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Abstract

An expanding range of genetic syndromes are characterized by genome‐wide

disruptions in DNA methylation profiles referred to as episignatures. Episignatures

are distinct, highly sensitive, and specific biomarkers that have recently been applied

in clinical diagnosis of genetic syndromes. Episignatures are contained within the

broader disorder‐specific genome‐wide DNA methylation changes, which can share

significant overlap among different conditions. In this study, we performed

functional genomic assessment and comparison of disorder‐specific and overlapping

genome‐wide DNA methylation changes related to 65 genetic syndromes with

previously described episignatures. We demonstrate evidence of disorder‐specific

and recurring genome‐wide differentially methylated probes (DMPs) and regions

(DMRs). The overall distribution of DMPs and DMRs across the majority of the

neurodevelopmental genetic syndromes analyzed showed substantial enrichment in

gene promoters and CpG islands, and under‐representation of the more variable

intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs

in gene pathways and processes related to neurodevelopment, including neurogen-

esis, synaptic signaling and synaptic transmission. This study expands beyond the

diagnostic utility of DNA methylation episignatures by demonstrating correlation

between the function of the mutated genes and the consequent genomic DNA

methylation profiles as a key functional element in the molecular etiology of genetic

neurodevelopmental disorders.

K E YWORD S

clinical diagnostics, DNA methylation, episignatures, neurodevelopmental syndromes
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1 | INTRODUCTION

DNA methylation is a fundamental aspect of mammalian develop-

ment, and changes in DNA methylation are closely related to

variation in the underlying genome (Greenberg & Bourc'his, 2019;

Villicana & Bell, 2021). A growing number of genes causing

neurodevelopmental syndromes have been shown to be associated

with distinct changes in DNA methylation in patients affected with

Mendelian disorders (Velasco & Francastel, 2019). These methylation

changes may be a direct consequence of the disruption of the gene

function as in the chromatin remodeling, DNA methylation, and

histone modification genes (Janssen & Lorincz, 2021; Sadikovic et al.,

2019). More recent work has shown that changes in DNA

methylation are also found in patients with pathogenic variants in

genes that have no known direct role in DNA methylation or

chromatin remodeling including FAM50A, UBE2A, and ZNF711

(Haghshenas et al., 2021; Levy et al., 2022). These indirect changes

may be caused by perturbations in the interconnected molecular

pathways, including transcriptional regulation and protein signaling,

as opposed to directly by DNA methylases or demethylases. Genetic

variants that are inherited or that occur at the earliest stages of the

embryo can, therefore, have a wide‐reaching impact on DNA

methylation throughout development. These early changes can be

propagated through cell differentiation and tissue development.

Hence, an easily accessible tissue such as peripheral blood can be

used to demonstrate changes in DNA methylation and develop

biomarkers of specific syndromes that occur at early stages of

development (Aref‐Eshghi et al., 2020; Levy et al., 2022). More than

60 genetic neurodevelopmental syndromes have now been identified

that exhibit such alterations in DNA methylation, and the patterns of

DNA methylation changes, referred to as episignatures, are now

being used in diagnostic clinical testing (Sadikovic et al., 2021).

We have previously described the development of 56 distinct

diagnostic episignatures encompassing 65 neurodevelopmental

syndromes caused by pathogenic variants in 61 genes, and their

use as highly sensitive and specific diagnostic biomarkers (Aref‐

Eshghi, Bend, et al., 2018; Aref‐Eshghi, E., Rodenhiser, 2018; Aref‐

Eshghi et al., 2017, 2020; Bend et al., 2019; Ciolfi et al., 2020, 2021;

Haghshenas et al., 2021; Hood et al., 2016; Kerkhof et al.,

2021; Krzyzewska et al., 2019; Levy et al., 2021, 2022; Radio et al.,

2021; Rooney et al., 2021; Sadikovic et al., 2021; Schenkel

et al., 2017, 2018, 2021). In these studies, we demonstrated that a

monogenic syndrome may have more than one episignature

depending on the location and/or functional consequence of the

underlying genetic variant within the gene. Conversely, similar

syndromes, such as those caused by pathogenic variants in genes

from the same gene family or same molecular pathway, may share a

common episignature. As molecular biomarkers, episignatures are

optimized for clinical diagnostics and commonly represent only a

fraction of the totality of the DNA methylation change in any given

disorders. In this study, we expanded on this work by investigating

the broader context of changes in DNA methylation by performing

functional genomic assessment and comparison of disorder‐specific

and overlapping genome‐wide DNA methylation changes in these

syndromes. We describe disorder‐specific and recurring genome‐

wide differentially methylated probes (DMPs) and differentially

methylated regions (DMRs) and correlate them to functional genomic

elements including gene promoters and CpG islands. We explore the

functional impact of these changes in relation to the corresponding

gene pathways and transcriptional networks. By using various

correlation analyses, we assess relatedness of the genetic etiology

and the consequent DNA methylation profiles in the molecular

pathogenesis of genetic neurodevelopmental disorders.

2 | MATERIALS AND METHODS

2.1 | Patient cohorts

The case cohorts consisted of 1381 peripheral blood DNA samples

from patients who were diagnosed with one of the 65 neurodevelop-

mental conditions and who had a positive EpiSign result for one of

the corresponding 56 episignatures, that are part of the EpiSign

Knowledge Database (EKD; https://episign.lhsc.on.ca/index.html).

Mean, median, minimum, and maximum case–cohort sizes were 25,

14, 3, and 191, respectively (Table 1, Supporting Information:

Table S1). The control cohort consisted of 4231 samples: 2701

unaffected controls (individuals with no specific neurodevelopmental

phenotype and no known pathogenic or suspected pathogenic

variant in any of the episignature‐related genes) and 1530 unresolved

samples (individuals with suspected genetic disorders but with no

distinct genetic or EpiSign diagnosis) (Levy et al., 2022). Case samples

came from a total of 441 batches: four smaller cohorts were each

from a single batch, while all others had at least two batches, the

median number of batches per cohort was five. Control samples came

from a total of 1957 batches: the minimum number of control

batches used per cohort analysis was 13, the median was 36.

2.2 | Sample processing

Peripheral blood DNA was extracted using standard techniques.

Bisulfite conversion was performed with 500 ng of genomic DNA

using the Zymo EZ‐96 DNA Methylation Kit (D5004), and bisulfite‐

converted DNA was used as input to the Illumina Infinium

HumanMethylation450 (450K array) or MethylationEPIC BeadChip

array (EPIC array). Array data were generated according to the

manufacturer's protocol. Details of sample processing are described

in the previous studies (Aref‐Eshghi et al., 2020; Aref‐Eshghi,

Rodenhiser, et al., 2018; Levy et al., 2022).

2.3 | Methylation probe processing and selection

The data analysis pipeline was adapted from previously described

methods (Aref‐Eshghi et al., 2020; Levy et al., 2022). IDAT files
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TABLE 1 List of cohorts

Syndrome
Signature
abbreviation

Underlying gene
or region

OMIM
(2022) Samples Probes Category

X‐linked alpha‐thalassemia/mental
retardation syndrome (ATRX)

ATRX ATRX 301040 30 8666 SWI/SNF chromatin
remodeling

Arboleda–Tham syndrome (ARTHS) ARTHS KAT6A 616268 18 4487 Histone acetyltransferase

Autism, susceptibility to, 18 (AUTS18) AUTS18 CHD8 615032 28 2319 Transcription factor

Beck–Fahrner syndrome (BEFAHRS) BEFAHRS TET3 618798 16 30,391 DNA demethylase

Blepharophimosis Intellectual disability
SMARCA2 Syndrome

BISS SMARCA2 619293 12 10,186 SWI/SNF chromatin
remodeling

Börjeson–Forssman–Lehmann

syndrome (BFLS)

BFLS PHF6 301900 14 12,321 Transcription factor

Cerebellar ataxia, deafness, and
narcolepsy, autosomal dominant
(ADCADN)

ADCADN DNMT1 604121 5 151,848 DNA methyltransferase

CHARGE syndrome CHARGE CHD7 214800 74 840 Transcription factor

Chr16p11.2 deletion syndrome, 593‐KB Chr16p11.2del Chr16p11.2del 611913 18 10,105 CNV

Coffin–Siris syndrome‐1,2 (CSS1,2) CSS_c.6200a ARID1B 135900 4 3451 SWI/SNF chromatin
remodeling

ARID1A 614607

Coffin–Siris syndrome‐1,2,3,4;
Nicolaides–Baraitser syndrome
(CSS12,3,4; NCBRS)

BAFopathy ARID1B 135900 124 1015 SWI/SNF chromatin

remodeling
ARID1A 614607

SMARCB1 614608

SMARCA4 614609

SMARCA2 601358

Coffin–Siris syndrome‐4 (CSS4) CSS4_c.2650a SMARCA4 614609 3 464 SWI/SNF chromatin

remodeling

Coffin–Siris syndrome‐9 (CSS9) CSS9 SOX11 615866 13 430 Transcription factor

Cohen–Gibson syndrome; Weaver
syndrome (COGIS; WVS)

PRC2 EED 617561 8 2444 Histone deacetylase
Histone methyltransferase

EZH2 277590

Cornelia de Lange syndromes 1,2,3,4
(CDLS1,2,3,4)

CdLS NIPBL 122470 70 3623 Chromosome cohesion/
condensation; DNA

repair (RAD21)
SMC1A 300590

SMC3 610759

RAD21 614701

Down syndrome Down Chr21 trisomy 190685 40 24,712 CNV

Dystonia 28, childhood‐onset (DYT28) DYT28 KMT2B 617284 10 25,260 Histone methyltransferase

Epileptic encephalopathy, childhood‐
onset (EEOC)

EEOC CHD2 615369 9 5284 Transcription factor

Floating–Harbor syndrome (FLHS) FLHS SRCAP 136140 21 26,811 SWI/SNF chromatin
remodeling

Gabriele–de Vries syndrome (GADEVS) GADEVS YY1 617557 10 4380 Transcription factor

Genitopatellar syndrome (see also Ohdo
syndrome, SBBYSS variant) (KAT6B)

GTPTS KAT6B 606170 4 3008 Histone acetyltransferase

Helsmoortel–van der Aa syndrome
(HVDAS)

HVDAS_Ca ADNP 615873 14 6986 Transcription factor

(Continues)
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TABLE 1 (Continued)

Syndrome
Signature
abbreviation

Underlying gene
or region

OMIM
(2022) Samples Probes Category

Helsmoortel–van der Aa syndrome
(HVDAS)

HVDAS_Ta ADNP 615873 21 16,756 Transcription factor

Hunter McAlpine craniosynostosis
syndrome

HMA Chr5q35‐qter dup 601379 8 17,948 CNV

Immunodeficiency‐centromeric instability‐
facial anomalies syndrome 1 (ICF1)

ICF_1 DNMT3B 242860 8 38,656 DNA methyltransferase

Immunodeficiency‐centromeric instability‐
facial anomalies syndromes 2,3,4
(ICF2,3,4)

ICF_2_3_4 ZBTB2 614069 7 66,568 Transcription factorc
‐Myc responsive gene
SWI/SNF chromatin

remodeling

CDCA7 616910

HELLS 616911

Intellectual developmental disorder with
seizures and language delay
(IDDSELD)

IDDSELD SETD1B 619000 11 5264 Histone methyltransferase

Kabuki syndromes 1, 2 (KABUK1,2) Kabuki KMT2D 147920 191 3749 Histone methyltransferase
Histone demethylase

KDM6A 300867

KDM2B‐related syndrome KDM2B KDM2B Unofficial 9 3632 Histone demethylase

Autosomal dominant intellectual
developmental disorder‐65 (MRD65)

KDM4B KDM4B 619320 6 279 Histone demethylase

Kleefstra syndrome 1 (KLEFS1) Kleefstra EHMT1 610253 32 4124 Histone methyltransferase

Koolen de Vreis syndrome (KDVS) KDVS KANSL1 610443 16 6490 Histone acetylation

Luscan–Lumish syndrome (LLS) LLS SETD2 616831 4 2405 Histone methyltransferase

Menke–Hennekam syndromes 1,2
(MKHK1,2)

MKHK_ID4a CREBBP 618332 13 2570 Histone acetyltransferase

EP300 618333

Intellectual developmental disorder,
X‐linked, syndromic, Armfield type
(MRXSA)

MRXSA FAM50A 300261 6 4618 mRNA splicing

Mental retardation, autosomal dominant
23 (MRD23)

MRD23 SETD5 615761 25 2795 Histone methyltransferase

Mental retardation, autosomal dominant
51 (MRD51)

MRD51 KMT5B 617788 7 19,803 Histone methyltransferase

Intellectual developmental disorder,
X‐linked 93 (MRX93)

MRX93 BRWD3 300659 11 16,894 Transcription factor

Intellectual developmental disorder,

X‐linked 97 (MRX97)

MRX97 ZNF711 300803 18 3770 Transcription factor

Intellectual developmental disorder,
X‐linked syndromic, Nascimento‐type
(MRXSN)

MRXSN UBE2A 300860 4 6065 Enzyme

Intellectual developmental disorder,
X‐linked, Snyder–Robinson type
(MRXSSR)

MRXSSR SMS 309583 17 4062 Enzyme

Intellectual developmental disorder,
X‐linked, syndromic, Claes–Jensen
type (MRXSCJ)

MRXSCJ KDM5C 300534 58 5013 Histone demethylase

Myopathy, lactic acidosis, and
sideroblastic anemia 2 (MLASA2)

MLASA2 YARS2 613561 11 2304 tRNA synthesis

Ohdo syndrome, SBBYSS variant
(SBBYSS)

SBBYSS KAT6B 603736 9 1956 Histone acetyltransferase
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containing methylated and unmethylated signal intensity were

imported into R 4.1.0 for analysis. Normalization was performed

using the Illumina normalization method with background correction

using the minfi package, with the same EPIC control sample used as

the reference array for all samples. Probes with a detection p > 0.01,

probes located on the X and Y chromosomes, probes that

contained single nucleotide polymorphisms at the CpG interrogation

or single nucleotide extension sites, and probes which are known to

cross‐react with other genomic locations were removed (Chen et al.,

2013; Pidsley et al., 2016). Probes with beta values of 0 and the top

1% most variable (variance) probes within the case or control samples

were removed. For each cohort, a set of controls was chosen

matched for age, sex, and array type, using the R package matchit

version 4.2.0. For each case sample, 1–10 controls were used (case:

control ratio of 1:1–1:10). Mean, median, minimum, and maximum

control cohort sizes were 60, 56, 30, and 191 (Supporting

Information: Table S2).

Methylation levels (beta values) were used for linear regression

modeling using the limma package version 3.48.0 (Ritchie et al.,

2015). Estimated blood cell proportions (Houseman et al., 2012) were

added to the model matrix as confounding variables. The generated

p values were moderated using the eBayes function. To facilitate

comparisons between samples processed using 450K and EPIC

arrays, only probes found on both arrays were used for analysis.

Probes that had a mean methylation difference of less than 5%

between the case and control samples were removed and

Benjamini–Hochberg adjusted p values were calculated for the

remaining probes. Probes with an adjusted p value less than 0.01

were selected as DMPs for analysis, except for cohorts KDM4B and

CSS4_c.2650, which had too few probes and probes with a

nonadjusted p < 0.001 were used.

2.4 | Identification of differentially methylated
regions

For each cohort, genome‐wide DMR analysis was performed to

identify genomic regions with differential DNA methylation between

cases and matched controls. Methylation beta values equal to 1 were

initially shifted by a very small value (1e−10) to avoid infinite

M‐values during conversion implemented using minfi. DMR analysis

on the matrix of M values were identified using the R packages

DMRcate version 2.6.0 (Peters et al., 2015), and regions were defined

to have at least five CpG probes within 1000 bp of each other.

Minimum absolute mean methylation difference between cases and

controls was set to 0.1 and significant results were chosen using

a Fisher p value cut‐off of 0.01.

2.5 | Cohort comparisons and data visualizations

Circos‐style plots were made using the R package circlize version

0.4.14 (Gu et al., 2014). DMRs and DMPs were annotated in relation

to CpG islands (CGIs) and genes using the R package annotatr version

1.18.1 (Cavalcante & Sartor, 2017) with AnnotationHub version 3.0.0

and annotations hg19_cpgs, hg19_basicgenes, hg19_genes_inter-

genic, and hg19_genes_intronexonboundaries. CGI annotations

included CGI shores from 0 to 2 kb on either side of CGIs, CGI

TABLE 1 (Continued)

Syndrome
Signature
abbreviation

Underlying gene
or region

OMIM
(2022) Samples Probes Category

Phelan–McDermid syndrome (PHMDS) PHMDS Chr22q13.3del 606232 11 17,581 CNV

Rahman syndrome (RMNS) RMNS HIST1H1E 617537 9 26,101 Linker histone

Renpenning syndrome (RENS1) RENS1 PQBP1 309500 8 5228 mRNA splicing

Rubinstein–Taybi syndrome 1 (RSTS1) RSTS1 CREBBP 180849 37 5279 Histone acetyltransferase

Rubinstein–Taybi syndrome 2 (RSTS2) RSTS2 EP300 613684 29 7998 Histone acetyltransferase

Sotos syndrome 1 (SOTOS1) Sotos NSD1 117550 69 43,022 Histone methyltransferase

Tatton–Brown–Rahman syndrome (TBRS) TBRS DNMT3A 615879 30 35,130 DNA methyltransferase

Velocardiofacial syndrome (VCFS) VCFS Chr22q11.2del 192430 47 4134 CNV

Wiedemann–Steiner syndrome (WDSTS) WDSTS KMT2A 605130 52 4777 Histone methyltransferase

Williams–Beuren deletion
syndrome (WBS)

Williams Chr7q11.23del 194050 22 13,131 CNV

Williams–Beuren duplication syndrome
(Chr7q11.23 duplication syndrome)

Dup7 Chr7q11.23dup 609757 13 6963 CNV

Wolf–Hirschhorn syndrome (WHS) WHS Chr4p16.13del 194190 17 7838 CNV

Abbreviations: CNV, copy number variation; SWI/SNF, switch/sucrose non‐fermentable.
aEpisignatures that encompass a specific region or variant within a gene.
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shelves from 2 to 4 kb on either side of CGIs, and inter‐CGI regions

encompassing all remaining regions. For gene annotations, promoters

included up to 1 kb upstream of the transcription start site (TSS) and

promoter+ the region 1–5 kb upstream of the TSS. Annotations to

untranslated regions (5′‐UTR and 3′‐UTR), exons, introns, and exon/

intron boundaries were combined into the “gene body” category.

Enrichment of annotation terms were tested using hypergeometric

test. Heatmaps were made using the R package pheatmap ver-

sion 1.0.12.

Distance and similarities between cohorts were analyzed using

agglomerative clustering. A tree diagram was made by first

aggregating methylation levels of each DMP using its median value

across samples with the same condition, resulting in a beta value

matrix with rows and columns equal to the total number of all DMPs,

and the number of cohorts, respectively. Euclidean distance between

cohorts were computed using the generated beta matrix and

clustering using Ward's method on the distances was then

implemented. Initial analysis using all identified DMPs from all

cohorts showed that the number of DMPs affected the clustering

results. Therefore, for the final analysis, the top 500 DMPs ranked by

p values for each cohort were initially selected before generating the

beta value matrix. For cohorts with fewer than 500 DMPs, all of their

DMPS were used. This resulted in a combined set of 20,904 probes

across all groups. Clustering results on the distances computed using

the new beta matrix were visualized as a tree‐and‐leaf diagram using

the R package TreeAndLeaf version 1.4.2 to incorporate additional

information such as global mean methylation difference and total

number of DMPs identified for each cohort.

Two‐dimensional and three‐dimensional representations of the

topological structure of the entire cohort database were analyzed

using unified mapping approximation and projection (UMAP) using

the R umap package version 0.2.7.0. The global structure approxi-

mated by UMAP was obtained by using 210 probes that were most

differentiating across all cohorts selected by random forest

feature importance as described below. The UMAP parameter for

the number of nearest neighbors was set to 10 and minimum

distance in final layout set to 0.99, and results were visualized in 3D

using the R package plot3D version 1.4.

2.6 | Selection of most differentiating probes
across all cohorts

Probes evaluated to be most discriminating of the 56 cohorts were

identified by random forest using the R package randomForest

version 4.6.14. Feature importance was computed for the selected

20,904 probes as previously described. Random forest multiclassifi-

cation models were trained using the 20,904 probes and 1381

samples, and variable importance measured as mean accuracy

decrease was computed for each probe. Due to the randomness of

the model, we repeated the procedure 1000 times and summed all

variable importance values across all sets. Finally, probes that ranked

in the top one percentile were selected (210 probes). For each trial,

100 trees were fitted using 145 (default: sqrt(# of features)) randomly

sampled probes at each split. Down‐sampling was incorporated to

account for the sample imbalance across cohorts, and the number of

samples drawn per group at each split was set to the minimum

number of samples among all cohorts to ensure an identical value.

2.7 | Functional annotation of genes overlapping
selected DMPs and DMRs

Gene Ontology (GO) and KEGG pathways associated with DMPs and

DMRs were identified using the R package missMethyl version 1.23.1

(Phipson et al., 2016). Enrichment analysis was performed using

either all DMPs, or using DMPs that were found in more than five

cohorts. For DMRs, term enrichment analysis was implemented using

either all probes within all DMRs, or using probes that were found in

at least two DMRs. The background list was generated by combining

all probes remaining postfiltering for all cohorts which were used for

the differential methylation analysis.

2.8 | Network diagrams

A network diagram was made by first determining the number of

shared probes between each pair of cohorts. Each probe in a pair of

cohorts was categorized depending on the direction of the probe's

change in methylation: hyper–hyper (probe had increased methyla-

tion in both cohorts), hypo–hypo (probe had decreased methylation

in both cohorts), hypo–hyper, or hyper–hypo (probe's methylation

was increased in one cohort and decreased in the other). The

obtained data matrix was visualized using Cytoscape version 3.9 (Su

et al., 2014) in which nodes represent cohorts, the edges connecting

the nodes represent hyper or hypomethylated probes, and the weight

of the edge is proportional to the absolute count of the probes

shared by the two nodes.

3 | RESULTS

3.1 | Detection of DMPs and regions

We generated lists of DMPs for each cohort (for the full list of cohort

names and abbreviations, see Table 1). CSS4_c.2650, which only has

three samples, had zero significant DMPs using an adjusted p value of

less than 0.01, and KDM4B, which has six samples but more mild

methylation changes had 77 DMPs. For these two cohorts we,

therefore, used a nonadjusted p value resulting in 464 and 279 DMPs,

respectively, for all subsequent analysis. The 56 cohorts, therefore,

ranged from a minimum of 279 DMPs for KDM4B to a maximum of

151,848 DMPs for ADCADN, with a mean of 13,427 and a median of

5272 (Table 1, Supporting Information: Figure S1A and Table S3).

We next searched for DMPs recurring in more than one cohort.

The 56 cohorts included a total of 253,431 unique DMPs. 113,911
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(55%) were unique to a specific cohort, while 139,520 (45%) recurred

in two or more cohorts. Most of the unique DMPs were found in the

cohorts with the largest number of total DMPs: ADCADN and

ICF2_3_4 accounted for 85% of the unique probes (Supporting

Information: Figure S1B). All other cohorts shared at least 85% of

their DMPs with at least one other cohort, with all 1015 BAFopathy

DMPs found in at least one other cohort (Supporting Information:

Figure S1B). The cohorts with the largest number of DMPs generally

also had the largest number of shared DMPs (Figure 1, Supporting

Information: Figures S1A,B). Among the 139,520 DMPs found in two

or more cohorts, 46,635 (33%) were found in exactly two cohorts,

while one DMP was found in each of 27 and 28 cohorts (Supporting

Information: Figure S1C).

We then used all probes to identify DMRs. Forty‐eight cohorts

returned significant results ranging from one to 1384 DMRs, with the

median of the DMR counts being eight and mean being 89. Based on

the parameters used for DMR detection, seven cohorts did not have

any significant DMRs: AUTS18, BAFopathy, CSS4_c.2650, CSS9,

Kabuki, KDM4B, MRX93. Two of the cohorts with no DMRs,

CSS4_c.2650 and KDM4B, had the fewest number of DMPs when

using an adjusted p value cut‐off, explaining the lack of identified

DMRs. Most cohorts with no significant DMRs had either mild

changes in methylation (Kabuki, MRX93) or a relatively small number

of identified DMPs (AUTS18, CSS4_c.2650), or both (BAFopathy,

CSS9, KDM4B). Therefore, as expected, cohorts that were highly

hypo/hypermethylated and with a high number of DMPs also had the

highest number of identified DMRs, such as ADCADN (1384 DMRs),

ICF2_3_4 (851 DMRs), Sotos (809 DMRs) and ICF1 (514 DMRs)

(Supporting Information: Figure S2).

3.2 | Genomic context of DMPs

We next examined the genomic locations of the probes. First, we

assessed locations in relation to CGIs. CpG annotations were

available for 3,137,161,264 nucleotides divided into CGI (0.7%),

CGI shores (3.2%), CGI shelves (2.8%), and inter‐CGI regions (93.3%).

However, since CGI are enriched for DNA methylation CpGs, they

are over‐represented on the DNA methylation microarrays. After

initial filtering to remove chromosomes X and Y and certain other

probes as described in Section 2.3, 30.7% of microarray probes

overlapped with CGI and 23.8% overlapped CGI shores. This

represents the “background” or “default” distribution of probes on

the microarray used for analysis (Figure 2a). We compared the

distributions of DMPs to the background distribution of probes.

Twelve of the 56 cohorts (21.4%) had probes overrepresented at CGI

and 43 (76.8%) cohorts were overrepresented at shores. When

considered together, 47 (84%) of cohorts had DMPs overrepresented

at, or within 2 kb of, a CGI. Eight cohorts (14.3%) had probes

overrepresented within CGI shelves and 18 cohorts (32.1%) at inter‐

CGI regions (Figure 2a).

Similar analysis was then performed for the 49 cohorts which

had at least one DMR. Since the microarrays contain probes and not

DMRs a default distribution for DMRs cannot be generated. Sixty‐

four percent of the 5221 total DMRs overlapped CGIs, and 38 of the

49 DMR cohorts (79%) had 50% or more of their DMRs overlapping

CGIs. There was variability in results between cohorts with several

having all DMRs overlapping CGIs and the lowest (cohort WHS)

having only 1/13 (7.7%) of its DMRs overlapping CGIs (Figure 2b).

DMPs and DMRs were then annotated in relation to genes. The

background microarray distribution of probes included 29.4% at

promoters, 4.9% promoter+, 49.7% in gene bodies, and 16.0%

intergenic (Figure 2c). Seven (12.5%) of the cohorts had DMPs

overrepresented at the 1 kb promoters and all 56 had DMPs

overrepresented when the larger 1–5 kb promoter+ region was

included. No cohorts were overrepresented within gene bodies and

49 (88%) were overrepresented at intergenic regions (Figure 2c).

3033 (58.1%) of the 5221 total DMRs overlapped the promoter

regions, and 29 of the 49 DMR cohorts (59.2%) had 50% or more of

their DMRs overlapping the extended promoter regions (Figure 2d).

To identify categories of genes and molecular pathways with

changes in DNA methylation we performed enrichment analysis using

all DMPs, and then using the subset of probes that were within

DMRs. To identify terms that were more representative of the full set

of cohorts we repeated this analysis using “repeatedly selected”

DMPs and probes within DMRs: for DMP analysis, we used probes

identified in more than five cohorts, for DMRs analysis, we used DMR

probes that were identified in at least two cohorts. When using all

DMRs, 158 GO terms were found enriched in the identified regions

(p.adjust < 0.05). However, only 12 terms were significant when using

genes overlapping recurring probes in the DMRs, all of which were

also in the 158 GO terms in the initial analysis. The top 10 most

significant terms for the DMR results in both tests are shown in

Table 2. Gene set ratio values indicate the ratio of the number of

genes overlapping the DMRs to the number of genes overlapping all

probes in the background list in the corresponding annotation. At the

probe level, when using all DMPs 9 GO terms were identified, when

using duplicated DMPs 20 GO terms were identified, one of which is

common to both analyses. The top most significant terms are shown

in Table 3. Results demonstrate enrichment in functional categories

related to biological processes involved in nervous system develop-

ment, neurogenesis, synaptic transmission, and synaptic signaling.

Subsequent KEGG pathway enrichment using all DMR results

revealed enrichment of genes related to the neuroactive ligand‐

receptor interaction pathway (p.adjust = 3.15E−08), nicotine

addiction pathway (p.adjust = 2.17E−04), and steroid hormone

biosynthesis pathway (p.adjust = 0.04), while using duplicated DMPs

indicated enrichment in calcium signaling pathway (p.adjust = 0.04)

[data not shown].

3.3 | Relationships between cohorts

All DMPs were used to calculate mean and median beta values for

each cohort to identify overall trends in hypo‐ and hypermethylation.

Thirty‐seven (66.1%) cohorts had mean hypomethylation
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F IGURE 1 Differentially methylated
probes found shared between multiple
cohorts. (a) Percent of probes that are
shared between each pair of cohorts. For
each pair, the colors indicate the percent of
the top/bottom cohort's probes that are
also found in the left/right cohort's probes.
(b) Probes that are shared between each
pair of cohorts. Each labeled and colored
sector represents one cohort. The
thickness of connecting lines represents
the number of probes shared between the
two cohorts.
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(mean methylation below zero) and 19 (33.9%) cohorts had mean

hypermethylation (mean methylation above zero) (Figure 3a). Using a

stricter cut‐off of at least a 5% change in mean methylation there

were 12 (21.4%) hypomethylated cohorts and 10 (17.9%)

hypermethylated, while the remaining 22 cohorts had mean

methylation changes of less than 5% (Figure 3a).

To investigate relationships across all cohorts without bias

caused by the number of DMPs selected, clustering analysis was

F IGURE 2 DMPs and DMRs annotated in the context of CpG islands and genes. (a) DMPs annotated in the context of CpG islands. (b) DMRs
annotated in the context of CpG islands. (c) DMPs annotated in the context of genes. (d) DMRs annotated in the context of genes. For CpG plots:
Island, CpG islands; Shore, within 0–2 kb of a CpG island boundary; Shelf, within 2–4 kb of a CpG island boundary; Inter_CGI, all other regions in
the genome. For gene context plots: Promoter, 0–1 kb upstream of the transcription start site; Promoter+, 1–5 kb upstream of the transcription
start site. For DMP plots, the Probes column represents the “background” or “default” distribution of all 450K array probes after initial filtering
and used as input for DMP analysis. For DMR analysis, the numbers above each bar indicate the number of DMRs identified for each cohort. The
following cohorts had no detected DMRs: AUTS18, BAFopathy, CSS4_c.2650, CSS9, Kabuki, KDM4B, MRX93. CGI, CpG island; DMP,
differentially methylated probe; DMR, differentially methylated region.
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performed on the combined top N DMPs for each cohort where N

was either 500 or the total number of DMPs as detailed in the

Methods section. Results were visualized using a binary tree with

each node corresponding to a cohort (Figure 3b). The 56 cohorts

were clustered into three groups: one group along the branch of

ADCADN (upper left), a second group with the branch on the lower

left (containing the ICF2_3_4 sub‐branch), and the rest of the tree

branches on the right as the third group. Subclustering of the second

and third groups is also apparent. Some patterns are evident in the

clustering as most of the highly hypo/hypermethylated cohorts are

close together. Furthermore, for the other subclusters, cohorts on the

same branch are either in the same range of mean methylation

difference or number of DMPs due to the similarities in either node

color or node size. We also see groupings consistent with our

previous analysis of these cohorts where conditions sharing similari-

ties, phenotypically or genetically, were clustered together: such as

Sotos, ICF, RMNS, BFLS, and TBRS (Aref‐Eshghi et al., 2020), and

RSTS1 and RSTS2 (Levy et al., 2022). Cohort pairs were also

observed generating terminal branches suggesting high level of

similarity. Some of these cohort couples include BAFopathy and

CSS9, which are both included in the BAF complex, ARTHS

and SBBYSS, which are caused by pathogenic variants in KAT6

genes, and RSTS1 and RSTS2. To visualize global structure, we

analyzed all cohorts using the most differentiating probes identified

by random forest feature selection. Topological structures were

approximated by UMAP and projected into two‐dimensional and

three‐dimensional spaces as seen in Figure 4. Results of this analysis

were concordant with the clustering analysis. Cohorts that are more

alike are closer together, such as RSTS1 and RSTS2 (Figure 4b), and

ARTHS and GTPTS (Figure 4c), which is also associated with variants

in a KAT6 gene. While we can see a large degree of overlap for

several cohorts in the 2D projection, we also observe locally

condensed independent groupings of the same cohorts in the 3D

projection. This demonstrates the level of complexity of the overall

structure of the data and the effectiveness of a small set of probes to

distinguish them to a certain degree.

TABLE 2 Top significant GO terms from enrichment analysis of DMRs

Ontology ID Description Gene set ratio Adjusted p value

Using all CpG sites in the selected DMRs of all signatures

BP GO:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 75/159 3.55E−17

BP GO:0098742 Cell–cell adhesion via plasma‐membrane adhesion molecules 98/260 8.22E−15

CC GO:0005887 Integral component of plasma membrane 342/1537 1.35E−13

CC GO:0031226 Intrinsic component of plasma membrane 355/1612 2.16E−13

BP GO:0032501 Multicellular organismal process 1204/7241 1.43E−09

CC GO:0071944 Cell periphery 933/5464 2.50E−08

BP GO:0003008 System process 390/2068 7.13E−08

CC GO:0031224 Intrinsic component of membrane 806/4959 1.89E−06

MF GO:0005509 Calcium ion binding 155/666 4.95E−06

BP GO:0003002 Regionalization 94/315 3.55E−17

Using duplicated CpG sites in the selected DMRs of all signatures

BP GO:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 44/159 1.07E−21

BP GO:0098742 Cell–cell adhesion via plasma‐membrane adhesion molecules 52/260 3.08E−19

BP GO:0098609 Cell–cell adhesion 79/837 1.56E−10

CC GO:0005887 Integral component of plasma membrane 112/1537 7.71E−10

MF GO:0005509 Calcium ion binding 65/666 2.65E−09

CC GO:0031226 Intrinsic component of plasma membrane 114/1612 2.96E−09

BP GO:0022610 Biological adhesion 101/1410 7.17E−07

BP GO:0007155 Cell adhesion 100/1404 1.05E−06

BP GO:0016339 Calcium‐dependent cell–cell adhesion via plasma membrane cell adhesion molecules 11/42 3.81E−04

CC GO:0071944 Cell periphery 244/5464 7.97E−03

BP GO:0019953 Sexual reproduction 49/769 0.02

CC GO:0031224 Intrinsic component membrane 211/4959 0.04

Abbreviations: DMR, differentially methylated region; GO, Gene Ontology.
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We used network analysis to investigate the relationships of

shared DMPs between cohorts. Using this analysis, we visualized

shared probes versus non‐shared probes (“self‐loops”), and the

proportions of and directions (hyper‐ or hypomethylated) of

the shared DMPs. (Figure 5). Three observations are notable:

First, the probes unique to the cohort (indicated by the self‐loops)

for the majority of the cohorts are hypermethylated, while the

probes shared between the cohorts are all hypomethylated, except

for some relationships which show mixed status (hypo/hyper in

one cohort and the opposite in the second cohort): BEFAHRS

shared hyper‐hypo probes with MRD51, MRX93, GADEVS, BISS

and DYT28, and Chr16p11.2del shared hyper‐hypo probes with

DYT28. Second, the ADCADN cohort (which had the largest

number of DMPs) did not share a large proportion of probes with

any other syndrome. Other cohorts with a high number of DMPs

tended to share a larger proportion of their probes. Third, although

this is fully connected network in which each cohort shares at least

one probe with all other syndromes, it is possible to distinguish

groups of cohorts that share a substantial number of the DMPs

with each other. One such “triangle” is between Sotos, RMNS, and

TBRS (Figure 5). While sharing a small number of probes by the

cohorts can happen by chance, a substantial number of shared

DMPs may indicate an underlying biological process that is

common to all cohorts.

4 | DISCUSSION

4.1 | Significant overlap in DMPs between
disorders

DNA methylation episignature analysis can be used as a primary

screen for patients with a suspected genetic disorder, or as a reflex

test for patients with a variant of unknown significance or with no

variant identified but a clinical presentation suggestive of a syndrome

with a known episignature (Kerkhof et al., 2021; Sadikovic et al.,

2021). “EpiSigns” are sensitive and specific diagnostic biomarkers that

can be gene, region, or even nucleotide specific (Levy et al., 2022). To

generate a disorder‐specific classifier, individual EpiSigns are opti-

mized by selecting the most significant DMPs in relation to controls

as well as all other episignature cohorts (Levy et al., 2022). In this

study, we analyzed the functional biological aspects of global

methylation changes in these disorders. We demonstrate a significant

overlap in global DNA methylation profiles across all syndromes.

TABLE 3 Top significant GO terms from enrichment analysis of DMPs

Ontology ID Description Gene set ratio Adjusted p value

Using all selected DMPs in all signatures

CC GO:0005737 Cytoplasm 10,892/10,994 3.87E−06

MF GO:0005515 Protein binding 12,677/12,810 6.32E−05

BP GO:0007399 Nervous system development 2235/2243 1.94E−03

MF GO:0043167 Ion binding 5539/5583 3.88E−03

CC GO:0005829 Cytosol 4940/4978 6.05E−03

BP GO:0016043 Cellular component organization 5963/6013 6.05E−03

MF GO:0046872 Metal ion binding 3900/3929 0.03

BP GO:0022008 Neurogenesis 1544/1549 0.03

BP GO:0071840 Cellular component organization or biogenesis 6147/6202 0.04

Using DMPs selected in more than five signatures.

BP GO:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 128/159 3.53E−05

BP GO:0098742 Cell–cell adhesion via plasma‐membrane adhesion molecules 192/260 7.34E−04

CC GO:0030054 Cell junction 1277/1934 7.94E−04

CC GO:0005911 Cell–cell junction 323/460 0.02

BP GO:0007268 Chemical synaptic transmission 454/657 0.02

BP GO:0098916 Anterograde trans‐synaptic signaling 454/657 0.02

BP GO:0099536 Synaptic signaling 471/683 0.02

BP GO:0099537 Trans‐synaptic signaling 458/663 0.02

CC GO:0120025 Plasma membrane‐bounded cell projection 1318/2059 0.02

BP GO:0032989 Cellular component morphogenesis 512/732 0.02

Abbreviations: DMP, differentially methylated probe; GO, Gene Ontology.
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F IGURE 3 Relationships between cohorts. (a) Methylation differences of all differentially methylated probes for each cohort, sorted by
mean methylation. Each circle represents one probe. Red lines indicate mean methylation, yellow lines indicate median methylation. (b) Tree and
leaf visualization of Euclidean clustering of 56 cohorts using the top n DMPs for each group, where n =min (# of DMPs, 500). Cohort samples
were aggregated using the median value of each probe within a group. A leaf node represents a cohort, with node sizes illustrating relative scales
of the number of selected DMPs for the corresponding cohort, and node colors are indicative of the global mean methylation difference.
Clustering of cohorts are represented by branches containing a subset of the cohorts. The colored branches indicate the main division of the
three nodes as described in the text. DMP, differentially methylated probe.
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This highlights the importance of training diagnostic EpiSign classifi-

ers against other disorders to achieve diagnostic specificity. Overlap

in methylation profiles may reflect similarity in the clinical presenta-

tions across the various genetic neurodevelopmental syndromes.

Hence the clinical utility of DNA methylation episignatures is directly

related to their continuing refinement (Aref‐Eshghi et al., 2020; Levy

et al., 2022).

A significant proportion of the DNA methylation profile in any

disorder is shared with other cohorts. Several disorders share a high

percentage of their DMPs including ADCADN, BEFAHRS, RMNS,

Sotos, ICF1, and TBRS (Figure 1). These disorders exhibit among the

highest number of DMPs, and involve genes related to various

aspects of chromatin remodeling including DNA methylation

(ADCADN BEFARHS, ICF1, TBRS), histone methylation (Sotos), or

linker histones (RMNS). Other disorders involving chromatin remo-

deling genes demonstrated significant overlap and a high number of

DMPs, including FLHS, ICF_2_3_4, HVDAS_T, DYT28, and BFLS.

Copy number variant disorders that include chromatin remodeling

genes within the deletion and duplications (HMA, Sotos, Dup7,

Williams) also demonstrated high degrees of overlap and number of

DMPs, and reciprocating deletion and duplication syndromes (HMA

vs. Sotos and Dup7 vs. Williams) showed some overlap in probes but

were dissimilar in the UMAP clustering.

4.2 | Sotos, TBRS, and RMNS show high overlap in
probes

As observed in both Figures 1b and 5, three disorders, Sotos (caused

by pathogenic variants in NSD1), RNMS (caused by pathogenic

variants in HIST1H1E), and TBRS (caused by pathogenic variants in

DNMT3A), show significant overlap in DMPs. Our group has

previously described the relatedness of the episignature probes for

these three disorders (Aref‐Eshghi et al., 2020), and this similarity is

F IGURE 4 UMAP visualization of 56 cohorts using the most differentiating probes. (a–c) UMAP results projected to three‐dimensional space
and snapshot from different perspectives. (d) UMAP results projected to two‐dimensional plane. For each view, a subset of cohort labels has
been added dependent on cluster density and to optimize readability. UMAP, unified mapping approximation and projection.
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also observed in our current analysis that looks at all DMPs beyond

the small subset of probes used for diagnostic EpiSign purposes. All

three genes contribute to overgrowth phenotypes, either throughout

childhood (Sotos and TBRS) or in infancy (RMNS), with direct roles in

chromatin remodeling (Tatton‐Brown et al., 2017). NSD1 is a histone

methyltransferase and functional studies have shown that loss of

NSD1 results in redistribution of DNMT3A and reduced methylation

at the expected regions (Weinberg et al., 2019). Therefore,

hypomethylation at shared probes may be a consequence of either

lack of NSD1 recruitment of DNMT3A or the loss of DNMT3A

altogether. The linker histone H1.4, encoded by the HIST1H1E gene,

has key roles in chromatin accessibility and compaction (Flex et al.,

2019), aligning gene function with other chromatin remodelers

histone methyltransferase NSD1 and DNA methyltransferase

DNMT3A. Additionally, a study found that these three genes, as

well as three others (CHD8, EED, and EZH2), accounted for the

pathogenic variants in 44% of patients in a large cohort of patients

with overgrowth and intellectual disability (Tatton‐Brown et al.,

2017), however, a more recent study classifying RMNS further

highlights that overgrowth is observed in infancy and that patient

growth became progressively closer to average over time (Flex et al.,

2019). Therefore, the observed overlap in all probes, as well as their

relatedness when assessing only the top 500 probes, is another layer

of functional evidence indicating these syndromes may have similar

molecular etiology. We also assessed the methylation patterns for

the three episignature‐causing genes assessed in the study by

Tatton‐Brown et al. (2017). EZH2 and EED are components of the

polycomb repressive complex 2 (PRC2) and samples from patients

with pathogenic variants in either gene were included in the PRC2

cohort. CHD8 is an ATP‐dependent chromatin‐remodeling factor,

and variants in this gene cause AUST18. Both the PRC2 and AUST18

cohorts exhibited small numbers of DMPs (less than 3000). However,

a large number of their DMPs (between 38% and 74%) are present in

TBRS, Sotos, or RMNS probe lists, indicating common regions are

impacted in these other overgrowth syndromes.

4.3 | Differences in methylation profiles in
paralogous genes

Of the 56 cohorts assessed, two sets of paralogous genes are involved

in multiple syndromes. First, KAT6A and KAT6B are paralogous lysine

acetyltransferases that form a complex with other proteins to control

gene expression by histone acetylation (Wiesel‐Motiuk & Assaraf,

F IGURE 5 Differentially methylated probe sharing between the 56 cohorts. Network diagram showing cohorts connected by edges
representing probes shared between them. Edge colors represent hyper–hyper, hyper–hypo, hypo–hyper, and hypo–hypo connections, edge
width is proportional to the total number of probes shared (range from 1 to 138,727 shared probes). Probes unique to a cohort are represented
by a self‐loop. Node colors represent the total number of the differentially methylated probes in a cohort. The inset shows the triangle described
in the text.
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2020). Truncating mutations in the C‐terminal transactivation domain of

KAT6A (as observed in our cohort) as well as missense variants, cause

ARTHS (Kennedy et al., 2019; Tham et al., 2015). Truncating mutations

in the proximal portion of the last exon of its paralog, KAT6B, lead to a

protein with no transactivation domain and cause GTPTS (Campeau

et al., 2012). KAT6B pathogenic variants can also lead to another

syndrome SBBYSS. SBBYSS‐related KAT6B variants can result in

nonsense‐mediated decay leading to a milder phenotype caused by

haploinsufficiency (Campeau et al., 2012; Lonardo et al., 2019). SBBYSS

and ARTHS cluster more closely on the leaf and tree diagram, while

GTPTS is a few branches away. A study suggests that truncating

mutations in the proximal portion of the last exon of KAT6B, when

compared to SBBYSS mutations that occur more distally, lead to a gain

of function in the protein (Campeau et al., 2012). This hypothesis

proposes that the possible gain of function causes the phenotypes

present in GTPTS but not in SBBYSS, with the shared clinical

presentation a result of the haploinsufficiency of the transactivation

domain (Campeau et al., 2012). This provides a possible reason as to

why ARTHS and SBBYSS group more closely when compared to

GTPTS. Pathogenic variants causing GTPTS and ARTHS fall in similar

regions in the two genes (KAT6B and KAT6A, respectively), however, the

two genes only share 60% sequence homology. Further investigations

assessing the protein changes caused by variants may provide further

insight as to why ARTHS and SBBYSS are more similar to each other

than GTPTS, and to confirm that gain of function mutations in GTPTS

underpin these phenotypic differences.

Two other paralogs, CREBBP and EP300, are associated with

three cohorts that were assessed. CREBBP and EP300 are

transcriptional coactivators and histone acetyltransferases that

interact with over 400 proteins (Bedford et al., 2010). Pathogenic

variants in CREBBP cause RSTS1 and pathogenic variants in EP300

cause RSTS2, whereas variants in exon 30 and 31 of either gene can

cause MKHK 1 and 2, respectively. Our MKHK cohort contains

pathogenic variants in both genes that fall in the intrinsically

disordered linker (ID4) region of these proteins (MKHK_ID4). One

hypothesis is that missense mutations observed in MKHK patients

result in gain of function of the proteins, resulting in a different

phenotype compared to the loss of function observed in RSTS

(Menke et al., 2018). Our data provides further functional evidence

that these two syndromes have different pathological mechanisms

with RSTS 1 and 2 showing high similarity to each other and

exhibiting mean hypomethylation, while MKHK_ID4 exhibits overall

hypermethylation and methylation dissimilarity from RSTS1 and 2, as

observed by the tree and leaf diagram (Figure 3b). Gene expression

analysis and functional assessment MKHK variants will provide more

insight on the molecular mechanisms of these two syndromes.

4.4 | Hypomethylated probes are most commonly
shared between disorders

The conditions with the greatest number of DMPs also had the

highest numbers of unique probes, as outlined in the network

diagram (Figure 5). The overlap in DMPs among all disorders is clear,

however, the vast majority of overlapping probes among conditions

are hypomethylated. Epigenetic changes in both DNA and histones,

both transient and inherited, are essential to proper development,

allowing for proper DNA expression that is cell‐specific and temporal.

Promoter hypomethylation may be indicative of common gene

activation across the various syndromes, while hypermethylation

may be related to the disorder‐specific gene inactivation (Figure 5).

4.5 | GO analysis identifies enrichment in
developmental and neurological pathways

The development of specific epigenetic biomarkers aids in the

diagnosis of conditions with nonspecific clinical presentations, which

include a spectrum of neurodevelopmental delay and dysmorphic

features (Kvarnung & Nordgren, 2017). In line with the common

clinical features, the significant GO terms for DMPs and DMRs

include neurologic processes, such as chemical synaptic transmission,

trans‐synaptic signaling, synapse assembly, and glutamatergic synap-

tic transmission. Enrichment was also observed in terms involved in

developmental pathways and morphology, such as anatomical

structure morphogenesis, cell–cell adhesion pathways, nervous

system development. Differential methylation within these genes,

or near their promoters and CpG islands warrants further investiga-

tion in gene expression of these pathways.

Enrichment of neurodevelopmental pathways points towards the

possible inappropriate expression of genes required for proper

cortical development. Spatial and temporal control of gene expres-

sion through DNA methylation is a highly dynamic process during

development and many of the genes represented by the cohorts

studied are involved in DNA methylation regulation. A recent review

highlights the importance of DNA methylation in neuronal develop-

ment within a set of neurodevelopmental syndromes, many of which

are represented by our cohorts (Ciptasari & van Bokhoven, 2020).

Further analysis of specific genes impacted, as well as direction of

methylation change in the context of a given disorder, will provide

further insight into possible underlying biological pathways that may

contribute to a given syndrome phenotype. Gene expression analysis

would also further solidify the impact of these methylation changes

on the genes in question.

5 | CONCLUSIONS

DNA methylation episignatures are providing very useful diagnostic

biomarkers in an expanding number and scope of Mendelian

neurodevelopmental disorders. To achieve high levels of accuracy,

sensitivity, and specificity, these EpiSigns are limited to a small subset

of genomic CpGs providing the most optimal power to differentiate

between different disorders. The broader genome‐wide DNA

methylation profiles provide insights into the complex molecular

etiology and pathophysiology of the associated conditions. In this
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study, we assessed the relatedness of the global DNA methylation

profiles across the majority of human Mendelian episignature

disorders described to date. We created a map of the disorder‐

specific and recurring genome‐wide DNA methylation profiles,

demonstrating a substantial level of overlap in methylation profiles

involving functional genomic elements among these conditions. We

provide evidence for an enrichment of DMRs and DMPs across gene

promoters and CpG islands suggesting functional roles for the related

epigenetic changes. Enrichment analysis further demonstrates

disrupted methylation associated with various neurodevelopmental

pathways and mechanisms as part of the common etiology across

these disorders. The degree of relatedness in the overlapping

methylation profiles reflects the similarities in both gene function

as well as the clinical presentations, suggesting a strong functional

role of DNA methylation in the disease etiology. This study provides

the foundation for future work including integration of gene

expression and other omic analyses as part of a more comprehensive

map of genetic/epigenetic interactions in Mendelian neurodevelop-

mental disorders.
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