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Abstract: Variation in metabolite levels reflects individual differences in genetic and environmental
factors. Here, we investigated the role of these factors in urinary metabolomics data in children. We
examined the effects of sex and age on 86 metabolites, as measured on three metabolomics platforms
that target amines, organic acids, and steroid hormones. Next, we estimated their heritability in a
twin cohort of 1300 twins (age range: 5.7–12.9 years). We observed associations between age and
50 metabolites and between sex and 21 metabolites. The monozygotic (MZ) and dizygotic (DZ)
correlations for the urinary metabolites indicated a role for non-additive genetic factors for 50 amines,
13 organic acids, and 6 steroids. The average broad-sense heritability for these amines, organic
acids, and steroids was 0.49 (range: 0.25–0.64), 0.50 (range: 0.33–0.62), and 0.64 (range: 0.43–0.81),
respectively. For 6 amines, 7 organic acids, and 4 steroids the twin correlations indicated a role for
shared environmental factors and the average narrow-sense heritability was 0.50 (range: 0.37–0.68),
0.50 (range; 0.23–0.61), and 0.47 (range: 0.32–0.70) for these amines, organic acids, and steroids. We
conclude that urinary metabolites in children have substantial heritability, with similar estimates for
amines and organic acids, and higher estimates for steroid hormones.

Keywords: heritability; classical twin design; metabolites; urine; children; amines; organic acids;
steroid hormones
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1. Introduction

Metabolites are small, low molecular weight (<1.5 kDa) molecules that are involved in
cellular metabolism [1]. Metabolites have many functions in the human body, including
signaling, energy storage, and structure formation [2]. The extensive profiling of metabo-
lites in biofluids, cells, or organisms, i.e., metabolomics, provides the means to investigate
metabolic regulation [3], and has been successfully applied to elucidate biological mech-
anisms and to identify drug targets or disease biomarkers [4]. Individual differences in
metabolite levels reflect variation in exogenous factors, such as diet, medication use, or
smoking behavior, and endogenous factors, such as sex, and age [5]. Genetics is an endoge-
nous factor that has both direct and indirect influences through lifestyle and behavior.

Previous heritability studies of metabolomics data in various biofluids found that
about 50% of the variance in metabolite levels is due to additive genetic factors [6,7]. Non-
additive (i.e., dominant genetic effects) and common (shared) environmental factors (i.e.,
shared by family members) generally have a minor influence on metabolite levels [8–13].
Some nuance on the contribution of genetic factors is possible: the contribution to individual
differences in metabolite levels differs per metabolite class and subclass, with generally
somewhat higher heritability estimates observed for lipids and lipid-like molecules than
for organic acids and derivatives [14–21]. The genetic architecture of many subclasses of
metabolites has yet to be studied in detail. For example, steroid hormones, compared with
other lipids, are generally not well represented on broad metabolomics platforms, and are
less frequently investigated with targeted analytical platforms. Targeted metabolomics
studies that include steroid hormones show a substantial contribution of genetic factors to
cortisol and cortisol metabolism, androgens, and estrogens in various biofluids [22–25] and
sometimes report sex differences in the contribution of genetic or shared environmental
factors to steroid hormones [26].

With the exception of steroid hormones, the earlier studies have mainly focused on
metabolite levels in serum or plasma samples in (young) adults of European ancestry. Rela-
tively little is known about the metabolome in children, in different tissues, or in different
ancestries. Here, we aimed to elucidate the genetic etiology of the urinary metabolome
in children. Urine is an interesting biological matrix for metabolomics studies as it can be
collected non-invasively in large quantities. Urine metabolites provide a snapshot of an
individual’s exposure and endogenous (water-soluble) waste clearance and reflect filtration
of blood in the kidneys at approximately 120mL per minute [27]. Urine contains a wealth
of information on metabolic activity, and to date more than 3000 metabolites have been
identified in urine [28,29]. One investigation of the urinary metabolome in children re-
ported high estimates for SNP-based heritability [30], suggesting a substantial contribution
of genetic factors to urinary metabolite levels in children.

The ACTION Biomarker Study was designed to investigate the etiology of childhood
aggression and to assess the role of the genome, epigenome, and metabolome in explaining
differences between children in aggressive behaviors [31–33]. To assess the metabolome,
a targeted approach was chosen to cover metabolite classes previously associated with
aggressive behavior [34], and urine samples were collected in twins from the Netherlands
Twin Register [35] (NTR-ACTION cohort) and in an independent clinical cohort (LUMC-
Curium cohort). Specifically, urinary metabolomics data for 86 metabolites were generated
on a liquid chromatography mass spectrometry (LC-MS) platform targeting amines, a
gas chromatography (GC) MS platform targeting organic acids, and an LC-MS platform
targeting steroid hormones. Here, we first investigate the effects of sex and age on these 86
urinary metabolites in the NTR-ACTION cohort comprising 1068 monozygotic (MZ) twins
(531 pairs, M age = 9.6, SD age = 1.9, 47.4% females) and 232 dizygotic (DZ) twins (114 pairs,
M age = 9.9, SD age = 1.6, 51.7% females, Table 1). We undertook to replicate the sex and ages
associations in the LUMC-Curium cohort of 179 children (M age = 10.2, SD age = 1.8, age
range: 6.3–13.4, 25.1% females, Table 1). Second, we aim to characterize the reliability of our
measures by considering the MZ twin correlations. The MZ correlation forms an alternative
for test–retest correlation, and, as, such, can serve as a reliability index. Specifically, a
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high MZ correlation is consistent with high reliability of the measure. However, a low MZ
correlation does not necessarily mean that the reliability is low [36]. Third, we quantified
the familial resemblance for urinary metabolites in children by estimating the correlations
in MZ and DZ twin pairs and applied genetic structural equation modeling of MZ and DZ
data to obtain maximum likelihood estimates of heritability. We found that sex and age
significantly influence urinary metabolites in young twins and replicated the associations
with age in the independent clinical cohort. The MZ twin correlations implied that we could
measure approximately 90% of the urinary metabolites with moderate to high reliably, with
more steroids rating high reliability as compared to amines and organic acids. Genetic
modelling revealed that genetic factors account for nearly all familial resemblance in
urinary metabolites.

Table 1. Participant characteristics of the NTR and LUMC-Curium ACTION cohorts.

Cohort N (N Pairs) Mean (SD) [Range] Age N (%) Females

NTR Total 1300 (645) 9.6 (1.8) [5.7–12.9] 626 (48.2%)
MZ 1068 (531) 9.6 (1.9) [6.0–12.9] 506 (47.4%)
DZ 232 (114) 9.9 (1.6) [5.7–12.0] 120 (51.7%)

LUMC-Curium Total 179 10.2 (1.8) [6.3–13.4] 45 (25.1%)
Notes: LC-MS, liquid chromatography mass spectrometry; GC-MS, gas chromatography mass spectrometry; NTR,
Netherlands Twin Register; MZ, monozygotic twin pairs; DZ, dizygotic twin pairs.

2. Results
2.1. Urinary Metabolites in Children Have Robust Associations with Age Not with Sex

To explore the effects of sex and age on urinary metabolites, we ran mixed-effect
models with sex and age as fixed effects and family as a random effect in 1300 participants
(M age = 9.6 years, SD age = 1.8, age range: 5.7–12.9, 48.2% females) of the NTR-ACTION
cohort (Table 1). Sex and age effects were significant for 13 of the 56 amines (23%), for
2 of the 20 organic acids (10%), and for 4 of the 10 steroids (40%) (Figure 1, Table S1). Age
effects, but not sex effects, were significant for 39 (70%), 14 (70%), and 5 (50%) amines,
organic acids, and steroid hormones, respectively. For one organic acid (5%) and one steroid
(10%), sex effects, but no age effects, were significant. For the remaining 4 amines (7%) and
3 organic acids (15%), we observed no significant effects of sex or age. We replicated the
significant associations of age with 30 metabolites in 179 children of the LUMC-Curium
cohort (M age = 10.2 years, SD age = 1.8, age range: 6.3–13.4, 25.1% females, Figure 1,
Table S2). The remaining associations for age, and none of the associations for sex were
replicated. There were high correlations among the strength and direction of association
between the discovery and replication results (Figure S1a).

We expect that certain metabolites, especially steroid hormones, have lower levels in
younger children and thus may not show sex differences at younger ages. Therefore, we
performed a series of sensitivity analyses by stratifying the sample by sex and into two age
groups, consisting of children aged 10 years or older and children younger than 10 years
(see Supplementary Results). The association of sex in the older age group (age ≥ 10) with
putrescine showed higher levels in girls, but all other associations with sex or age did not
replicate across the sensitivity analyses.
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Figure 1. Associations of sex and age with metabolites in the NTR and LUMC-Curium ACTION
cohorts. The vertical axis lists the metabolites, and the horizontal axis depicts the associations for sex
or age in the discovery NTR-ACTION cohort (NTR) and the replication LUM-Curium ACTION cohort
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(Curium). All associations marked with a star (*) where significant after correcting for multiple
testing (see Section 4). The color gradient indicates the strength of the associations (beta coefficient
[B]), where dark blue indicates strong negative associations and dark red indicates strong positive
associations. All association results from the discovery are reported in Table S1 and all association
results from the replication are reported in Table S2.

2.2. Ninety Percent of Urinary Metabolites in Children Have Moderate to High Reliability

To estimate the lower bound of reliability of the urinary metabolites in children, as
obtained with the metabolomics platforms for the ACTION Biomarker Study, we obtained
MZ twin correlations for 1068 MZ twins (531 pairs, M age = 9.6, SD age = 1.9, 47.4%
females) (Table 1). The MZ correlations, corrected for sex and age effects (Table S3), were
on average 0.51 for the amines (range: 0.25–0.75), 0.52 (range: 0.33–0.64) for the organic
acids, and 0.61 (range: 0.43–0.81) for the steroids (Figure 2, Table S4). MZ correlations may
be interpreted as a form of test–retest reliability [36], and these results thus suggest that
approximately 90% of the measures of urinary metabolites in the ACTION Biomarker Study
were measured with adequate reliability. In total, 1 (1.8%) amine and 4 (40.0%) steroids
were obtained with excellent reliability (rMZ ≥ 0.75), 8 (14.3%) amines and 3 (15.0%) organic
acids had good reliability (rMZ 0.60–0.74), and 43 (76.8%) amines, 13 (65.0%) organic acids,
and 6 (60.0%) steroids had moderate reliability (rMZ 0.40–0.59) [37]. For the remaining
4 amines (7.1%) and 4 organic acids (20%, rMZ < 0.40), we could not infer their reliability, as
low MZ correlations do not necessarily imply low reliability [36].

Metabolites 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 

positive associations. All association results from the discovery are reported in Table S1 and all as-

sociation results from the replication are reported in Table S2. 

2.2. Ninety Percent of Urinary Metabolites in Children Have Moderate to High Reliability 

To estimate the lower bound of reliability of the urinary metabolites in children, as 

obtained with the metabolomics platforms for the ACTION Biomarker Study, we obtained 

MZ twin correlations for 1068 MZ twins (531 pairs, M age = 9.6, SD age = 1.9, 47.4% fe-

males) (Table 1). The MZ correlations, corrected for sex and age effects (Table S3), were 

on average 0.51 for the amines (range: 0.25–0.75), 0.52 (range: 0.33–0.64) for the organic 

acids, and 0.61 (range: 0.43–0.81) for the steroids (Figure 2, Table S4). MZ correlations may 

be interpreted as a form of test–retest reliability [36], and these results thus suggest that 

approximately 90% of the measures of urinary metabolites in the ACTION Biomarker 

Study were measured with adequate reliability. In total, 1 (1.8%) amine and 4 (40.0%) ster-

oids were obtained with excellent reliability (rMZ ≥ 0.75), 8 (14.3%) amines and 3 (15.0%) 

organic acids had good reliability (rMZ 0.60–0.74), and 43 (76.8%) amines, 13 (65.0%) or-

ganic acids, and 6 (60.0%) steroids had moderate reliability (rMZ 0.40–0.59) [37]. For the 

remaining 4 amines (7.1%) and 4 organic acids (20%, rMZ < 0.40), we could not infer their 

reliability, as low MZ correlations do not necessarily imply low reliability [36]. 

 

Figure 2. Monozygotic (MZ) and dizygotic (DZ) twin correlations of the (a) LC-MS amines, (b) GC-

MS organic acids, and (c) LC-MS steroids corrected for sex and/or age in the NTR-ACTION cohort. 

See Table S3 for an overview of the correction for sex and/or age and for all correlations see Table 

S4. 

2.3. Genetic Inluences Explain Familial Resemblance in Urinary Metabolites in Children 

MZ twin correlations reflect both the lower bound of measurement reliability, and 

the upper limit of the broad-sense heritability (h2) of these metabolites, where broad-sense 

Figure 2. Monozygotic (MZ) and dizygotic (DZ) twin correlations of the (a) LC-MS amines, (b) GC-
MS organic acids, and (c) LC-MS steroids corrected for sex and/or age in the NTR-ACTION cohort.
See Table S3 for an overview of the correction for sex and/or age and for all correlations see Table S4.
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2.3. Genetic Inluences Explain Familial Resemblance in Urinary Metabolites in Children

MZ twin correlations reflect both the lower bound of measurement reliability, and the
upper limit of the broad-sense heritability (h2) of these metabolites, where broad-sense
heritability refers to the variance explained by all, i.e., additive and non-additive genetic,
factors. When correlations in MZ twins are higher than in DZ twins, this is consistent with
a genetic influence on a trait. The more detailed pattern of MZ and DZ correlations is
informative to assess the contribution of additive and non-additive genetic factors and of
shared environmental contributions to their resemblance.

We obtained MZ and DZ twin correlation for 1068 MZ twins (531 pairs, M age = 9.6,
SD age = 1.9, 47.4% females) and 232 DZ twins (114 pairs, M age = 9.9, SD age = 1.6, 51.7%
females) from the NTR-ACTION cohort (Table 1). Figure 2 clearly shows that for nearly all
metabolites, the MZ correlations are substantially larger than the DZ correlations, indicating
that genetic factors are an important source of phenotypic individual differences. The mean
MZ correlation was 0.51 for the amines (range: 0.25–0.75), 0.52 (range: 0.33–0.64) for the
organic acids, and 0.61 (range: 0.43–0.81) for the steroids (Figure 2, Table S4). The mean DZ
correlations were 0.16 (range: 0.01–0.46), 0.23 (range: 0.07–0.35), and 0.25 (range: 0.11–0.44),
for the amines, organic acids, and steroids, respectively. Thus, the MZ correlations indicated
substantial broad-sense heritability (h2 > 0.40) for 52 (92.9%) amines, 16 (80.0%) organic
acids, and 10 (100%) steroids.

Based on the twin correlations, we estimated the contribution of genetic and environ-
mental contributions to the phenotypic variance by genetic structural equation modelling,
by estimating additive genetic effects (A), unshared environmental effects (E), and domi-
nance effects (D) or common (shared) environmental effects (C). Because the ACDE model
is not identified in the classical twin design, we applied a common rule of thumb for
inspecting twin correlations [38] and fitted the ADE model given rMZ > 2×rDZ, or the ACE
model given rMZ < 2×rDZ (Figure 2, Table S4). We estimated variance components in ADE
models for 50 (89.3%) amines, 13 (65.0%) organic acids, and 6 (60.0%) steroids, and ACE
models for 6 (10.7%) amines, 7 (35.0%) organic acids, and 4 (40.0%) steroids (Table S5).

For the 69 (80.2%) metabolites where, the ADE model was the model of choice, we
reported the broad-sense h2, not the separate estimates of the standardized variance for
A and D. Given the relatively small number of complete DZ pairs (114) compared with
the number of MZ pairs (645) (Table 1), the power to detect these variance components is
low [39,40]. Here, the broad-sense h2 was 0.49 (range: 0.25–0.64), 0.50 (range: 0.33–0.62),
and 0.64 (range: 0.43–0.81) for the amines, organic acids, and steroids, respectively (Figure 3,
Table S6). In the ADE models, the mean contribution of unique environmental factors was
0.51 (range: 0.36–0.75) for the amines, 0.50 (range: 0.38–0.67) for the organic acids, and 0.36
(range: 0.19–0.57) for the steroids. For the 17 (19.8%) metabolites where an ACE model
fitted best, the narrow-sense h2 (i.e., the standardized effect of A in the ACE model) was
0.50 (range: 0.37–0.68) for the amines, 0.50 (0.23–0.61) for the organic acids, and 0.47 (range:
0.32–0.70) for the steroids (Figure 3, Table S6). Here, common environmental factors
explained on average 13% (range: 0.04–0.28), 6% (range: 0–0.13), and 10% (range: 0.02–0.18)
of the variance, whereas unique environmental factors accounted for approximately 37%
(range: 0.25–0.46), 45% (range: 0.36–0.64), and 42% (range: 0.21–0.53) of the variance in
amines, organic acids, and steroids, respectively.
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Figure 3. Estimates of the standardized variance components of the ADE or ACE models for the
(a) LC-MS amines, (b) GC-MS organic acids, and (c) LC-MS steroids corrected for sex and/or age
in the NTR-ACTION cohort. For the ADE models, we provide the estimates for the broad-sense
heritability, i.e., the sum of the additive (A) and dominant (D) genetic variance components. See
Table S3 for an overview of the correction for sex and/or age, and for all estimates and confidence
intervals see Table S6.

3. Discussion

We investigated the influence of sex and age on 86 urinary metabolites and estimated
the heritability of these metabolites in 5- to 13-year-old twins. To assess the association of
age and sex we tested their significance in a discovery cohort of twins. Even in this sample
with a relatively small age range, age was significantly associated with 50 metabolites (58%)
and sex with 21 metabolites (35%). Replication in an independent cohort showed that the
associations with age were the most robust, as 30 metabolites retained their significant
association with age, whereas the association of putrescine with sex only replicated in
the older age group (age ≥ 10) after stratification. To address the question if metabolites
can be reliably assessed in urine samples collected at home from young children, we
determined the lower bound of the reliability, by estimating the MZ correlations and
observed a range of 0.25–0.81, with 90% of the urinary metabolites reliably measured. We
addressed the etiology of individual differences by the application of the classical twin
design and genetic structural equation modeling of the MZ and DZ data. The main result is
that individual differences in urinary metabolites are mainly explained by genetic factors.
In 69 (80.2%) metabolites the broad-sense heritability was estimated at approximately
51% (range: 25–81%) and in 17 metabolites the narrow-sense heritability was 49% on
average (range: 23–70%), with 9% (range: 0.3–28%) of the variance attributable to common
environmental factors.
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We reported robust associations of urinary metabolites with age but hardly with sex.
We had anticipated sex differences in steroid hormones [26,41], and it might be that these
will manifest as the children become older. We observed the most robust associations for
age with dehydroepiandrosterone sulfate (DHEA-S), conjugated etiocholanolone (sulfate
and glucuronide), and homovanillic acid, as these associations were observed in the discov-
ery and replication cohorts regardless of dichotomization of the age variable (Figure S2).
Age affects the activity of endocrine systems, including the hypothalamic-pituitary-adrenal
(HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis. Four conjugates of go-
nadal androgens were positively associated with age (Figure 4), which reflects expected
physiological changes with age. Conversely, four adrenal-produced glucocorticoids were
negatively associated with age of children in both cohorts (Figure 4). Higher levels of cir-
culating cortisol are not unexpected in younger children (aged 39–106 months) [42]. High
secretion of the corticosteroids is associated with delayed pubertal development [43,44], but
is also affected by exposure factors, such as high-protein diet [45]. Therefore, the observed
associations of steroidal hormones with age may reflect both the direct impact of age on the
secretion of these metabolites, and indirectly reflect age effects on exposure-related factors
that change the secretion, metabolism, and urine excretion rates. Additional associations
with age were exclusively negative (Figure 1), and many of these metabolites are expected
to change along the course of life [46–49]. They included energy production intermedi-
ates and neuroactive compounds (along with their metabolites or precursors), as well as
products of lipid and protein metabolism which are routinely measured in urine [49].
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Figure 4. Metabolism of steroid hormones covered in this study. Metabolite boxes with red back-
ground indicate metabolites that were positively associated with age, a dark blue background
indicates negative association with age. Metabolite boxes with white background in red frames were
not covered in this study, whereas those in black frames were but did not show significant association
with age in both cohorts. Arrows indicate direct reactions, whereas broken arrows indicate multi-step
conversion. All association results for all models in the discovery are reported in Tables S1 and S9–S12
and all association results for all models in the replication are reported in Tables S2 and S13–S16.

In contrast to our findings, a previous study found no associations of age with 44 uri-
nary metabolites, and only three significant associations with sex in a meta-analysis of
1192 children [50]. Part of the discrepancies between our study and the meta-analysis
is due to the low overlap in urinary metabolites. Only 16 of the 44 urinary metabolites
(36%) included in the meta-analysis were also included on the metabolomics platforms
comprising the ACTION Biomarker Study. Of the 16 overlapping metabolites 14 had
significant associations with age and 2 with sex, in the discovery cohort of the current
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study. Another likely explanation for the discrepancy is that the children in the meta-
analysis were younger (mean = 7.4, range: 6.5–8.9) than those included in our discovery
(mean = 9.6, range: 5.7–12.9) and replication cohorts (mean = 10.2, range: 6.3–13.4). Thus,
the metabolites that are significantly associated with age in our study might reflect the
onset of puberty. This would explain why the associations with the steroids, DHEA-S and
conjugated etiocholanolone were among the most robust.

Genetic modelling showed that all metabolites, irrespective of platform, are subject
to genetic influences. We might have expected that in this sample of young children
(who live at home with their parents, and share diet, exposures to the same household,
and neighborhood), there would be a detectable influence of the shared environment.
However, we found that mainly genetic and unique environmental factors accounted for
the individual differences in urinary metabolites in children. The substantial contribution
of genetic factors to urinary metabolites in children is in line with previously reported
SNP-based heritability estimates for the urinary metabolome in children [30]. A previous
small twin study (N = 128) investigating the urinary metabolome in adults showed a
moderate contribution of genetic factors to 14 diet-associated urinary metabolites, and
substantial contributions of shared environmental influences [51]. This study in adults
only investigated the heritability of 14 diet-associated metabolites, already implying these
metabolites are under environmental influence. In this same sample of twins, it was shown
that 20% of the urinary NMR metabolomic profile was stable over a 2-month period and
that both common genetic and shared environmental factors contribute to the short-term
stability of the urinary metabolome in adults [52]. Previous studies investigating the
blood metabolome in adult populations [8,10–13] also obtained very limited evidence for
contributions of the common environment, whereas the influence of genetics is substantial.
To date, genome-wide association studies for blood metabolites have identified more than
800 metabolite loci, with an average heritability of metabolite loci of 6% for lipids and
lipid-like molecules and of 1% for organic acids and derivatives [18]. Here, we extend these
findings to show substantial broad-sense heritability for the majority of urinary amines,
organic acids, and steroids in children. Together these results suggests that the majority
of the urinary metabolites in children and blood metabolites in adults are determined by
genetic and unique environmental influences and not by shared environmental influences.

It should be noted that the twin pairs in this study were selected for their concordance
or discordance for childhood aggressive behavior, though we found no replicable asso-
ciations between the urinary amines and organic acids with childhood aggression [33].
A limitation of the current study is the underrepresentation of DZ twin pairs. As a con-
sequence, the power to detect significant dominant genetic and common environmental
variance components was low [39,40]. It should also be noted that we often observed very
large differences between the MZ and DZ twin correlations. This included instances where
the MZ correlations were greater than four times the DZ correlations (4×rDZ < rMZ), which
would result in negative values of the additive genetic variance in the ADE models [53].
Therefore, we chose to report the broad-sense heritability estimates for the metabolites
with ADE models as opposed to the separate estimates for the additive and dominant
genetic variance components. Based on the twin correlations, we can infer that dominant
genetic effects likely contribute to the broad-sense heritability. This is in contrast to previous
studies for serum metabolites in adults that suggested most genetic effects on metabolites
were additive [8,9]. The pattern of very high MZ and very low DZ correlations could also
indicate emergenesis (i.e., interactions between relatively infrequent alleles at different
loci) [36,54], though it has been argued that duplicate gene interactions (i.e., complete dom-
inance at both gene pairs, where the effect of one gene is hidden if the other is dominant)
between moderately frequent alleles would also account for very low correlations between
DZ twins [55].

In summary, this is the largest heritability study for urinary metabolites in children to
date, benefitting from a large sample size (N = 1300), and the breath of coverage both in
terms of the number of analyzed metabolites (86) and coverage across the metabolome by
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targeting amines, organic acids, and steroid hormones. We found substantial heritability
for urinary metabolites in children, and genetic factors and not common environmental
factors explain most of the familial resemblance in urinary metabolites. Age, but not sex,
showed robust associations with urinary metabolites. These results are promising for future
genome-wide association studies on urinary metabolites, which can elucidate the genetic
architecture of the urinary metabolome in children.

4. Materials and Methods
4.1. Study Population and Procedures
4.1.1. NTR-ACTION Cohort

Twin pairs from the Netherlands Twin Register [35] were invited for participation in
the NTR-ACTION Biomarker Study (Aggression in Children: Unraveling gene-environment
interplay to inform Treatment and InterventiON strategies) [31,32] based on their longi-
tudinal concordance or discordance for aggressive behavior rated by either the mother
(93%) or teacher (7%) (see [33]). Parents of participating twin pairs were asked to col-
lect first-morning urine and buccal cell samples for their children using the standard-
ized protocols as developed for the large-scale collection in the home situation (http:
//www.action-euproject.eu/content/data-protocols, accessed on 28 April 2022). Urine
samples were stored in a home freezer at −18 ◦C, transported to the lab in a mobile freezer
unit at −18 ◦C, and stored in the lab at −80 ◦C until further processing. Zygosity assessment
in the twins was based on SNP arrays as described in Odintsova et al. [56].

First-morning urine was collected for 1362 twins, for whom metabolite profiling was
performed on three metabolomics platforms targeting amines, steroids, and organic acids.
We excluded twins if there was an insufficient amount of urine to analyze all three platforms
(N = 2), if the collected urine was not the first-morning urine (e.g., parent-reported time of
urine collection was after 12:00 in the afternoon; N = 13), if the time between collection and
freezing of the urine sample was more than 2 h (N = 25), or if the twins were the second
pair of multiples in the same family (N = 22). We performed the analyses in 1300 twins
(Table 1). We give participant characteristics per aggression concordance group in Table S7.

4.1.2. LUMC-Curium Cohort

Children referred to the LUMC-Curium academic center for child and youth psychiatry
and whose parents had consented to participation in the ongoing biobank protocol of
LUMC-Curium were included in the ACTION Biomarker Study. Parents of participating
children collected first-morning urine and buccal cell swabs with the protocols as developed
for the NTR-ACTION cohort and all biological samples were analyzed simultaneously with
the NTR samples. Information on psychiatric disorders in the LUMC-Curium sample is
provided in Hagenbeek et al. (2020) [33]. In the LUMC-Curium cohort, we performed the
analyses in 179 children (M age = 10.2, SD age = 1.8, age range: 6.3–13.4, 25.1% females,
including 8 sibling pairs and 1 sibling trio), after exclusion of one child who also participated
in NTR-ACTION, and exclusion of urine samples that were not first-morning (N = 3), or if
the time between collection and freezing of the urine sample was more than 2 h (N = 3).

4.2. Creatinine Measurement

Creatinine was measured using a colorimetric assay kit according to manufacturer’s
instructions (Cayman, Ann Harbor, MI, USA).

4.3. Metabolite Profiling
4.3.1. Measurement Protocol

The Metabolomics Facility of the University of Leiden (Leiden, The Netherlands)
assessed metabolites in urine on three platforms: an ultra-performance liquid chromatogra-
phy mass spectrometry (UPLC-MS) platform targeting amines, a gas chromatography mass
spectrometry (GC-MS) platform targeting organic acids, and a UPLC-MS platform targeting
steroids. To ensure random distribution of aggression cases and controls across batches,

http://www.action-euproject.eu/content/data-protocols
http://www.action-euproject.eu/content/data-protocols
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we randomized NTR and LUMC-Curium ACTION subjects across batches. In each batch,
we retained twins from the same pair on the same plate. Each batch included a calibration
line, quality control (QC) samples (every 10 samples), sample replicates and blanks. The
QC samples comprised pooled aliquots of all urine samples from all children. Using the
pooled QC samples, the lab applied in-house developed algorithms to compensate for shifts
in the sensitivity of the mass spectrometer across batches. Relative Standard Deviation
(RSD) of the Quality Control samples (RSDqc) were used to evaluate the performance and
reproducibility of individual metabolites. We report metabolites as ‘relative response ratios’
(target area/area of internal standard) after QC correction.

4.3.2. LC-MS Amine Platform

Prior to chromatic separation, they added methanol to 5 µL of spiked (with internal
standards, see Table S8) urine for protein precipitation and centrifuged the supernatant.
After sample evaporation (speedvac), samples were reconstituted in borate buffer (pH 8.5)
and derivatized employing an AccQ-Tag derivatization strategy adapted from the protocol
supplied by Waters (Waters, Etten-Leur, The Netherlands). An Agilent 1290 Infinity II LC
system (1290 Multicolumn Thermostat and 1290 High Speed Pump, Agilent Technologies,
Waldbronn, Germany) with an Accq-Tag Ultra column (Waters Chromatography B.V., Etten-
Leur, The Netherlands) achieved chromatographic separation. The UPLC was coupled
to electrospray ionization on a quadrupole-ion trap (SCIEX Qtrap 6500; Sciex, Framing-
ham, MA, USA). Analytes were monitored in Multiple Reaction Monitoring (MRM) using
nominal mass resolution and detected in the positive ion mode.

4.3.3. GC-MS Organic Acid Platform

In order to extract the organic acids and remove urea, twice liquid-liquid extrac-
tion with ethyl acetate was applied to 50 µL of spiked (with internal standards: Succinic
acid-2,2,3,3-d4, Fumaric acid-2,3-d2, and Citric acid-2,2,4,4-d4) urine. The two-step on-
line derivatization procedure comprised oximation with methoxyamine hydrochloride
(MeOX, 15 mg/mL in pyridine), followed by N-Methyl-N-(trimethylsilyl)- trifluoroac-
etamide (MSTFA) silylation. After derivatization, sample (1 µL) was injected into the
GC-MS. With helium as a carrier gas (1.7 mL/min), chromatic separation was performed
on a 25 m (HP-5MS UI) film thickness 30 × 0.25 m ID column. The mass spectrom-
eter (MSD 5975C, Agilent Technologies, Waldbronn, Germany) was operated using a
single quadrupole with electron impact ionization (70 eV) in SCAN mode (mass range
m/z 50–500).

4.3.4. LC-MS Steroid Platform

An LC-MS steroid platform was developed for the current study. Sample preparation
comprised adding internal standards (Cortisone-2,2,4,6,6,9,12,12-d8, and Testosterone-
16,16,17-d3) to 90 µL of urine and filtering the samples with a 0.2 µm PTFE membrane.
Using an Acquity UPLC CSH C18 column, 130 Å, 1.7 µm, 2.1 mm × 100 mm, (Waters, Etten-
Leur, The Netherlands), with a flow of 0.4 mL/min over a 15 min gradient, chromatographic
separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA). Samples were
analyzed using a triple quadrupole mass spectrometer (Agilent 6460, San Jose, CA, USA)
with electrospray ionization. By switching positive and negative ion mode, analytes were
detected in MRM using nominal mass resolution.

4.3.5. Metabolomics Data Preprocessing

We removed 4 amines with a missing rate of >10% and excluded metabolites with a rel-
ative standard deviation of the quality control samples (RSDqc) equal to or larger than 15%
(excluded 6 amines, 1 organic acid, and 3 LC-MS steroids). For the remaining metabolites,
we imputed metabolite measurements that fell below the limit of detection/quantification
with half of the value of this limit, or when this limit was unknown with half of the lowest
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observed level for this metabolite. All metabolites were normalized by dividing by the
sample creatinine levels and inverse normal rank transformed.

4.4. Statistical Analyses
4.4.1. Associations with Sex and Age

To assess the influence of sex and age on urinary metabolites we ran mixed-effect
models with sex and age as fixed effects and family and zygosity as random effects (to
correct for family clustering in the data) (R v. 4.1.1, nlme v. 3.1–153) [57,58]. We expect that
some metabolites have lower levels in younger children and will therefore not show sex
differences at younger ages. Therefore, we performed a series of sensitivity and stratified
analyses to elucidate the associations with sex and age further. We repeated the mixed-effect
models with sex and age after dichotomizing age (age < 10 vs. age ≥ 10). We chose age
10 as cut-off for dichotomizing the age variable as 10 is the median age in the NTR and
LUMC-Curium cohorts. Next, we performed stratified analyses. First, we investigated
whether different metabolites show an association with age amongst males and females
with mixed-effect models with age as fixed effect and family and zygosity as random
effects. Again, these analyses were conducted for age as a continuous measure and after
dichotomizing. Second, we employed mixed-effect models with sex as fixed effect and
family and zygosity as random effects to investigate whether different metabolites show an
association with sex amongst the younger (age < 10) and older (age ≥ 10) children. For each
analysis we corrected for multiple testing separately with a False Discovery Rate (FDR) of
5% for 86 metabolites setting the significance threshold to q ≤ 0.05, i.e., 5% of the significant
results will be false positives [59]. Thus, in the stratified analyses we correct separately
in males and females or younger and older children. We replicated the analyses for sex
and age for the urinary metabolites in 179 children of the LUMC-Curium cohort, by using
mixed-effect models with family as random effects. We employed FDRs of 5% (q ≤ 0.05)
for 79 (sex + continuous age), 76 (sex + dichotomized age), 73 (sex-stratified continuous
age in males), 67 (sex-stratified continuous age in females), 63 (sex-stratified dichotomized
aged in males), 51 (sex-stratified dichotomized aged in females), 11 (age-stratified sex in
children age < 10), and 13 (age-stratified sex in children age ≥ 10) metabolites, respectively.

4.4.2. Genetic Analyses

To quantify the contribution of genetic and environmental influences to complex
traits, such as metabolites, the classical twin design (CTD) is often used [60]. The CTD
hinges on comparing the resemblance between monozygotic (MZ) and dizygotic (DZ) twin
pairs. MZ twin pairs derive from the same fertilized egg and share 100% of their genetic
material. In contrast, DZ twin pairs derive from separately fertilized eggs and share on
average 50% of their genetic material. Thus, by examining the difference between MZ and
DZ covariances for a phenotype of interest, we can derive estimates for the proportions
of variance attributable to genetic factors, i.e., heritability (h2), and to environmental
factors. The CTD aims to decompose the phenotypic covariance between MZ and DZ twin
pairs into additive genetic (A), non-additive or dominant genetic (D), shared or common
environmental (C), and unshared or unique environmental factors (E) [61]. From models
that estimate both additive and dominant genetic factors, we can obtain broad-sense h2

estimates, whereas models without dominant genetic factors allow us to estimate the
narrow-sense h2 (or additive genetic).

We first fitted two group (MZ + DZ twin pairs) saturated models with sex and age
as covariates and equal means and variances across birth order and zygosity by raw-
data maximum likelihood (ML) in openMx (v. 2.19.8) [62] to obtain ML estimates of
the twin correlations. We compared the saturated model with models that removed the
age and/or sex covariates via likelihood ratio tests. We obtained the MZ and DZ twin
correlations from the best-fitting model for each urinary metabolite (Table S3). Next, we
applied genetic structural equation modelling with raw-data ML estimation in openMx to
estimate the additive genetic, dominant genetic or common environmental, and unique
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environmental variances for the urinary metabolites in the NTR-ACTION cohort based
on the twin correlations (Figure 2, Table S4). We implemented ADE models if the MZ
correlations were greater than two times the DZ correlations (rMZ > 2×rDZ), and ACE
models if this was not the case (rMZ < 2×rDZ). In our genetic models we did not constrain
the variance components to take values between zero and one, thus, we allowed for negative
variance estimates [53]. ADE or ACE models were estimated including sex and/or age as
covariates depending on best-fitting saturated model (Table S3). In the ADE model, we
focus on the broad-sense h2, rather than reporting the separate estimates of the standardized
variance of A and D. We did not test the significance of the D or C variance components, as
the power to detect these variance components is low, given the relatively small number of
complete DZ pairs (114) compared to the number of MZ pairs (645) (Table 1) [39,40].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060474/s1, Supplementary Results: Sensitivity and
sex- and age-stratified analyses for urinary metabolites, Figure S1: Correlations of the strength of
association (beta coefficients) for sex and age with metabolites between the NTR-ACTION discovery
cohort and LUMC-Curium ACTION replication cohort, Figure S2: Comparison of the associations of
sex and age with metabolites in the main, sensitivity, and stratified analyses in the NTR and LUMC-
Curium ACTION cohorts, Figure S3: Correlations of the strength of association (beta coefficients)
between the different association models for sex and age with metabolites in the NTR-ACTION
discovery cohort, Table S1: Results of the discovery mixed-effects models with sex and continuous
age as fixed effects and family as random effect in the NTR-ACTION cohort, Table S2: Results of the
replication mixed-effects models with sex and continuous age as fixed effects and family as random
effect in the LUMC-Curium ACTION cohort, Table S3: Comparison of the saturated twin models in
the NTR-ACTION cohort, Table S4: Monozygotic (MZ) and dizygotic (DZ) twin correlations of the
LC-MS amines, GC-MS organic acids, and LC-MS steroids as calculated in the NTR-ACTION cohort,
Table S5: Comparison of the saturated twin models against the ADE or ACE models in the NTR-
ACTION cohort, Table S6: Estimates of the standardized variance components of the ADE or ACE
models for the LC-MS amines, GC-MS organic acids, and LC-MS steroids corrected for sex and/or
age in the NTR-ACTION cohort, Table S7: Participant characteristics for the NTR-ACTION cohort
by aggression concordance at the time of invitation into the ACTION Biomarker Study, Table S8.
Internal standards used in the LC-MS amine platform, Table S9: Results of the discovery mixed-effects
models with sex and dichotomized age (Age < 10 vs. Age ≥ 10) as fixed effects and family as random
effect in the NTR-ACTION cohort, Table S10: Results of the sex-stratified discovery mixed-effect
models with continuous age as fixed effect and family as random effect in the NTR-ACTION cohort,
Table S11: Results of the sex-stratified discovery mixed-effect models with dichotomized age (Age <
10 vs. Age ≥ 10) as fixed effect and family as random effect in the NTR-ACTION cohort, Table S12:
Results of the age-stratified (Age < 10 vs. Age ≥ 10) discovery mixed-effect models with sex as fixed
effect and family as random effect in the NTR-ACTION cohort, Table S13: Results of the replication
mixed-effects models with sex and dichotomized age (Age < 10 vs. Age ≥ 10) as fixed effects and
family as random effect in the LUMC-Curium ACTION cohort, Table S14: Results of the sex-stratified
replication mixed-effect models with continuous age as fixed effect and family as random effect in
the LUMC-Curium ACTION cohort, Table S15: Results of the sex-stratified replication mixed-effect
models with dichotomized age (Age < 10 vs. Age ≥ 10) as fixed effect and family as random effect
in the LUMC-Curium ACTION cohort, Table S16: Results of the age-stratified (Age < 10 vs. Age
≥ 10) replication mixed-effect models with sex as fixed effect and family as random effect in the
LUMC-Curium ACTION cohort.
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