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Abstract
While the genetic cause of Huntington disease (HD) is known since 1993, still no cure exists. Therapeutic development would 
benefit from a method to monitor disease progression and treatment efficacy, ideally using blood biomarkers. Previously, 
HD-specific signatures were identified in human blood representing signatures in human brain, showing biomarker potential. 
Since drug candidates are generally first screened in rodent models, we aimed to identify HD signatures in blood and brain 
of YAC128 HD mice and compare these with previously identified human signatures. RNA sequencing was performed on 
blood withdrawn at two time points and four brain regions from YAC128 and control mice. Weighted gene co-expression 
network analysis was used to identify clusters of co-expressed genes (modules) associated with the HD genotype. These 
HD-associated modules were annotated via text-mining to determine the biological processes they represented. Subsequently, 
the processes from mouse blood were compared with mouse brain, showing substantial overlap, including protein modifica-
tion, cell cycle, RNA splicing, nuclear transport, and vesicle-mediated transport. Moreover, the disease-associated processes 
shared between mouse blood and brain were highly comparable to those previously identified in human blood and brain. In 
addition, we identified HD blood-specific pathology, confirming previous findings for peripheral pathology in blood. Finally, 
we identified hub genes for HD-associated blood modules and proposed a strategy for gene selection for development of a 
disease progression monitoring panel.
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Abbreviations
CNS	� central nervous system
CSF	� cerebrospinal fluid
CPA	� concept profile analysis
DE	� differentially expressed
DGE	� differential gene expression
FDR	� false discovery rate
GO-BP	� Gene Ontology biological process
HD	� Huntington’s disease
HTT	� Huntingtin
logCPM	� log counts per million
logFC	� log fold change
mHTT	� mutant HTT

NfL	� neurofilament light
PCA	� principal component analysis
T1	� blood time point 1
T2	� blood time point 2
WGCNA	� weighted gene co-expression network analysis
WT	� wild-type

Introduction

Huntington disease (HD) is a neurodegenerative disorder 
characterized by motor, cognitive, and psychiatric symptoms 
[1]. Neurodegeneration starts in the striatum, but eventually 
affects the whole brain. This autosomal dominant disease is 
caused by an expanded CAG repeat in the huntingtin gene 
(HTT). Each CAG triplet in the DNA codes for a glutamine 
amino acid in the corresponding protein. Whereas HTT nor-
mally contains 6 to 35 CAG repeats, a CAG repeat length 
of 40 or more causes HD [1]. Reduced penetrance of HD 
disease symptoms is seen for a CAG repeat range from 36 
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to 39. The subsequent expansion of a stretch of glutamine 
amino acids in the HTT protein causes loss of its normal 
function and toxic gain of function, leading to protein aggre-
gation [2].

The HTT protein interacts with numerous other proteins 
and has many physiological functions. For example, HTT 
is thought to be involved in transcriptional regulation, such 
as promoting brain-derived neurotrophic factor (BDNF) 
expression, synaptic activity, anti-apoptotic activity, and 
nucleocytoplasmic shuttling [1]. The HTT protein is essen-
tial during development and remains widely expressed there-
after. Highest HTT protein levels are found in the central 
nervous system (CNS), followed by the stomach, testes, and 
bone marrow [3].

Many pathophysiological mechanisms caused by mutant 
HTT (mHTT) have been described since the discovery of the 
genetic cause of HD in 1993, but there is still no cure [4, 5]. 
Only symptomatic treatment is available so far, mainly tar-
geting neurochemical systems and addressing hyperkinesia. 
However, promising trials are ongoing at the moment that 
target the cause of HD and aim to lower mHTT expression 
[5, 6]. The development of any HD therapy would benefit 
from methods that can monitor disease progression and 
response to treatment.

Given the complex pathogenesis of HD, which involves 
various pathogenic pathways and non-specific secondary 
disease processes, a broad set of biomarkers is likely needed 
to provide complementary and comprehensive informa-
tion about the state and progression of disease. Up to now, 
both imaging biomarkers and biomarkers in biofluids have 
been described [7]. Imaging techniques have shown to be 
informative preclinically, but these are relatively expensive 
and difficult to adequately automate [7, 8]. In cerebrospinal 
fluid (CSF), levels of mHTT can provide important phar-
macodynamic information in huntingtin-lowering therapies. 
Moreover, neurofilament light (NfL) levels in CSF seem to 
reflect neuronal damage and show strong correlation with 
NfL levels measured in blood [7]. Blood biomarkers are 
desired as they are less invasive compared to CSF measure-
ments and have relatively low costs. Nonetheless, as NfL 
reflects the final common pathophysiologic pathway of HD, 
biomarkers involved in more upstream processes might be 
useful as well.

Peripheral tissue such as blood could be suitable for dis-
ease monitoring as HTT expression is ubiquitous and HD 
involves peripheral symptoms. However, finding blood bio-
markers is challenged by changes in blood reflecting non-
specific systemic processes rather than neuropathology 
in HD [7, 9]. To face this challenge, previous research by 
Mina et al. focused on similarity between functional signa-
tures linked to the HD phenotype present in both brain and 
blood of HD patients to enhance the chance of identifying 
disease-specific signatures in blood [8]. To identify disease 

signatures, Mina et al. used weighted gene co-expression 
network analysis (WGCNA). WGCNA detects gene sets 
with similar expression patterns (modules) in transcriptom-
ics data. It is assumed that the genes within these modules 
function together in a biological process. Mina et al. iden-
tified and compared signatures at the level of biological 
processes across blood and brain. The benefit of examin-
ing functional signatures is emphasized by the fact that the 
expression of individual genes is poorly preserved between 
brain and blood [10], while similar pathways might be 
affected in blood and brain through different genes. Indeed, 
HD-specific functional signatures in human blood were 
shown to adequately represent the signatures in HD brain 
and hence could offer potential to be used as biomarkers [8].

As mouse models are commonly used in preclinical stud-
ies and studies into pathogenic mechanisms, translational 
biomarkers are desired to monitor disease and therapeutic 
efficacy in these models. Hence, in this study, we aimed to 
identify and compare HD disease signatures in HD mouse 
blood and brain. To that end, RNAseq data was collected 
from blood and brain from YAC128 HD mice followed until 
on average 20 months of age presenting an advanced stage 
of disease. The YAC128 model contains the full human 
HTT gene with 128 CAG repeats and demonstrates a motor 
phenotype and neuropathology [11]. An intermediate time 
point of blood sampling around 13 months of age, when 
YAC128 mice start to show striatal neuronal loss [11], was 
included to assess disease progression. We applied WGCNA 
and identified modules associated with HD that we anno-
tated via text-mining to assess their biological function and 
compare functional signatures between blood and brain. We 
compared our findings with the disease signatures that were 
found in HD patients by Mina et al. [8] and prioritized genes 
for further investigation of their use in monitoring of disease.

Methods

Mice: Behavioral Testing and Tissue Collection

YAC128 transgenic HD mice maintained on the FVB/N 
strain [11] and wild-type FVB/N mice (WT) were obtained 
from Jackson Laboratories (Bar Harbor, Maine, USA) and 
bred in-house. All animal experiments were performed 
according to European Communities Council Directive 
2010/63/EU and were approved by the Leiden University 
animal ethical committee (AVD1160020171069). Only 
male mice were used in the experiment to reduce varia-
tion. Wild-type and YAC128 mice were matched for age, 
which was on average 7 months of age at the start of the 
study (Supplementary Table 1). We assessed body weight 
and performed beamwalk and rotarod tests in order to 
assess the motor phenotype of the mice. For the beamwalk 
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test, mice had to cross a plastic cylindrical bar (10 or 30 
mm diameter) with length of 80 cm connected between 2 
boxes (20 × 20 × 20 cm) elevated at 53 cm height. Mice 
were placed in the transparent box to cross the bar to an 
enclosed dark box. The average latency to cross, number 
of drops, and hind slips for 3 trials per testing day were 
reported. The rotarod test included 3 trials per testing day, 
where mice were placed on a rotarod accelerating from 5 
to 45 rpm. The maximum trial length was 500 s and the 
latency to fall was recorded. Statistical analysis was per-
formed in Graph Pad Prism 8, assessing the differences 
between WT and YAC128 mice by the two-stage linear 
step-up multiple testing procedure of Benjamini, Krieger 
and Yekutieli with a Q of 5%.

Blood samples were taken for RNA sequencing in 
the morning after 6 months (time point 1, T1) from tail 
vein and before sacrifice after 14 months (time point 2, 
T2) from tail vein and orbital sinus (for time line of the 
study, see Fig. 1). Blood was collected in RNAprotect 
animal blood tubes (Qiagen) following the manufac-
turer’s instructions, stored overnight at 4°C and subse-
quently frozen at −80°C until RNA isolation. Upon sac-
rifice, brainstem, cerebellum, striatum, and cortex were 
dissected, snap-frozen in liquid nitrogen, and stored at 
−80°C. At the start of the study, 8 mice per group were 
included. However, two transgenic mice deceased before 
the end of the study and blood sampling failed for one 
transgenic mouse at T2 (Table 1). The samples obtained 
from these mice were used for RNA sequencing and tech-
nical validation with qPCR and western blot.

RNA sequencing

RNA isolation, library preparation, sequencing, and 
sequence data processing were performed according to 
the procedure described by Toonen et al. [12]. In short, 
RNA was isolated from blood and brain using the RNeasy 
protect animal blood kit (Qiagen, Hilden, Germany) and 
PureLink RNA mini column kit (Thermo Fisher Scien-
tific) respectively according to the manufacturer’s instruc-
tions for total RNA isolation including DNAse treatment. 
Reduction of alpha and beta globin mRNA for RNA iso-
lated from blood was performed using the GLOBINclear 
magnetic bead kit for mouse/rat (Qiagen) following the 
manufacturer’s instructions. RNA was shipped to DeCode 
Genetics (Reykjavik, Iceland) where library preparation 
and RNA sequencing was performed. Quality of RNA was 
assessed with the LabChip GX using the 96-well RNA kit 
(Perkin Elmer). Non-strand-specific sample preparation 
was performed using the TruSeq Poly-A v2 kit (Illumina, 
San Diego, USA) following the manufacturer’s instruc-
tions. Primary processing and base calling was performed 
with Illumina’s HCS and RTA software. Demultiplexing 

and generation of FASTQ files was done with Illumina 
scripts (bcl2fastq v1.8). The FASTQ files for the mouse 
brain RNA can be found in the GEO repository, accession 
GSE107958, and blood samples are listed under acces-
sion GSE108069. Sequencing data was analyzed using 
the BIOPET Gentrap in-house pipeline (http://​biopet-​
docs.​readt​hedocs.​io/​en/​v0.7.​0/​pipel​ines/​gentr​ap/). The 
fastqc toolkit (v0.11.2) was used to evaluate sequencing 
quality (http://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​
cts/​fastqc/). Reads were cleaned with Sickle (v1.33 with 
default settings) and Cutadapt (v1.10, with default settings 
except for “-m 20”) and aligned to the mouse reference 
genome build 10 (GRCm38/mm10) using STAR aligner 
version 2.3.0e (non-default settings used by STAR: “--out-
FilterMultimapNmax 1 –outFilterMismatchNmax 10 –out-
SJfilterReads Unique”).

Differential Gene Expression Analysis

Differential gene expression (DGE) analysis was performed 
between WT and YAC128 for each time point in blood and 
each brain region separately using the edgeR package in R 
[13, 14]. Prior to DGE analysis, we filtered out genes with 
less than 4 counts per million (CPM) across all samples. In 
addition, we applied a GC-content correction using the con-
ditional quantile normalization (CQN) package to remove 
bias related to the GC content in the samples of both brain 
and blood tissue [15]. We calculated and included the offset 
obtained from the GC-content correction when estimating 
dispersion in edgeR. Regarding the DGE in each tissue, we 
included as contrasts for the likelihood ratio test each brain 
region (brainstem, cerebellum, cortex, striatum) and each 
time point (T1, T2). We considered genes with a false dis-
covery rate (FDR, Benjamini-Hochberg [16]) below 0.05 as 
significantly differentially expressed. Graphs were made in 
GraphPad Prism 8.

RT‑qPCR validation

Selection of differentially expressed (DE) genes for tech-
nical validation of our RNAseq results was based on the 
FDR, fold change, and expression levels. cDNA was synthe-
sized from RNA of blood, cerebellum, and striatum using 
the Transcriptor First Strand cDNA Synthesis Kit (Roche, 
Mannheim, Germany). We followed the manufacturer’s pro-
tocol, using random hexamer primers and incubating the 
RT reaction for 10 min at 25°C followed by 30 min at 55°C. 
qPCR was performed with the SensiMix SYBR Hi-ROX Kit 
(Bioline, London, UK), using 3 μL 10× diluted cDNA, 250 
nM forward and reverse primer, and 5 μL 2× SensiMix™ 
SYBR® in a total volume of 10 μL. The primers, designed 
with Primer3Plus [17], are listed in Table 2. The qPCR pro-
gram, executed on the LightCycler480 (Roche), started with 
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10-min pre-incubation at 95°C, followed by 45 amplification 
cycles (15 s at 95°C, 15 s at 60°C, 15 s at 72°C, acquire) 
and ended with a melting curve from 65 to 97°C (0.11°C/s). 
Expression values were corrected for primer efficiencies, as 
calculated by LinRegPCR [18], and related to the geometric 
mean of three housekeeping genes (Actb and Hprt for blood, 
cerebellum, and striatum in addition to Rpl22 for blood and 

cerebellum and Rpl27 for striatum). Statistical testing for 
differential gene expression between WT and YAC128 was 
performed in GraphPad 8, using the two-stage linear step-
up multiple testing procedure of Benjamini, Krieger, and 
Yekutieli [19], with Q=5% and without assuming a consist-
ent SD.

Fig. 1   Motor phenotype was confirmed in YAC128 mice. A Dur-
ing 14 months after start of the study, weighing and behavioral tests 
were performed. At 6 months (T1) and 14 months (T2), blood was 
withdrawn and after sacrifice brain material was isolated. B Weight 
was not significantly different between WT and YAC128 mice; C 
the average latency to fall from the rotarod was lower for YAC128 
mice than WT mice, significant at 2 and 8 months; D the average 

time needed to cross the beamwalk was not significantly different for 
YAC128 and WT mice despite showing a trend towards increased 
time needed for YAC128 mice; E YAC128 mice did show a higher 
number of drops from the beamwalk, significant after 6 and 8 months. 
(mean and SEM shown, * indicates adjusted P<0.05, n=6–8 mice per 
group)
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Protein Isolation

For protein isolation, snap frozen cerebellar and striatal tis-
sue was homogenized in RIPA buffer (50 mM Tris-HCl pH 
8.0, 150 mM NaCl, 1% IGEPAL CA-630, 0.5% DOC, 0.1% 
SDS) including protease inhibitor (1 tablet per 10 ml, Roche) 
with use of the bullet blender Storm 24 (Next Advance, 
Troy, USA). Protein concentration was determined using the 
Pierce BCA Protein Assay Kit (ThermoScientific, Rockford, 
USA) according to the manufacturer’s instructions. For stor-
age at −20°C, glycerol was added to an end concentration of 
5% and samples were snap frozen.

Western Blotting

Protein lysates were diluted to reach the indicated amount of 
protein and 4× Bolt LDS sample buffer (ThermoScientific) 
and 10× Bolt reducing agent were added. After incubat-
ing for 10 min at 70°C, samples were loaded onto a precast 
10% Bis-Tris Plus SDS page gel (ThermoScientific) next 

to a prestained protein ladder (#26617, ThermoScientific) 
and run for approximately 1 h at 100–150V in MES run-
ning buffer (ThermoScientific). Subsequently, proteins were 
transferred to a nitrocellulose membrane with the Trans-Blot 
Turbo Transfer System (Bio-Rad, Veenendaal, the Nether-
lands) using the 1.5 mm gel protocol (1.3 A, 25 V, 10 min). 
Membranes were blocked in 5% milk/TBS for 1 h at RT. 
Primary antibodies (Table 3) were incubated o/n at 4°C or 
for 3 h at RT. After washing with TBS, secondary antibodies 
(Table 3) were incubated at RT for 1 h, followed by another 
wash with TBS. Detection was performed with the Odys-
sey infrared imaging system (LI-COR, Lincoln, USA). For 
quantification, signal intensity was determined in Image 
Studio Lite Version 5.2 (LI-COR) after background correc-
tion. To correct for differences in protein loading, signal 
intensities relative to β-actin signal were calculated. Graph-
Pad 8 was used to determine statistically significant differ-
ences between the WT and YAC128 group, applying the 
two-stage linear step-up multiple testing procedure of Ben-
jamini, Krieger, and Yekutieli [19], with Q=5% and without 
assuming a consistent SD.

Weighted Gene Co‑expression Network Analysis

Prior to weighted gene co-expression network analysis 
(WGCNA), we performed principal component analysis 
(PCA) and hierarchical sample clustering to evaluate sample 
consistency and detect outliers within the different groups. 
In addition, we applied sample network analysis to remove 
sample outliers as described by Oldham et al. [20]. Two 
rounds of analysis were carried out, in which the samples 
with a connectivity Z-score lower than −2 were removed. An 

Table 1   Sample numbers available within the RNAseq dataset for 
blood time point 1 and 2 and brain.

T1 time point 1, T2 time point 2

Tissue Number of mice
WT

Number 
of mice
YAC128

Blood T1 8 7
Blood T2 8 5
Brain (brainstem, cerebellum, 

cortex, striatum)
8 6

Table 2   List of primers used for 
validation of RNAseq data with 
qPCR (5′-3′).

Gene Forward primer Reverse primer

Blood
  Oas2 GCA​TGA​ACA​TGC​CCT​TGT​AG AGC​TGG​GAT​TCT​CAT​TGG​AG
  Oas3 CGC​TAA​ACA​TCA​CCC​TAC​AGC​ AGT​CGA​GGA​AGA​TGA​CGA​GTTC​
  Cd226 CTT​TAC​AGA​TGT​CGC​TCA​GAGG​ CAG​TGA​AAC​TAA​CCC​TCC​AACG​
  Rtp4 GGA​GCC​TGC​ATT​TGG​ATA​AG TTC​TGC​AGC​ATC​TGG​AAC​AC
  Cd4 TTC​ACC​TGG​AAG​TTC​TCT​GACC​ AAC​GAT​CCT​TTC​TCC​CAT​GC

Brain
  Car2 ATA​AAG​CTG​CGT​CCA​AGA​GC AGC​CCC​AGT​GAA​AGT​GAA​AC
  Il33 GTC​CCG​CCT​TGC​AAA​ATA​AG TTA​TGG​TGA​GGC​CAG​AAC​G
  Igfbp5 GGG​TTT​GCC​TCA​ACG​AAA​AG TAG​GTC​TCT​TCA​GCC​ATC​TCG​
  Crhr1 AGC​AGT​GTG​AGA​GCC​TGT​CC AGC​GGA​CAC​CGT​AGA​AAA​AG
  Gabra5 ATG​ACC​CAA​ACC​CTC​CTT​G CAA​GAG​TCC​GTC​CAA​GAT​CC

Reference genes
  Actb GGC​TGT​ATT​CCC​CTC​CAT​CG CCA​GTT​GGT​AAC​AAT​GCC​ATGT​
  Hprt TCC​CTG​GTT​AAG​CAG​TAC​AGCC​ CGA​GAG​GTC​CTT​TTC​ACC​AGC​
  Rpl22 AGG​AGT​CGT​GAC​CAT​CGA​AC TTT​GGA​GAA​AGG​CAC​CTC​TG
  Rpl27 AAA​GCC​GTC​ATC​GTG​AAG​AAC​ GCT​GTC​ACT​TTC​CGG​GGA​TAG​
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exception was made for the cortex, where two samples were 
kept in our analysis despite a Z-score slightly below −2, 
because the hierarchical clustering dendrogram and PCA did 
not show obvious deviation from the other samples.

We applied the WGCNA algorithm (version 1.63) [21] in 
R to construct a weighted gene co-expression network for 
each data set separately. In order to meet the scale-free topol-
ogy assumption (R2 > 0.8) and obtain modules with com-
parable sizes for all regions, the soft thresholds and merg-
ing module thresholds for each network were respectively 
chosen as follows: blood T1—16, 0.0001; blood T2—16, 
0.1; brainstem—16, 0.1; cerebellum—10, 0.25; cortex—14, 
0.0001; striatum—18, 0.12. For all networks, the following 
parameters were chosen: minimum module size = 30 and 
method = “signed hybrid” regarding the type of network 
with deepSplit = 2.

To assess disease association of the modules from each 
network, we determined the correlation between each mod-
ule eigengene and the genotype (WT or YAC128) and the 
significance of the correlation by Pearson correlation as 
implemented in the WGCNA package. Modules with cor-
relation values >|0.5| and a P-value <0.05 were considered 
significant.

We performed WGCNA-based module preservation 
analysis to assess whether the HD-associated modules were 
preserved in the networks constituted for the individual brain 
regions as described before [22]. Module preservation statis-
tics were calculated using networkType = “signed hybrid”.

Module Annotation

In order to avoid potential bias from poorly annotated mouse 
genes during module annotation, we first mapped the mouse 
gene identifiers to their equivalent human orthologues using 
the Ensembl BioMart package (version 2.34.2; GRCm38 
and GRCh38 genome assemblies) [20]. Details considering 
the frequencies of missing human orthologues and one-to-
many human orthologues were documented (Supplementary 
Fig. 1).

We performed concept profile analysis (CPA) to anno-
tate the modules identified by WGCNA by applying the 
workflows developed by Mina et al. [8]. CPA is a functional 
analysis technique based on literature mining [23, 24]. The 
top 20 of Gene Ontology biological process (GO-BP) anno-
tations was selected for each module (Fig. 2). We grouped 
different GO-BP module annotations to a more general, 
semantically related term according to a manually com-
posed index (Supplementary File I). This enabled compari-
sons between modules at a biologically similar ontological 
level as the originally retrieved GO-BP annotations were 
reflecting different levels of the ontological tree. Annota-
tion of three randomly chosen modules with the curated 
GO Slim database using the GOTermMapper [25] showed 
results in line with annotation with our manually composed 
index (Supplementary file II). However, differences were 
also present as our index of grouped annotations was more 
detailed since we aimed to keep as much information as pos-
sible while creating a biologically meaningful overview of 
processes represented by the different modules.

Assessment of Module Annotation Overlap

We used the grouped module annotations of the HD-associ-
ated modules to assess the overlap between (a) mouse blood 
and brain and (b) human and mouse common blood-brain 
signatures. The overlap between the grouped module annota-
tions for all HD-associated modules per tissue combined was 
depicted by an online tool for Venn diagrams [26]. Labeled 
heat maps showing the pairwise overlap of grouped module 
annotations for modules for each comparison were created 
in R using the WGCNA package (version 1.63) [21].

The original module annotations obtained by CPA were 
used to statistically evaluate the module overlaps between 
mouse blood and brain. Module annotations from both 
blood time points were compared with the module annota-
tions from each brain region and the number of overlapping 
annotations were counted for each comparison. To statisti-
cally assess the module similarity based on the number of 

Table 3   Antibodies used for 
validation of RNAseq data with 
western blot

Primary antibodies

Protein Antibody number Dilution Species Company
β-actin Ab6276 1:5000 Mouse Abcam, Cambridge, UK
Gabra5 Ab175195 1:500 Rabbit Abcam
Car2 NB600-919-100 ug 1:2000 Rabbit Novus Biologicals, Littleton, USA
Plp1 PA3-150 1:1000 Rabbit ThermoScientific
Secondary antibodies
Name Antibody number Dilution Species Company
IRDye 800CW Anti-Rabbit 926-32211 1:10.000 Goat LI-COR
IRDye 680RD Anti-Mouse 926-68070 1:10.000 Goat LI-COR
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overlapping annotations, a randomization experiment was 
performed. For each module within a network, 100 random 
modules of the same number of genes were generated. Sub-
sequently, these modules were also annotated as described 
above using CPA. Pairwise comparisons of the annotations 
from the random modules from different tissues were per-
formed. To evaluate which original pairwise overlaps were 
significantly different from overlaps obtained from the ran-
dom modules, the Westfall and Young’s minP method [27] 
was used to assign P-values to the original module pairs. 
Module pairs were ranked based on the P-value and we 
assessed whether the blood modules predominantly over-
lapped with HD-associated or non-HD-associated brain 
modules.

Hub Gene Selection

For the blood modules showing an absolute correlation 
value with the HD genotype >0.65, hub genes were deter-
mined using the function for intramodular connectivity 
within the WGCNA package (version 1.63) in R. Hub genes 
were defined as the top 10% of intramodular connectivity 
(kWithin value) and subsequently filtered to meet the criteria 
of gene module membership >0.80 and gene significance 
>0.20. Based on the differential expression fold change 
and significance and level of expression of the hub genes, a 
selection of hub genes was made for which the expression 
as measured with RNAseq at T1 to T2 was assessed and 
linear regression analysis was performed in GraphPad 8 to 
compare the slopes between wild-type and YAC128 mice.

Results

Confirming the HD Phenotype in the YAC128 Mouse 
Model

Motor Phenotype Was Observed in YAC128 Mice

To confirm an HD phenotype in our YAC128 mice, we per-
formed behavioral tests assessing motor deficits (Fig. 2A). 
During the study, body weight was not significantly differ-
ent between YAC128 and control mice (Fig. 2B). YAC128 
mice showed decreased latency to fall on the rotarod test 
compared to WT mice, being significant at the start of the 
study and after 2 and 8 months (Fig. 2C). The beamwalk 
test depicted a trend towards increased crossing time for 
YAC128 mice compared to WT mice, though this trend 
was not significant (Fig. 2D). The average number of drops 
increased over time for the YAC128 mice, becoming sig-
nificantly different from WT mice after 6 months (Fig. 2E).

YAC128 Mice Exhibit an HD Gene Expression Phenotype 
in Both Blood and Brain

We applied DGE analysis to the RNAseq data from YAC128 
and WT mice to evaluate pathology at gene expression level 
and observed an HD phenotype both in the blood and brain 
(Supplementary Table 2). Cerebellum and striatum exhibited 
the highest number of significantly differentially expressed 
(DE) genes (FDR < 0.05) among the different brain regions: 
144 and 100 DE genes respectively. In brainstem, 59 genes 

Fig. 2   Workflow for description of WGCNA modules using CPA-
based annotations. WGCNA was used to identify modules of co-
expressing genes. These modules were annotated with Gene Ontol-
ogy terms of biological processes (GO-BP) using concept profile 

analysis (CPA). To compare the processes at a similar ontological 
level, the individual annotations were grouped based on a manually 
composed index
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were differentially expressed and cortex exhibited 32 DE 
genes. In blood, there were 7 DE genes at time point T1, 
whereas 169 DE genes were detected at time point T2, 
reflecting progression of a blood disease phenotype in these 
YAC128 mice.

To technically validate the results of DGE analysis of 
the RNAseq data with independent techniques, we selected 
significant DE genes (FDR < 0.05) with a log fold change 
> |0.6| and high RNA expression levels for analysis with 
qPCR and western blot. For qPCR, we selected 5 genes 
differentially expressed in blood T2 and 5 genes that were 
differentially expressed in cerebellum and/or striatum. We 
confirmed a significant difference between YAC128 and 
WT expression levels for 4 of the 5 selected genes for 
blood T2 with qPCR (Fig. 3A, D), and for 1 out of 4 genes 

in cerebellum (Fig. 3B, E). For the genes that showed no 
significant difference, the direction of change was similar 
as observed with the DGE analysis of the RNAseq data 
and the spread of data points generally followed the same 
pattern. For striatum, both genes selected for validation 
showed significantly different expression levels with qPCR 
(Fig. 3C, F). Furthermore, we assessed 2 genes for stria-
tum (Car2 and Plp1) and 1 gene for cerebellum (Gabra5) 
on protein level using western blot (Fig. 3G–J, Supplemen-
tary Figs. 2A–B, 3). For Gabra5, we observed a difference 
on protein level in cerebellum consistent with the RNAseq 
data, but this was not significant as a large variation was 
observed which was in line with the RNAseq and qPCR 
data. The two genes selected for striatum showed signifi-
cant differences in protein levels similar to the outcomes 

Fig. 3   Validation of RNAseq results with qPCR and western blot. 
A–C Expression levels measured by RNAseq in blood T2, cerebel-
lum, and striatum of WT and YAC128 mice. D–F Expression levels 
measured with qPCR relative to the geometric mean of three refer-
ence genes (Actb, Hprt, Rpl22, or Rpl27) presented on log scale. 
Representative graphs of two independent experiments. Mean expres-
sion levels are listed in Supplementary Table 3. G Western blot sig-
nal for Gabra5 and housekeeping gene β-actin in cerebellum of 6 

YAC128 mice and 8 WT mice (one blot); I RNAseq expression levels 
measured in striatum for additional genes selected for western blot 
validation; J Western blot signal for Car2, Plp1, and housekeeping 
gene β-actin in striatum of 5 YAC128 and 6 WT mice (representative 
images of two blots for Car2 and three blots for Plp1); H, K quanti-
fication of the Western blots shown in G and J respectively. (mean 
shown, * indicates adjusted P<0.05 and *** adjusted P<0.001, norm. 
cpm: normalized counts per million)
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of DGE analysis. Even though qPCR and western blot are 
techniques that are less sensitive than RNAseq, challeng-
ing validation of genes with low expression levels such 
as Gabra5, we found corresponding changes showing the 
validity of our RNAseq data.

Functional Annotation of WGCNA Modules Revealed a Wide 
Range of Deregulated Processes in Both Brain and Blood 
of YAC128 Mice

To further describe the YAC128 phenotype, WGCNA was 
applied to each tissue separately to identify modules of co-
expressed genes correlating with the HD genotype. Prior to 
performing WGCNA, the data were examined for sample 
outliers as these could easily affect outcomes when sample 
size is small. PCA showed a clear separation of the different 
brain regions and the two blood time points (Supplemen-
tary Fig. 4). However, two brainstem and two cerebellum 
samples were identified as outliers. This was confirmed by 
sample network analysis which identifies outliers based 
on network connectivity normalized to a Z-score (Supple-
mentary Fig. 5). Similarly, for both blood T1 and T2, two 
samples were classified as outliers (Supplementary Fig. 6). 
Hence, these samples were removed and with the remain-
ing number of samples (12 for brainstem, cerebellum, blood 
T1, and blood T2 and 14 for cortex and striatum), networks 
were created for each tissue consisting of clusters of co-
expressed genes (modules) applying WGCNA. On average, 
the module size in the different networks was comparable 
with mean module size ranging from 153 to 233 genes per 
module (Supplementary Table 4).

Next, we assessed the modules that showed significant 
correlation (P < 0.05) with the HD genotype (Supplemen-
tary Figs. 7, 8). Assessing brain first, the highest number of 
HD-associated modules occurred in brainstem (17 modules), 
whereas only 7 modules from striatum were associated with 
the genotype. Cerebellum exhibited 11 HD-associated mod-
ules and cortex 10. Both positive and negative correlations 
of the module eigengenes with the HD genotype were found, 
indicating respectively overall upregulation or overall down-
regulation of gene expression within a module in YAC128 
mice compared to WT mice.

To determine which biological processes are rep-
resented by the HD-associated modules, we examined 
the module annotations obtained by CPA (Fig. 4, Sup-
plementary File III). Since these original annotations 
reflected different levels of the GO tree, we grouped sev-
eral annotations under their most representative parental 
annotations (“grouped module annotations”) to enable 
a functional comparison between the different regions 
(Figure 1, Supplementary File I). The grouped annota-
tions of modules that showed the strongest upregula-
tion (r ≥ 0.8) in YAC128 brain mainly represented “cell 

cycle,” “vesicle-mediated transport,” “nuclear transport,” 
“protein modification,” and “proteolysis.” “Glial cell dif-
ferentiation” and “myelination” were grouped module 
annotations that occurred most frequently in the strongest 
downregulated (r ≥ 0.8) modules of brainstem and stri-
atum. Other grouped module annotations that occurred 
in HD-associated modules in brain were “RNA process-
ing,” “autophagy,” “translation,” “cellular component 
organization,” “chromosome organization,” and “histone 
modification.” Although there were differences in the 
number of HD-associated modules, the grouped module 
annotations did not show major differences among all 
four brain regions indicating that eventually mHTT exerts 
similar effects across the brain at late-stage pathology in 
20-month-old YAC128 mice.

In blood T1, 5 HD-associated modules were detected 
with WGCNA. The grouped module annotations of upreg-
ulated HD-associated modules included “leukocyte-medi-
ated immunity,” “cytokine activity,” “viral immunity,” and 
“protein modification” (Fig. 5A). Only one module was 
downregulated which represented the grouped module 
annotations “leukocyte-mediated immunity” and “nuclear 
transport.” Interestingly, when looking at the ungrouped 
module annotations related to immunity of these blood T1 
HD-associated modules, the upregulated modules mainly 
contained processes related to innate immunity such as 
macrophage and neutrophil activation whereas the anno-
tations from the downregulated module included T cell 
immunity and antigen presentation (Supplementary File 
III–Blood T1), indicating that an innate immune response 
is evoked.

A higher number of HD-associated modules was observed 
in blood T2 (11 modules) compared to blood T1, pointing 
towards progression of disease that was observed in the DGE 
analysis as well. CPA-based grouped module annotations 
showed that the modules mainly represented “protein modi-
fication,” “histone modification,” “nuclear transport,” “RNA 
processing,” and “DNA repair” (Fig. 5B, Supplementary File 
III). In contrast to blood T1, the majority of HD-associated 
modules was downregulated in blood T2 (Fig. 5). Whereas 
blood T1 modules were mainly involved in immunity, only 
two modules represented leukocyte-mediated immunity in 
blood T2. The module bisque4 showed annotations related 
to “leukocyte chemotaxis and activation.” Interestingly, 10% 
of the genes (21 genes) within module bisque4 occurred in 
blood T1 in module darkred, which was involved in immu-
nity as well but upregulated instead of downregulated. This 
switch to downregulation is in line with the observation 
that immunity-related processes fades into the background 
at time point 2. Blood T2 module pink contained annotations 
mainly related to T cells and shared 18% of its genes (37 
genes) with the T1 module lightyellow, which was downreg-
ulated as well. Furthermore, when we looked at the grouped 
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module annotations, blood T2 modules demonstrated several 
annotations that were not found in blood T1, such as “his-
tone modification,” “chromosome organization,” “ribosome 
biogenesis,” “tumor suppressor activity,” and “cholesterol” 
(Figs. 6, 7, 8) indicating disease progression.

Gene Expression Changes Compared Between Brain 
and Blood

Differential Gene Expression Analysis Shows a Small 
Overlap Between Brain and Blood

Fig. 4   Overview of significant HD-associated WGCNA modules 
in the different brain regions. For significant modules identified in 
brainstem (A), cerebellum (B), cortex (C), and striatum (D), the cor-
relation with the HD genotype and its P-value are shown (with WT 

genotype as reference group). Furthermore, the two most frequently 
occurring CPA-based grouped annotations are depicted. If this top 
2 contained shared positions ending up with >3 processes, only the 
main occurring grouped annotation was shown (indicated with *)
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After confirming HD pathology in YAC128 mice, we 
wanted to assess whether gene expression changes observed 
in brain are reflected in blood. First, we compared the results 
of differential gene expression analysis in brain and blood 
described above. The 30 DE genes with highest absolute 
fold change for each tissue are combined in Fig. 6 and their 
differential expression was assessed in all regions. Only two 
of these genes were differentially expressed in both blood 
and brain (Cmpk2 and Nt5e), confirming poor preservation 
of gene expression changes among these two tissues in line 
with previous studies [10]. Nevertheless, 16 genes were dif-
ferentially expressed in multiple brain regions, among which 
3 genes in all four regions (Zfp488, Acy3, and Il33). Con-
sidering the blood tissue, 4 DE genes occurred in both time 
points (Cmpk2, Rtp4, Oas2, Ephb6).

WGCNA‑Based Analysis Reveals Overlap in Brain and Blood 
Pathology

Since the limited overlap between brain and blood on gene 
level, we compared HD-associated gene expression changes 
on a functional level using the grouped annotations of the 
WGCNA modules. To examine the disease-associated 
processes shared between brain and blood, we studied the 
overlap between the grouped module annotations (Figs. 7, 
8, Supplementary Table 5). In total, 23 grouped module 
annotations overlapped between brain and both time points 

in blood, such as “apoptosis,” “nuclear transport,” “pro-
tein localization,” and “vesicle-mediated transport.” Three 
grouped module annotations were shared between brain and 
only blood T1 specifically: “intracellular transport,” “cell 
recognition,” and “cell adhesion.” Seven grouped module 
annotations were shared between brain and blood time point 
T2. Among these were “cholesterol,” “ribosome biogenesis,” 
and “histone modification.”

Blood‑Brain Overlap in YAC128 Mouse Model Reflects 
Findings in Human HD

We compared the disease-specific signatures identified 
in the YAC128 mice with the previously identified signa-
tures in human HD brain and blood [8] to assess how well 
the YAC128 model reflects HD pathology in blood. The 
original annotations from these human HD-associated mod-
ules from three brain regions (caudate nucleus, Brodmann 
area 4, cerebellum) and blood identified by Mina et al. [8] 
were grouped similarly as was done with the mouse mod-
ules, ending up with 38 unique grouped annotations that 
showed overlap between human brain and blood. From the 
33 annotations that were found both in mouse blood and 
brain, 24 were also found in the overlap of annotations 
between human blood and brain (Fig. 9, Supplementary 
Table 6). These 24 annotations included the human blood-
brain disease-specific processes highlighted by Mina et al. 

Fig. 5   Overview of significant WGCNA modules in blood at time 
point T1 (A) and T2 (B). The correlation and P-value are shown for 
each module (with WT genotype as reference group). Furthermore, 
the two most frequently occurring CPA-based grouped annotations 

are depicted. If this top 2 contained shared positions ending up with 
>3 processes, only the main occurring grouped annotation was shown 
(indicated with *)
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[8], such as “leukocyte-mediated immunity,” “cell cycle,” 
“protein modification,” and “protein transport,” suggesting 
that the YAC128 model reflects human disease to a large 
extent. However, the annotations “immune response” and 
“cytokine activity” were shared in human blood and brain 
but were not present in mouse brain, suggesting that the 
immune component is less prominent in mice.

Blood Pathology Showing Similarity with Brain Pathology

We assessed the similarity between brain and blood mod-
ules (in terms of the total number of overlapping mod-
ule annotations) in order to prioritize blood modules 
that exhibit a similar pathology to brain and could be 

potentially used for monitoring the disease. Consider-
ing that overlap will always be found to some extent, we 
assessed the statistical significance of the pairwise similar-
ity of the HD-associated blood modules with each brain 
module (both associated with HD and not). To that end, 
we performed a randomization experiment in which the 
overlap in the original annotations between two modules 
was compared to the pairwise overlapping annotations 
between one hundred random modules of equal size gen-
erated for both original modules from each network. The 
P-value obtained by this permutation test indicates the 
specificity of the original overlap found when compared 
to what could be expected with random annotations. The 
module pairs were ranked based on the P-value to indicate 

Fig. 6   Occurrence of grouped annotations for HD-associated mod-
ules in brain regions and blood time points. The presence of a 
grouped annotation in one or more HD-associated modules of a brain 
region or blood time point 1 (T1) or 2 (T2) is indicated by the light 

green color while the dark green bar depicts how often the grouped 
annotation occurred in the HD-associated modules of this region (full 
bar = 44 counts). Bold annotations occurred both in brain and blood
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Fig. 7   Results of DGE analysis 
shown for the top 30 differen-
tially expressed genes of each 
tissue. Top 30 differentially 
expressed genes based on 
absolute fold change for each 
tissue, either being up- (red), 
down-regulated (blue) or not 
differentially expressed (white). 
When differentially expressed 
but not present in the top 30 of 
this tissue, the gene is depicted 
either light red or light blue. B1: 
blood time point 1; B2: blood 
time point 2; Br: brainstem; Cb: 
cerebellum; Cx: cortex; Str: 
striatum
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the specificity of an observed overlap (Supplementary File 
IV). Multiple testing correction to the P-values of the pair-
wise overlap between two regions yielded no significant 
overlap (FDR < 0.05, data not shown). Nonetheless, using 
the ranking based on the unadjusted P-value, we could 
identify HD-associated blood modules that rather showed 
overlap with HD-associated brain modules than with non-
HD associated brain modules, indicating similar pathol-
ogy. Assuming that functional overlap of blood modules 
with HD pathology in brain helps to identify HD-specific 
processes in blood, this group of blood modules could be 
valuable in monitoring HD in blood.

For further investigation regarding the use of the identi-
fied blood modules for disease monitoring, we selected the 
blood modules with an absolute correlation with the HD 
genotype >0.65. Among these were two blood T1 (lightyel-
low, sienna3) and seven blood T2 modules (bisque4, 
lightyellow, pink, sienna3, skyblue1, thistle1, and yellow) 
that demonstrated predominant overlap with HD pathol-
ogy in brain. To select representative genes for each blood 
module, we performed connectivity analysis to identify hub 
genes as these are hypothesized to have a central regulatory 
function within the module. For each module, the top 10% 
of genes with the highest intramodular connectivity were 
defined as hub genes. In addition to their intramodular con-
nectivity, we looked at the unadjusted P-value of differential 
expression for these genes, to see whether they would be 
able to distinguish disease from control. As gene expression 
must be sufficiently high to be detected, we also assessed the 
log counts per million (logCPM) indicating the expression 
level (Fig. 10A).

Based on the range of the differential expression fold 
change, P-value, and counts per million of the hub genes, the 
most promising modules presenting pathology shared with 
brain were blood T1 modules lightyellow and blood T2 mod-
ules pink, sienna3, yellow, and thistle1. Blood T1 module 
lightyellow represented T cell immunity and nuclear trans-
port and showed predominant overlap with HD-associated 
brain modules. In particular, it resembled cerebellar modules 
mediumpurple3, showing antigen presentation and lympho-
cyte activation, and blue4, involved in nuclear transport. All 
hub genes detected were differentially expressed (unadjusted 
P-value <0.05), of which the following remained significant 
after multiple testing correction: Fam118a (log fold change 
(logFC) = −0.56), Ephb6 (logFC = −0.65). Blood T2 mod-
ule pink also showed overlap with cerebellar module medi-
umpurple3. Hub gene Tcf7, mainly expressed by T cells, was 
differentially expressed, although did not reach significance 
after multiple testing correction (logFC = −0.69). Blood T2 
module sienna3 was related to RNA splicing and nuclear 
transport: annotations that were shared with brainstem mod-
ules salmon4, lightcyan1, and darkmagenta and cerebellar 
module blue4. Hub genes showing the strongest downregu-
lation were Orm2 (logFC = −0.64; P-value < 0.05; FDR 
< 0.05) and Dgka (logFC = −0.75; P-value < 0.05; FDR 
> 0.05). Blood T2 module yellow overlapped with cerebel-
lar modules firebrick, darkorange, and coral1, related to 
protein and histone modification. Several hub genes were 
differentially expressed and showed high fold change, for 
instance Med12l (logFC = 1.45) and Tmem140 (logFC = 
1.11). Blood T2 module thistle1 showed the highest posi-
tive correlation with the HD genotype and depicted overlap 
with the cerebellar modules darkorange and coral1, based 
on annotations related to protein modification. Among the 
hub genes that were differentially expressed were the genes 
Stx11 (logFC = 0.69), Mbd2 (logFC = 0.67), Ankib1 (logFC 
= 0.54), and Sdcbp (logFC = 0.52).

In addition to the annotation-based analysis, we per-
formed module preservation analysis to identify HD-asso-
ciated blood modules that are preserved in brain, based on 
network properties [22]. This method evaluates whether 
a module in the blood network (reference network) can 
be found in the brain networks (test network) by com-
paring the connectivity and density of the genes in the 
blood module to the test network. Evidence for preserva-
tion is weak when a Z-score between 2 and 10 is obtained 
and strong for Z-scores above 10. We found a few blood 
modules in preserved brain networks, with weak pres-
ervation scores (Supplementary Fig. 10). This is in line 
with previous research where gene preservation between 
blood and brain in control samples was found to be poor 
[10]. Two HD-associated blood T2 modules showed weak 
preservation in striatum (black and lavenderblush3) and 

Fig. 8   Overlap between the grouped annotations assigned to HD-
associated modules in blood time points and brain. Comparison 
shown of grouped annotations from the first (blood T1) and second 
(blood T2) time point in blood and the four brain regions investigated 
combined (brain: brainstem, cerebellum, cortex, striatum)
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the HD-associated blood T2 module yellow was preserved 
in brainstem and striatum. There was a minor overlap 
between the functional annotation-based analysis and the 
module preservation analysis, exhibiting again their com-
plementary character as was found in Mina et al. [8]. The 
only overlap between the two approaches was the blood T2 
module yellow, as the other two identified by the preserva-
tion analysis (black and lavenderblush3) were not passing 
our criteria for HD association (presenting with r<|0.65|).

Blood Modules Presenting Blood‑Specific Pathology

Among the modules in blood that were highly associated 
with HD (r > |0.65|), there were two modules that exhibited 
a blood specific pathology as they did not show predominant 
overlap with HD-associated modules in brain (Supplemen-
tary File IV). Blood T1 module lightsteelblue1 was highly 
correlated to HD (r = 0.82) and was mainly related to viral 
immune response, but also to cell migration. The hub genes 
included the differentially expressed genes Oas1a (logFC 
= 1.15), Mx1 (logFC = 1.01), and Cmpk2 (logFC = 0.71) 
(Fig. 10B). Furthermore, lightsteelblue1 presented Irf7 as 
hub gene though not significant after multiple testing cor-
rection. Regarding blood T2, the module ivory exhibited 
a similar behavior. This module was related to ribosome 
assembly, DNA repair, and cell cycle check and presented 
hub genes that showed differential expression, such as Igflr1 
(logFC = −0.55), Mlh3 (logFC = −0.50), Acaa2 (logFC = 
−0.46), and Mrps14 (logFC = −0.53). Hub gene Dnah8 
(logFC = −0.46) seemed to be differentially expressed as 
well (P-value < 0.01, FDR = 0.08).

Longitudinal Hub Gene Expression Differs Between YAC128 
and Control Mice

Due to their high amount of connectivity within a module, 
hub genes are hypothesized to reflect key drivers of change 
and, thus, they could serve as potential biomarkers. We 
sought to assess whether the hub genes identified in T1 and 
T2 could serve as biomarkers indicating disease progression. 
We studied the expression changes from T1 to T2 for the 
aforementioned hub genes (Fam118a, Ephb6, Tcf7, Orm2, 
Dgka, Med12l, Tmem140, Stx11, Mbd2, Ankib2, Sdcbp, 
Oas1a, Mx1, Cmpk2, Irf7, Igflr1, Mlh3, Acaa2, Mrps14, 
Dnah8) (Fig. 11, Supplementary Fig. 11, Supplementary 
Table 7). For genes showing a significant difference in 
change over time between WT and YAC128 mice, longitu-
dinal measurement could be informative regarding disease 
progression. The change in expression from T1 to T2 was 
significantly different between WT and YAC128 mice for 
the following genes: Acaa2, Ankib1, Mbd2, Mrps14, Orm2, 
Sdcbp, Stx11 (Fig. 11). Acaa2 and Mrps14 were part of T2 
ivory module (reflecting cell cycle and ribosome biogen-
esis). Both are mitochondrial proteins and show a tendency 
towards a negative slope in YAC128 mice in contrast to 
wild-type mice. Acaa2, acetyl-CoA acyltransferase 2, is 
involved in the final step of the mitochondrial fatty acid beta-
oxidation spiral. Mrps14, mitochondrial ribosomal protein 
S14, is involved in mitochondrial translation. Sdcbp, Mbd2, 
Ankib1, and Stx11 are hub genes of T2 thistle1 (representing 
protein modification, histone modification, protein localiza-
tion). Whereas wild-type mice show downregulation of these 
genes over time, YAC128 mice exhibit increasing levels of 
expression over time. Sdcbp, syndecan-binding protein, is an 
adapter protein involved in for instance trafficking of trans-
membrane proteins. Mbd2, methyl-CpG-binding domain 
protein 2, binds methylated CpG islands in promoters and 
recruits histone deacetylases and DNA methyltransferases, 
acting as transcriptional repressor. Ankib1, ankyrin repeat 
and IBR domain containing 1, is involved in ubiquitina-
tion, being part of E3 ligase complex. Stx11, syntaxin 11, 
is a SNARE protein regulating protein trafficking from late 
endosomes to the trans-Golgi network. Orm2, orosomucoid 
2, hub gene of T2 sienna3 (representing RNA processing, 
nuclear transport, and protein modification), is a transport 
protein thought to be involved in immune activity during an 
acute-phase reaction. Whereas levels are stable to increasing 
in wild-type mice, YAC128 mice show decreasing levels 
over time.

Fig. 9   Overlap of blood-brain common grouped annotations between 
YAC128 mice and HD patients. In mice, 33 grouped annotations 
were shared between blood and brain. Of these, 24 occurred in the 
human common grouped annotations as well
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Discussion

In this study, we identified HD disease signatures in RNAseq 
data from brain and blood of the YAC128 mouse model 
using WGCNA. After validation of our RNAseq results 
by qPCR and western blot, we used WGCNA to identify 
5 to 17 clusters of co-expressed genes (modules) per tissue 
associated with the HD genotype. There was a large overlap 
in the disease-related processes between brain and blood, 
which was highly comparable to previous findings in human 
HD brain and blood both showing for instance cell cycle, 
leukocyte-mediated immunity, and protein modification [8].

The HD-associated modules we identified in YAC128 
brain exhibited a wide range of deregulated processes in 
accordance to previous studies on the molecular pathogen-
esis of human HD and various mouse models [2, 28–31], 
such as altered protein modification, cell cycle, cellular 
transport, RNA processing, autophagy, proteasome deg-
radation, chromatin organization, and cellular respiration. 
We also detected processes specific for the nervous system 
previously described in HD such as synaptic function, myeli-
nation, and glial cell differentiation [28, 31, 32]. However, 
the highest number of HD-associated modules was identi-
fied in brainstem and cerebellum, followed by cortex and 
striatum, whereas Mina et al. identified most changes in the 
human HD brain in striatum [8]. These discrepancies are 
to be expected as the human brain tissue reflects the end 
stage of the disease, showing vast striatal pathology, and the 
YAC128 mouse model shows a modest phenotype reflecting 
earlier stages of the disease. Interestingly, both human and 
murine data identify more HD-associated modules in cer-
ebellum compared to cortex which is in line with increasing 
evidence of cerebellar pathology in human HD brain [33].

We observed a progression of the disease in blood, indi-
cated by a higher amount of differentially expressed genes 
and more HD-associated modules at blood time point 2 (T2) 
compared to time point 1 (T1). HD-associated modules at T1 
were mainly related to the immune response, HD-associated 
modules at T2 were mostly related to processes such as cho-
lesterol, cell cycle, protein transport, chromosome organiza-
tion, and DNA repair. The progression in cholesterol distur-
bance has been found before in YAC128 blood plasma by 
Valenza et al. [34], who showed decreased plasma levels of 
cholesterol and its precursors.

As we compared YAC128 brain and blood, we detected 
a large overlap of 33 grouped module annotations within 

their HD-associated modules, including protein modifi-
cation, nuclear transport, and RNA splicing. Of these 33 
shared grouped annotations, 23 were found in both time 
points in blood, but seven grouped module annotations were 
only associated with the latest time point in blood including 
ribosome biogenesis and cholesterol. This indicates that the 
wide range of deregulation induced by mutant HTT seen in 
brain becomes more apparent in blood as disease progresses.

The relevance of our findings to the pathology found in 
patients was indicated by the large overlap with previous 
results in human HD [8]. Of the 33 common disease–asso-
ciated grouped annotations in YAC128, 24 were identified 
as common blood-brain processes in human HD as well by 
Mina et al. including cell cycle, protein modification, and 
protein transport [8]. A study comparing human blood and 
brain from HD patients using a different approach also found 
deregulation of RNA splicing and processing and DNA 
repair [33]. However, these studies comparing human blood 
and brain both highlight immune processes as shared disease 
processes [8, 35]. In contrast, although we find immune-
related processes in HD-associated modules, these are not 
as prominent as the immune response shown in brain tissue 
from human HD [8, 35, 36]. This difference is in line with 
the poor preservation of human immune-related modules in 
brains of HD mouse models (including YAC128) found by 
Neueder et al. [34] and could be due to differences between 
human and mouse immunology [37].

The biomarker potential of the processes we identified is 
confirmed by several other studies. For instance, Puorro and 
colleagues showed an increase in autophagy marker expres-
sion in peripheral blood mononuclear cells of HD patients 
using qPCR [38]. Areal et al. detected downregulation of 
the microtubule-associated motor protein dynein axonemal 
heavy chain 6 (DNAH6), involved in cellular component 
organization, by microarray analysis in striatum of hQ111/
Q111 mice and confirmed this with qPCR in both mice stria-
tum and blood of HD patients [39]. In addition, Castaldo 
et al. recently described the potential of assessing telomere 
length with qPCR and DNA double-strand breaks using fluo-
rescence-activated cell sorting (FACS) as predictive markers 
[40]. As we also described autophagy, cellular component 
organization, and DNA repair, our study provides more evi-
dence for aforementioned markers. Interestingly, we identi-
fied the dynein axonemal heavy chain 8 (DNAH8) as hub 
gene of HD-associated blood T2 module ivory.

Furthermore, our study identified modules that showed 
blood-specific pathology. These modules were highly cor-
related with the HD genotype but showed no predominant 
overlap with brain pathology. Blood-specific pathology at 
T1 was related to viral immunity and cell migration, while 
the module annotations at T2 pointed at ribosome assembly, 
DNA repair, and cell cycle.

Fig. 10   Hub genes and their information from differential gene 
expression analysis. A HD-associated (r>0.65) blood modules show-
ing predominant overlap with HD-associated modules in at least one 
brain region; B HD-associated (r>0.65) blood modules that did not 
predominantly show overlap with HD-associated brain modules sug-
gesting blood-specific pathology

◂
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Finally, our findings provide additional gene targets that 
could be used as biomarkers. It is generally thought that a 
complementary set of biomarkers will be required to suc-
cessfully monitor and predict HD [7]. This is also empha-
sized by Mastrokolias et al., who previously proposed a 
blood biomarker gene panel by correlating gene expression 
with clinical scales, including five genes involved in differ-
ent functions, such as inflammation and circadian rhythm 
[41]. The authors emphasize that different sets of biomarkers 
should be developed and validated, involving multiple genes 
[41]. Moreover, our analysis at the functional level argues 
for a systems-level approach. Rather than focussing on the 
behavior of individual genes, even in a panel, the combined 
behavior of a group of functionally related genes may prove 
a more robust biomarker for HD. The hub genes we present 
that showed expression levels sufficient for detection by 
qPCR and differential expression between HD and control 
would be suitable for further development of a monitoring 
panel. Interestingly, 3 of the 5 hub genes (Irf7, Mx1, Cmpk2) 
that we identified in blood T1 module lightsteelblue1 were 
found to be differentially expressed in human peripheral 
blood as well in a recent RNAseq study [42].

From the identified hub genes, 7 genes (Acaa2, Ankib1, 
Mbd2, Mrps14, Orm2, Sdcbp, Stx11) showed a significant 
change in expression from T1 to T2 between wild-type and 
YAC128 mice. These genes are involved in HD-related 
processes we identified, such as vesicle-mediated transport 
(Stx11), protein localization (Sdcbp), protein modification 
(Ankib1), regulation of transcription (Mbd2), and immu-
nity (Orm2). Interestingly, Acaa2 and Mrps14 are both 
mitochondrial proteins, corresponding to the mitochondrial 

dysfunction generally implicated in HD [28]. To assess their 
potential application as biomarkers of disease progression, 
future research into their longitudinal expression during the 
life of YAC128 mice is required. In addition to that, their 
correlation with other phenotypic markers or response to 
treatment will need to be assessed.

Despite the promising nature of the disease signatures, 
we identified for monitoring disease pathology in HD, our 
study had however some limitations. The sample size within 
our data sets ranged between 12 and 14 mice, which is just 
below the recommended number of 15 for WGCNA [21]. 
The lower sample size increased the vulnerability to outly-
ing data. We tried to reduce this by removing outliers after 
sample outlier analysis. Secondly, for the module annotation, 
we applied the same literature database that was used by 
Mina [8], as we wanted to compare the murine results with 
the human findings that were discovered in the same publi-
cation. However, this database has literature information up 
to March 2012 and certain specific functional annotations 
might change for both human and mouse.

Conclusions

We observed progression in blood pathology in the YAC128 
HD mouse model, showing similarities with disease-related 
processes that occur in brain but also identifying HD pathol-
ogy that was specific for blood. Disease signatures shared 
between mouse blood and brain show high overlap with sig-
natures present in human blood and brain. Using network 

Fig. 11   Longitudinal hub gene expression for YAC128 and control 
mice. Expression levels as measured by RNAseq on T1 (1) and T2 (2) 
for wild-type (WT, black) and YAC128 mice (pink). The slopes for 

wild-type and YAC128 mice were significantly different (P < 0.05, 
see Suppl. Table 7). (n=6–8 mice per group, norm. cpm: normalized 
counts per million)
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and expression characteristics, we selected hub genes as 
representatives for the identified disease signatures. Our 
systems approach provides several biological processes and 
genes for further investigation of their role in monitoring 
disease in blood.
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