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Feasibility of Machine Learning and Logistic
Regression Algorithms to Predict Outcome in

Orthopaedic Trauma Surgery
Jacobien H.F. Oosterhoff, MD, Benjamin Y. Gravesteijn, MSc, Aditya V. Karhade, MD, MBA,

Ruurd L. Jaarsma, MD, PhD, FRACS, FAOrthA, Gino M.M.J. Kerkhoffs, MD, PhD, David Ring, MD, PhD,
Joseph H. Schwab, MD, MS, Ewout W. Steyerberg, MSc, PhD, Job N. Doornberg, MD, PhD, and

the Machine Learning Consortium*

Investigation performed at Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands

Background: Statistical models using machine learning (ML) have the potential for more accurate estimates of the
probability of binary events than logistic regression. The present study used existing data sets from large musculoskeletal
trauma trials to address the following study questions: (1) Do ML models produce better probability estimates than
logistic regression models? (2) Are ML models influenced by different variables than logistic regression models?

Methods: We created ML and logistic regression models that estimated the probability of a specific fracture (posterior
malleolar involvement in distal spiral tibial shaft and ankle fractures, scaphoid fracture, and distal radial fracture) or
adverse event (subsequent surgery [after distal biceps repair or tibial shaft fracture], surgical site infection, and post-
operative delirium) using 9 data sets from publishedmusculoskeletal trauma studies. Each data set was split into training
(80%) and test (20%) subsets. Fivefold cross-validation of the training set was used to develop the ML models. The best-
performing model was then assessed in the independent testing data. Performance was assessed by (1) discrimination
(c-statistic), (2) calibration (slope and intercept), and (3) overall performance (Brier score).

Results: The mean c-statistic was 0.01 higher for the logistic regression models compared with the best ML models for
each data set (range,20.01 to 0.06). There were fewer variables strongly associated with variation in theMLmodels, and
many were dissimilar from those in the logistic regression models.

Conclusions: The observation that ML models produce probability estimates comparable with logistic regression
models for binary events in musculoskeletal trauma suggests that their benefit may be limited in this context.

S
everal statistical approaches can produce estimates of
the probability of binary events such as diagnosis of
fracture, death, infection, and reoperation1,2. The most

used method is logistic regression analysis. The estimates from
statistical models have the potential to inform patient and
surgeon decision-making.

In a relatively new method, commonly referred to as
machine learning (ML), the computer trains an existing human-
created algorithm to recognize patterns in the data and iteratively
alters the algorithm for optimal performance. In musculoskeletal
trauma, the most common ML algorithms used to date are
decision-tree-based, support vector machine, neural network, a
Bayesian method, and penalized logistic regression3-7.

There is growing interest in ML statistical methods for
estimating probabilities of binary events such as diagnosis of a
fracture (posterior malleolar involvement in distal spiral tibial
shaft and ankle fractures, scaphoid fracture, and distal radial
fracture) or occurrence of a specific adverse event (mortality,
treatment failure, reoperation, infection, or sustained opioid use).
It is not clear that ML methods provide better estimates. A recent
systematic review comparing ML and logistic regression models
for binary events among 71 studies found no benefit to ML, with
studies showing a benefit rated as more prone to bias8.

The aim of this study was to investigate the performance
of ML compared with standard regression modeling for esti-
mating probabilities of binary events after musculoskeletal

*A list of the Machine Learning Consortium members is included in a note at the end of the article.

Disclosure: The Disclosure of Potential Conflicts of Interest forms are provided with the online version of the article (http://links.lww.com/JBJS/G831).
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trauma using the data sets from 9 published studies. Our study
questions were: (1) Do ML models produce better probability
estimates than logistic regression models? (2) Are ML models
influenced by different variables than logistic regression models?

Materials and Methods
Guidelines

This study was conducted according to the Guidelines
for Developing and Reporting Machine Learning Predictive

Models in Biomedical Research: A Multidisciplinary View and
the Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD
statement9,10.

Study Design and Participants (Data Sources) (Table I)
The data sets from 1 published randomized controlled trial11

and 8 published cohort studies12-19 in musculoskeletal trauma
were obtained from individual authors who are members of the
Machine Learning Consortium20 (Table I). The sample size of
these data sets ranged from 263 to 28,207 patients. Four studies
focused on adverse events (surgical site infection after operative
fracture care12, adverse events after distal biceps tendon sur-
gery13, subsequent surgery in tibial shaft fractures11, and post-
operative delirium in elderly hip fracture patients17), and 5
focused on diagnostic events (scaphoid fracture14,16, posterior
malleolar involvement in distal spiral tibial and ankle frac-
tures15,18, and distal radial fracture19). Wemerged the raw data of
2 studies on the diagnosis of posterior malleolar involvement in
distal spiral tibial shaft and ankle fractures15,18 and scaphoid
fracture14,16, resulting in 7 data sets for comparison of logistic
regression and ML (Table I).

Data Analysis
Logistic Regression
Given the rule of thumb in logistic regression to enter no more
than 1 explanatory variable for every 10 response-variable events2,
we developed parsimonious logistic regression models using an
initial bivariate analysis. Associations with continuous indepen-
dent variables were measured with the Student t test for para-
metric variables and theMann-Whitney U test for nonparametric
variables. Associations with dichotomous independent variables
were measured with the Fisher exact test. The chi-square test was
used for analysis of ordinal data. Associations with a p value of
<0.05 were considered significant. After variable selection, miss-
ing values for variables with <30% missing data were imputed
using multiple imputation by chained equations (MICE)21,22.

Seven backward stepwise logistic regression models were
created to estimate the probabilities of a fracture (posterior mal-
leolar involvement in distal spiral tibial shaft and ankle fractures,
scaphoid fracture, or distal radial fracture) or a specific adverse
event (subsequent surgery [after distal biceps or tibial shaft frac-
ture], surgical site infection, and postoperative delirium).

Machine Learning
As a first step in the ML models, variables potentially associated
with each outcome were identified using least absolute shrinkage

and selection operator (LASSO) penalized logistic regression,
Boruta, and random forest recursive selection algorithms (see
Appendix). After variable selection, missing values for variables
with <30% missing data were imputed using MICE21,22.

Following convention, we trained and internally validated
several different ML algorithms on each data set to choose the
best-performing algorithm23: penalized logistic regression, sup-
port vectormachine, decision tree algorithms (gradient boosting
machine, random forest, and boosting decision tree), neural
network, and Bayes classifiers (Bayes point machine and näıve
Bayes) (Fig. 1). For each analysis, the data sets were split ran-
domly into training (80%) and test subsets (20%). We trained
each ML algorithm using fivefold cross-validation on the
training set. The best-performing model was selected and used
for performance assessment in the test set.

Model Performance
Model performance was evaluated according to a proposed
framework for evaluation of a clinical prediction model24 that
included (1) discrimination with the c-statistic, (2) calibration
with the calibration slope and intercept (in line with the
method described by Cox25), and (3) overall performance with
the Brier score.

The c-statistic (area under the curve of a receiver op-
erating characteristic curve) is a score ranging from 0.50 to
1.0, with 1.0 indicating the highest discrimination score and
0.50 indicating the lowest. The higher the discrimination
score, the better the model’s ability to distinguish between
classes (i.e., patients who had the outcome from those who
had not)26.

A calibration plot plots the estimated versus the observed
probabilities for the primary outcome. A perfect calibration
plot has an intercept of 0 (<0 reflects overestimation, and >0
reflects underestimation of the probability of the outcome)
and a slope of 1 (the model is performing similarly in training
and test sets)24,27. In a small data set, the slope is often <1,
reflecting model overfitting; probabilities are too extreme (low
probabilities that are too low, and high probabilities that are too
high)26.

The Brier score calculates a composite of discrimination
and calibration, with 0 indicating perfect prediction and 1, the
poorest prediction24.

We visualized model performance comparisons in a bee-
swarm plot—a scatterplot of the differences in c-statistics of
each ML and logistic regression algorithm pair.

Software
Data preprocessing and analysis were performed using R ver-
sion 5.328 and RStudio version 1.2.1335 (R Foundation for
Statistical Computing). Packages used were rms, pROC, ran-
domForest, caret, gbm, nnet, mice, kernlab, dplyr, mice, and
beeswarm. Hyperparameter tuning was performed as recom-
mended in the vignettes.

Source of Funding
No external funding was received for any aspect of this work.
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Results
Comparison of Model Performance

The c-statistic was on average 0.01 higher for regression than
for ML, with a range from 20.01 to 0.06, indicating that

ML models and logistic regression models produce comparable
probability estimates (Fig. 2, Table II). Among the 7 ML analyses,
boosting decision tree, support vector machine, and penalized
logistic regressionwere each the best-performing algorithm twice,
and the Bayes point machine performed best once.

The calibration slopes and intercepts and the Brier scores
also produced comparable estimates, showing little or no ad-
vantage to ML over logistic regression models (Table II).

Comparison of Variable Selection (Table III)
Logistic regression models included between 2 and 17 varia-
bles, compared with 4 to 8 included variables in the ML model
(Table III). Several key variables were included in both models,
with variation in the lesser variables.

Findings for Specific Binary Events
As an example, a clinical decision rule based on regression
modeling estimating the probability of a distal radial fracture in
acute wrist trauma to aid decision-making for the use of
radiography included 8 variables in the logistic regression

model with a c-statistic of 0.8619 and 4 variables in the ML
model with an identical c-statistic of 0.86.

As another example, a probability calculator for the risk
of a surgical site infection after operative fracture care included
6 variables in the logistic regression model with a c-statistic of
0.7612 and 6 variables in theMLmodel with a c-statistic of 0.75.
Of the variables included in the models, 3 were identical.

Discussion

There is a growing interest in the use of ML for predicting
probability estimates in many fields, and it is increasingly

used in studies of musculoskeletal trauma. This study com-
pared logistic regression and ML methodology using data sets
from published studies of musculoskeletal trauma and found
little or no benefit to ML. This is consistent with findings from
other fields and brings into question the benefit of ML models
for small, relatively simple data sets. Conversely, the ability of
ML models to make comparable probability estimates using
fewer and somewhat different variables might prove useful.

Limitations
We acknowledge several limitations of this study. First, statisticians
consider logistic regression to be a relatively simplistic supervised
ML algorithm, so our grouping of the other 5 approaches into a

TABLE I Characteristics of Included Studies

Study Title Journal*
No. of
Patients Outcome

No. (%) of
Patients with
Outcome

Sobol et al.18 (2018) and
Hendrickx et al.15 (2019)

The incidence of posterior malleolar involvement in
distal spiral tibia fractures: Is it higher than we
think? and Incidence, predictors, and fracture
mapping of (occult) posterior malleolar fractures
associated with tibial shaft fractures

Both from JOT 263† Posterior
malleolar fracture

75 (28.5)

Beks et al.13 (2016) Factors associated with adverse events after distal
biceps tendon repair or reconstruction

JSES 373 Adverse events 82 (22.0)

Duckworth et al.14

(2012) and Mallee
et al.16 (2020)

Predictors of fracture following suspected injury to
the scaphoid; and Detecting scaphoid fractures in
wrist injury: a clinical decision rule

JBJS-Br and
AOTS,
respectively

420† Scaphoid
fracture

117 (27.7)

Walenkamp et al.19

(2015)
The Amsterdam wrist rules: the multicenter
prospective derivation and external validation of a
clinical decision rule for the use of radiography in
acute wrist trauma

BMC MD 854 Distal radial
fracture

376 (44.0)

SPRINT Investigators11

(2008)
Randomized trial of reamed and unreamed
intramedullary nailing of tibial shaft fractures

JBJS-A 1,198 Subsequent
surgery

214 (17.9)

Bachoura et al.12 (2011) Infirmity and injury complexity are risk factors for
surgical-site infection after operative fracture care

CORR 2,000 Surgical site
infection

90 (4.5)

Oosterhoff et al.17 (in
press)

Development of machine learning algorithms for
prediction of postoperative delirium in elderly hip
fracture patients

GOS 28,207 Postop. delirium 8,030 (28.5)

*JOT = Journal of Orthopaedic Trauma; JSES = Journal of Shoulder and Elbow Surgery; JBJS-Br = Journal of Bone and Joint Surgery, British Volume;
AOTS = Archives of Orthopaedic and Trauma Surgery; BMC MD = BMC Musculoskeletal Disorders; JBJS-A = Journal of Bone and Joint Surgery,
American Volume; CORR = Clinical Orthopaedic Related Research; and GOS = Geriatric Orthopaedic Surgery & Rehabilitation. †Number of patients
in combined dataset.
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“machine learning” group may be a bit misleading. Readers can
interpret the comparison as “traditional” versus newer methods
(Fig. 1). Second, some readers might consider categorizing age, but
we prefer not to categorize continuous variables. Categories assume
that people below and above a certain threshold are intrinsically
different, which can introduce bias and lead to inaccuracies. Cat-
egorization may also create false dichotomies with the potential to
reinforce stigma29,30. We believe strongly that a variable measured

on a continuum should be analyzed on its continuum so that
information is not lost. One of the advantages ofMLmethods is the
ability tomodel nonlinear associations, which are common among
natural phenomena. Analyzing age on its continuum is also con-
sistent with the original papers. Third, we only studied model
development and evaluated model performance according to the
discriminative ability of the algorithm. In practice, there would be
an implementation phase in which the probability estimates are
assessed using decision-curve analysis (a measure of the ability to
make better decisions with amodel thanwithout)26. Fourth, there is
no consensus on the quantity of data needed to develop a well-
performing algorithm; the minimum sample size needed often
depends on the magnitude of the association of the available var-
iables with the event under study. Fifth, the use of a p value
threshold in bivariate analysis as a basis for selecting variables for
multivariable analysis is debated because p valuesmay not represent
the clinical importance of a variable31. An alternative approach is to
preselect variables according to the Akaike information criterion
(AIC)32. Finally,MLmethods benefit from large amounts of data to
capture complex nonlinear and interaction effects and may have
advantages only in very large data sets33. Finally, in our study, odds
ratioswere used as a result of logistic regression analysis as our focus
was on the prediction of absolute risk. When other outcomes are
concerned, we note that, rather than odds ratios, relative risk esti-
mates may be preferred for easier interpretation.

Fig. 1

Classification algorithms. Logistic regression is a calculation used to esti-

mate the probability of binary events and involves fitting an S-shaped

probability curve. Support vectormachines are based on the idea of finding a

hyperplane in a3-dimensional (kernel) scatterplot that dividesa data set into

2 classes and works well on smaller data sets. It is more difficult to draw

1 line in more complex data sets. Decision trees (e.g., random forest and

gradient boosting machines) use flowchart-like structures to make deci-

sions, which can be readily understood and visualized. Data points are split

into similar categories at particular times (at each “branch from the tree,” so-

called split points). Neural networks are layers of complex regressions that

are interrelated, analogous to the biological neural networks in the human

brain. Neural networks benefit from large amounts of data. A näıve Bayes

classifier isaproductof probabilities,whichworkswellwithsmaller datasets

and is best with categorical events rather than continuous variables.

Fig. 2

A bee-swarmplot of model performance c-statistic differences (DML-LR). ML

= machine learning; LR = logistic regression; PLR = penalized logistic

regression; SVM = support vector machine; DecTree = gradient boosting

machine, random forest, and boosting decision tree; NN = neural network;

and Bayes = Bayes point machine and näıve Bayes.
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Findings
The observation that ML and logistic regression-derived
probability estimates were comparable suggests that ML pro-

vides little advantage in musculoskeletal trauma. That finding
is consistent with previous evidence comparingML and logistic
regression models for binary events. On the other hand, the

TABLE II Logistic Regression and ML: Model Performance

Study Algorithm C-statistic Calibration Slope Calibration Intercept* Brier*

Sobol et al.18 (2018) and
Hendrickx et al.15 (2019)

Logistic regression 0.89 0.84 20.28 0.12

Bayes point machine† 0.89 1.02 20.06 0.11

Boosting decision tree 0.81 1.02 0.01 0.11

Neural network 0.89 1.26 0.03 0.11

Support vector machine 0.89 0.94 20.02 0.11

Beks et al.13 (2016) Logistic regression 0.64 1.13 0.07 0.16

Boosting decision tree 0.62 0.13 20.82 0.23

Neural network 0.59 6.80 7.29 0.17

Bayes point machine 0.57 0.45 20.70 0.17

Penalized logistic regression 0.58 0.55 20.56 0.17

Support vector machine† 0.59 0.80 20.24 0.17

Duckworth et al.14 (2012) and
Mallee et al.16 (2020)

Logistic regression 0.76 0.93 0.13 0.17

Boosting decision tree† 0.77 0.84 20.01 0.16

Penalized logistic regression 0.74 0.99 0.00 0.17

Neural network 0.76 0.88 20.05 0.16

Support vector machine 0.73 0.86 20.01 0.17

Bayes point machine 0.72 0.92 20.03 0.17

Walenkamp et al.19 (2015) Logistic regression 0.86 1.07 NA NA

Support vector machine† 0.86 0.85 20.05 0.16

Bayes point machine 0.86 0.84 20.13 0.16

Boosting decision tree 0.86 0.72 20.11 0.16

Neural network 0.86 0.80 20.21 0.16

SPRINT Investigators11 (2008) Logistic regression 0.80 1.01 20.01 0.10

Penalized logistic regression† 0.80 0.97 0.00 0.13

Bayes point machine 0.80 0.09 20.02 0.13

Boosting decision tree 0.80 0.92 0.00 0.13

Neural network 0.79 0.77 0.12 0.14

Support vector machine 0.77 0.89 0.00 0.14

Bachoura et al.12 (2011) Logistic regression 0.76 1.19 0.49 0.04

Gradient boosting machine† 0.75 0.86 20.41 0.04

Support vector machine 0.54 1.77 2.31 0.04

Neural network 0.70 0.46 21.50 0.05

Näıve Bayes 0.75 0.11 22.77 0.10

Random forest 0.66 0.32 21.20 0.05

Oosterhoff et al.17 (in press) Logistic regression 0.78 0.98 20.01 0.15

Penalized logistic regression† 0.77 1.08 0.01 0.16

Stochastic gradient boosting 0.77 1.04 0.00 0.16

Random forest 0.75 0.55 0.21 0.17

Support vector machine 0.71 1.00 0.01 0.17

Neural network 0.77 0.97 0.02 0.16

*NA = not available. †Best-performing algorithm.
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TABLE III Logistic Regression and ML: Variable Selection

Study

Logistic Regression* ML*

No. Included Variables No. Included Variables

Sobol et al.18 (2018) and
Hendrickx et al.15 (2019)

4 Trauma mechanism
Age
Type of tibial fracture
Location of tibial fracture

6 Trauma mechanism
Age
Type of tibial fracture
Location of tibial fracture
Type of fibular fracture†
Location of fibular fracture†

Beks et al.13 (2016) 2 Obesity
Single-incision anterior approach†

5 Obesity
Age†
Time until surgery†
Experience of surgeon†
Side†

Duckworth et al.14 (2012)
and Mallee et al.16 (2020)

4 Sex
ASB pain on ulnar deviation
Sports injury†
Scaphoid tubercle tenderness at 2 wk†

4 Sex
ASB pain on ulnar deviation
Age†
Trauma mechanism†

Walenkamp et al.19 (2015) 8 Age
Wrist swelling
Visible deformation
Tender on palpation of distal radius
Sex†
ASB swelling†
Radial deviation pain†
Thumb axial compression pain†

4 Age
Wrist swelling
Visible deformation
Tender on palpation of distal radius

SPRINT Investigators11

(2008)
6 Trauma mechanism

Gustilo-Anderson classification
Tscherne classification
AO/OTA fracture classification
Sex†
Smoking†

7 Trauma mechanism
Gustilo-Anderson classification
Tscherne classification
AO/OTA fracture classification
Location of tibial fracture†
Polytrauma†
Postop. fracture gap†

Bachoura et al.12 (2011) 6 Drain
No. of operations
Diabetes
Congestive heart failure†
Tibial shaft and/or plateau fracture†
Elbow fracture†

6 Drain
No. of operations
Diabetes
Wound classification†
Preop. hospital stay†
Previous external fixation†

Oosterhoff et al.17 (in press) 17 Age
BMI
ASA
Functional status
Preop. delirium
Preop. dementia
Preop. mobility aid
Bleeding disorder†
Diabetes†
Dyspnea
Sex†
Medical comanagement†
Preop. bone medication†
Preop. hematocrit†
Preop. platelets†
Systemic inflammatory response syndrome†
Wound infection†

8 Age
BMI
ASA
Functional status
Preop. delirium
Preop. dementia
Preop. mobility aid
Preop. creatinine level†

*ASB = anatomic snuff box, BMI = body mass index, and ASA = American Society of Anesthesiologists classification. †Variability between the
predictive variables included in the logistic regression and ML algorithm.
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mean difference in the c-statistic of 0.01 is modest but was
considered relevant in studies that evaluated the incremental
value of biomarkers for probability estimates34,35.

The observation that different variables were included in
the ML and logistic regression algorithms is likely a demonstra-
tion of the complexity of probability estimation and may also be
interpreted as cautioning against overreliance on specific varia-
bles. These findings support the use of principles, experience, and
judgment to select variables thought to be clinically meaningful.
Starting with amore limited set of variables limits the potential for
overfitting36,37. The strategy of thoughtful preselection of variables
may increase generalizability of the probabilities estimates,may be
easier to interpret, andmay seemmore clinically relevant, thereby
balancing model fit and applicability in clinical practice. One
principle for preselection might be to favor factors that can be
modified either before or after surgery.

Conclusions
We found that the accuracy ofmore complex statisticalMLmodels
was comparable with that of logistic regression for binary events,
but fewer and somewhat different variables were used. In our
opinion, this supports a pragmatic approach favoring preselection
of clinically relevant variables (perhaps modifiable health factors)
in the development of clinical prediction models in orthopaedic
surgery. Probability estimates also need validation in different time
periods and settings. Validated algorithms for probability estima-
tion could be a software add-on to an electronic health record, with
automatic calculation and recording for decision support38.
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