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Abstract 

Background: Non‑coding genetic variants that influence gene transcription in pan‑
creatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely 
also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms 
through which non‑coding variants influence diabetes susceptibility are unknown.

Results: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors 
and observe that common genetic variation has a widespread influence on the splic‑
ing of genes with established roles in islet biology and diabetes. In parallel, we profile 
expression QTLs (eQTLs) and use transcriptome‑wide association as well as genetic co‑
localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, 
many of which lack candidate effector genes. This analysis reveals biologically plausible 
mechanisms, including the association of T2D with an sQTL that creates a nonsense 
isoform in ERO1B, a regulator of ER‑stress and proinsulin biosynthesis. The expanded 
list of T2D risk effector genes reveals overrepresented pathways, including regulators 
of G‑protein‑mediated cAMP production. The analysis of sQTLs also reveals candidate 
effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and 
lncRNA MEG3.

Conclusions: These data expose widespread effects of common genetic variants 
on RNA splicing in pancreatic islets. The results support a role for splicing variation in 
diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic 
benefit.
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Background
Genome-wide association studies have identified hundreds of genomic loci that carry 
genetic variants contributing to type 2 diabetes (T2D) and type 1 diabetes (T1D) sus-
ceptibility [1–5]. The vast majority of associated genetic variants are non-coding, and 
epigenomic studies have revealed that many are located in human pancreatic islet 
transcriptional cis-regulatory elements [6–9]. Numerous T2D risk loci have thus been 
assigned to effector transcripts through human islet expression quantitative trait loci 
(eQTLs), three-dimensional chromatin maps, and genome editing experiments [10–13]. 
Such studies have established that gene expression variation in pancreatic islets is criti-
cally important for T2D susceptibility. A subset of T1D susceptibility signals have also 
been proposed to act through expression variation in islet cells, sometimes involving 
shared genes with T2D [14]. A large fraction of T2D and T1D risk loci, however, cannot 
be ascribed to transcriptional regulatory mechanisms in pancreatic islets or other tis-
sues, pointing to additional non-coding mechanisms that remain to be defined.

Alternative splicing of pre-mRNAs provides an additional mechanism whereby 
genetic variation can create functional diversity across human genomes. Rare mutations 
and common variants that influence pre-mRNA splicing have been linked to a broad 
range of human diseases [15–17]. The effects of genetic variants on pre-mRNA splic-
ing in human pancreatic islets, however, are largely unexplored. GTEx, the most com-
prehensive catalogue of splicing QTLs (sQTLs) across human tissues, does not include 
human pancreatic islets [17]. Other studies have examined exon-level expression in islet 
RNAs [12, 18, 19], although this does not capture the complexity of alternative splicing 
and is confounded by total gene expression variation. We have now directly examined 
RNA splicing in a panel of 399 human islet samples and created an atlas of sQTLs. This 
showed that sQTLs impact key genes for islet biology and diabetes. We uncover sQTLs 
that show fine colocalization with genetic variants associated with T2D, discover new 
genetic associations, and expand the spectrum of putative gene effectors of disease sus-
ceptibility. We further reveal new candidate mediators of T1D susceptibility. These find-
ings provide biological insights into genetic mechanisms underlying diabetes risk.

Results
To examine the impact of common genetic variation on RNA splicing in pancreatic 
islets, we aggregated RNA-seq and genotype data from 447 human pancreatic islet sam-
ples from four cohorts [11, 13, 18, 19] and processed them to yield 399 qualifying sam-
ples after applying genotype and RNA-seq quality controls (Fig. 1a). We corrected for 
known and unknown covariates (Additional file 1: Fig. S1) and performed QTL analy-
sis on mRNA levels (eQTLs) and junction usage [20] (sQTLs), using 6.46 million high-
quality  common variants (Additional file  1: Fig. S2a). Focusing on genes expressed in 
>10% of samples in each cohort, we found cis-eQTLs in 3433 genes (eGenes) at FDR 
≤ 1% (Fig. 1a, Additional file 2: Table S1 [21]). This analysis also revealed a widespread 
impact of genetic variants on splicing variation, with 4858 cis-sQTLs at FDR ≤ 1%, 25% 
of which showed >10% shift in splice site usage in reference vs. alternate alleles (Fig. 1a, 
b, Additional file 3: Table S2 [21]). The 4858 sQTL junctions included alternative usage 
of 5′ exons, 3′ exons, mutually exclusive or skipped exons, or influenced combinations of 
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Fig. 1 Mapping sQTLs and eQTLs in human pancreatic islets. a Overview of the study design. b Volcano plot 
showing the reference to alternate allele change in percentage splice index (Delta‑PSI) for junctions, and 
sQTLs ‑log10 p‑values. Orange dots depict sQTLs junctions with q ≤ 0.01. c Classification of sQTLs according 
to types of splicing events. d–i Selected examples of sGenes with different types of splicing events. An 
arrow signals the sQTL junction with best p‑value, and adjacent boxplots show normalized, batch‑corrected 
junction PSI values stratified by the lead sQTL genotype (IQR and 1.5 × IQR whiskers). Junction PSI values 
are colored according to the human islet dataset they belong to (see a). All boxplots show sQTLs with 
permutation p‑values significant at FDR ≤ 1%, see Additional file 3: Table S2. j Functional annotations of 
sGenes. The top panel shows a manually curated list of examples with known functions in islet function and 
diabetes (see Additional file 4: Table S3); the bottom panel shows enriched annotations using EnrichR and 
Benjamini–Hochberg‑adjusted p‑values
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such splice variants (Fig. 1c–i). The junctions mapped to 2088 distinct genes (sGenes), 
of which ~90% were known protein-coding genes, and ~7% were lncRNAs (Additional 
file 1: Fig. S2b).

We benchmarked human islet splice variants against GENCODE [22] and other availa-
ble transcriptome maps and found that only 77% of the sQTL junctions were annotated. 
This overlap increased to 90% in comparisons with unpublished human islet transcript 
annotations built with long-reads (Atla, G., Beucher, A., et al., unpublished) (Additional 
file 1: Fig. S2c). This suggests that human islet transcripts are still incompletely anno-
tated, but nevertheless well captured by our analysis of splice junctions.

We compared islet sQTLs to previously reported exon-QTLs [12], a possible proxy for 
sQTLs, and found that only 18% of sQTL junctions were flanked by exons from exon-
QTLs. Furthermore, when sQTL and exon-QTLs affected the same gene, there was 
limited linkage disequilibrium (r2 < 0.6) between the lead sQTL and exon-QTL variant 
for 45.2% of overlapping genes (Additional file 1: Fig. S2d, e). This indicates that sQTLs, 
which directly measure splice junction variation, and exon-QTLs, which measure 
exon expression levels and can thus be influenced by variables unrelated to RNA splic-
ing, mostly capture fundamentally different events.

Islet sGenes were enriched in islet-specific co-expression networks (Fig.  1j) and 
included numerous genes with well-established roles in islet biology and diabetes (Addi-
tional file 4: Table S3), including major drug targets (GLP1R, DPP4, ABCC8), regulators 
of hormone secretion (SLC7A2, CASR, GIPR), transcription (NKX6-1, PAX6, MLXIPL/
ChREBP), signaling (DYRK1A, WNT4), or circadian rhythms (PER3, CRY1, NR3C1, 
NR0B2). Importantly, sQTLs also affected genes that harbor variants that cause mono-
genic diabetes (KCNK16, ABCC8, PDX1) or influence T2D risk (THADA, PAM) as well 
as genes that play a role in T1D pathogenesis (ICA1, PTPRN2, HLA-B) (Fig. 1d–j, Addi-
tional file 1: Fig. S3, Additional files 3 and 4: Table S2-S3). Our results, therefore, dis-
closed a pervasive impact of common genetic variants on alternative splicing of human 
pancreatic islet transcripts, including numerous genes that are important for islet func-
tion and differentiation, diabetes treatment, or pathophysiology.

sQTLs and eQTLs are distinct

We next explored the extent to which genetic effects on splicing and expression of islet 
transcripts were distinct. Only 34% of genes that harbored sQTLs (715 sGenes) also har-
bored a significant eQTL (Fig. 2a). Furthermore, for those 715 common genes, the lead 
eQTL and sQTL were frequently not in linkage disequilibrium (r2 <0.6 for 57% of genes, 
<0.1 for 24% of genes, Fig.  2b). Thus, in most genes that harbored both eQTLs and 
sQTLs, these were driven by independent signals. This is illustrated by RGS1, encod-
ing a regulator of G-protein signaling, which has independent variants affecting either 
mRNA expression or exon skipping (Fig. 2c). In keeping with these findings, eQTLs and 
sQTLs were enriched in different functional genomic annotations. sQTLs were predom-
inantly enriched in 5′ or 3′ splice sites and exons, whereas eQTLs showed a predominant 
enrichment in active promoters and enhancers (Fig. 2d, Additional file 1: Fig. S2f, Addi-
tional files 5 and 6: Table S4-S5). We also found differences in the extent to which genetic 
effects on splicing or expression differed across tissues; ~60% of lead islet sQTLs showed 
significant sQTLs in <5 GTEx tissues [17], compared to ~30% of lead eQTLs, suggesting 
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Fig. 2. sQTLs and eQTLs are distinct genetic signals. a Overlap of sGenes and eGenes. b For 715 genes 
that have both eQTLs and sQTLs (overlapping genes in a), the top histogram shows the distribution of the 
percentage of variants shared between sets of nominally significant eQTLs and sQTLs. The bottom histogram 
shows the distribution of LD (r2) values between the lead eQTL and sQTL. c RSG1 has a distal eQTL, located in 
an intron of the FBXO42 gene, and an intronic sQTL, both of which are in low LD (r2=0.25). Boxplots represent 
RSG1 expression and junction PSI values for both sQTL and eQTL, showing that the lead eQTL rs58158339 is 
not associated with RSG1 splicing and the sQTL rs2863845 is not associated with expression. Boxplots show 
normalized, batch‑corrected expression or junction PSI values stratified by the genotype of the lead QTL 
(IQR boxes and 1.5 × IQR whiskers). Individual samples are colored according to the human islet dataset 
they belong to (see color legend in Fig. 1a). Nominal QTL p‑values are provided. d Enrichment of sQTL and 
eQTL variants in different functional genomic annotations using GREGOR. The x‑axis represents GREGOR fold 
change of observed vs. expected number of SNPs at each functional annotation. The dotted line represents 
1.5‑fold change. e Percentage of eGenes and Junctions with eQTLs or sQTLs at FDR ≤ 1%, respectively, shared 
in different number of GTEx tissues. We used significant eQTLs and sQTLs from 47 distinct GTEx V8 release 
tissues
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a significant islet-specific component of sQTLs (Fig.  2e). Taken together, our results 
reveal two separable layers of genetic regulation of the human islet transcriptome.

Islet sQTLs provide new T2D and glycemic trait targets

Genetic susceptibility to T2D has been linked to sequence variants that influence gene 
transcription in human islets [10–13], but the relationship with islet splicing has not 
been systematically explored. To examine the potential contribution of islet sQTLs to 
T2D genetic associations [1], we first used quantile-quantile plots that compare the dis-
tribution of T2D association p-values of sQTL and eQTL variants against an expected 
null distribution (Fig. 3a). As anticipated, eQTLs showed strong inflation of more sig-
nificant T2D association p-values. Remarkably, sQTLs also showed genomic inflation of 
T2D risk p-values (Fig. 3a). Importantly, this effect was maintained with islet-selective 
sQTLs (junctions with sQTLs in ≤ 5 GTEx tissues), or after omission of sQTLs that had 
high linkage disequilibrium with eQTLs (lead sQTL is in  r2 ≥ 0.6 with the lead eQTL 
for the same gene) (Additional file  1: Fig. S4a, b). Furthermore, sQTLs also showed 
genomic inflation of low association p-values with T2D-related traits such as fasting gly-
cemia (FG) or fasting insulin (FI) [23] (Additional file 1: Fig. S4c, d). These observations, 
therefore, suggest that splicing variation in human islets could contribute to T2D genetic 
susceptibility.

We reasoned that if splicing variation is linked to disease susceptibility at specific loci, 
a fraction of sQTLs and T2D associations should show high colocalization evidence 
(posterior probability of shared association between both phenotypes ≥ 0.8), and this 
could in turn point to specific candidate effector or causal transcripts underlying dis-
ease pathophysiology. To this end, we performed a systematic colocalization analysis 
between our islet sQTL or eQTLs, and independent GWAS signals for T2D (n = 403) 
[1] or glycemic traits (fasting glycemia, FG/fasting insulin, FI) (n = 274) [23]. We applied 
colocalization as implemented in gwas-pw [24], which draws upon the original coloc 
algorithm but does not rely on user-defined priors. This identified candidate effector 
transcripts with high colocalization support (posterior probability of shared association 
between both phenotypes ≥ 0.8) at 9 independent T2D GWAS signals using sQTLs, and 
25 using eQTLs (Additional files 7 and 8: Table S6-S7, Additional file 1: Fig. S6a). At loci 

Fig. 3 Role of human islet splicing variation in T2D susceptibility. a Quantile‑quantile (QQ) plot showing 
observed T2D association p‑values in human islet sQTLs (orange dots) and eQTLs (blue dots) against p‑values 
under the null hypothesis. The grey‑shaded region represents 1000 p‑value distributions (in the ‑log10 scale) 
of random sets of control sQTL variants (see the “Methods” section). Each set of control variants matches the 
number of islet sQTLs plotted. b Manhattan plot of splicing associations with T2D susceptibility (sTWAS). 
The y‑axis shows ‑log10 TWAS association p‑values. Significant sTWAS associations in known T2D GWAS 
loci are colored in purple, and in previously unreported loci in orange. c, d Regional T2D GWAS signal plots 
for PTPN9 and PKLR loci, two known T2D susceptibility regions, which showed significant sTWAS signals 
in MAN2C1 (c) and SCAMP3 (d) genes, respectively. Both splicing QTL effects in MAN2C1 and SCAMP3 are 
significant at FDR ≤ 1%; see Additional file 3: Table S2. LocusZoom plots show ‑log10 T2D association p‑values 
and locations in hg19 genome build. LocusCompare scatter plots show sQTL and T2D GWAS association 
p‑values (‑log10 scale), illustrating co‑localization of variants for both traits. Variants are colored according to 
the LD correlation (r2) with the lead GWAS variant of the sTWAS association (purple diamond). Boxplots show 
normalized, batch‑corrected junction PSI values on y‑axis stratified by the genotype of the lead GWAS variant 
from the sTWAS association. Boxplots follow the color‑to‑batch legend from Fig. 1a. e Known T2D loci with 
target effector transcripts nominated by sQTLs and eQTLs from this study and/or eQTL maps from the InsPIRE 
consortium

(See figure on next page.)
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associated with glycemic traits, we found colocalization with sQTLs for eight putative 
target genes, and eQTLs for 17 genes (Additional files 7 and 8: Table S6-S7).

We further harnessed Transcriptome-Wide Association Studies (TWAS) to expand 
the collection of candidate effector genes for T2D and related traits. In this approach, 
which so far has not been applied to human islet RNA-seq data, genetic effects on splic-
ing or expression are used to impute transcript variation in cases versus controls from 
GWAS datasets. This allowed us to identify splicing or expression changes associated 
with T2D and related traits. More specifically, we used the FUSION algorithm [25] and 

Fig. 3 (See legend on previous page.)
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GWAS summary statistics [1] to identify T2D associations with islet junction usage or 
gene expression (sTWAS and eTWAS, respectively). Because TWAS findings do not 
necessarily distinguish between shared genetic effects and linkage [26, 27], we focused 
on TWAS signals showing colocalization with the GWAS phenotype (PP4 ≥ 0.6), thus 
minimizing confounding effects from linkage. This identified 27 genes (42 splicing 
events) showing significant sTWAS with T2D risk, and 29 genes with eTWAS after mul-
tiple testing correction (Bonferroni p= 8.6 ×  10−6 and 1.8 ×  10−5 after correcting for 
5804 splicing junctions and 2851 genes, respectively) (Fig. 3b, Additional file 1: Fig. S4e, 
S5, Additional files 9 and 10: Table S8-S9). For glycemic traits, we identified 22 candidate 
target genes (43 splicing junctions) of GWAS signals via sTWAS, and 16 candidate tar-
get genes via eTWAS (Additional file 1: Fig. S4f-i, Additional files 9 and 10: Table S8-S9).

As expected, most TWAS signals fell in loci showing significant T2D and glycemic 
trait associations in GWAS (Fig.  3b, Additional file  1: Fig. S4e-i, S6b, Additional files 
9  and 10: Table  S8-S9). This included a sTWAS association for MAN2C1, encoding 
α-Mannosidase that has been implicated in mitochondrial-induced apoptosis and tissue 
damage [28, 29] (Fig. 3c). However, sTWAS revealed six T2D associations that did not 
reach genome-wide significance in the reference GWAS [1], three of which (SCAMP3, 
SNX11, and FAM57A) were nevertheless significant in a recent trans-ancestral meta-
analysis for T2D [3] (Additional file 9: Table S8). SCAMP3 encodes a vesicular transport 
protein [30] with unknown function in islets (Fig. 3d). Other significant sTWAS for T2D 
did not reach significance in GWAS reported so far, namely those encoding ERO1B, 
NHSL1, and ZNF277 (Fig. 3b, Additional file 9: Table S8; further details for ERO1B are 
shown in Fig. 4g). Thus, sTWAS nominated putative effector targets for T2D and glyce-
mic trait genetic associations, and identified additional genetic associations.

Our studies also highlighted significant eTWAS for T2D, including PCBD1, which is 
mutated in a syndrome that includes monogenic diabetes [31, 32], and encodes a co-
factor of HNF1A, an established monogenic diabetes gene [33] (Additional file  1: Fig. 
S6c, Additional file 10: Table S9). This locus was not significant in the reference GWAS 
[1] but another recent meta-analysis detected a significant association in this locus [3]. 
Our findings indicate that PCBD1 is a strong candidate effector transcript for this T2D 
susceptibility locus. Previously unreported T2D genetic association signals were found 
through eTWAS for CTC-228N24.2 and VSNL1, a calcium sensor that modulates cAMP 
and insulin secretion [34] (Additional file 1: Fig. S6d, Additional file 10: Table S9).

Taken together, the combination of our TWAS and QTL colocalization results iden-
tified candidate effector transcripts for 47 known T2D susceptibility loci, including 22 
acting through sQTLs, and 30 through eQTLs. Out of these 47 loci, 24 lacked informa-
tion about likely effector transcripts in a recent large-scale islet eQTL analysis [12]. In 
aggregate, our sQTL and eQTL analysis increases the number of T2D loci with candi-
date effector genes supported by molecular QTLs to 63, a 1.6-fold change relative to the 
largest islet eQTL analysis so far [12] (Fig. 3e, Additional file 11: Table S10). Likewise, 
the integration of our molecular QTLs and GWAS summary statistics data of glycemic 
traits from a recent trans-ancestral meta-analysis [23] allowed us to increase the number 
of GWAS loci with candidate effector genes up to 43, a 3.1-fold increase relative to the 
largest islet eQTL mapping study so far (Additional file 12: Table S11).
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Fig. 4 Fine‑mapping causal variants for known and novel T2D genetic associations. a Distribution of 
sQTL causal posterior probabilities (CPP) across different genic and non‑genic regions. P‑values on top 
correspond to Mann‑Whitney comparisons with non‑genic regions. b eQTL causal posterior probabilities 
across epigenomic annotations. P‑values on top correspond to comparisons with credible set variants that 
fall outside islet epigenomic annotations (closed chomatin regions). c, d For all T2D‑associated loci that 
colocalize with an islet QTL, we examined all fine‑mapped variants (99% credible sets in GWAS,  GWAScred) and 
compared the distribution of T2D causal posterior probabilities for variants that are also fine‑mapped QTL 
variants  (QTLcred) vs. those that were not fine‑mapped QTL variants. Mann‑Whitney p‑values are provided. 
Boxplots show IQR without outliers although p‑values were calculated using all data points. e, f Integration 
of T2D GWAS credible set variants with credible sets from colocalizing sQTLs and eQTLs increases fine 
mapping resolution. Bar plots show the number of independent signals that fall into different bins of number 
of candidate causal variants before and after restricting for QTL variants. G Fine‑mapping an sQTL and T2D 
association in ERO1B. The splicing QTL effect on ERO1B is significant at FDR ≤ 1%; see Additional file 3: 
Table S2. The LocusZoom shows T2D association ‑log10 p‑values; credible set variants for GWAS and sQTLs are 
shown as circles, and other GWAS credible set variants as triangles. The color of dots reflects r2 with the lead 
GWAS variant (in purple) and includes the best fine‑mapped candidate causal sQTL (rs2477599). The bottom 
inset depicts the alternative splicing event, along with the candidate causal sQTL variant and clipDB RBP 
binding sites. Boxplots are as described in Figs. 1, 2, and 3.
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Splicing variants uncover candidate mediators of T1D risk

We next explored the role of islet splicing variation in T1D. Despite the fact that T1D is 
an autoimmune disease, several observations indicate that a fraction of T1D risk alleles 
act through β-cells or exocrine pancreatic cells, rather than directly through immune 
cells [5, 14, 35]. Furthermore, significant changes in RNA splicing have been reported 
upon cytokine-stimulation of human islets [36]. We observed that both islet eQTLs 
and sQTLs show inflation of more significant T1D association values [5] (Additional 
file  1: Fig. S7a), and identified eQTLs and sQTLs that exhibit significant associations 
with T1D (Additional file 1: Fig. S7b, see complete list in Additional files 7, 8, 9 and 10: 
Table S6-S9). For example, islet sQTLs at MEG3, ESYT1, and DCLRE1B co-localize with 
T1D association signals (Additional file 1: Fig. S7b-d, S8a, Additional file 9: Table S8). 
ESYT1 is highly expressed in β-cells and encodes extended synaptotagmin 1 (E-Syt1), 
which has been implicated in insulin secretion regulation by clearing the plasma mem-
brane of diacylglycerol [37], while MEG3 and DCLRE1B have biological functions 
consistent with a role in autoimmune diabetes. MEG3 is an imprinted lncRNA that is 
strongly expressed in human β-cells and regulates cell-specific cytokine responses [38, 
39]. Downregulation of MEG3 has been observed in islets of the murine model of T1D, 
the nonobese diabetic mouse (NOD) [40], while targeted inhibition increases the sensi-
tivity of β-cells to cytokine-mediated oxidative stress [41]. Studies in T1D models and 
human islets have indicated that β-cell senescence contributes to autoimmune β-cell 
destruction, while DCLRE1B protects telomeres from replicative damage and prevents 
cellular senescence [42–44]. The DCLRE1B sQTL and sTWAS signal is in high local LD 
with one of the strongest T1D association signals at PTPN22, yet remains independent 
after conditional and joint (cojo-GCTA) variant analysis (Additional file 1: Fig. S8b-c). 
Taken together, the results nominate islet splicing and expression variants as potential 
molecular mediators of T1D predisposition.

Fine‑mapping QTLs identifies candidate causal variants for T2D risk

Genetic fine-mapping of molecular QTLs has been shown to aid in the identification of 
effector genes as well as to identify the causal variants for complex traits [45]. To this 
end, we generated 95% credible sets of sQTLs and eQTLs. For sQTLs, the highest cred-
ible set posterior probabilities (CPP) of fine-mapped variants were observed for mark-
ers in 5′ and 3′ splices sites, followed by exonic and intronic regions (Mann-Whitney p 
= 1.36 ×  10−19, 1.13 ×  10−21, 4.55 ×  10−80, and 1 ×  10−3, respectively, compared with 
intergenic variants) (Fig. 4a). Seqweaver, which provides variant effect predictions using 
RBP-based deep learning models [46], showed increased disease impact scores (DIS) of 
sQTLs in analogous annotations (Additional file 1: Fig. S9a). Furthermore, fine-mapped 
intronic and exonic sQTLs disrupted motifs of auxiliary splicing regulators (SRSF3, 
SRSF9, HNRNPA1, HNRNPC), while those near 3′ splice sites showed recurrent disrup-
tion of branch point motifs and core splicing components [47, 48] (Additional file 1: Fig. 
S9c). These orthogonal analyses were consistent with known determinants of RNA splic-
ing and highlight the potential of our fine-mapped sQTLs to prioritize causal variants.

Analogously, genetic fine-mapping of eQTLs revealed higher CPPs for variants in islet 
active promoters and enhancers (Mann-Whitney p = 3.24 ×  10−203, 1.38 ×  10−58, in 
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promoters and mediator-enriched enhancers, respectively) (Fig.  4b). Similar enrich-
ments were obtained with DeepSEA [49] (Additional file 1: Fig. S9b), and for disruption 
islet TF motifs [50–52] (Additional file 1: Fig. S9d). These results again supported that 
fine-mapped QTL variants have increased likelihood of driving splicing and expression 
variation in human islets.

Next, we hypothesized that if fine-mapped QTL variants are truly enriched in causal 
T2D variants, they should converge with variants that have highest CPPs in GWAS 
fine-mapping studies. To investigate this, we examined 99% credible set variants from 
T2D GWAS signals [1] with colocalizing QTLs (PP4>0.8, 16 loci for splicing, 28 loci for 
expression). We observed that GWAS credible set variants that were also in sQTL cred-
ible sets had higher GWAS CPP than GWAS credible variants that were not in the sQTL 
credible sets (Mann-Whitney p= 1.71 ×  10−32) (Fig. 4c). Likewise, GWAS credible set 
variants that were also in eQTL credible sets showed higher GWAS CPP than other 
GWAS credible set variants (Mann-Whitney p= 1.16 ×  10−62) (Fig.  4d). This conver-
gence between GWAS and QTL fine-mapping provided further evidence that QTLs are 
likely to contain causal T2D risk variants. The integration of QTL and GWAS credible 
sets increased the number of associated loci with ≤5 putative causal variants from one 
to five loci by integrating fine-mapped sQTLs, and 8 to 13 loci with fine-mapped eQTLs 
(Fig. 4e, f; see also examples in Fig. 4g and Additional file 1: Fig. S9e). Thus, fine mapping 
QTLs has the potential to boost the genetic resolution of GWAS credible sets.

ERO1B represents an example in which we fine-mapped a putative causal variant for 
a candidate effector gene. ERO1B showed a significant sTWAS T2D association in our 
studies (p= 6.5 ×  10−6, significant at FDR ≤ 1%). Fine-mapping highlighted an exonic 
rs2477599 variant that localizes to a splicing silencer HNRNPC motif, which causes an 
exon skipping event that results in premature truncation of the ERO1B open reading 
frame (Fig. 4g). Previous genetic loss-of-function studies have shown that ERO1B (endo-
plasmic reticulum oxidoreductase 1 beta, also known as ERO1LB) is an ER protein that 
plays a critical role in insulin biosynthesis and β-cell survival [53–55]. rs2477599 has not 
been previously reported in T2D GWAS studies, but shows suggestive associations in 
GWAS for T2D (p= 8.2 ×  10−6 in [1], and p= 3.42 ×  10−5 in FinnGen Biobank, data 
freeze 7) and random glucose (p= 8.3 ×10−5 UK Biobank Mendelian traits [56]). These 
findings point to a fine-mapped putative causal splicing variant and a plausible effector 
mechanism for T2D susceptibility.

sQTLs also shed interesting findings at the BCAR1/CTRB2 locus. GWAS have fine-
mapped an intergenic variant near CTRB2 (rs72802342, CPP=0.66) that is associated 
with T2D [1], T1D [5], and pancreatic ductal adenocarcinoma (PDAC) [57] and co-
localizes with an accessible chromatin region in human acinar cells and islets [5, 58]. 
CTRB2 showed significant sTWAS associations with T2D and T1D (Additional file  9: 
Table S8), and our fine-mapped sQTLs pointed to the same lead candidate causal variant, 
rs72802342, which appeared to cause a complete exon-skipping event in CTRB2 tran-
scripts (Additional file 1: Fig. S9e). Recent work, however, has shown that rs72802342 
tags a 584 bp deletion that completely overlaps exon 6, and explains our observed sQTL 
[57]. Thus, an exon-skipping deletion at CTRB2 (rather than an exon skipping splice 
variant) is likely to be the functional causal variant underlying T2D, as well as T1D and 
PDAC, susceptibility.
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Islet QTLs provide insights into T2D pathways

The availability of an expanded list of candidate effector genes, as opposed to lists 
of genes that are located in the vicinity of associated SNPs, allowed us to explore 
the hypothesis that a subset of genetic signals could influence T2D susceptibility by 
acting on specific cellular pathways in pancreatic islet cells. We thus compiled 106 
putative effector genes for T2D or glycemic traits (FG, FI) reported here as well as 
previously reported co-localizing islet eQTLs [12]. This list excluded those exclu-
sively detected in non-endocrine cells after analysis of single cell RNA-seq datasets 
(Additional file  13: Table  S12), as well as non-coding transcripts and genes without 
known function. Functional gene annotations revealed notable enriched pathways, 
including regulators of fatty acid biosynthesis (SCD5, FADS1, GCDH, BDH2, PAM; 
GO:0006636, GO:1901570, ENRICHR adjusted p = 0.04), and genes upregulated by 
hypoxia or mTORC1 activation (MsigDB Hallmark Hypoxia and mTORC1 signaling; q 
< 0.05 and < 0.001, respectively). We further used the list of 106 genes to identify net-
works using STRING [59] v11.5, using co-expression, experimental, and functional 
annotation databases. We allowed for minimal network inflation (≤5 interactions) 
and omitted text-mining to preclude bias arising from publications that name genes 
at significant GWAS loci. The resulting network exhibited 1.8-fold greater protein-
protein interactions than random sets (PPI enrichment p <  10−4) and contained two 
distinct subnetworks (Fig.  5a). One subnetwork contained components of the eIF3 
translational initiation complex (FDR = 0.018). Several monogenic diabetes genes 
target translational initiation, in particular eIF2 complex (EIF2B1, EIF2S3, EIF2AK3), 
due to their impact on endoplasmic reticulum stress in β-cells [60, 61] (Fig. 5a). This 
process is also regulated by ERO1B [55]. Another notable sub-network was formed 
by molecular mediators of G-protein mediated enhancement of cAMP, a major insu-
linotropic pathway [62, 63]. Manual curation revealed eight well-characterized genes 
in this pathway, including GLP1R, RGS17, PDE8B, four members of the GNAI3 (G(i) 
subunit α3) protein-protein interaction complex (GPSM1, RGS19, ADRA2A, ADCY5), 
and VSNL1, a modulator of cAMP and insulin secretion [34] (Fig. 5a, b).

Discussion
This study adds splicing variation in pancreatic islets to the spectrum of molecular 
mechanisms that underlie T2D predisposition. Earlier studies had examined expres-
sion QTLs in human pancreatic islets [10–13, 18, 19]. The current study offers the 
first systematic analysis of how common genetic variants influence RNA splicing in 
human islets. Parallel profiling of splicing and expression QTLs in the same dataset 
demonstrated that these represent two distinct mechanisms through which genetic 
variation can influence islet biology and disease. We found islet sQTLs that impact 
genes that have major roles in islet cell function as well as in the pathophysiology or 
treatment of various forms of diabetes. Furthermore, we observed a selective inflation 
of T2D association p-values among sQTLs, some of which showed fine co-localiza-
tion with T2D variants. Finally, we applied for the first time splicing and expression 
TWAS to nominate T2D target genes and identified novel T2D genetic association 
signals.



Page 13 of 28Atla et al. Genome Biology          (2022) 23:196  

Gene targets that are nominated based on human genetic evidence double their like-
lihood of success in drug development pipelines [64]. We have expanded the current 
list of putative effector genes that mediate diabetes risk at known and novel suscepti-
bility regions, and include examples that provide insights into T2D pathophysiology. 

Fig. 5 Islet QTLs that co‑localize with T2D signals target distinct pathways. a STRING v11.5 was used to 
analyze 106 genes with sQTLs or eQTLs co‑localizing with T2D or glycemic traits, including previously 
reported eQTLs. We only considered genes with known or presumed protein‑coding function, and not 
exclusively expressed in non‑endocrine cells according to single cell RNA‑seq. We allowed for inflation of 
≤ 5 interactors, and used default (>0.4) confidence scores. Shown are two networks with >3 components, 
one populated by components of heterotrimeric G protein signaling, and another by genes involved in eIF3 
translational initiation. Genes are colored as indicated in the legend; other interactors added through STRING 
analysis are shaded gray. b Manual curation was used to illustrate the relationship between components of 
the G protein‑mediated insulinotropic pathway targeted by islet QTLs linked to T2D and related traits
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This was illustrated by the association of T2D risk with a fine-mapped splice vari-
ant that creates a premature stop codon in ERO1B. This newly reported locus is 
supported by an independent T2D association signal observed in FinnGen, as well 
as prior experimental and genetic studies that point to a central role in ER homeo-
stasis, insulin biosynthesis, and diabetes progression [53–55]. Our analysis of sQTLs 
revealed a spurious exon-skipping splicing event in CTRB2 caused by a deletion. This 
exon deletion, which has been previously characterized in the context of PDAC sus-
ceptibility [57], provides a more compelling candidate molecular driver for T2D and 
T1D susceptibility at this locus than recently reported transcriptional variants [5, 58] 
and can be tested in models to determine pathogenic mechanisms.

T2D has a highly polygenic architecture, with a very large number of effector genes 
that individually exert small effects. It remains possible, however, that many such genes 
converge on a small number of biological pathways. The extended list of genes with islet 
QTLs that co-localize with GWAS signals allowed us to explore shared pathways under-
lying T2D susceptibility. We found supportive evidence for a role in translation, ER 
stress, and fatty acid metabolism, and, most clearly, eight out of 106 QTLs that co-local-
ized with glycemic trait or T2D associations were linked to G protein-coupled receptor 
(GPCR) signaling through cAMP. This pathway has been extensively involved in trans-
ducing signals from a vast range of extracellular insulinotropic stimuli, including incre-
tin hormones, neurotransmitters, nutrients such as fatty acids, or extracellular matrix 
components [62, 65, 66]. Effectors from this pathway included an sQTL for GLP1R, a 
major drug target for T2D [67], four members of the same protein interaction complex, 
and a novel T2D association for VSNL1, previously shown to stimulate cAMP produc-
tion and insulin secretion [34]. These findings, therefore, suggest that abnormal produc-
tion of cAMP plays a causal role in T2D susceptibility, plausibly through its impact on 
insulin secretion and islet gene transcription. This pathway is a known therapeutic target 
to stimulate insulin secretion. However, our findings raise the additional prospect that it 
is possible to target altered GPCR signaling in precision medicine strategies that aim to 
correct causal defects, and thereby modify disease progression in susceptible individuals.

Our resource of islet sQTLs is relevant for efforts to dissect multi-allele interactions. 
There is growing evidence that disease-associated haplotypes can contain more than one 
functionally interacting causal variant [68]. Islet splicing variants can thus act in cis with 
other functional variants to influence disease susceptibility. For example, sQTLs could 
modify the penetrance of causal coding or cis-acting variants in both polygenic or Men-
delian settings. Likewise, we have shown that islet sQTLs can alter drug target genes 
and can thus be examined to understand how genetic variation alters the response to 
therapies.

Finally, this molecular QTL resource holds relevance for the biological interpretation 
of genetic variants that influence autoimmune T1D risk, in particular for efforts to link 
biological processes in β-cells into T1D predisposition. Of interest, our findings provide 
a genetic finding that aligns with recent proposals that intrinsic β-cell senescence pro-
cesses contribute to autoimmune β-cell destruction [42, 43].

Our analysis of molecular QTLs entails some limitations. Splicing activity was esti-
mated by junction usage, which does not directly inform isoform level regulation, and 
therefore provides a partial picture of how local splicing translates into gene function. 



Page 15 of 28Atla et al. Genome Biology          (2022) 23:196  

Furthermore, the analysis of molecular QTLs was limited to islets, where genetic vari-
ants are known to play a central role in diabetes mellitus, most clearly in T2D. Some dis-
ease associations are expected to be mediated through other cell types and the mediating 
mechanism is not captured by our studies. In addition, our study was performed on bulk 
pancreatic islet samples with heterogeneous cell-type compositions, after exposure to 
conventional culture conditions. This limits the power to discover new QTL signals that 
are confined to minor cell types, or conditioned by specific environmental contexts [69]. 
Furthermore, colocalization and TWAS evidence does not preclude horizontal pleiot-
ropy, and we have thus not unequivocally linked non-coding variant disease associations 
with the causal molecular targets. Nevertheless, we have demonstrated genetic co-local-
ization of disease risk variants and molecular variation in pancreatic islets, which play a 
central causal role in diabetes. This knowledge can thus be used to nominate plausible 
effector mechanisms and should warrant further orthogonal genetic and experimental 
studies to establish causality.

Conclusions
Our findings expose widespread effects of common genetic variants on RNA splicing 
in pancreatic islets, a tissue that is directly relevant to the pathophysiology of T1D and 
T2D. We highlight examples in which genetic and biological evidence supports a role in 
diabetes susceptibility. The results provide new avenues and resources to understand the 
genetic underpinnings of diabetes mellitus.

Methods
Human pancreatic islet datasets

We compiled 447 human islets samples, which comprised 89 samples from GEO acces-
sion number GSE50244 [19], 118 from EGA accession number EGAD00001001601 [18], 
112 samples from T2DSystems EGA accession number EGAS00001005535 [13], and 128 
samples from CRG cohort (EGAS00001006440) [70]. Out of 447 samples, 399 samples 
passed genotype and RNA-seq QC filters described below.

For the CRG cohort, human pancreatic islets from organ donors without a history 
of glucose intolerance were purified using established isolation procedures [71–74], 
shipped in culture medium and re-cultured at 37 °C in a humidified chamber with 5% 
 CO2 in glucose-free RPMI 1640 supplemented with 10% fetal calf serum, 100 U  ml−1 
penicillin, 100 U  ml−1 streptomycin, and 11 mM glucose for 3 days before analysis. Islet 
isolation centers had permission to use islets for scientific research if they were insuffi-
cient for clinical transplantation following national regulations and ethical requirements 
and institutional approvals from University of Lille, University of Geneva, and Milano 
San Raffaele Hospital. Ethical approval for processing de-identified samples was granted 
by the Clinical Research Ethics Committee of Hospital Clinic de Barcelona and Parc de 
Salut Mar.

Genotype processing

The 128 CRG cohort samples were genotyped with Illumina Infinium OmniExpress 
12 v1 and HumanOmni 2.5-8v1 on a total of 624K SNPs. The 89 samples from Fadista 
et al. (GSE50244) [19] were genotyped using Illumina HumanOmniExpress 12v1 C on 
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a total of 609K SNPs. The 118 samples from Van de Bunt et al. (EGAD00001001601) 
[18] were genotyped using Illumina Omni2.5+Exome array on a total of 2.6M SNPs. 
Finally, the 112 samples from T2DSystems (EGAS00001005535) [13] were genotyped 
using Illumina’s Human Omni 2.5 exome array on a total of 2.6M SNPs.

A three-step quality control of genotype data, involving two stages of SNP removal 
and one intermediate stage of sample exclusion, was conducted in each cohort. 
Genotyped SNPs were filtered if (i) minor allele frequency (MAF) < 0.01), (ii) miss-
ing genotype rate ≥ 5%, and (iii) significantly deviated from Hardy-Weinberg equi-
librium (HWE p-value ≤ 1×10−6). Samples were excluded if (i) individual missing 
genotype rate ≥ 2%, (ii) cryptic relationships and sample duplicates (individuals 
with higher individual missingness genotype rate from pairs with pi ≥ 0.185), or (iii) 
showed >4 standard deviations from the mean according to the first four principal 
components in each given cohort.

After QC analysis for genotype data, (i) 113 individuals and 557,422 SNPs were 
retained for the CRG cohort, (ii) 112 individuals and 1,499,688 SNPs for the Van de 
Bunt et al. cohort [18], (iii) 89 individuals and 596,464 SNPs for the Fadista et al. [19] 
cohort, and (iv) 109 individuals and 1,543,968 SNPs for the T2DSystems cohort [13].

For each cohort, we generated per-chromosome VCF files after removing all strand 
ambiguous variants (AT or CG SNPs), and checking for strand alignment against 
the Haplotype Reference Consortium (HRC) and 1000 Genomes (1000G) reference 
SNP list. HRC-1000G-check-bim.pl script with the -n option (to turn off the removal 
of variants showing MAF differences between the reference panel and the study 
genotypes) was used. We submitted resulting VCF files to the Michigan Imputation 
Server (https:// imput ation server. sph. umich. edu/ index. html): EAGLE2 [75] was used 
for phasing, minimac3 [76] for genotype imputation with the HRC [77] r1.1 and 
the 1000G Phase 3 release reference panels [78], independently. For each dataset of 
imputed genotypes, we excluded variants with (i) MAF < 1%, (ii) imputation-quality 
R2 < 0.7, and/or (iii) HWE p-value ≤ 1×10−6. We extracted indels from the 1000G 
Phase3 imputed results, filtered them using the aforementioned criteria, and merged 
with the filtered HRC imputed dataset.

RNA‑Seq data alignment and QC

Raw fastq files from all cohorts were aligned to the hg19 genome build using STAR 
[79] and the options, --outFilterMultimapNmax 1 --outSAMstrandField intron-
Motif --outSAMattributes All --twopassMode Basic. WASP [80] pipeline was used 
to remove reads mapped with allelic bias. VerifyBAMID [81] was used to assess the 
concordance between genotypes and RNA-Seq, and samples with more than 2% con-
tamination (CHIPMIX > 0.02 and FREEMIX > 0.02) were removed. This resulted in 
101 samples from CRG cohort, 109 from samples Van de Bunt et al. cohort [18], 82 
samples from Fadista et al. [19] cohort, and 107 samples from T2DSystems [13]. The 
resulting BAM files were used for gene expression quantification and to calculate 
splicing activity. In-case of EGAD00001001601 [18], only bam files were available; 
hence, the initial STAR alignment step was not performed.

https://imputationserver.sph.umich.edu/index.html
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Principal component analysis of genotypes

To identify individuals of divergent ancestry and to characterize population struc-
ture of 399 human islet samples, we first selected a subset of genotyped SNPs that 
were common in all 4 cohorts, that also passed all our QC filters (see the “Genotype 
processing” section), and with MAF ≥ 1% and missingness < 5% across all the sam-
ples. We also excluded SNPs in high LD (pairwise r2 ≤ 0.1 within 1 Mb window), C/G 
and A/T SNPs to avoid strand mismatches, and those located in previously reported 
regions with long-range LD. We aggregated the 1000 Genomes Phase3 reference data-
set using the set of overlapping variants. flashPCA [82] tool was used to calculate 
genetic principal components (PCs) (Additional file 1: Fig. S1c-d). First four genetic 
PCs are used as covariates in subsequent sQTL and eQTL mapping analysis.

Gene expression quantification

In-house developed human pancreatic islet transcriptome annotations built with a 
combination of CAGE as well as short and long sequence reads were used to quan-
tify total gene expression (Atla, G., Beucher, A. et  al., unpublished). FeatureCounts 
[83] was used to obtain gene level qualifications using default parameters except 
using appropriate strandedness flag for each dataset. Genes with less than 5 raw reads 
mapped in less than 10% of the samples within each cohort were removed. CPM nor-
malization was performed using edgeR [84] cpm function and then log2 transformed. 
Combat [85] was used to remove known sequencing batch effects. Principal com-
ponents (PCs) were calculated on Combat corrected gene expression values using 
prcomp function in R (Additional file 1: Fig. S1a).

Splicing quantification

To quantify splicing activity, we used the annotation free method, leafcutter [20]. 
Briefly bam2junc.sh script from leafcutter was used to quantify junction spanning 
reads based on spliced alignments from bam files. We removed junctions that are not 
supported by at least 5 spliced reads in at least 10% of samples. We then used leaf-
cutter_cluster.py script with options -m 30 -l 500000 to cluster the junctions anchor-
ing on shared splice sites. This identifies local splicing events which are a cluster of 
alternatively used junctions. prepare_phenotype_table.py script was used to get rela-
tive junction usage (ratios) across samples. The relative junction usage is also referred 
to as percent spliced in (junction PSI) in the manuscript. Combat [85] was used to 
remove known sequencing batch effects and principal components were generated 
using prcomp function in R (Additional file 1: Fig. S1b).

cis‑eQTL mapping

cis-eQTL mapping was performed using QTLtools [86] for 399 samples with available 
QCed genotype and RNA-seq data using a cis-window of 500 kb up- and downstream 
of the transcription start site (TSS). Fifteen PCs derived from gene expression and 
4 genetic PCs were used as covariates in the linear model. In order to identify best 
associated cis eQTL SNP-eGene pairs, QTLtools was run using the permutation pass 
mode using default parameters and --permute 1000 --window 500000 --seed 123456. 
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Beta approximated permutation p-values were adjusted for multiple testing correc-
tion using Storey q-values implemented in the qvalue R package. We set the signifi-
cance threshold at FDR q-value ≤ 0.01. This resulted in 3433 genes (eGenes) with 
significant eQTLs (Additional file 2: Table S1). We also calculated nominal p-values 
for all cis-SNPs within a 500-kb window centered on the TSS of each gene (nominal 
pass mode from QTLtools, --nominal 1 --window 500000 --seed 123456). To identify 
all significant variant-gene pairs, we defined a genome-wide p-value threshold (pt), 
by considering the empirical p-value of the eGene closest to the 0.01 FDR threshold. 
A gene-based nominal p-value threshold was then calculated using pt and the beta 
distribution parameters from QTLtools. For each significant eGene, variants with a 
nominal p-value below the gene-level threshold were considered in subsequent analy-
ses (significant nominal cis-eQTL variants) [21].

cis‑sQTL mapping

We performed cis-sQTL mapping as described for cis-eQTL identification using intron 
excision ratios and a cis-window of 50 kb up- and downstream of the junction (--win-
dow 50000). In case of cis-sQTLs, 5 PCs derived from splicing ratios and 4 genetic PCs 
were used in the linear model. In order to identify best associated cis sQTL SNP-junc-
tion pairs, QTLtools was run using the permutation pass mode (1000 permutations), 
and beta approximated permutation p-values were adjusted for multiple test correc-
tion using Storey q-values implemented in the qvalue R package. We set the significance 
threshold at FDR q-value ≤ 0.01, resulting in 4858 junctions with a significant sQTL 
(Additional file 3: Table S2). We also calculated nominal p-values for all cis-SNPs within 
a 50-kb window around the junction (nominal pass mode from QTLtools). To identify 
all significant variant-junction pairs, we defined a genome-wide p-value threshold (pt) 
by considering the empirical p-value of the junctions closest to the 0.01 FDR threshold. 
A junction-based nominal p-value threshold was then calculated using pt and the beta 
distribution parameters from QTLtools. For each significant junction, variants with a 
nominal p-value below the junction-level threshold were considered in subsequent anal-
yses (significant nominal cis-sQTL variants) [21].

Imputation information score of lead eQTLs and sQTLs

We used QCTOOL v2.0.6 to calculate imputation scores (-snp-stats) for each lead eQTL 
and sQTL identified in 3433 genes and 4858 splicing junctions at FDR ≤ 1%, respectively.

Annotation of sQTL junctions

As leafcutter identifies junctions de-novo, we used transcriptome annotation GTF files 
as a base to annotate the junctions with respective genes. We used gtf2leafcutter.pl script 
from leafcutter’s leafviz module (https:// github. com/ david aknow les/ leafc utter/ tree/ 
master/ leafv iz) to obtain the intron coordinates of all genes. The sQTL junctions were 
then mapped to the intron coordinates and annotated with respective gene names.

Magnitude of genetic effects on splicing

To quantify the magnitude of genetic effects on splicing, for each cluster, we chose a 
junction with the best q-value. Then, for each sQTL junction, we calculated the 

https://github.com/davidaknowles/leafcutter/tree/master/leafviz
https://github.com/davidaknowles/leafcutter/tree/master/leafviz
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difference in median junction usage (delta-psi) from samples with homozygous refer-
ence and homozygous alternate alleles and plotted as a function of the -log10 (q-value). If 
alternate homozygous samples were not available, we chose median junction usage from 
heterozygous samples.

Visualization of splicing events

The junctions identified from leafcutter were loaded into IGV [87] for visualization as 
arcs, and box plots were plotted using python.

Comparison of eQTLs and sQTLs

Our maps of genetic effects on splicing were compared to our eQTLs but also to previ-
ously reported exonQTLs and eQTLs in the largest study to date in human pancreatic 
islets by the InsPIRE consortium [12]. To estimate the gain of novel information uniquely 
provided by our sQTL analysis, we first determined the overlap between sGenes and 
eGenes in our study, and eQTLs and exon QTLs mapped by InsPIRE. For those genes 
that contain both sQTLs and either eQTLs or e/exon QTLs in InsPIRE, we calculated 
the LD (r2 measure) between the lead sQTL and all other SNPs within 1Mb using PLINK 
[88] (v1.9 --ld-window-kb 1000 --ld-window 99999 --ld-window-r2 0). As a reference 
dataset for LD calculations, we used our high-quality genotypes in 399 samples. Then, 
for each gene, we plot the LD r2 distribution between the lead sQTL and the lead QTL 
from the dataset being compared, respectively.

Genomic enrichment analysis of eQTLs and sQTLs

We used GREGOR [89] to perform enrichment analysis of lead sQTLs and eQTLs in 
different genomic annotations using the following options R2THRESHOLD=0.7, 
LDWINDOWSIZE=50000 (for sQTLs), LDWINDOWSIZE=100000 (for eQTLs), 
MIN_NEIGHBOR_NUM=200, and POPULATION=EUR.

Human islet regulatory annotations were described previously [11]. For genic annota-
tions, we used Gencode [22] v34 GTF file. We used gtf2leafcutter.pl script to obtain all 
exon, intron, 5′ and 3′ coordinates from GTF file. 5′ and 3′ coordinates were extended 
to +3bp into exon and +2bp into intron. All annotations contain mutually exclusive 
genomic space.

In parallel, we used GARFIELD [90] for enrichment analysis among genomic anno-
tations. We used QTLtools beta approximated permutation p-values of lead eQTL and 
sQTLs from all genes and junctions tested in cis-eQTL and sQTL analysis. If a variant 
was lead eQTL or sQTL for multiple genes or junctions, we kept the lowest p-value. 
We used the same annotations as in GREGOR. For each set of eQTLs and sQTLs, the 
method first removes variants with r2 ≥ 0.1 in a 1-Mb window from the most signifi-
cantly associated variant, and then links each of the independent variants to genomic 
annotations if either the variant or a variant in LD (r2 ≥ 0.8) overlaps a given feature. 
Finally, the method tests for enrichment with a logistic regression model that controls 
for confounding factors such as distance to the TSS, number of LD proxies, and MAF 
that we binned in 4 quantiles. We used three different QTL p-value thresholds to test 
for enrichment, 5×10−3, 5×10−5, and 5×10−7. Significant enrichments for eQTLs and 
sQTLs were identified after applying multiple-test correction for the effective number of 
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annotations (estimated by GARFIELD), the number of QTL p-value thresholds, and the 
number of molecular QTL phenotypes.

Comparison with GTEx

We obtained summary statistics data for eQTLs and sQTLs from 49 GTEx tissues [17]. 
We first obtained eGenes and junctions with significant eQTLs and sQTLs, respectively, 
at FDR 0.01, consistent with our significance threshold. For the resulting significant 
variant-phenotype associations for each of the 49 tissues, variant position  and junc-
tion coordinates (for sQTLs) were lifted down from hg38 to hg19 using liftOver [91]. 
For each GTEx tissue, we looked at the variant-phenotype (eGenes or Junctions) overlap 
with our islet eQTL and sQTLs, using nominal QTL variants. For example, for GTEx 
x eGene in j tissue, if any of the GTEx significant variants mapped any of our nominal 
eQTL variants for that x eGene, we considered that islet eQTL signal to be shared with 
that given j tissue. Same approach was implemented to sQTLs. We excluded from this 
analysis testis, given the pervasive number of eQTLs, and pancreas because it is a partial 
surrogate of pancreatic islets.

Quantile‑quantile plots

We generated quantile-quantile (Q-Q) plots to estimate genomic inflation in sQTLs 
and eQTLs for T2D and T1D risk, and glycemic traits variation. For T2D, we used BMI-
adjusted T2D summary statistics [1]. For glycemic traits, we leveraged summary statis-
tics data from a trans-ancestral meta-analysis for fasting glucose (FG) and fasting insulin 
(FI) [23]. For T1D, we used summary statistics data from a recent large-scale meta-anal-
ysis [5]. We included variants with MAF ≥ 5% that were intersected with our nominal 
e- and sQTLs. For each trait comparison, we generated 1000 permutations of subsets of 
control sQTL variants to provide further support to the observed enrichment of e- and 
s-QTLs among GWAS variants. Each control set of sQTL-like variants was generated 
by first identifying independent LD blocks [92], that comprised nominal eQTL or sQTL 
variants, respectively. Then, we shuffled non-overlapping genomic regions that were cre-
ated based on the size of the genomic ranges where our nominal sQTL variants were 
located, across the genome, but excluding those independent LD regions where either 
eQTL or sQTL variants were located, blacklisted regions (wgEncodeDacMapabilityCon-
sensusExcludable.bed.gz and wgEncodeDukeMapabilityRegionsExcludable.bed.gz) and 
the MHC region. Among the set of shuffled independent LD regions, we randomly sam-
pled the same number of nominal sQTL variants. This was done 1000 times.

For the specific purpose of addressing T2D susceptibility across shared or independ-
ent sQTL/eQTL effects, we considered sQTLs and eQTLs from junctions and eGenes 
whose corresponding lead sQTL and eQTL were in r2 ≥ 0.6 as shared. The rest were 
considered as sQTL or eQTL specific genetic effects, respectively. To estimate T2D risk 
inflation across islet-selective sQTLs and eQTLs, we grouped sQTLs and eQTLs that 
were shared in ≤ 6 GTEx tissues (see the “Comparison with GTEx” section) as islet-
selective QTL effects. To assess the strength of T2D-risk inflation, we leveraged 1000 
permutations of control-sets of sQTL-like variants as described above.
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Colocalization analysis across T2D, T1D and FG/FI independent GWAS signals

We collected 403 independent lead variants for T2D [1] and 277 for FG and FI [23] and 
136 for T1D [5]. For each trait, we performed colocalization as implemented in gwas-pw 
[24] at each independent GWAS signal. We only tested for colocalization with e- and 
sQTLs at those signals with at least one credible set variant (genetic posterior probabil-
ity ≥ 0.01) in LD (r2 ≥ 0.6) with a lead eQTL or sQTL, respectively. Credible sets were 
not available for FG and FI GWAS. Thus, we tested for colocalization at FG/FI GWAS 
signals if at least one variant with GWAS p ≤ 5×10−5 was in LD (r2 ≥ 0.6) with a given 
lead eQTL or sQTL. GWAS signal LD calculations were performed using the high-qual-
ity genotypes from our 399 islet donor samples. If for a given independent GWAS signal, 
any of the available proxy variants was not included in our imputed genotypes, we used 
1000 Genomes Phase3 genotypes (with European descent) as the reference panel [78]. 
Colocalization was performed across 1Mb genomic interval centered on the reported 
lead independent variant for a given GWAS locus, and including variants with a GWAS 
p ≤ 5×10−5. We nominated a region as a colocalized locus if the posterior probability 
for the model 3 (presence of the same genetic variant underlying the QTL and GWAS 
association, “colocalization”) was ≥ 0.8. Colocalization signals were visualized using 
R-3.6.1 and LocusCompareR 1.0.0.

Visualization of regional association plots

Regional association plots for T2D and T1D susceptibility regions were created using 
LocusZoom [93] v1.4 in R-3.6.1.

TWAS analysis

FUSION [25] was used for TWAS analysis with T2D, T1D, and glycemic traits (FG 
and FI). For gene expression, first the weights were computed using FUSION.compute_
weights.R and options --models top1, blup, bslmm, lasso, enet on the same data that is 
used for eQTL analysis. Fifteen gene expression PCs and 4 genetic PCS were used as 
covariates and variants within a cis-window of 500kb from TSS were used. For splicing 
analysis, variants within 50kb from the junction boundaries were used and 5 splicing 
PCs and 4 genetic PCs were used to compute the weights.

After computing weights, FUSION.assoc_test.R script was used to test for association 
of the pre-computed weights and GWAS summary statistics data for T2D [1], T1D [5], 
and glycemic traits [23] (FG and FI). We only included GWAS data from variants that 
overlaid our ~6.5M high-quality imputed common genetic variants. Multiple test cor-
rection was applied to the resulting p-values using Bonferroni. We also excluded TWAS 
results with low colocalization posterior probabilities and with large confounding effects 
from linkage (gwas-pw PPA_3 or COLOC PP4 < 0.6).

We mapped TWAS results to T2D, glycemic, and T1D GWAS loci by identifying 
TWAS results whose best GWAS lead variant was in LD (r2 ≥0.1, calculated using the 
genotypes of individuals with European descent from the Phase 3 of the 1000 Genomes 
Project [78]) or less than 500kb away from lead GWAS signals, for each trait respec-
tively. The rest of TWAS results were considered as novel GWAS loci. For T2D, we also 
considered as known GWAS loci if the TWAS signals are in LD (r2 ≥ 0.1) with lead inde-
pendent signals identified in a recent large-scale meta-analysis [3].
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Conditional analysis in the PTPN22 T1D locus

We performed conditional analysis on the DCLRE1B sQTL using COJO [94], GWAS 
summary statistics from a recent T1D meta-analysis [5] and the genotypes from 1000 
Genomes Phase 3 as the LD reference panel. We first conducted COJO single-vari-
ant analysis (gcta --cojo-cond) that conditioned on the lead PTPN22 missense variant 
(rs2476601) and the DCLRE1B sQTL (rs11102694), respectively. Additional joint SNP 
analysis (--cojo-joint) was performed with COJO considering both PTPN22 missense 
and the DCLRE1B sQTL variant. For the joint SNP analysis, we used a fraction of 
381,380 unrelated UK Biobank individuals as the LD reference panel (subjects related 
up to second-degree were filtered) of white European origin.

Single cell gene expression analysis

We quantified published single cell data sets [95–98] against in-house annotations 
(Atla, G.,  Beucher, A., et  al., unpublished) using featureCounts [83]. Seurat V3 [99] 
was used to normalize and identify cell-types within each data set. A gene is anno-
tated as expressed if it has normalized counts of ≥0.3 in at least 30 cells of a given 
cell-type in one of the data sets.

Network analysis

We selected all the nominated effector genes for T2D, FG, FI from the current study 
and InsPIRE [12], filtered for 106 that encode for proteins with known or presumed 
function, and used them to construct networks using StringDB [100]. StringApp [101] 
in cytoscape [102] was used to identify protein-protein interaction networks using 
default parameters, confidence score cutoff 0.4 and maximum additional interac-
tors of 5. This yielded 1.8-fold higher protein-protein interactions than random sets, 
although only subnetworks with 3 or more components are shown.

Credible set analysis

We used fine-mapping approaches to identify candidate causal variants that underlie 
cis-eQTL and sQTL loci [21]. We identified 95% credible set variants using CAVIAR 
[103] software and allowing for one causal variant (-c 1). LD information between 
SNP pairs (i.e., the r matrix) was generated using PLINK [88] v1.9 –matrix –r, and 
as reference panel, we used the 399 human islet samples used in the eQTL and sQTL 
identification.

For each e/sQTL credible set, posterior probabilities were plotted with respect to 
underlying genomic annotations.

In silico functional scores

The potential impact on disease was assessed for credible set variants of both eQTLs 
and sQTLs on the basis of their predicted transcriptional and post-transcriptional 
regulatory effects. We used a deep-learning model that is trained on transcriptional 
regulatory features such as histone marks, DNAse I profiles, and transcription fac-
tors, a total of 2002 features, and is implemented as DeepSEA [49] as well as post-
transcriptional regulatory features such as RNA-binding proteins binding data based 
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on CLIP experiments on 82 unique RBPs (ENCODE and other CLIP datasets), which 
is implemented as Seqweaver [46]. We performed in silico mutagenesis on both 
eQTL and sQTL credible set variants using both DeepSEA and Seqweaver models 
and obtained Disease Impact Scores (DIS) values  from  each respective model [21]. 
Prior to in silico mutagenesis, the strand information was added to sQTL credible 
sets based on the orientation of the target gene. Credible sets were further stratified 
based on their location in the genome and DIS values from both models for each cat-
egory of variants were shown as boxplots.

Integrating GWAS credible sets with QTL credible sets

We obtained pre-calculated genetic credible sets for T2D [1] (https:// diagr am- conso 
rtium. org/ downl oads. html). For each colocalized locus (colocalization PP >0.8), we then 
annotated credible set variants into two mutually exclusive categories: (i) GWAS cred-
ible set variant which is also a QTL credible set variant and (ii) GWAS credible set vari-
ant which is not a QTL credible set variant but in LD (r2 < 0.1) with a lead QTL. We then 
plotted the distributions of CPPs of all GWAS credible sets stratified into above two cat-
egories. If a variant belongs to more than one credible set, we used the maximum CPP of 
that variant.
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