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Abstract

Introduction/Aims: Mutations amenable to skipping of specific exons have been

associated with different motor progression in Duchenne muscular dystrophy (DMD).

Less is known about their association with long-term respiratory function. In this

study we investigated the features of respiratory progression in four DMD genotypes

relevant in ongoing exon-skipping therapeutic strategies.

Methods: This was a retrospective longitudinal study including DMD children

followed by the UK NorthStar Network and international AFM Network centers

(May 2003 to October 2020). We included boys amenable to skip exons 44, 45,

51, or 53, who were older than 5 years of age and ambulant at first recorded visit.

Abbreviations: AFM, Association Française contre les Myopathies; AON, antisense oligonucleotide; CS, corticosteroids; DMD, Duchenne muscular dystrophy; FVC%, forced vital capacity

percent predicted; FVC, absolute forced vital capacity; LoA, loss of ambulation; NIV, noninvasive ventilation.
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Subjects who were corticosteroid-naive or enrolled in interventional clinical trials

were excluded. The progression of respiratory function (absolute forced vital capacity

[FVC] and calculated as percent predicted [FVC%]) was compared across the four

subgroups (skip44, skip45, skip51, skip53).

Results: We included 142 boys in the study. Mean (standard deviation) age at first

visit was 8.6 (2.5) years. Median follow-up was 3 (range, 0.3-8.3) years. In skip45 and

skip51, FVC% declined linearly from the first recorded visit. From the age of 9 years,

FVC% declined linearly in all genotypes. Skip44 had the slowest (2.7%/year) and

skip51 the fastest (5.9%/year) annual FVC% decline. The absolute FVC increased pro-

gressively in skip44, skip45, and skip51. In skip53, FVC started declining from

14 years of age.

Discussion: The progression of respiratory dysfunction follows different patterns for

specific genotype categories. This information is valuable for prognosis and for the

evaluation of exon-skipping therapies.

K E YWORD S

Duchenne muscular dystrophy, exon skipping, forced vital capacity, genotype, respiratory
function

1 | INTRODUCTION

Progressive respiratory impairment occurs invariably in boys affected

by Duchenne muscular dystrophy (DMD) and represents one of the

main causes of patient mortality.1 Corticosteroids (CS), used as stan-

dard treatment,2,3 have prolonged life expectancy and reduced respi-

ratory complications in DMD.4,5 In addition, new therapeutic options

for DMD have emerged of which exon skipping is a promising one.

Exon skipping is aimed to restore the reading frame of the dystro-

phin transcript through the use of antisense oligonucleotides (AONs).

AONs induce skipping of the target exon by binding to a specific

sequence in the dystrophin pre–messenger RNA. This skip restores

the reading frame of the deleted RNA messenger and enables the pro-

duction of a partially functional dystrophin protein associated with a

milder, Becker muscular dystrophy–like, phenotype.6 Four of the mol-

ecules used for skipping of exon 51 (eteplirsen), exon 53 (golodirsen

and vitolarsen), and exon 45 (casimersen) demonstrated efficacy in

restoring dystrophin production.7 They have been approved in the

United States by the US Food and Drug Administration, and currently

eteplirsen is administered in Europe under a managed access program.

An open-label study showed that DMD subjects treated with

eteplirsen had a delayed respiratory progression when compared with

natural history8 and to mutation-matched controls.9 Other antisense oli-

gonucleotides are currently being evaluated in larger confirmatory stud-

ies (NCT04129294, NCT03532542, NCT02667483, NCT03218995,

NCT02500381, NCT02081625). The availability of such targeted treat-

ments has prompted the identification of a specific pattern of progres-

sion associated with each genotype.10-14

The studies available so far have primarily focused on subjects'

motor function.13-15 They showed that mutations amenable to skip

exon 44 are associated with a slower motor decline, whereas subjects

amenable to skip exon 51 and exon 53 have a faster motor

decline.15,16

The data available for the genotype-associated progression of

respiratory function in DMD is very scant and heterogeneous. The

assessment of respiratory function via spirometry is challenging, partic-

ularly in children, as it is dependent upon motivation and the assessor.

This can in part contribute to the existing lack of consistency in the

evaluation of respiratory function in small cohorts of DMD patients. In

addition, recent case reports suggest that, even within the same geno-

type, heterogeneity in respiratory progression may exist and needs to

be considered in the evaluation of emerging therapies.17-20

In a recent study by our group, we observed that boys with skip44

(n = 20) had a slower decline of forced vital capacity (FVC) expressed

as a percent predicted value (FVC%) over 5 years compared with boys

carrying other genotypes. We did not find an association between

skip53 (n = 23) and a faster FVC% decline.4 A recent study in an inter-

national DMD cohort suggested that mutations downstream from

exon 44 were associated with lower FVC% than proximal mutations.

Skip53 (n = 37) was associated with the lowest mean FVC% value.21

The pattern of long-term respiratory decline associated with

these four specific genotypes is currently unknown. We hypothesized

that specific DMD genotypes, defined as mutations of the DMD gene

amenable to the skip of one targeted exon, are associated with differ-

ent patterns of long-term respiratory progression. We compared the

long-term respiratory progression of subjects carrying DMD mutations

amenable to the skip of exons 44, 45, 51, and 53, respectively. The

main aim of the study was to identify whether the maximum value of

FVC% and FVC and their yearly decline differed among different

genotypes.
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2 | METHODS

2.1 | Study design

This was a retrospective study of pediatric DMD subjects (aged

>5 years and <18 years) followed by UK centers within the UK

NorthStar Network and by international centers of the Association

Française contre les Myopathies (AFM) Network (NCT02780492)

from May 2003 to October 2020. The Ethics Committee and Insti-

tutional Review Board of the UK approved the UK NorthStar Net-

work for data collection and the conduct of research studies within

the network. Ethics approval of natural history studies in DMD

within the AFM Network was obtained from the ethics review

board of each center partner: Paris (Institute of Myology); London

(NIHR Great Ormond Street Biomedical Research Centre); Newcas-

tle (John Walton Muscular Dystrophy Research Center); Nijmegen

(Radboud University Medical Center); and Leiden (Leiden Univer-

sity Medical Center).

We included subjects whose parents consented to either the

UK NorthStar Network or AFM Network database. We included

DMD boys carrying DMD mutations amenable to the skip of one

of the four exons (exon 44, 45, 51, and 53). Subjects with a sin-

gle deletion of exon 52 were included in the subgroup of those

amenable to skipping of exons 51 and 53.15 We analyzed the

data of subjects with at least two visits including lung function

tests.

We excluded subjects enrolled in interventional clinical trials

or already under treatment with exon-skipping strategies. We

also excluded subjects nonambulant at first recorded visit and

subjects who were CS-naive. Subjects displaying clinical symp-

toms of respiratory infection at the time of assessment and sub-

jects with less than two lung function results were also

excluded.

2.2 | Subjects’ characteristics and genotyping
information

All information was retrospectively collected frommedical records. The

first visit after 5 years of age for which respiratory assessment was

recorded for each patient was defined as baseline. Clinical visits were

carried out every 6 months from 5 years of age onward. Height was

assessed while standing for ambulant subjects or from arm span in non-

ambulant subjects. Ambulatory status was recorded at each visit. Loss

of ambulation (LoA) was defined as the inability to walk 10meters inde-

pendently. All boys enrolled were on regular CS treatment. For each

boy, the CS regimenwas recorded as themajority treatment, defined as

the CS regimen administered for over 60% of the recorded follow-up.

Data on DMD gene mutations were collected and subjects were

grouped in four genotypes based on amenability to skip exons 44, 45,

51, or 53 (called skip44, skip45, skip51, and skip53 hereafter).

Table S1 (see Supporting Information) includes all mutations amenable

to skipping of each of the four exons.

2.3 | Respiratory status

Pulmonary function data were collected retrospectively from a shared

platform of the electronic medical record. Spirometry was performed in a

seated position according to ERS/ATS guidelines.22 The best of three

reliable attempts conducted by trained respiratory physiologists was

recorded. Absolute FVC (in liters) was collected and FVC% was calcu-

lated according to GLI reference data.23 The long-term progression of

respiratory function (FVC% and absolute FVC) was outlined for each

genotype and compared with the other subgroups.13-15 For each geno-

type, the need for noninvasive ventilation (NIV) and the age at establish-

ment as well as the number of chest infections and the need for a cough

assist device were reported when available.

TABLE 1 Study population

Exon 44 (n = 35) Exon 45 (n = 37) Exon 51 (n = 46) Exon 53 (n = 29)

Measurement (n) 130 139 197 127

Median (range) follow-up, years 2.9 (0.5-6.7) 2.5 (0.3-8.0) 3.5 (0.4-8.3) 3.4 (0.5-8.3)

Mean age (SD) first visita, years 8.4 (2.7) 8.1 (2.5) 9.6 (2.6) 8.3 (2.4)

Mean age (SD) last visit, years 11.2 (3.1) 11.1 (3.4) 13.1 (2.9) 11.7 (3.2)

Ambulant last visit, n (%) 27/34b (79%) 26 (70%) 25 (54%) 18/28b (64%)

Median age (IQR) at LoA, years 16.8 (11.9-16.8) 14.1 (11.7-15.9) 13.4(11.7-16.6) 13.6 (11.4-15.8)

Mean age (SD) at starting CS, years 6.9 (2.4) 5.8 (1.4) 5.8 (1.9) 5.7 (1.4)

Majority CS regimen (>60% treatment)

Daily 18 24 30 20

Intermittent 15 11 12 5

Unknown 2 2 4 4

Abbreviations: CS, corticosteroids; FVC%, forced vital capacity percent predicted; FVC, absolute forced vital capacity; LoA, loss of ambulation; SD,

standard deviation.
aMean age (SD) at the first recorded visit with lung function test available.
bAmbulatory status was missing for one patient at latest visit.
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2.4 | Statistical analysis

Population characteristics are presented as mean (standard deviation

[SD]), median (range or interquartile range [IQR]) for skewed data, and

frequency (percent) for categorical data.

For FVC%, we described the longitudinal trajectories and esti-

mated the mean annual change using mixed effects regression models,

accounting for the repeated design of the longitudinal measurements

and age at baseline. For each genotype we considered the decline of

FVC% after its estimated maximum value and after the age of 9 years,

the age of deflection of FVC% to linear decline in DMD boys, as dem-

onstrated in previous studies.4,21 The results are presented as esti-

mates with their confidence intervals (CIs) in view of the wide

variability. We compared rates of decline in a separate set of models

according to subjects' amenability to exon 44, 45, 51, and 53 skipping,

using appropriate interaction terms. Results are presented as mean

annual change, or difference in mean annual change between sub-

groups, with 95% CIs. All analyses were conducted in Stata version

15 (StataCorp, College Station, TX) with P < .05 considered significant.

3 | RESULTS

3.1 | Study population

The study population included 142 DMD boys, 125 from the UK

NorthStar Network and 17 from the international AFM Network.

Mean age (SD) at the first recorded visit with lung function test avail-

able was 8.6 (2.5) years. Thirty-five subjects had skip44 mutations,

37 had skip45, 46 had skip51, and 29 had skip53. Five subjects had

mutations amenable for skip of either exon 51 or 53. Study population

characteristics are summarized in Table 1.

Table S2 (see Supporting Information) includes all mutations for

all subjects in the study, grouped per genotype.

3.2 | Progression of respiratory function across
genotypes

Data on FVC% and absolute FVC at first visit and their progression

corrected for age for each genotype are shown in Table 2.

In skip45 and skip51, FVC% declined linearly from the age of

5 years (ie, the first recorded visit), whereas, in skip44 and skip53, the

estimated maximum FVC% was reached at the age of 8.7 and

8.5 years, respectively.

From the age of 9 years, FVC% showed a linear decline in all four

genotypes. Skip44 had the slowest annual decline, whereas skip51

had the fastest FVC% decline. The patterns of FVC% progression in

the four genotypes are shown in Figure 1.

When assessing absolute FVC, we also observed a different pro-

gression according to genotype. In skip44, skip45, and skip51, abso-

lute FVC increased steadily up to the age of 18 years. However, while

in skip44 and skip51 we observed a small yet regular increase in abso-

lute FVC, skip45 tended to stabilize after 12 years of age. Skip53 had

a plateau phase between 10 and 14 years, followed by a decline, but

there was no significant difference in FVC trajectory across genotypes

(Figure 2).

Information on NIV requirement at latest follow-up was available

for 111 patients, among whom only 5 required NIV: 4 skip51 (median

age, 15.2 years; IQR, 13-16.1 years) and 1 skip45 (age, 14.8 years).

Information on the requirement of a cough assist device at latest

follow-up was available for 83 patients. Only three patients, all skip51,

required a cough assist device at a median age of 14.2 (IQR,

10.4-14.4) years. Two of these patients were already on NIV.

TABLE 2 Details of respiratory progression across DMD genotypes

Exon 44 (n = 35) Exon 45 (n = 37) Exon 51 (n = 46) Exon 53 (n = 29)

Mean (SD) FVC% first

visit

81.7 (21.3) 90.5 (16.1) 89.3 (18.6) 83.3 (22.6)

Estimated age at peak,

years

8.7 NA NA 8.5

Estimated max FVC%

(95% CI) at peak

89.8 (83.5-96.1) NA NA 89.4 (81.1-97.8)

Estimated max FVC%

at age 9 years

89.8 (83.6-96.0) 86.8 (81.6-92.1) 92.8 (87.2-98.4) 89.0 (80.8-97.2)

Estimated yearly

decline in FVC%

after age 9 years

(95% CI)

�2.7 (�4.5 to �1.0),

P < .01

�3.4 (�5.1 to �1.8),

P < .01

�5.9 (�7.1 to �4.8),

P < .01

�4.5 (�6.1 to �3.0),

P < .01

Mean FVC (SD) first

visit, L

1.4 (0.5) 1.4 (0.4) 1.6 (0.5) 1.3 (0.5)

Estimated increase in

FVC after age

9 years, mL

49 (�2 to 79),

P = .06

11 (�16 to 39),

P = .43

25 (�6 to 55),

P = .11

NA

Abbreviations: CI, confidence interval; FVC%, forced vital capacity percent predicted; FVC, absolute forced vital capacity; NA, not applicable.
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Data on recurrent respiratory infections requiring hospitaliza-

tion were available for 63 patients. Of these patients, only three,

all skip51, had chest infections, with a median age of 13 years (IQR,

10.9-14.2 years). One patient was already on overnight NIV and two

were started on a cough assist device as result of the infection.

4 | DISCUSSION

Our work on an international and homogeneous DMD cohort (sub-

jects were all ambulant at first visit and on CS treatment) confirms

that specific DMD genotypes are associated with specific patterns of

respiratory progression of peak pulmonary function, age at peak, and

its subsequent decline.

First, the maximum FVC% value and age at peak differed across

genotypes due to several factors. Boys amenable to skipping exon

45 and exon 51 had an almost linear decline of FVC%. Subjects

amenable to skipping exon 44 and exon 53 had an increase in esti-

mated FVC% from 5 to 8.7 and 8.5 years of age, respectively,

followed by a progressive decline. These findings on the latter two

genotypes are in line with previous reports of motor progression. As

observed for respiratory function, skip44 is characterized by an

improvement in motor function (6-minute walk test) in the first years

of life before a decline.15 Skip53 peaked at a later age and reached a

lower FVC% peak in terms of value. Boys with mutations downstream

from exon 44 have progressively worse motor function, which has

been linked to cumulative loss of dystrophin isoforms.24 As such,

skip53 has been described to have a later peak in motor achievements

(NorthStar Ambulatory Assessment and 10-minute walk test).15 The

loss of isoforms downstream from exon 44 is also linked to a higher

prevalence of cognitive impairment.25 Thus, a later and lower FVC%

peak in skip53 could also be linked to incomplete or delayed full com-

pliance with performance of lung function tests. Skip53 patients reach

peak FVC% late due to delayed maturation and cognitive impairment.

F IGURE 1 Long-term progression of forced vital capacity percent predicted (FVC%) in subjects amenable to skipping of exons 44 (n = 35), 45
(n = 37), 51 (n = 46), and 53 (n = 29), according to genotypes. A, Spaghetti plot showing FVC% trajectory for individual subjects in each
genotype. B, FVC% model fitted for each genotype and for the whole study population

F IGURE 2 Long-term progression of absolute forced vital capacity (FVC) in subjects amenable to skipping of exons 44 (n = 35), 45 (n = 37),
51 (n = 46), and 53 (n = 29), according to genotypes. A, Spaghetti plot showing FVC trajectory for individual subjects in each genotype. B, FVC
model fitted for each genotype and for the whole study population
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They also have a fast decline of respiratory function after the peak,

likely due to the contribution of their more severe motor progression.

Skip53 in our cohort lost ambulation earlier than the other subgroups.

Loss of ambulation is known to play a major causative role in FVC%

decline.26

Second, when comparing the rate of annual FVC% decline after

9 years of age, when FVC% declined linearly in all genotypes, we

found the most remarkable differences. Unsurprisingly, skip44 had

the slowest FVC% progression of 2.7% per year. Skip51 had the

fastest decline in FVC% of 5.9% per year, and skip53 had an FVC%

decline of 4.5% per year.

Previous studies have shown contrasting results for absolute

FVC. McDonald et al5 described a progressive increase of FVC up to

18 years of age in 397 boys with DMD. Mayer et al27 reported an

FVC increase up to 10 years of age in 60 boys with DMD aged 5 to

24 years, followed by stabilization from 10 to 18 years and then a

subsequent decline. Our pediatric cohort included only boys younger

than 18 years of age. Although the overall long-term progression of

absolute FVC was not statistically different across the four geno-

types, we observed some differential trends. A steady increase

seemed consistent with the trajectory of subjects amenable to skip-

ping exons 44, 45, and 51, whereas this was not observed in subjects

amenable to skipping exon 53. In the latter, absolute FVC increased

steadily until 10 years of age and then started declining after

14 years of age.

The main limitations of this study are its retrospective design

across multiple centers and the wide variability in the number of mea-

surements between patients. Forty-one patients had two or three

assessments available, and seven patients had more than ten assess-

ments. The differences found in the respiratory progression across

the four genotypes are based on aggregate data and are dependent

on the statistical model used. Subjects in the skip51 group were older

at baseline, resulting in a slightly longer follow-up. We have, however,

collected long-term respiratory data (average of over 3 years) and

included only assessments conducted by highly skilled operators in

tertiary international sites with a certified expertise in DMD care.

This work contributes further information in defining the genotype-

associated respiratory variability within DMD and developing a better

understanding of this disease. These findings will serve as a benchmark

for comparisons of long-term respiratory progression in subjects treated

with targeted exon-skipping or other therapies. Further prospective stud-

ies, with larger cohorts, are needed to confirm our suggestion of a respi-

ratory genotype-phenotype correlation in DMD. We postulated that the

age at peak is influenced by cognitive impairment and by a learning factor

in reliably performing lung function as well as motor and cardiac function

tests. Hence, future correlations between motor, cardiac, and respiratory

function, which are inevitably interconnected, must consider subjects'

genotypes and the recognized association with intellectual impairment.25

In conclusion, we have identified distinct genotype-related pat-

terns of respiratory progression in DMD boys. These data are valuable

for prognosis and for evaluation of long-term exon-skipping treatment

effects.
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APPENDIX
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MSc; J. Sheehan, MC SP; Royal Manchester Children's Hospital, Man-

chester: I. Hughes, MBBCh; S.Warner, BSc, E. Davies DipPhys;

Orthopaedic & District Hospital NHS Trust, Oswestry: T. Willis, MD;

R. Kulshrestha, MRCPCH; N. Emery DipPhys; Sheffield Children's

Hospital NHS Trust, Sheffield: M.T. Ong, MRCPCH; T. Hart MD, K.

White, BScPhys; University Hospital of Wales, Cardiff: F. Gibbon
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