via a well-chosen
duality function for the construction of a dual Markov generator.

The duality relation in (1.13) is extremely useful for obtaining analytic expressions
of many quantities related to the Moran process. To demonstrate just how useful
the relation in (1.13) is, let us consider the problem of computing the probability
that a two-type (♥ and ♠) panmictic population of size N ∈ N evolving via the
Moran dynamics eventually ends up with a homozygous gene pool containing only the
gene type ♥. First observe that, with probability 1, the Moran population eventually
fixates to a single gene type. The reason is that the reproduction via resampling is a
dissipative mechanism that causes loss of individual genetic information in the Moran
population. As the total population is of finite size, only one of the two gene types
survives in the long term and the entire population fixates to a single gene type. To
compute the fixation probability, we first observe that the process z = (Xt)t≥0 in (1.1)
is a bounded Martingale that converges a.s. to one of the two absorbing states N and
0. Here, we recall that Xt is the number of type-♥ individuals in the population of
fixed size N at time t. In particular, from (1.13) we see that the fixation probability
(in law) to the type ♥ is given by

lim
t→∞

Ex

[(
Xt
n

)(
N
n

) 1l{n≤Xt}

]
,

which by the duality relation in (1.13) is equal to

lim
t→∞

En
[(

x
|Ct|
)(

N
|Ct|
)1l{|Ct|≤x}

]
,

with the expectation taken w.r.t. the block-counting process (|Ct|)t≥0 corresponding to
the Kingman coalescent with initial state n. Since the block-counting process starting
from any natural number n eventually fixates at the value 1 in the limit t → ∞, the
above expression equals x

N which gives the desired fixation probability.
In [25] the Lie-algebraic method of duality is applied to the context of mathematical

models in population genetics. In particular, the duality in (1.13) is retrieved from
an algebraic representation of the infinitesimal generator associated to the Moran
process given in (1.6) (see e.g., [25, Section 4]). In this thesis, instead of following the
standard route of genealogy-tracing, we exploit the Lie-algebraic framework of duality
in order to obtain two dual processes corresponding to, respectively, the single and
the multi-colony Moran process with seed-banks. In the next section we extend the
standard Moran model to include a seed-bank component that models the presence of
dormancy in the population. The single-colony Moran model with seed-bank serves
as the building block for the construction of the multi-colony (spatial) Moran model
with seed-banks.
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§1.1.3 The Moran model with seed-bank
In a stochastic individual-based model, dormancy is mathematically incorporated by
turning off resampling for a random and possibly extended period of time. This way of
modelling dormancy introduces memory, and thereby gives rise to a rich behaviour of
the underlying stochastic system. The first mathematical model dealing with the effect
of dormancy goes back to [34]. Since then several other ways to model seed-banks have
emerged [92, 16, 14]. For example, in the model proposed in [92], the Fisher-Wright
model [153] was extended to include a weak seed-bank, where individuals reproduce
offspring several generations ahead in time, with the skipped generations being inter-
preted as a dormant period for the offspring. In this model the resulting genealogy of
the population becomes stretched over time and retains the same coalescent structure
described by the Kingman coalescent process C = (Ct)t≥0. In [13, 12], a different
qualitative behaviour was observed by including a strong seed-bank component, which
enables the dormant individuals to have wake-up times with fat tails. A trade-off in
these models was the loss of the Markov property in the time evolution of the system.
This issue was partially tackled in [14], which introduced the seed-bank coalescent, a
new class of coalescent structures that, broadly speaking, describe the genealogy of a
population exhibiting extreme dormancy.

While the works mentioned above deal with seed-bank models only in the diffusive
regime, obtained after taking the large-colony-size-limit of individual-based models,
it is biologically more reasonable to consider seed-bank models with populations that
have finite sizes. A natural candidate for models dealing with finite populations is the
Moran model introduced earlier. In this section we extend the Moran model to include
a seed-bank component that captures the effect of dormancy in the Moran population.

Single-colony Moran model with seed-bank. The seed-bank modelling in the
Moran process is achieved by subdividing the constituent population of total size, say
(N + M) ∈ N, into two subpopulations, namely, an active population of size N ∈ N
and a dormant population of size M ∈ N, and turning reproduction via resampling off
in the dormant population. In order to preserve the flow of gene information between
the two subpopulations, we further introduce an exchange mechanism. More precisely,
during the exchange events individuals of the active population swap places with the
individuals in the dormant population. While doing so both the dormant and the active
individuals keep their gene type. In this way, individuals can be either in an active
state or a dormant state depending on the subpopulation they reside in. However, as
the dormant individuals do not resample (i.e., do not reproduce), they cause an overall
slow-down of the random genetic drift that arises from random resampling. Because
of this, we refer to the dormant population as the seed-bank of the active population.
A schematic description of the single-colony Moran process with seed-bank is given
in Fig. 1.2. Likewise, in the Moran process without seed-bank the total sizes of the
two subpopulations remain constant in time. Therefore, as long as the quantities of
interest are the gene frequencies, we may describe the biological system with just two
variables, namely, the number X(t) of type-♥ active individuals and the number Y (t)
of type-♥ dormant individuals at time t ≥ 0. In terms of mathematics, the individuals
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Figure 1.2: A schematic representation of a haploid population with seed-bank evolving under
Moran dynamics. The active population has size N = 5 and the seed-bank is of size M = 3.
Individuals carry one of two types: ♥ and ♠. Red (black) dots in the continuous timeline
stand for resampling (exchange) event. The red (black) arrows indicate simultaneous birth-
death (exchange) event involved in a pair of individuals.

update their gene types according to the following rules:

(1) At rate 1
2 each individual in the active population resamples type.

(2) At rate λ > 0 each individual in the active population exchanges type with an
individual chosen uniformly at random from the seed-bank.

As the reproduction and the exchange events happen at uniform rates, the process

z = (z(t))t≥0, z(t) = (X(t), Y (t)), (1.14)

forms a bivariate Markov process in continuous time. The process z lives in the state
space [N ]× [M ] and makes the transitions

(x, y) 7→



(x− 1, y) at rate x(N−x)
2N ,

(x+ 1, y) at rate x(N−x)
2N ,

(x− 1, y + 1) at rate λxM−yM ,

(x+ 1, y − 1) at rate λK N−n
N ,

(1.15)

where x ∈ [N ], y ∈ [M ], and K−1 := M
N is the relative strength of the seed-bank.

This model is in fact a continuous-time version of the two-island model introduced in
[126] and allows for different sizes of the two subpopulations. While the model in [126]
was analysed in the large population size limit, we keep the population size finite. By
using the algebraic framework of stochastic duality we characterise the equilibrium
behaviour of the model in Chapter 2. We also do the same for the multi-colony model
with seed-banks, which we introduce in the next section.

Genealogy in the single-colony Moran model with seed-bank. In the single-
colony Moran model with seed-bank, the genealogy of finitely many individuals sampled
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from the two subpopulations of size N and M can be explained in terms of a partition-
valued coalescent process similarly as in case of the Moran process. However, because
of the addition of a seed-bank component, blocks of a partition can be in one of two
states: A (active state) and D (dormant state). Recall that the genealogy in the
Moran model is described by the Kingman coalescent process, where a pair of blocks
of a partition coalesce at rate 1 independently of each other. This is in contrast to the
genealogy in our Moran model with seed-bank. Because of the restriction to finite size
of the active and the dormant population, and also due to the exchange mechanism
involved in the two subpopulations, the independence formerly present in the coales-
cent structure of the genealogy is partially lost. In particular, active and dormant
blocks of a partition interact with each other. The interaction between the blocks,
or more precisely “the ancestors”, appears because of the subdivision of the Moran
population into two subpopulations of finite sizes, which in some way destroys the
exchangeable labelling proposed in [55] of the individuals in the population. For this
reason, we name the associated partition valued genealogical process an interacting
seed-bank coalescent. To remain consistent with the previous terminologies, we will
use the word lineage to refer to a block in a partition.

Let Pk be the set of partitions of {1, 2, . . . , k}. For ξ ∈ Pk, denote the number of
lineages in ξ by |ξ|. Furthermore, for j, k, l ∈ N, define

Mj,k,l =
{
~u ∈ {A,D}j : the numbers of A and D in ~u

are at most k and l, respectively

}
. (1.16)

The state space of the genealogical process is PN,M = {(ξ, ~u) : ξ ∈ PN+M , ~u ∈
M|ξ|,N,M}. Note that PN,M contains only those marked partitions of {1, 2, . . . , N+M}
that have at most N active lineages and M dormant lineages. This is because we can
only sample at most N active and M dormant individuals from the population.

Before we give the formal definition, let us introduce some basic notations. For
π, π′ ∈ PN,M , we say that π � π′ if π′ can be obtained from π by merging two active
lineages. Similarly, we say that π on π′ if π′ can be obtained from π by altering the
state of a single lineage (A → D or D → A). We write |π|A and |π|D to denote the
number of active and dormant lineages present in π, respectively.

Definition 1.1.1 (Interacting seed-bank coalescent). The interacting seed-bank
coalescent is the continuous-time Markov chain with state space PM,N characterised
by the following transition rates:

π 7→ π′ at rate



1
N if π � π′,

λ
(
1− |π|DM

) if π on π′ by a change of state of
one lineage in π from A to D,

λK
(
1− |π|AN

) if π on π′ by a change of state of
one lineage in π from D to A,

(1.17)

�

where π, π′ ∈ PN,M and K = N
M . The factor 1− |π|DM in the transition rate of a single

active lineage when π becomes dormant reflects the fact that, as the seed-bank gets
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1 full, it becomes more difficult for an active lineage to enter the seed-bank. Similarly,
as the number of active lineages decreases due to the coalescence, it becomes easier
for a dormant lineage to leave the seed-bank and become active. This also tells us
that there is a repulsive interaction between the lineages of the same state (A or D).
As the sizes N and M of the two subpopulations get large, the interaction becomes
weak. In particular, as N,M → ∞, after proper space-time scaling, the interacting
seed-bank coalescent converges weakly to a limiting coalescent process known as the
seed-bank coalescent [14], where interaction between the lineages is no longer present.

Single-colony block-counting process and duality. In order to obtain a sampling
duality relation between the Moran model with seed-bank and the interacting seed-
bank coalescent, we consider the block-counting process associated with the coalescent.
If

Cin := (Cin(t))t≥0 (1.18)

denotes the interacting seed-bank coalescent process in Definition 1.1.1, then we define
by nt (resp. mt) the number of active (resp. dormant) lineages in the time-t state Cin(t)
of the partition-valued process. We see from the definition of Cin that the process

z∗ = (z∗(t))t≥0, z∗(t) = (nt,mt), (1.19)

also forms a continuous-time Markov process with values in [N ] × [M ]\{(0, 0)}. The
transition rates of the block-counting process are given by

(n,m) 7→


(n− 1,m) at rate 1

N

(
n
2
)
1l{n≥2},

(n− 1,m+ 1) at rate λn M−m
m ,

(n+ 1,m− 1) at rate λKm N−n
N ,

(1.20)

where (n,m) ∈ [N ]× [M ] is such that (n,m) 6= (0, 0) and K = N
M . The first transition

in (1.20) corresponds to the coalescence of two active lineages in the coalescent process
Cin, while the last two transitions reflect the transition of a lineage from an active (resp.
dormant) state to a dormant (resp. active) state. In the sense of the earlier discussed
weak stochastic duality, the block-counting process z∗ is dual to the Moran process z
with seed-bank given in (1.14). In particular, they satisfy the sampling duality relation
given by

E(x,y)

[(
X(t)
n

)(
N
n

) (Y (t)
m

)(
M
m

) 1l{n≤X(t),m≤Y (t)}

]
= E(n,m)

[(
x
nt

)(
N
nt

) ( ymt)(
M
mt

)1l{nt≤x,mt≤y}

]
, t ≥ 0,

(1.21)
where the expectation on the left-hand side is taken w.r.t. the law of the process z
started at (x, y) ∈ [N ]× [M ] and the expectation on the right-hand side is taken w.r.t.
the law of the process z∗ started at (n,m) ∈ [N ]× [M ]. The duality relation in (1.21)
contains all the essential information on the process z that is needed in order to carry
out an analysis of its long-time behaviour. Indeed, with the help of this relation we
easily obtain the following characterisation:
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Theorem 1.1.2 (Equilibrium, [Corollary 2.3.4, Chapter 2]). Suppose that z
starts from initial state (X,Y ) ∈ [N ] × [M ]. Then (X(t), Y (t)) converges in law as
t→∞ to a random vector (X∞, Y∞) with distribution

L(X,Y )(X∞, Y∞) = X+Y
N+M δ(N,M) +

(
1− X+Y

N+M

)
δ(0,0), (1.22)

where, for v ∈ [N ]× [M ], δv denotes the Dirac distribution concentrated at v.

The mathematical details of the above result can be found in Section 2.3 of Chapter 2.
In words, this result says that as time progresses the heterozygosity in the Moran
population with seed-bank is lost and the entire gene pool fixates (in law) to one of
the two types: ♥ and ♠. The probability of fixation to the all type-♥ configuration
in the long run is given by X+Y

N+M , which is the initial frequency of type ♥ in the entire
population. Thus, the addition of a seed-bank component has no significant effect
on the overall qualitative behaviour of the model. However, we will see later that
for the spatial model with seed-banks this is no longer the case, and seed-banks can
potentially change the quantitative as well the qualitative behaviour of the model.

§1.1.4 Spatially inhomogeneous Moran model with
seed-banks

All models discussed so far study the effect of dormancy in a single-colony popula-
tion and are mainly concerned with the underlying genealogy in the diffusive regime.
Seed-bank models dealing with geographically structured populations are rare, and
mathematically rigorous results are still under development. Only recently, in [76]
(see also [48]), single-colony seed-bank models were extended to the spatial setting
by incorporating migration of individuals between different colonies. These works are
concerned with structured populations having large sizes, where the evolution of the
demographics, such as gene frequencies, etc., is primarily governed by a system of
coupled stochastic differential equations. In these works, the challenge of modelling
seed-banks with fat-tailed exit times is overcome by adding internal layers to the seed-
banks, where active individuals before entering into a layer of the seed-bank acquire
a colour that determines the wake-up time. Three different seed-bank models of in-
creasing generality were introduced. A full description of the different regimes in the
long-time behaviour of these models was obtained in [76] for the geographic space
Zd, d ≥ 1, whereas a multi-scale renormalisation analysis on the hierarchical group
was carried out in [75]. Moreover, the finite-systems scheme was established [130, 74]
as well (i.e., how a truncated version of the system behaves on a properly tuned time
scale as the truncation level tends to infinity).

Spatially inhomogeneous Moran model with seed-banks. The novelty in the
spatial model introduced in Section 2.4 is that it addresses geographically structured
populations with seed-banks having preassigned finite sizes. Mathematically, the
model is described in terms of an interacting particle system (see [112] for an overview)
evolving in an inhomogeneous state space. The spatial model is the main object of our
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1 study in Chapters 2–4 and captures the interplay of three fundamental evolutionary
forces, namely, resampling, dormancy and migration, in structured populations.

Informally, we may describe the model as follows. A schematic description of the
model is given in Fig. 1.3. We consider multiple colonies consisting of two subpop-
ulations, namely, an active population and a dormant population. The colonies are
labelled by the d-dimensional integer lattice Zd, which plays the role of a geographic
space. The dormant population at colony i ∈ Zd is called the seed-bank of the cor-
responding active population. As in the single-colony model, each individual in the
population carries one of the two gene types: ♥ and ♠. The active and the dormant
population at colony i ∈ Zd have finite sizes given by, respectively, Ni ∈ N and Mi ∈ N.
With each colony i ∈ Zd we associate the variables (Xi(t), Yi(t)), with Xi(t) and Yi(t),
respectively, the number of type-♥ active and dormant individuals at colony i at time
t ≥ 0. The gene types of the individuals in each colony evolve over time according to
the resampling and exchange dynamics described earlier in the context of the single-
colony Moran model with seed-bank. To simplify our analysis in the spatial model
and to be consistent with the single-colony model, we fix the intra-colony resampling
and exchange rates at 1

2 and λ > 0, respectively. In order to also introduce inter-
action between the subpopulations at different colonies, we incorporate conservative
migration of active individuals. The latter is achieved by letting individuals in the
active populations resample gene types not only from the active population in their
own colony, but also from active populations in other colonies. In this way, the genetic
information can still flow between the subpopulations at different colonies. However,
the individuals themselves stay put, which results in conservation over time of the
initial local population sizes (Ni,Mi)i∈Zd .

We specify the inter-colony resampling rates for the active individuals by a migra-
tion kernel denoted by a(· , ·). The kernel a(· , ·) is an irreducible matrix of transition

Figure 1.3: A schematic representation of the spatial populations on geographic space Z2 for
the choice of population sizes e := (Nk,Mk)k∈Z2 . Purple individuals are of type ♥ and green
individuals are of type ♠. The active (resp. dormant) population at colony i has size Ni = 5
(resp. Mi = 3). The system evolves in time under the influence of resampling and exchange.
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rates whose entries are labelled by the elements in Zd × Zd and satisfies

a(i, j) = a(0, j − i) ∀ i, j ∈ Zd,
∑
i∈Zd

a(0, i) <∞. (1.23)

Here, a(i, j) is the rate at which active individuals of colony i ∈ Zd resample from
the active population at colony j ∈ Zd. Note that our previous assumption on the
intra-colony resampling rates requires us to put a(0, 0) = 1

2 . As indicated before, the
process defined by

Z := (Z(t))t≥0, Z(t) := (Xi(t), Yi(t))i∈Zd , (1.24)

forms an interacting particle system taking values in the inhomogeneous configuration
space

X :=
∏
i∈Zd

[Ni]× [Mi]. (1.25)

The configuration Z(t) specifies the gene types of the individuals in all the subpop-
ulations at time t. As is typically the case for interacting particle systems, the time
evolution of a single component in the configuration Z(t) is not Markovian in nature.
However, the configuration Z(t) itself as a whole evolves in a Markovian manner. The
different components of the process Z interact with each other due to the presence of
the three evolutionary forces: resampling, dormancy and migration. The population
sizes (Ni,Mi)i∈Zd and the migration kernel a(· , ·) are key parameters that dictate the
long-run behaviour of Z(t). Whereas, the intra-colony exchange rate λ only affects the
time scale on which different components of the configuration Z(t) evolve. Because the
rate λ does not vary across colonies, it does not have a significant role in the analysis
of the process Z.

Spatially interacting seed-bank coalescent. As we observed before, stochastic
duality plays an important role in the analysis of models in population genetics. Du-
ality is a formidable tool that allows one to perform exact computations in many
stochastic interacting systems. Because the local population sizes in our spatial model
are conserved quantities, the model has the advantage that it admits a dual process
like in the single-colony Moran process with seed-bank. The underlying genealogy of
the spatial model is described by a spatially interacting structured seed-bank coalescent.
In the spatial seed-bank coalescent, lineages switch between an active and a dormant
state, and perform interacting coalescing random walks on the geographic space Zd.
To avoid technicalities, we refrain from providing a formal description of the genea-
logical process via partition-valued Markov chain. Our principle aim in this thesis is
to characterise equilibrium behaviour of the spatial Moran process Z with the help of
the dual process. For this purpose, an analysis of the block-counting process Z∗ as-
sociated with the spatial seed-bank coalescent process is sufficient. We will introduce
the block-counting process Z∗ in the next paragraph. For the sake of completeness,
we briefly describe the spatial seed-bank coalescent process via an interacting particle
system (see Fig. 1.4). At each site i ∈ Zd there are two reservoirs, an active reservoir
and a dormant reservoir, with, respectively, Ni and Mi labelled locations. Each loc-
ation can accommodate at most one particle. We refer to the particles in an active
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N0 = 4,M0 = 3 N1 = 2,M1 = 2 N5 = 2,M5 = 1

Figure 1.4: Schematic transitions of the particles in the spatially interacting structured seed-
bank coalescent in dimension d = 1. Each block depicts the reservoirs located at sites of Z.
The blue lines represent the evolution of active particles, whereas the red lines represent the
evolution of dormant particles.

and a dormant reservoir as active particles and dormant particles, respectively. The
system evolves according to the following rules:

(a) An active particle at site i ∈ Zd becomes dormant at rate λ by moving into a
random labelled location (out of Mi many) in the dormant reservoir at site i
when the chosen labelled location is empty, otherwise it remains in the active
reservoir.

(b) A dormant particle at site i ∈ Zd becomes active at rate λKi with Ki = Ni
Mi

by
moving into a random labelled location (out of Ni many) in the active reservoir
at site i when the chosen labelled location is empty, otherwise it remains in the
dormant reservoir.

(c) An active particle at site i chooses a random labelled location (out of Nj many)
from the active reservoir at site j at rate a(i, j) and does the following:

• If the chosen location in the active reservoir at site j is empty, then the
particle moves to site j and thereby migrates from the active reservoir at
site i to the active reservoir at site j.

• If the chosen location in the active reservoir at site j is occupied by a
particle, then it coalesces with that particle.

Observe that an active particle can migrate between different sites in Zd and two active
particles can coalesce even when residing in different colonies.

Spatial block-counting process and stochastic duality. We obtain the block-
counting dual process

Z∗ := (Z∗(t))t≥0, Z∗(t) := (ni(t),mi(t))i∈Zd , (1.26)

from the spatial coalescent by counting the number of particles at each site i ∈ Zd.
More precisely, we define by ni(t) (resp. mi(t)) the number of active (resp. dormant)
particles that are present at site i ∈ Zd at time t ≥ 0. Like the spatial Moran process
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Z, the block-counting dual process Z∗ is also an interacting particle system and takes
values on the same state space X . Under mild conditions on the active population sizes
(Ni)i∈Zd and the migration kernel a(· , ·), a sampling duality relation can be established
between the two processes Z and Z∗. In particular, if D(· , ·) : X×X → [0, 1] is defined
as

D((Xi, Yi)i∈Zd , (ni,mi)i∈Zd) :=
∏
i∈Zd

(
Xi
ni

)(
Ni
ni

) (Yimi)(
Mi

mi

)1l{ni≤Xi,mi≤Yi} (1.27)

with (Xi, Yi)i∈Zd , (ni,mi)i∈Zd ∈ X , then one has

Eη[D(Z(t), ξ)] = Eξ[D(η, Z∗(t))] ∀t ≥ 0, (1.28)

where the expectation on the left-hand side is taken w.r.t. the law of the process Z
started at η ∈ X and the expectation on the right-hand side is taken w.r.t. the law
of the process Z∗ started at ξ ∈ X . The duality relation in (1.28) is very useful for
analysing the spatial Moran process Z. In fact, the relation fully characterises all the
mixed moments of the process Z in terms of the dual process Z∗. Even though the
dual process is tricky to analyse because of the interaction in the dual particles, it is
much simpler than the spatial Moran process Z.

§1.1.5 Summary of Part I
Having introduced the basic ingredients of Part I in Sections 1.1.3–1.1.4, we can now
summarise the primary goals:

(1) Introduce a stochastic model that addresses genetic evolution in spatially struc-
tured populations with seed-banks whose sizes are finite and depend on the
geographic location of the populations. Prove existence and uniqueness of the
process Z = (Z(t))t≥0 via well-posedness of an associated martingale problem
and duality with a system of interacting coalescing random walks.

(2) The constructed process Z modelling the genetic evolution falls in the class of
interacting particle systems that are Markov processes with large number of
interacting components. An interesting phenomenon often observed in the long-
time behaviour of such systems is the occurrence of a phase transition. Loosely
speaking, a phase transition corresponds to an abrupt change in equilibrium
behaviour as underlying model parameters cross certain critical values. In our
model, the parameter controlling the phase transition turns out to be the di-
mension of the geographic space. In low dimensions, the invariant distributions
of the model are degenerate, in the sense that they are concentrated on the ab-
sorbing configurations of the process. These are nothing but the two extremes of
the possible gene type configurations, where either all individuals carry type ♥
or all carry type ♠. Convergence phenomena such as these are called clustering
because locally mono-type clusters grow in the geographic space as the system
approaches equilibrium. In higher dimensions, however, the model admits a one-
parameter family of invariant distributions labelled by a continuous parameter,
namely, the average density of a specific gene type in the population. In this

19



1. Introduction

C
ha

pt
er

1 case, the system at equilibrium exhibits coexistence, i.e., individuals of different
gene types coexist with each other. One goal in Part I is to identify a necessary
and sufficient criterion for the occurrence of such a dichotomy in the equilibrium
behaviour of our model.

(3) As we indicated before, the population sizes (Ni,Mi)i∈Zd and the migration
kernel a(· , ·) are the primary parameters that determine the dichotomy of coex-
istence versus clustering in the spatial Moran process. Another goal in Part I
is to identify the range of these parameter values under which the criterion for
clustering versus coexistence is met.

(4) Identify the domain of attraction of each equilibrium in the clustering and in
the coexistence regime. Here, for an equilibrium state ν of the process Z, the
domain of attraction of ν is the set of all probability distributions µ such that
the process Z starting from initial distribution µ converges to the equilibrium
state ν as time evolves.

(5) In the clustering regime, the equilibrium states of the spatial process concentrate
on homozygous gene configurations. A quantity of particular interest in this re-
gime is the fixation probability, which quantifies the probability of a specific gene
type, say type ♥, taking over the entire population. If model parameters such
as the population sizes are arbitrary, then standard techniques fail to provide
closed-form expressions for this probability. However, as the theory of stochastic
homogenisation suggests, macroscopic quantities such as the fixation probability
do not feel the irregularities in the microscopic parameters when they are mod-
elled by a random environment. A random environment in a stochastic model
adds a second source of randomness and is typically used to capture stochastic
effects in the irregularities. In most scenarios, a law of large numbers sets in and
many macroscopic quantities behave similarly as those evolving in a suitably ho-
mogenised environment. Another goal in Part I is to see whether homogenisation
occurs. The spatial model can be naturally extended to the setting of a random
environment by sampling the population sizes (Ni,Mi)i∈Zd beforehand at ran-
dom from a preassigned probability distribution. In this context, the aim is to
carry out a clustering analysis for the spatial process and show that the fixation
probability homogenises as the result of an appropriate ‘averaging effect’.

We address the above 5 goals in the three chapters of Part I, which are based on the
material of three papers on the spatial Moran process Z defined in (1.24).

Chapter 2. In this chapter we address the goals outlined in (1) and (2). To this end,
we first lay out the mathematical foundations for modelling genetic evolution of struc-
tured and finite populations with seed-banks in stochastic settings. In particular, the
main objective is to construct the spatial Moran process Z, which is a novel interact-
ing particle system (see [112] for an overview) modelling stochastic evolution of gene
types in spatially structured finite populations with seed-banks. Modelling genetic
evolutions of finite populations via interacting particle systems is rare in mathemat-
ical population genetics. Most research in this area concerns only large populations,
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and deal with stochastic differential equations arising from the so-called diffusive limit
of individual-based models. Inclusion of seed-banks in such models is relatively new
as well.

In [16, 14, 15], the continuum version of the celebrated Fisher-Wright model is
modified to include a seed-bank component, and in [76, 75] this model is further
extended to incorporate spatialness. However, the results in these works apply to
large populations only. The starting point of this chapter is therefore the Moran
model describing a single population of finite size.

We modify the single-colony Moran model to accommodate a suitable seed-bank
component. A brief introduction of this model is given in Section 1.1.3. In order to
characterise the equilibrium behaviour of this model, we utilise the recently developed
theory of stochastic duality [71, 25, 24]. In particular, we identify the associated
dual process by following the Lie-algebraic approach to stochastic duality described
in [148]. We derive a finite-dimensional representation for the infinitesimal Markov
generator of the process by viewing it as an abstract element of the su(2) Lie algebra.
Furthermore, by making an Ansatz with respect to a well-chosen intertwiner (i.e., the
duality function), we identify the dual representation of the Markov generator, which
indeed turns out to be the infinitesimal generator of a dual Markov process. This
finding aligns with the general prognosis of the Lie-algebraic approach, namely, that
identifying Markov generators in terms of elementary operators from a carefully chosen
Lie algebra may lead to constructing new dual processes. We exploit the duality to
fully characterise the equilibrium behaviour of the single-colony Moran model with
seed-bank. It turns out that, despite the presence of a seed-bank component, the
model qualitatively behaves as a single Moran population of finite size without a seed-
bank. This is so because both the seed-bank and the reproductively active population
have finite capacity.

Subsequently, we extend the single-colony model to the multi-colony Moran pro-
cess Z = (Z(t))t≥0 introduced in Section 1.1.4 which describes spatially structured
populations of finite sizes each equipped with their own seed-bank. Using the same
representations of the su(2) Lie algebra, we identify the process Z∗ = (Z∗(t))t≥0 in
(1.26) as a dual of Z. We construct the process Z by establishing well-posedness of
an appropriate martingale problem, where the uniqueness of the process follows from
the duality relation in (1.28). We also characterise the structural properties of the
set of all invariant distributions for Z, by establishing a dichotomy between clustering
and coexistence. This kind of dichotomy in the equilibrium behaviour mainly surfaces
in spatial models that possess more than one absorbing configuration. Examples of
such models include the voter model [111], the stepping stone model [140], and the
model introduced in [39] addressing populations with spatial structure but no seed-
banks. The same dichotomy is found in the more recent models introduced in [76, 75],
which include both spatialness and seed-bank effects. Our main result in this chapter
confirms that a similar dichotomy holds even when the constituent population sizes
are finite and spatially varying. The dichotomy is determined by a necessary and
sufficient criterion formulated in terms of the time evolution of the dual process Z∗
started from two lineages (particles). In particular, the criterion says that the process
Z remains in the clustering regime if and only if two dual lineages in the process Z∗
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1 eventually coalesce with probability 1. The duality relation between Z and Z∗ allows
us to express the average heterogeneity in the subpopulations at time t in terms of the
time-t state of two dual particles. We use this to show that the heterogeneity vanishes
everywhere if and only if the two particles coalesce eventually with probability 1.

Chapter 3. In this chapter we address the goal outlined in (3). We focus on the
parameter regime for which the spatial process Z exhibits clustering. From the clus-
tering criterion given in Chapter 2, it is clear that this regime is uniquely characterised
by the long-time behaviour of the dual process Z∗. In particular, eventual coalescence
of two dual lineages is equivalent to the existence of a common ancestor for the spa-
tial populations, and therefore the almost sure occurrence of this event necessarily
eliminates the possibility of Z attaining a multi-type equilibrium, where individuals
of different gene types can coexist.

The above scenario is common in spatial models (see e.g., [39]) where the stochastic
evolution of demographics such as allele frequencies in subdivided populations are dif-
fusively approximated. The recent results in [76] establish similar dichotomies between
clustering and coexistence for three diffusively rescaled models describing spatial pop-
ulations with seed-banks. It is shown that when the sizes of the seed-banks are a
constant multiple of the sizes of the active populations, the dichotomy of clustering
versus coexistence is solely determined by the underlying migration kernel and, apart
from causing a quantitative delay in the loss of heterozygosity of the populations,
seed-banks have no significant qualitative effect.

The main result in this chapter asserts that the picture remains the same for
spatially structured finite populations with seed-banks of varying capacities, as long as
the variations in the relative sizes of the seed-banks are of the same order. In particular,
we show that if the relative sizes of the seed-banks, defined as the ratio of the dormant
and the active population sizes, are uniformly bounded over the geographic space Zd,
then the process Z clusters if and only if the symmetrised migration kernel defined by

â(i, j) := 1
2 [a(i, j) + a(j, i)], i, j ∈ Zd, (1.29)

is recurrent. The last result is proven under a non-clumping criterion on the active
population sizes (Ni)i∈Zd , and the converse is proven under the stronger assumption
of symmetry of the migration kernel a(· , ·). The non-clumping criterion imposed on
the sizes (Ni)i∈Zd of the active populations requires that

inf
i∈Zd

∑
j:‖j−i‖≤R

1
Nj

> 0 (1.30)

for some R <∞. This essentially says that there exists a threshold N <∞ and a range
R <∞ such that within any finite region of the geographic space of radius R, there is
at least one active population of size at most N . This criterion ensures that the time
scale at which pairs of lineages in different parts of the geographic space coalesce are
of the same order. We expect a close connection between the above criterion and the
existence of a common ancestor of the spatial populations. We derive an alternative
clustering criterion for the clustering versus coexistence dichotomy. This alternative
criterion is defined in terms of almost sure absorption of an auxiliary Markov process
and turns out to be easier to analyse than the original criterion.
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Chapter 4. In this chapter we address the goals outlined in (4) and (5). We study
the spatial process Z in the parameter regime where clustering occurs. In particular,
we provide a full description of the set of all initial distributions for which the spatial
process Z converges to an equilibrium.

A well-established method in the literature for studying stationary states of a
Markov process having duality properties is to characterise all functions that are har-
monic for an associated dual process. Depending on the complexity of the dual process
and the duality function, often a full characterisation is possible. For instance, a gen-
erous use of this method is found in [111, 105], where ergodic properties of many
well-known interacting particle systems are derived. Relevant examples in the con-
text of diffusion processes arising in population genetics include [140, 39, 76, 75]. The
standard technique used in this method involves constructing a successful coupling
between two copies of the dual process started from two different initial states, which
necessarily forces all bounded harmonic functions of the process to be constant. By
leveraging the duality relation, this result is transferred to the original process, and
a criterion is established that intertwines the domain attraction of each equilibrium
with the set of constant harmonic functions of the dual.

In our context, it turns out that a successful coupling between two copies of the
dual started from different initial configuration indeed exists when the original process
Z exhibits clustering. This enables us to derive a necessary and sufficient criterion for
determining the initial distributions that converge weakly to a mono-type equilibrium
under the time evolution of the spatial process. This criterion is formulated in terms
of the transition kernel of a single dual particle, and is valid only in the clustering
regime of the original process. The criterion also characterises the fixation probabil-
ity. The fixation probability quantifies the probability of a specific gene type, say type
♥, spreading over every subpopulation at the attained equilibrium. This probability
depends on how the type-♥ individuals are initially distributed over different subpop-
ulations. As pointed out in goal (5), an explicit characterisation of this probability
is not feasible when the model parameters are arbitrary. However, by sampling the
population sizes (Ni,Mi)i∈Zd from a random field that is stationary and ergodic under
translation, we are able to derive an expression for this probability. The formula is
given in terms of an annealed average of the type-♥ densities in the active and the
dormant population, biased by the ratio of the two population sizes at the target
colony. We obtain this result under the assumption that the migration kernel a(· , ·)
is symmetric and recurrent, and the initial frequency distribution of the type-♥ indi-
viduals in each colony is consistent with a global profile of the population sizes. Our
results in this chapter hold only when the geographic space Zd has dimension d ≤ 2.

For the proof of the results, we make heavy use of the associated single-particle
dual process. To be precise, we show that under the symmetry and recurrence as-
sumptions on the migration kernel, the environment seen by a single dual particle in a
typical random environment converges in law to an invariant distribution. Finally, by
exploiting the intertwining relation between the domain of attraction of the mono-type
equilibrium of Z and the transition probability kernel of a single dual particle, we lift
this convergence to the spatial process Z.
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1 §1.2 Introduction to Part II
The main motivation for studying systems of interacting particles originally comes
from statistical physics. Time evolution of state variables in physical systems, such as
gaseous material in a closed container, or flow of water through a pipe, etc., are complex
processes governed by many parameters. An obvious attribute that is common to all
such systems is the presence of small particles in large numbers. The motion of each
individual particle is often subject to a local interaction rule and typically correlates
to the characteristics of all nearby particles. As an outcome, the evolution equation
for a single particle is no longer closed. Only a large number of coupled equations can
describe the particle motion in a satisfactory manner. The disadvantage is that we
lose tractability – or so it would seem in hindsight.

In a series of pioneering works [144]-[146] in the late 1960s, Spitzer initiated the
study of Markov processes with locally interacting components. In subsequent years,
Liggett, along with many other authors, provided a complete description of all the
possible invariant measures for several such processes. These works, most of which
are summarised in Liggett’s monograph [112], gave birth to the novel mathematical
framework of interacting particle systems, and have since developed into a prominent
field of study. Within this framework, it becomes possible to rigorously describe the
spatio-temporal evolution of a microscopic system that, in principle, can consist of
infinitely many particles.

As explained earlier, Part I of this thesis uses the tools and methods of the in-
teracting particle system framework. While this formulation is predominant in the
context of physical systems, in Part I we draw motivations from mathematical biology
instead, and utilise the framework to describe evolutionary consequences of dormancy
in spatially structured populations. It is, however, not necessary to view dormancy as
a trait inherent to biological systems alone. Indeed, in a physical system, dormancy
may be considered as an internal state of the particles that causes hindrance to their
microscopic dynamics, such as motion under the influence of a driving force. Even in
chemical reactions, variation in activity levels of a reactant may be interpreted as a
form of dormancy. In Part II, our principle aim is to investigate the effect of dormancy
in the broader framework of interacting particle systems.

In this thesis, three such interacting particle systems are considered: the inde-
pendent particle system, the exclusion process and the inclusion process. The first
two systems were originally introduced by Spitzer [145], and have been treated extens-
ively in the literature. The ergodic behaviour of these two systems is well-understood
and their scaling limits are also well-known. The inclusion process, on the other hand,
was introduced in [70], and its invariant distributions were fully characterised only re-
cently [105]. Given the rich equilibrium behaviour of many mathematical population
genetics models with dormancy, it is appealing to endow these three particle systems
with dormant characteristics and see how they behave in the long run. Unfortunately,
many of the standard techniques, such as stochastic duality, break down after the
inclusion of a dormant state. Consequently, we must be careful in choosing how to
incorporate dormancy. In Part II we deal with suitably crafted multi-layer versions of
the particle systems that capture interesting phenomena under dormancy while pre-
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serving the original duality properties in a natural way. Before we set the stage, in
the next two sections we briefly shed light on two important aspects of interacting
particle systems – hydrodynamic scaling limits (see [120] for an extensive overview)
and non-equilibrium steady state behaviour – both of which are central to the analysis
presented in Part II.

§1.2.1 Hydrodynamic scaling limit
The primary reason for studying interacting particle systems is to arrive at a math-
ematically rigorous microscopic description of the evolution of physical systems. But
the usefulness lies not only in explaining microscopic properties, but also in predict-
ing the behaviour of macroscopic observables associated with the physical system.
In particular, the stochastic nature of interacting particle systems puts sophisticated
probabilistic tools, such as the law of large numbers and the central limit theorem,
at our disposal to elucidate emergent phenomena of physical systems in a rigorous
mathematical framework. Here, physically emergent phenomena include, but are not
limited to, universal laws of physics, such as Fourier’s law of heat conduction or Fick’s
law of diffusion. The general idea behind the so-called “hydrodynamic scaling” form-
alism is to give a mathematically precise meaning to these emergent phenomena by
exploiting various probabilistic limiting techniques and space-time scaling arguments.
One may view such formalism as the transition from the microscopic world of particles
to the macroscopic world of measurable observables.

In many cases, the precise choice of the type of interaction between the physical
particles turns out to be irrelevant, because the emergent phenomena are often in-
sensitive to the fine details of the microscopic laws of interaction. For example, it is
possible to derive the evolution equation of heat conduction as the hydrodynamic scal-
ing limit of both the independent particle system and the simple symmetric exclusion
process. To explain the last statement, let us recall the definitions of the three particle
systems, and briefly elaborate on how a suitable space-time scaling of these systems
can give rise to the heat equation in the macroscopic limit.

Independent particle system. The independent particle system is a mathematical
description of the time evolution of a collection of indistinguishable particles that do
not influence each other in any way and move on a countable phase space S in a
Markovian manner. For simplicity, let us fix the phase space S to be the integer
lattice Z. We assume that each particle performs a continuous-time simple symmetric
random walk on Z at rate 2. Following the terminologies of the interacting particle
system framework, we can specify the time-t state of such a system by a configuration

ηin(t) ∈ NZ
0 , ηin(t) := (ηin(i, t))i∈Z,

with η(i, t) being interpreted as the number of particles at site i ∈ Z at time t ≥ 0.
The process ηin defined by

ηin := (ηin(t))t≥0, ηin(t) = (ηin(i, t))i∈Z, t ≥ 0, (1.31)
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1 is the simplest example of an interacting particle system, with a Markov generator

(Linf)(η) :=
∑
x∈Z

ηx
∑
|x−y|=1

[f(ηx,y)− f(η)] (1.32)

acting on a suitable test function f and evaluated at a configuration η = (ηx)x∈Z.
Here, for x, y ∈ Z and a configuration η = (ηi)i∈Z, ηx,y denotes the configuration
obtained from η by removing a particle from an occupied site x and putting it at site
y. In other words,

ηx,y := (ηi − 1l{i=x,ηx≥1} + 1l{i=y,ηx≥1})i∈Z. (1.33)

Note that, in order for the generator Lin to uniquely specify a Markov process, some
regularity restrictions must be imposed on the initial configuration of the process. We
refrain from addressing these technical subtleties here.

Simple symmetric exclusion process. While the independent particle system is
a natural example, it does a poor job in modelling physical systems in which particles
are interacting. Studies of even the simplest form of particle interaction can provide
useful insights. The aforementioned simple symmetric exclusion process (SSEP) was
introduced by Spitzer [145] as a toy model for lattice gases at infinite temperature, and
has been studied extensively in the literature since. This process is obtained from the
independent particle system by imposing a local interaction called exclusion rule: two
particles are not allowed to occupy the same location. Consequently, all jumps of the
independent particles leading to a violation of the exclusion rule are suppressed. For
the exclusion rule to make sense, one must of course start the system at a configuration
where all particles are initially at distinct locations. The resulting Markov process

η̄ex := (η̄ex(t))t≥0, η̄ex(t) := (η̄ex(i, t))i∈Z, t ≥ 0, (1.34)

evolves on the state space {0, 1}Z and has the formal generator

(Lexf)(η) =
∑
x,y∈Z,
|x−y|=1

ηx(1− ηy)[f(ηx,y)− f(η)], (1.35)

where f : {0, 1}Z → R is a cylinder function and η ∈ {0, 1}Z.

Simple symmetric inclusion process. The simple symmetric inclusion process
(SIP) introduced in [70] is the opposite analogue of the exclusion process. In this
process the underlying particles interact by “inviting” the neighbouring particles to
their own locations rather than driving them away. The additional interaction is
superimposed onto the independent motions of the microscopic particles and the in-
teraction strength is assumed to be linearly increasing with the number of particles at
a destination site. The resulting process

ηinc := (ηinc(t))t≥0, ηinc(t) := (ηinc(x, t))x∈Z, t ≥ 0, (1.36)
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obtained from counting the number of particles at each site in Z evolving over time,
therefore lives on the state space NZ. The process ηinc is Markovian and has the formal
generator

(Lincf)(η) :=
∑
x∈Z

ηx
∑
|x−y|=1

(1 + ηy)[f(ηx,y)− f(η)], (1.37)

where f is a suitable test function and η = (ηx)x∈Z is a configuration.

Hydrodynamics: the heat equation. With the above mathematical definitions at
hand, we can now concentrate on hydrodynamic scaling. As we have already explained,
hydrodynamic behaviour of a microscopic system refers to a description of how the
constituent quantities evolve when viewed from a macroscopic frame of reference. In
the macroscopic world, most wildly fluctuating microscopic quantities scale down to
trivial states, and only a few of the many degrees of freedom survive in the form
of certain conserved thermodynamic quantities such as energy, temperature, particle
density, etc. These macroscopic quantities behave in a much smoother way than their
microscopic counterparts. Depending on how one models the underlying microscopic
randomness, these quantities can often be shown to satisfy a deterministic partial
differential equation. As we will note shortly, in case of the independent particle
system and the exclusion process, the partial differential equation associated with the
hydrodynamic limit is nothing but the heat equation.

In order to carry out the hydrodynamic scaling, one must first renormalise space
and time by suitable scaling parameters that quantify the relationship between the
microscopic and the macroscopic world. In this regard, it is standard to assume that
spatial distance scales linearly as one zooms out from the microscopic view to the
macroscopic view. However, as time is typically measured relative to the external
observer, one should also take the average spatial spread of the microscopic particles
into consideration while rescaling the time parameter. In the case of particles that
evolve according to the two random processes ηin and η̄ex defined above, the average
spread in time t is of order

√
t. This is well-known in the context of independent

particle systems, but is not obvious for the exclusion process. We refer the interested
reader to [119], where it is shown that the typical distance covered by a free particle
and a particle subject to the exclusion rule are asymptotically of the same order. Thus,
in order to visualise a non-trivial motion of the particles from the macroscopic point
of view, temporal scaling should be taken quadratically proportional to the spatial
scaling.

Having justified the choice for the space-time scaling parameters, we can now con-
sider the following two measure-valued random quantities associated with the processes
in (1.31) and (1.34):

XN
in (t)(·) := 1

N

∑
x∈Z

ηin(x,N2t)δx/N (·), XN
ex(t)(·) := 1

N

∑
x∈Z

η̄ex(x,N2t)δx/N (·). (1.38)

Here, N ∈ N is the parameter quantifying the amount of dilation performed while
zooming out from the microscopic world to the macroscopic world, and will eventually
be set to diverge to infinity. Mathematically, XN

in and XN
ex describe what the empirical
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1 distribution of the particle densities in the two microscopic processes ηin and η̄ex look
like from the macroscopic perspective. Observe that the two processes t 7→ XN

in (t)
and t 7→ XN

ex(t) indeed take values in the space of non-negative Radon measures. In
particular, it is easily seen that for any compact A ⊆ R,

XN
in (t)(A) = 1

N

∑
x∈Z

ηin(x,N2t)1lA( xN ) <∞. (1.39)

The hydrodynamic scaling procedure tells that the two processes {XN
in (t) : t ≥ 0}

and {XN
ex(t) : t ≥ 0} converge to a non-trivial deterministic limiting process, in a

probabilistic sense, as we pass from the microscopic viewpoint to the macroscopic
viewpoint by letting N →∞. More precisely, the following holds:

Theorem 1.2.1 (Hydrodynamic scaling, [120, Theorem 2.8.1] and [69]).
Let ρ̄ ∈ Cb(R) be a bounded and continuous macroscopic profile, and let (µN )N∈N
(resp., (µ̄N )N∈N) be a sequence of probability measures on NZ (resp., {0, 1}Z) such
that, for any δ > 0, g ∈ C∞c (R),

lim
N→∞

µN

(
η ∈ NZ :

∣∣∣ 1
N

∑
x∈Z

g( xN )η(x)−
∫
R
g(x)ρ̄(x) dx

∣∣∣ > δ
)

= 0,

lim
N→∞

µ̄N

(
η̄ ∈ {0, 1}Z :

∣∣∣ 1
N

∑
x∈Z

g( xN )η̄(x)−
∫
R
g(x)ρ̄(x) dx

∣∣∣ > δ
)

= 0.
(1.40)

Let PµN (resp., P̄µ̄N ) be the law of the measure-valued process t 7→ XN
in (t) (resp., t 7→

XN
ex(t)) in (1.38) induced by the initial distribution µN (resp., µ̄N ). Then, for any

T > 0, δ > 0 and g ∈ C∞c (R),

lim
N→∞

PµN

(
sup
t∈[0,T ]

∣∣∣ ∫
R
g(x) dXN

in (t){x} −
∫
R
g(x)ρ(x, t) dx

∣∣∣ > δ

)
= 0,

lim
N→∞

P̄µ̄N

(
sup
t∈[0,T ]

∣∣∣ ∫
R
g(x) dXN

ex(t){x} −
∫
R
g(x)ρ(x, t) dx

∣∣∣ > δ

)
= 0,

(1.41)

where ρ(· , ·) is the unique strong solution of the heat equation{
∂tρ = ∆ρ0,

ρ(x, 0) = ρ̄(x).
(1.42)

The above theorem asserts that both measure-valued processes t 7→ XN
in (t) and

t 7→ XN
ex(t) converge weakly, in probability, to a limiting measure-valued process t 7→

Xt, where Xt is a deterministic measure on R for each t ≥ 0. Furthermore, Xt is
absolutely continuous w.r.t. the Lebesgue measure on R with density ρ(· , t), i.e.,

dXt{x} = ρ(x, t) dx, t ≥ 0, x ∈ R, (1.43)

and (ρ(· , t))t≥0 is the unique strong solution of the heat equation in (1.42). To keep
matters simple, we skip the technical details of the proof, which essentially exploits
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stochastic self-duality properties of the two microscopic systems, along with Donsker’s
invariance principle for a simple symmetric random walk.

Now that we have seen how one retrieves the well-known heat equation from two
seemingly complex microscopic particle systems, it is natural to wonder about the
macroscopic effect of introducing dormant characteristics at the microscopic level. The
first half of Part II is devoted to studying such effects. In particular, we discuss the
hydrodynamic scaling behaviour of the three microscopic systems introduced above,
supplemented with “dormancy”. Our results will be summarised in Section 1.2.3.

§1.2.2 Non-equilibrium steady state
In Section 1.2.1 we motivated the study of interacting particle systems as a mathem-
atical way of modelling physical systems consisting of a large number of microscopic
components. Interacting particle systems are Markov processes on an uncountable
state space that typically deal with the evolution of infinitely many variables, such as
the location of infinitely many particles, the infection status or gene type of individuals
in an infinite population, etc. In reality, however, physical or biological systems consist
of a large yet finite number of components. This presents an undesirable discrepancy
between theoretical models and real physical systems. The standard way to overcome
this discrepancy is by restricting the proposed model to a finite region of interest.

To illustrate the idea, consider the process of heat conduction on a one-dimensional
metal rod (see Fig. 1.5). We can assume that the microscopic structure of the rod is
discrete and can be represented by the integer lattice Z. As observed in Section 1.2.1,
the spatio-temporal macroscopic heat profile in the rod, which is given by the solu-
tion of the heat equation in (1.42), can be thought of as a by-product of the process
t 7→ (ηin(i, t))i∈Z in (1.31) where particles perform independent random walks on the
microscopic lattice structure of the metal rod. If initially the metal rod has not yet
reached a global thermal equilibrium in terms of the macroscopic heat conduction,
and we focus on the heat profile of a segment of the rod, called the bulk, with a length
that is negligible compared to the total length of the rod, then we will observe that
the heat profile in the bulk first attains a local equilibrium. This local equilibrium
typically depends on the initial cumulative amount of heat contained in the comple-
ment of the bulk, called external reservoirs, at both ends of the rod. If the sizes of
the reservoirs are large enough, then the average amount of heat contained within
them endure negligible effects from the heat profile of the bulk, and therefore remain
almost constant throughout the macroscopic evolution of the bulk profile. From the
microscopic perspective, the spatial extent of the bulk is so small compared to the
external reservoirs that the interactions between particles in the reservoirs only have
an average effect on the random motions of the particles in the bulk.

Independent particle system with reservoirs. In view of the above, a math-
ematically more accurate understanding for the local equilibrium can be achieved by
modelling the collective effects of the two external reservoirs on the bulk variables with
two individual boundary reservoirs. The modified dynamics is such that microscopic
particles can escape from the bulk to enter the boundary reservoirs independently of
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Reservoir Reservoir

1 N

Bulk

Mathematical abstraction

Figure 1.5: A schematic representation of bulk and reservoirs in a one-dimensional metal rod.
The length of the bulk is N ∈ N in microscopic units, and is small compared to the lengths of
the reservoirs.

each other, while each reservoir can put particles at the boundary sites at a constant
rate determined by the cumulative amount of “heat” contained within them. As an
outcome, we obtain a new microscopic process η̂in defined as

η̂in := (η̂t)t≥0, η̂t := (η̂(i, t))i∈[N ]∗ , t ≥ 0, (1.44)

where [N ]∗ := {1, . . . , N} and η̂(i, t) represents the number of particles at site i ∈ [N ]∗
in the bulk at time t ≥ 0. The process η̂in is a continuous-time Markov chain with
generator

L̂in := L̂bulk + L̂res. (1.45)

The action of L̂bulk and L̂res on a test function f : N[N ]∗
0 → R is as follows:

(L̂bulkf)(η) :=
∑

x∈[N ]∗

ηx
∑

y∈[N]∗,
|x−y|=1

[f(ηx,y)− f(η)],
(1.46)

and
(L̂resf)(η) := η1

[
f(η1,−)− f(η)

]
+ ηN

[
f(ηN,−)− f(η)

]
+ ρL

[
f(η1,+)− f(η)

]
+ ρR

[
f(ηN,+)− f(η)

]
,

(1.47)

where η := (ηx)x∈[N ]∗ ∈ N[N ]∗
0 is a configuration representing the number of particles

at each site in the bulk, ρL > 0 (resp., ρR > 0) is the rate at which the left (resp.,
right) reservoir injects new particles at site 1 (resp., N), the configurations {ηx,y :
x, y ∈ [N ]∗} are obtained from η by using (1.33), and

ηx,− := (ηi − 1l{i=x,ηi≥1})i∈[N ]∗ , ηx,+ := (ηi + 1l{i=x})i∈[N ]∗ , x ∈ [N ]∗. (1.48)

Observe from (1.46)–(1.47) that L̂bulk is responsible for the independent motions of
the particles in the bulk, while L̂res dictates the interactions between the particles and
the reservoirs at the two boundary sites 1 and N .
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Non-equilibrium steady state. The process η̂in is well-known in the literature
(see e.g., [110, 24]) and admits a unique equilibrium distribution νρL,ρR due to the
presence of the reservoirs. It exhibits interesting behaviour in the equilibrium νρL,ρR ,
whose explicit form is known as well (see [24, Proposition 4.5]). To be specific, when
the two boundary reservoirs operate at identical environmental conditions, i.e., when
they are in thermal equilibrium w.r.t. each other because ρL = ρR = ρ, the variables
{η̂x : x ∈ [N ]∗} denoting the number of particles at different sites in the bulk behave
independently of each other with a Poisson distribution of mean ρ. In contrast, if
the reservoirs are not at thermal equilibrium (i.e., ρL 6= ρR), then the variables {η̂x :
x ∈ [N ]∗} remain independent, but no longer follow an identical marginal distribution
under the law νρL,ρR . In this scenario νρL,ρR is referred to as a non-equilibrium steady
state of the bulk (or, equivalently, of the process η̂in), because it describes the physical
phenomenon that, even though the metal rod is not in a global equilibrium (as ρL 6=
ρR), it is nonetheless in a microscopic local equilibrium νρL,ρR when viewed only in
the bulk.

Fick’s law of mass transport. In the presence of the reservoirs, the macroscopic
properties of the bulk variables in the metal rod undergo only minor changes. By
means of hydrodynamic scaling of the process η̂in in (1.44), we can easily extract
properties of the corresponding macroscopic local equilibrium. In fact, the macroscopic
heat profile in the bulk still follows the same heat equation (interpreted in the sense
of hydrodynamics) {

∂tρ = ∆ρ,
ρ(x, 0) = ρ̄(x),

x ∈ [0, 1], (1.49)

but with additional boundary conditions{
ρ(0, t) = ρ̄(0) = ρL,

ρ(1, t) = ρ̄(1) = ρR,
t ≥ 0, (1.50)

that arise precisely due to the coupling with the two boundary reservoirs.
Heat conduction in a metal rod is but one example where the macroscopic equation

in (1.49)–(1.50) is used to model the underlying physical process. Many physical
experiments suggest that the transport of a solute between two compartments (or
‘reservoirs’) separated by a thin layer of membrane (or ‘bulk’) is governed by the same
equation. More generally, the continuity equation for mass transport, which basically
is a consequence of the conservation of total mass, states that

∂ρ

∂t
= −∇ · J, (1.51)

where ρ(x, t) is the density of the solute at a macroscopic position x ∈ [0, 1] at time
t ≥ 0, and J : [0, 1] × R+ → R is the instantaneous diffusion flux measuring the
amount of solute passing through a unit area per unit time. Experimental results
based on analysis of single-component diffusions in homogeneous media align with the
prediction of the so-called Fick’s law, which postulates that the diffusion flux J is
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1 in a direction opposite to the gradient of the concentration, i.e., for some diffusivity
constant σ > 0,

J = −σ∇ρ. (1.52)

Combining (1.51)–(1.52), one recovers the familiar diffusion (or heat) equation given
in (1.49).

Uphill diffusion. In situations where Fick’s law does not hold, uphill diffusion be-
comes possible. Uphill diffusion is characterised by the flow of a solute from an area
with a lower concentration to an area with a higher concentration. In homogeneous
media, diffusion of a single component obeys Fick’s law and therefore the flow is al-
ways downhill. However, in a multi-component mixture, interaction between different
components can change their diffusive characteristics in such a way that the overall
effect results in uphill diffusion of the total density [102]. In particular, if a single
component exhibits ‘dormant characteristics’ and therefore represents a solute with a
mixture of both states (active and dormant), then it is reasonable to expect interesting
behaviour at equilibrium, such as the violation of Fick’s law, uphill diffusion, etc.

An aim in the second half of Part II is to incorporate boundary reservoirs into
the three multi-layer systems with dormancy, which will be briefly introduced in the
next section, and study properties of their corresponding microscopic non-equilibrium
steady states. Furthermore, in the context of mass transport, by studying the associ-
ated macroscopic properties of the systems, we investigate how the interplay between
active and dormant states of a single component can give rise to uphill diffusion.

§1.2.3 Summary of Part II
We start by describing how the three earlier defined interacting particle systems are
adapted in order to include dormant characteristics.

Three switching interacting particle systems. We modify the three particle
systems introduced in Section 1.2.1 by allowing the underlying particles to switch into
a “mild” or a “pure” dormant state independently of each other. The mild dormant
state of a particle causes a slowdown in its random motion. In particular, the particles
move at a slower (or zero) rate in their mild (or pure) dormant state. Formally, for
σ ∈ {−1, 0, 1} we introduce the modified interacting particle systems on Z where the
particles randomly switch their jump rate between two possible values, 1 and ε ∈ [0, 1],
depending on whether they are in an active or a dormant state. For σ = −1 the
particles evolve as in the simple symmetric exclusion process, for σ = 0 the particles
perform independent random walks, while for σ = 1 the particles evolve as in the
simple symmetric inclusion process. Furthermore, the type of a particle can change at
rate γ > 0 and the total rate of these changes is tuned to the underlying interaction
rule. Observe that the dormant particles are still allowed to jump, but at a slower
rate ε than the active particles. Let

η0(x, t) := number of active particles at site x at time t ≥ 0,
η1(x, t) := number of dormant particles at site x at time t ≥ 0.
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Figure 1.6: Representation of the switching random walks via slow (dormant) and fast (active)
particles.

The process

(η0(t), η1(t))t≥0, (η0(t), η1(t)) := (η0(x, t), η1(x, t))x∈Z, (1.53)

lives on the state space X := X̄ × X̄ , where

X̄ :=
{
{0, 1}Z, if σ = −1,
NZ

0 , if σ ∈ {0, 1},
(1.54)

and forms a Markov process that we refer to as switching exclusion process for σ = −1,
switching random walks for σ = 0 (see Fig. 1.6), and switching inclusion process for
σ = 1. Before giving the explicit form of the generator, it is convenient to define, for
σ ∈ {−1, 0, 1},

Lσ :=


Lex, if σ = −1,
Lin, if σ = 0,
Linc, if σ = 1,

(1.55)

where the three generators Lin, Lex and Linc are as in (1.32),(1.35) and (1.37), respect-
ively. The generator Lσ encodes the three processes, namely, the independent particle
system, the exclusion process and the inclusion process, in a single generator and
can be used to describe the generator for the switching process in a simplified form.
Indeed, the generator Lε,γ of the switching process acts on a suitable test function
f : X → R as

(Lε,γf)(η0, η1) := (Lσf(·, η1))(η0) + ε(Lσf(η0, ·))(η1) + γ(L0l1f)(η0, η1), (1.56)

where (η0, η1) := (η0(x), η1(x))x∈Z ∈ X and L0l1 acts on f as

(L0l1f)(η0, η1) :=
∑
x∈Z

{
η0(x)(1 + ση1(x))

[
f(ηx,−0 , ηx,+1 )− f(η)

]
+ η1(x)(1 + ση0(x))

[
f(ηx,+0 , ηx,−1 )− f(η)

]} (1.57)
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1 and is part of the generator Lε,γ that describes the switching between the two states
(active or dormant) of a particle. Here, for a configuration η ∈ X̄ and a site x ∈ Z the
configurations ηx,+, ηx,− are defined as in (1.48).

Observe in (1.56) that the first (resp., the second) term on the right-hand side
describes the motions of the active (resp., the dormant) particles according to the
interaction rule of the particle system. Also observe that in (1.57) the total rate at
which a particle changes its state from active to dormant or vice versa depends on
the particular interaction between the particles. Indeed, the switching between the
particle types happens independently when σ = 0. In case σ = −1, an active particle
at a site prohibits another dormant particle at the same site to become active and
vice versa. In case σ = 1, an active particles encourages another dormant particle
to become active at the same site and vice versa. We emphasise that the type of
interaction between particles of opposite states is intentionally chosen to be the same
as the interaction between particles of the same state. This choice is in fact crucial
for preserving the self-duality properties of the particle systems without dormancy.

Hydrodynamics: reaction-diffusion equation. In order to study the hydro-
dynamic scaling limit of the switching process t 7→ (η0(t), η1(t)) introduced in (1.53) we
consider the following scaling of space and time. We introduce a coarse-graining para-
meter N ∈ N and scale space by 1/N , time by N2, the switching rate γN by 1/N2, and
let N → ∞ to obtain a system of macroscopic equations associated with the switch-
ing interacting particle system. Note that while coarse graining, i.e., zooming out of
the microscopic world to the macroscopic world, we keep the rates at which particles
move constant. This is because we scale time by N2, which automatically takes care
of scaling the rate of the spatial movement of the particles. Similarly as in the three
original particle systems, we consider the following (Radon) measure-valued quantities
associated with the switching process in order to study hydrodynamic behaviour:

XN0 (t) := 1
N

∑
x∈Z

η0(x, tN2) δx/N , XN1 (t) := 1
N

∑
x∈Z

η1(x, tN2) δx/N . (1.58)

Here, δy stands for the Dirac measure at y ∈ R. The variables XN
0 (t) and XN

1 (t) in
(1.58) are the empirical densities of, respectively, the active and the dormant particles
at time t ≥ 0. Note that, because the switching process t 7→ (η0(t), η1(t)) has a
càdlàg path, the corresponding path associated with the process t 7→ (XN0 (t),XN1 (t)) is
càdlàg as well. By exploiting the self-duality property along with some mild regularity
conditions on the initial distributions of the rescaled switching process, we can show
that the weak limit as N → ∞ of t 7→ (XN0 (t),XN1 (t)) in the Skorokhod topology is
the deterministic continuous measure-valued path t 7→ (X0(t),X1(t)) with

dXi(t){x} = ρi(x, t) dx, t ≥ 0, x ∈ R, i ∈ {0, 1}, (1.59)

where ρ0(· , ·) and ρ1(· , ·) are the unique bounded strong solutions of the reaction-
diffusion equation {

∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),
∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),

(1.60)
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with initial conditions {
ρ0(· , 0) = ρ̄0(·),
ρ1(· , 0) = ρ̄1(·).

(1.61)

In (1.60) the parameter Υ is the limiting value of the rescaled switching rates (γN )N∈N
associated with the switching process, i.e., lim

N→∞
N2γN = Υ, and intuitively corres-

ponds to the rate of switching (between active and dormant particles) events on the
macroscopic scale. In (1.61) the initial macroscopic profiles ρ̄0 and ρ̄1 are assumed to
be bounded continuous functions. These regularity conditions on the initial profiles
are needed in order to ensure the existence and uniqueness of strong solutions of (1.60)
(see e.g., [68, Chapter 5, Section 4, Theorem 4.1]).

The partial differential equations of type (1.60) fall in the class of reaction-diffusion
equations, which are used to model time-dependent evolution of concentrations of
certain substances in a solution due to diffusion and chemical reaction. Our finding
that the hydrodynamic equation of a microscopic process with dormancy is a reaction-
diffusion equation suggests that dormancy at a microscopic level can induce non-trivial
effects on a macroscopic level and has the potential to change the qualitative behaviour
of physical or chemical systems. Indeed, if ρ0, ρ1 are smooth enough and satisfy (1.60),
then by taking extra derivatives we see that the total density ρ := ρ0 + ρ1 satisfies the
thermal telegrapher equation

∂t (∂tρ+ 2Υρ) = −ε∆(∆ρ) + (1 + ε)∆ (∂tρ+ Υρ) , (1.62)

which is second order in ∂t and fourth order in ∂x (see [2, 86] for a derivation). Note
from (1.62) that the total density does not satisfy the usual diffusion equation of type
(1.49). This fact is investigated in detail in the second half of Part II where we analyse
the non-Fick property of ρ.

Non-equilibrium behaviour: uphill diffusion. In the second half of Part II, we
look at the non-equilibrium steady state behaviour of the switching process by intro-
ducing boundary reservoirs similar to the ones included in the process η̂in in (1.44).
In particular, we restrict the switching process to a finite region [N ]∗ := {1, . . . , N} of
Z where N ≥ 2, and add two boundary reservoirs at each site 1 and N (see Fig. 1.7).
The two reservoirs at a boundary site control the injection and absorption of, re-
spectively, active and dormant particles. The rates at which particles are injected
or absorbed by the reservoirs are chosen according to the type of interaction rule in
the switching process. This is because when the rates associated with the reservoir
dynamics are compatible with the dynamics of the particles in the bulk, the switch-
ing process admits a dual process. We already mentioned earlier that the switching
process without the reservoirs is self-dual, a property it inherits from the three under-
lying particle systems, namely, the independent particle system, the exclusion process
and the inclusion process. In the presence of the reservoirs, the bulk dynamics in the
switching process preserves the self-duality property as well, but the reservoirs in the
dual process become absorbing. Therefore the corresponding dual also consists of a
system of active and dormant particles, where particles perform the same dynamics
as before in the bulk, but are eventually absorbed at the boundary sites by the two
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Figure 1.7: Representation of the switching process with boundary reservoirs when σ = 0.
Green particles are active and yellow particles are dormant. Here, ρL,0, ρR,0, ρL,1, ρR,1 are
positive parameters controlling the rates at which reservoirs put or remove particles at the
boundary sites.

reservoirs at certain rates. To avoid technicalities we refrain from giving the precise
mathematical definition of the dual here (see Section 5.3.2). The absorbing nature
of the dual immensely simplify the analysis of the switching process with reservoirs
and allows for a partial characterisation of the unique non-equilibrium steady state
µstat of the process. In particular, we obtain explicit expressions for the stationary
microscopic profile (θ(N)

0 (x), θ(N)
1 (x))x∈[N ]∗ defined by

θ
(N)
i (x) := Eµstat [ηi(x, t)], x ∈ {1, . . . , N}, t ≥ 0, i ∈ {0, 1}, (1.63)

where t 7→ (η0(x, t), η1(x, t))x∈[N ]∗ is the switching process with reservoirs.
By computing the average flux of the particles in the stationary switching process

with the help of the dual process, we are able to characterise the stationary microscopic
current through each horizontal edge of the graph {1, . . . , N}. It turns out that in
stationarity the total average current through each horizontal edge is the same and is
of the order 1

N . Therefore, an unambiguous notion of uphill current is obtained by
imposing that the sign of the stationary current through each edge is the same as the
sign of the total density gradient of the particles at the two boundary sites.

We also study the macroscopic behaviour of the stationary switching process with
reservoirs under the same scaling of the microscopic parameters as was done in the
context of hydrodynamic scaling. We derive the stationary macroscopic profiles of
the system by taking the pointwise limit of the microscopic stationary profiles. To be
more precise, we obtain the stationary macroscopic profile (ρstat,ε

0 (y), ρstat,ε
1 (y))y∈[0,1]

by setting

ρstat,ε
i (y) := lim

N→∞
θ

(N)
i (dyNe), y ∈ [0, 1], i ∈ {0, 1}. (1.64)

When ε > 0, i.e., microscopic particles only admit a mild dormant state, it turns
out that the stationary macroscopic profiles ρstat,ε

0 (·), ρstat,ε
1 (·) constitute the unique
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smooth strong solution of the boundary value problem{
0 = ∆u0 + Υ(u1 − u0),
0 = ε∆u1 + Υ(u0 − u1),

(1.65)

with boundary conditions {
u0(0) = ρL,0, u0(1) = ρR,0,

u1(0) = ρL,1, u1(1) = ρR,1,
(1.66)

However, when ε = 0, i.e., microscopic particles only admit a pure dormant state, in the
non-equilibrium situation (i.e., the two reservoirs at a boundary site are not in thermal
equilibrium) the stationary macroscopic profile ρstat,0

1 for the dormant particles has
a discontinuity near the boundary sites. By taking ε ↓ 0 and analysing the limiting
behaviour of the stationary macroscopic profile ρstat,ε

1 , we find that the discontinuity of
ρstat,0

1 appears as a sudden bump in the smooth stationary profile ρstat,ε
1 at a distance

of order
√
ε log(1/ε) from the boundary sites (see Proposition 5.3.20 for a precise

statement).
The precise microscopic parameter regime for an uphill current is difficult to de-

scribe. However, in the macroscopic setting, the uphill regime becomes simpler and can
be described by a continuous manifold determined by the parameters a0 := ρR,0−ρL,0,
a1 := ρR,1−ρL,1 and ε. In particular, we show that a macroscopic uphill current takes
place in the non-equilibrium situation if and only if

a2
0 + (1 + ε) a0a1 + εa2

1 < 0. (1.67)

§1.3 Further research
Finite-systems scheme. In Part I of this thesis, we study an interacting particle
system t 7→ Z(t) that approximates the behaviour of genetic evolution in structured
populations with seed-banks. In our model, the populations are assumed to be loc-
ated on the d-dimensional integer lattice Zd. Although in general such infinite systems
reasonably well approximate real-world populations distributed over a large geographic
space, real-world geographic regions are never infinite. Therefore, from the applied
point of view, one is usually interested in the behaviour of the process t 7→ ZΛ(t)
evolving on a finite geographic space Λ ⊂ Zd. The corresponding process ZΛ restric-
ted to Λ clusters almost surely in a finite random time τΛ regardless of the starting
configuration. Understanding the asymptotic behaviour of the time τΛ and the process
ZΛ as the size |Λ| tends to infinity is crucial for any practical use of the model. In
the so-called finite-systems scheme studied in e.g., [38, 40, 74], the aim is to provide
mathematically precise statements on the comparison between ZΛ and Z as Λ ↑ Zd.

In the coexistence regime of the infinite-volume process Z, there is a one-parameter
family of non-trivial equilibria {νθ : θ ∈ [0, 1]} parametrised by the density θ of a
fixed gene type. If the infinite-volume process Z is in the coexistence regime, then
we expect that, as Λ ↑ Zd, the law of the finite-volume process ZΛ on a deterministic
time scale tΛ close to τΛ locally approximates the law νθ, where the density parameter
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1 θ is a random macroscopic quantity Yt ∈ [0, 1] for any t > 0 such that tΛ
|Λ|
|Λ|↑∞−→ t.

Depending on whether the average relative strengths of the seed-banks are finite or
infinite, the behaviour of t 7→ Yt is expected to fall in different universality classes.
For instance, in the case when seed-banks have finite relative strength on average, we
expect the evolution of t 7→ Yt to be governed by the Wright-Fisher diffusion, with a
diffusion constant that is slowed down by an extra factor capturing the finite average
relative seed-bank strength. However, if the average relative strength of the seed-banks
is infinite, then different universality classes may appear depending on how fast the
seed-bank strengths grow as Λ ↑ Zd compared to the time scale tΛ. It may happen
that the evolution of t 7→ Yt is no longer a diffusion, but rather a jump process.

Interplay of dormancy, selection and mutation. In Part I, we considered a
stochastic model for the genetic evolution of spatially structured populations under
the influence of migration, resampling and dormancy. As mentioned earlier in Sec-
tion 1.1.1, two other important evolutionary forces are selection and mutation. It
would be interesting to incorporate these into our model and see how dormancy com-
petes with them. In [57] the authors introduced a Moran model with selection and
mutation where the process admits a dual with a similar hypergeometric duality func-
tion as in our model. Although their model is concerned with a single finite population,
it can be seamlessly extended to the spatial setting with seed-banks similarly like in
our context without loss of the duality property. The corresponding dual process is
expected to be a branching coalescing interacting particle system, where particles can
be active or dormant. Active particles can migrate (due to migration), coalesce with
another active particle to form a single active particle (due to resampling), branch
into two active particles (due to selection), die (due to mutation), and fall asleep (due
to dormancy). In the presence of mutation, we obtain a Feynman-Kac type duality
relation between the original process and the dual process.

A typical trend in population genetic models that incorporate mutation but no
dormancy is ergodicity, i.e., the process converges to a unique equilibrium starting from
any initial state (see e.g., [140, Theorem 1.1]). However, in the modified spatial model
with mutation and dormancy, seed-banks with an infinite average relative strength may
prevent ergodicity altogether and cause a phase transition depending on the mutation
rate and the relative seed-bank strength in different colonies. The reason behind such
speculation is that ergodicity of the original process arises from the annihilating nature
of the particles in the dual. If the relative seed-bank strengths are infinite on average,
then the dual particles spend most of their time in the dormant state and therefore
annihilation events, which happen only when the particles are active, become rare. It
will be interesting to turn these heuristics into precise mathematical statements and
see how seed-banks give rise to qualitatively different equilibrium behaviour.

Dormancy in fluctuating random environment. In Chapter 4 we study the
spatial Moran process with seed-banks in a static random environment. The ran-
dom environment is obtained by sampling the constituent population sizes from a
translation-invariant ergodic random field and remains static throughout the evolu-
tion of the process. However, in real-world scenario the population sizes are more likely
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to change over time. This calls for a model with seed-banks evolving in a dynamic
random environment. In this setting, the corresponding process becomes a time-
inhomogeneous Markov process that is relatively difficult to analyse. Furthermore,
we typically lose the stochastic duality property that is crucial for the analysis of the
process. These difficulties make the model in the dynamic random environment more
interesting from a mathematical point of view because it requires the development of
novel techniques.

Systems with multi-layer seed-banks. In the stochastic systems considered in
Part I and Part II the constituent seed-banks consist of only one layer.

In the spatial Moran process introduced in Part I the seed-bank in each colony
has a finite size that depends on the location of the colony. Because of the location-
dependent population sizes, the state space of the process is not translation invariant.
On the one hand, the lack of translation invariance makes the analysis of ergodic
properties of the process more complicated. On the other hand, if we recover the
translation invariance by considering equal population sizes in each colony, then we
no longer see the effect of seed-banks on the equilibrium behaviour of the process.
To be more precise, the process in the homogeneous state space behaves exactly like
the process without seed-banks, where dichotomy of coexistence vs clustering is solely
determined by the migration kernel. A solution to this problem can be obtained
by extending our model to a multi-layer setting. In particular, following the second
model introduced in [76], we can preserve both the translation invariance and the
effect of seed-banks by incorporating seed-banks with infinitely many layers at each
colony. More precisely, we keep the sizes of the active populations constant and put
infinitely many seed-banks of equal size at each colony. Active individuals adopt a
colour before entering into a seed-bank, which determines the average of their wake-
up time from the dormant state. The advantage of this extension is that we do
not destroy the duality property and keep the translation-invariance of the state-
space of the underlying process. We expect a similar dichotomy between clustering vs
coexistence, but the criterion determining which of the two occurs will heavily rely on
the strength of the deep seed-banks and the migration mechanism.

A similar extension for the switching process in Part II to the multi-layer setting
is available, where we preserve the self-duality property of the original process. It will
be interesting to see if uphill diffusion indeed can appear in such a setting and, if so,
in what manner it changes the qualitative behaviour of the system.

§1.4 Outline of the thesis
Part I of this thesis is based on [46, 47, 125] and consists of Chapters 2–4. In
Chapter 2 we introduce the interacting particle system describing genetic evolution
of spatially structured populations with seed-banks and state our main results on
the well-posedness of the model, sampling duality relation with a dual interacting
particle system, and the dichotomy between mono-type equilibria (clustering regime)
and multi-type equilibria (coexistence regime). In Chapter 3 we refine the criterion
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1 for the clustering regime given in Chapter 2 and identify the precise parameter re-
gime for clustering, which is determined by the relative seed-bank strengths and the
migration kernel. In Chapter 4 we extend the model in Chapter 2 to a static ran-
dom environment setting. Under mild assumptions on the law of the environment and
the migration kernel, we state and prove homogenisation results on the equilibrium
behaviour of the process in the clustering regime.

Part II of this thesis is based on [62] and consists of Chapter 5. In Chapter 5 we
introduce a switching interacting particle system, where particles can be in an active
state or a (mild/pure) dormant state. We state and prove results on the hydrodynamic
scaling limit, the stochastic duality property of the process etc. Furthermore, we study
the non-equilibrium behaviour of the process in the presence of boundary reservoirs
and state results on uphill diffusion of the particles, a phenomenon that manifests itself
as an outcome of the reaction-diffusion type interactions between active and (mild or
pure) dormant particles.
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