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Abstract: One of the main reasons for cancer’s low clinical response to chemotherapeutics is the
highly immunosuppressive tumor microenvironment (TME). Tumor-ass ociated M2 macrophages
(M2-TAMs) orchestrate the immunosuppression, which favors tumor progression. Extracellular
vesicles (EVs) have shown great potential for targeted therapies as, depending on their biological
origin, they can present different therapeutic properties, such as enhanced accumulation in the
target tissue or modulation of the immune system. In the current study, EVs were isolated from
M1-macrophages (M1-EVs) pre-treated with hyaluronic acid (HA) and the β-blocker carvedilol (CV).
The resulting modulated-M1 EVs (MM1-EVs) were further loaded with doxorubicin (MM1-DOX) to
assess their effect in a mouse model of metastatic tumor growth. The cell death and cell migration
profile were evaluated in vitro in 4T1 cells. The polarization of the RAW 264.7 murine macrophage
cell line was also analyzed to evaluate the effects on the TME. Tumors were investigated by qRT-PCR
and immunohistochemistry. MM1-DOX reduced the primary tumor size and metastases. NF-κB was
the major gene downregulated by MM1-DOX. Furthermore, MM1-DOX reduced the expression of
M2-TAM (CD-163) in tumors, which resulted in increased apoptosis (FADD) as well as decreased
expression of MMP-2 and TGF-β. These results suggest a direct effect in tumors and an upregulation
in the TME immunomodulation, which corroborate with our in vitro data that showed increased
apoptosis, modulation of macrophage polarization, and reduced cell migration after treatment with
M1-EVs combined with HA and CV. Our results indicate that the M1-EVs enhanced the antitumor
effects of DOX, especially if combined with HA and CV in an animal model of metastatic cancer.
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1. Introduction

Due to its high incidence and mortality rates, cancer presents a persistent health
problem around the world. Worldwide, an estimated 19.3 million new cancer cases and
almost 10.0 million cancer deaths occurred in 2020. In these estimations, female breast
cancer was the most commonly diagnosed cancer, with an estimated 2.3 million new cases
(11.7%) [1].

The currently available technologies for early diagnosis and the variety of therapeutic
interventions have improved the outcome of the disease, but the search for new products
and therapeutic alternatives still continues. Immunotherapy, in particular, has been one
of the most successful approaches to treating cancer by the use of different strategies to
enhance the immune response against tumors [2,3]. In line with this, the tumor microenvi-
ronment (TME) has been studied in depth to understand the dynamics and contribution of
the different infiltrating cell populations in order to improve targeted therapies, including
immunotherapy. Previous studies have shown that infiltrating immune cells, particularly
macrophages, play a role in the carcinogenic process with either anti or pro-tumoral activi-
ties [4,5]. Depending on phenotype and surface marker expression, macrophages can be
generally classified as M1 or M2 [5]. M1 macrophages display important antitumor activi-
ties and are involved in the immune system’s response to cancer, whereas M2 macrophages
(also known as tumor-associated macrophages or M2-TAMs) promote cancer progression
and contribute to multidrug resistance in cancer therapy [5,6]. Therefore, multiple antitu-
moral approaches are being explored to induce the shift of M2-TAMs to proinflammatory
M1 macrophages [7–9]. Among the new immunotherapeutic treatments, approaches based
on extracellular vesicles (EVs) are receiving attention for their antitumor potential and the
bioengineering possibilities that they can offer [10–12]. EVs have been efficiently used as
carriers and tissue-specific drug delivery systems for antitumor agents [13,14]. In the same
way, EVs derived from different immune cells as well as directly from tumor cells are able to
activate the immune system by exposing tumor antigens or immune-enhancing molecules
and can further be engineered to potentiate or redirect its antitumor effects, an interesting
concept known as “tumor vaccines” [12,15,16]. In addition to their biomedical advantages
and immunomodulatory properties, some EVs have also demonstrated intrinsic antitumor
activity due to specific molecules and tumor suppressor agents that they contain, which are
derived from their parental cell [12,13,17].

EVs derived from M1 macrophages have demonstrated important antitumor proper-
ties against different types of cancer, including melanoma and breast cancer [18].
M1-derived EVs (M1-EVs) repolarize M2 macrophages and activate the resident M1
macrophages, thereby creating a proinflammatory TME that decreases tumor growth
and induces apoptosis in cancer cells [7,8]. M1-EVs are also efficient adjuvants and nanocar-
riers that enhance the anticancer properties of cytostatic drugs and monoclonal antibodies
in vitro and in vivo [8,19]. Evidence has suggested that hyaluronic acid (HA) can be used
to increase targeting through the CD44 receptor and promote antitumor macrophage polar-
ization [20–22]. On the other hand, carvedilol (CV) is a β-blocker or a β-adrenergic receptor
(β-AR) antagonist and is traditionally used for cardiovascular disorders [23]. The polar-
ization of macrophages to an M2 phenotype is mediated by β-adrenergic receptors [24],
which means that CV is a promising compound to downregulate TAMs via β-adrenergic
receptors in the TME.

Based on this evidence, in the present work, we explored the in vitro and in vivo
antitumor and antimetastatic properties of EVs from classically activated M1 macrophages,
alone and loaded with doxorubicin (DOX), in breast cancer models. We also evaluated
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how these anticancer effects can be potentiated by the chemical modulation of the M1
polarization using therapeutic compounds, such as HA and CV.

2. Materials and Methods
2.1. Antibodies and Reagents

Mouse anti-E-cadherin (Cat # MA1-06304) and mouse anti-vimentin (Cat # PA5-96191)
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Anti-mouse CD163-
PerCP (Cat # 46-1631-82) and anti-mouse CD68-FITC (Cat # 11-0689-42) were obtained
from eBioscience (San Diego, CA, USA). Recombinant mouse IL-4 (Cat # 214-14) and IFN-γ
(Cat # 315-05) were purchased from PeproTech (Rocky Hill, NJ, USA). Mitomycin (Cat # M5353)
was purchased from Sigma-Aldrich (Amsterdam, The Netherlands).

For immunofluorescence labeling, purified rat anti-E-cadherin (Cat # 13-5700), the sec-
ondary antibodies goat anti-mouse (Cat # A32723), and goat anti-rat Alexa® 488 (Catalog #
A-11006, Thermo Fisher Scientific) were used. Rabbit anti-β-actin (Cat # 926-42210, LI-COR
Biosciences, Lincoln, NE, USA), GRP94 (Cat # MA3-016, ThermoFisher), HSP70 (Cat # 4872S,
Cell Signaling, Danvers, MA, USA), Flotillin-1 (Cat # 3244S, Cell Signaling), Integrin α6
(Cat # 3750S, Cell Signaling) and Integrin β1 (Cat # 4706S, Cell Signaling) were used for
immunoblotting.

2.2. Cell Lines and Cell Culture

Murine breast cancer cells (4T1) and the mouse macrophage RAW 264.7 cell line
were obtained from ATCC (Rockville, MD, USA). Cells were grown in an incubator and
maintained at 37 ◦C, and 5% CO2 with Dulbecco’s modified Eagle’s medium (DMEM, Gibco
Laboratories, Grand Island, NY, USA) supplemented with 1% penicillin/streptomycin and
10% fetal bovine serum (FBS) (Gibco Laboratories, Grand Island, NY, USA). Cells were
passaged biweekly using trypsin/EDTA in phosphate-buffered saline (PBS).

2.3. Preparation of Single and Modulated EVs and DOX Loading

RAW 264.7 cells were grown to a density of 18.4× 106 cells in 225 cm2 flasks with DMEM
(1x) + GlutaMAX (Gibco) supplemented with 10% FBS and 1% penicillin/streptomycin at
37 ◦C and 5% CO2. To obtain EVs from M1 or M2 macrophages, cells were incubated with
either 0.04 µg/mL IL-4 for M2-derived EVs (Peprotech, lot# 021749 J2418) or a combination
of LPS and 0.1 µg/mL IFN-γ for M1-EVs for 48 h in 25 mL serum-free DMEM. Cells were
washed and incubated for an additional 48 h with either serum-free media (for M1 and M2
EVs), 100 µg/mL HA, 75 µg/mL CV, or a combination of both (HA + CV). The resulting
medium was centrifuged at 2000× g at 4 ◦C for 20 min, followed by 4000× g at 4 ◦C for
20 min. Afterward, the pellet was discarded to remove cell debris. The medium was then
incubated with an EV precipitation reagent overnight (Exo-spinTM Buffer, Cell Guidance
Systems, cat# EX06-250). EVs were precipitated by centrifugation at 16,000× g for 60 min,
resuspended in 100 µL of PBS, and purified using size exclusion Exo-spin columns (Cellgs®)
according to the manufacturer’s protocol.

To incorporate DOX, freshly isolated EVs (M1 and MM1) were incubated with an
8 mM solution of DOX (Actavis) in 100% Dimethyl Sulfoxide (DMSO, SigmaAldrich,
cat# D2650-100ML), in a 2:8 ratio, at 4 ◦C for 1 h. Afterward, EVs were centrifuged using
size exclusion columns as described above and stored at −80 ◦C until used.

2.4. Characterization of EVs

Samples were analyzed with a Nanosight® NS300 (Malvern, Almelo, The Netherlands)
to evaluate size distribution and concentration by means of particles/mL. For the measure-
ments, samples were first diluted 200-fold in PBS, loaded into an automatic syringe pump,
and measured using a camera level of 9 and a detection threshold of 3. Size distribution
was analyzed by dynamic light scattering (DLS) using a Zetasizer Nano-ZS (Malvern,
Almelo, The Netherlands). To this end, samples were diluted as described above, loaded in
the Zetasizer using a disposable polycarbonate capillary cell (DTS 1061, Malvern, Almelo,
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The Netherlands), and measured using automatic settings. To analyze morphology, samples
were also analyzed using cryo-EM using a Tecnai 12 electron microscope (FEI Company,
Eindhoven, The Netherlands) as previously described [11]. All images were recorded at
18,000× magnification (pixel size 1.2 nm) operating the microscope at 120 kV. The con-
centration of DOX in EV samples was measured using a UV-visible spectrophotometer
(SpectraMax ID3 microplate reader, Molecular Devices, San Jose, CA, USA). Free DOX was
dissolved in DMSO in serial dilutions, while EV-DOX samples were lysed and dissolved in
DMSO. All samples were measured in the microplate reader at 480 nm, and a calibration
curve was used to extrapolate the DOX concentration. To evaluate total protein content,
samples were incubated with a mixture of 20 mM HEPES, 0.5 mM phenylmethylsulfonyl
fluoride (PMSF), and 50 mM phosphatase inhibitor ortho-vanadate dissolved in PBS. Sam-
ples were sonicated for 5 min, centrifuged at 16,000× g for 5 min, and the supernatant
was used for analysis using a MicroBCA protein assay kit (Thermo Fisher) according to
the manufacturer’s instructions. Protein characterization was performed using capillary
electrophoresis as previously described [10,11] using Wes® automated Western Blot Testing
(ProteinSimple, San Jose, CA, USA). Briefly, 0.8 µg/µL of proteins were prepared with a
fluorescent master mix containing SDS/DTT and loaded into a provided microwell plate.
Primary antibodies (rabbit); anti-Flotillin-1 (Cell signal, 1:10), anti-HSP70 (Cell signal, 1:100),
anti-α6-integrin (Cell signal 1:10), and anti-β-actin (1:50 BioLegend, San Diego, CA, USA)
were diluted in the supplied antibody diluent and loaded into the plate. Subsequently,
the provided secondary antibodies, luminol/peroxidase blocking buffer, and HRP strepta-
vidin (anti-rabbit detection kit, protein simple) were loaded and measured according to the
manufacturer’s instructions using 25-capillary cartridges (SM-W004). Quantification of the
bands was performed using the compass software (protein simple) by measuring the area
of the chemiluminescent bands and calculating the relative expression to control samples.

2.5. Polarization of RAW 264.7 Cells

RAW 264.7 cells were grown in a 12-well plate at a density of 5 × 105 cells and supple-
mented with DMEM as described above for 24 h. For induction of M2-like polarization, cells
were cultured with 0.04 µg/mL of IL-4 for 48 h in serum-free medium. The supernatant
was collected to be used as M2-conditioned medium (CM) for further studies. For M1-like
polarization, RAW 264.7 cells were incubated with 0.1 µg/mL lipopolysaccharides (LPS)
and 0.1 µg/mL interferon gamma (IFN-γ) for 48 h.

To evaluate the effect of EVs in macrophage polarization, RAW 264.7 cells were
also incubated with RAW-EVs, M1-EVs, M1-HA-EVs, M1-CV-EVs, and M1-HA-CV-EVs
(MM1-EVs) for 48 h. After that time, all cells were collected, washed in PBS, and resus-
pended in buffer containing PBS with 0.5% bovine serum albumin (BSA) and 0.02% sodium
azide. Finally, cells were stained using anti-mouse CD163-PerCP, anti-mouse (M2 polariza-
tion), and CD68-FITC (for M1 polarization) and analyzed by means of flow cytometry on
an LSR II (BD Biosciences, San Jose, CA, USA).

2.6. Cell Viability Assays

4T1 and RAW 264.7 cells were seeded at 3 × 103 cells/well in 96-well plates 48 h
prior to the viability assays. 4T1 cells were incubated for another 48 h with either M1,
M2, or RAW-EVs, as well as EVs from M1 macrophages modulated with the therapeutics
compounds HA, CV, or both (MM1-EVs). Samples were also evaluated after loading with
20 µg/mL of DOX. EV samples (without DOX) were added at serial dilutions according
to their protein concentration (20 µg/mL; 10 µg/mL; 5 µg/mL), while samples with DOX
were added according to the DOX concentration (15 µM; 7.5 µM and 3.75 µM). On the other
hand, RAW cells were also treated with 100 µg/mL HA, 75 µg/mL CV, or a combination of
both (HA + CV) for 48 h. After the incubation period, the medium was refreshed for both
cell lines, and cells were incubated with CellTiter 96 AQueous One Solution (MTS) solution
(Promega, Madison, WI, USA) according to the manufacturer’s guidelines. Absorbance
was measured at 490 nm using a (SpectraMax ID3 microplate reader, Molecular Devices).
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2.7. Wound-Healing Assay

To evaluate the effect of EVs on migration, 4T1 cells were seeded in a 12-well plate at a
density of 5 × 105 cells and supplemented with DMEM for 24 h. Each well was scratched
vertically with a 20–200 µL pipette tip to produce a wound and incubated with 10 µg/mL
mitomycin C for 2 h (except for the control cells). Cells were then washed with PBS and
incubated with 20 µg/mL of either RAW, M1, or M2 cell-derived EVs for an additional
24 h. Cells were imaged with an Olympus IX70 light microscope (Olympus, Shinjuku,
Japan), and the number of cells that migrated into the wound area was calculated using the
ImageJ software (https://imagej.nih.gov/ij/ accessed on 10 February 2022) as previously
described [5].

2.8. Immunofluorescence

To address the effect of EVs on vimentin and E-cadherin expression, 4T1 cells were
seeded on glass coverslips in 12-well plates at a density of 5 × 105 cells. After 24 h, cells were
incubated with 20 µg/mL of either RAW, M1, or M2-EVs in serum-free DMEM/CM at
a ratio of 1:1 for an additional 48 h. To prepare cells for imaging, samples were fixated
with 1% paraformaldehyde in PBS, incubated with PBS tween-20 (0.05%, Sigma-Aldrich,
Saint Louis, MO, USA), and permeabilized by incubating with 0.1% Triton X-100 (Sigma-
Aldrich) for 10 min. Samples were then incubated overnight with primary anti-mouse
E-cadherin (1:100) in blocking solution containing 5% normal goat serum (Dako, Glostrup,
Denmark) and 0.1% Triton X-100. The next day, samples were washed in blocking solution
for 10 min and incubated with goat anti-mouse Alexa® Fluor 488 at 1:300 in blocking
solution for another 60 min and 1:1000 DAPI (Life Technologies, Paisley, UK) for nuclear
staining. Samples were analyzed using a Leica DM5500 B fluorescence microscope (Leica
Microsystems, Wetzlar, Germany) using an A filter cube (Leica Microsystems), allowing
excitation at 350 nm for DAPI staining and an L5 filter cube (Leica Microsystems) allowing
excitation at 488 nm for E-cadherin.

2.9. In Vivo Study
2.9.1. Animals

For orthotopic breast cancer induction studies, 7–9-week-old female BALB/c mice
weighing between 21 and 28 g were purchased from the Keizo Asami Immunology Lab-
oratory Biotery (FIOCRUZ-PE) and used for orthotopic breast cancer induction studies.
Animals were housed in cages with free access to food and water and treated according to
the ethical principles for animal experimentation. All surgical and experimental procedures
were approved by the Committee on the Ethics of Animal Experiments of the Federal
University of Rio Grande do Norte ethics committee (CEUA, permit number: 11/05/2020).

2.9.2. Orthotopic Tumor Induction

To induce the orthotopic breast cancer model, 35 female BALB/c mice aged 7–9 weeks
and weighing 21–28 g were inoculated with murine 4T1 cells. Initially, the cells were cul-
tured in flasks containing DMEM supplemented with 10% FBS and collected at about 70%
confluence. Using a syringe, 4T1 cells (1 × 106 cells/100 µL) were inoculated slightly below
the fourth left breast of anesthetized animals (xylazine and ketamine) [6]. Tumor growth
was monitored daily with a caliper, and upon reaching 3 mm in diameter, animals were
divided into seven groups and treated peritumorally with (01) sterile saline, (02) 5 mg/kg
DOX, (03) 2 mg/kg M1-DOX, and (04) 2 mg/Kg MM1-DOX. The treatments were read-
ministered every 5 days (3 treatments). During treatment, the diameter of the tumors was
measured every two days. Five days after the last treatment (day 21), the animals were
euthanized, and then blood was collected from the cardiac cavity for biochemical analysis.
In addition, the tumors, lungs, and livers were harvested for TME analysis by means of
qRT-PCR and immunohistochemistry or immunofluorescence. Results were expressed
as a growth curve from the average tumor volume (mm3) calculated by the following
equation according to volume mm3 = (width × length2) × 0.52 [6]. Metastatic niches in

https://imagej.nih.gov/ij/
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the liver and lung were assessed semi-quantitatively as previously described [6,25]. Briefly,
the percentage of cancer cells in the tissue parenchyma was represented by scores (1, <5%;
2, 5% to 25%; 3, 26% to 50%; 4, 51% to 75%; 5, >75%). The scores were applied to histological
images captured in 20 random fields. Histopathological analysis of tumor tissue, liver,
and lungs was independently assessed by two non-operator analysts (RA and RC). Three
histological sections per animal tissue (n = 5) were analyzed in each group.

2.9.3. qRT-PCR

Gene expression analysis was performed on tumors obtained from BALB/c mice
with breast cancer. Fragments of the tumors, which were stored in Trizol® reagent (Invit-
rogen, CA, USA) at −80 ◦C, were thawed and ground with a drill. The following steps
are common for both sample types, which were processed into chloroform and absolute
ethanol for complete RNA extraction [6]. Then, total RNA was purified using SV Total
RNA Isolation System (Promega, WI, USA) according to the manufacturer’s instructions.
Next, the RNA was immediately converted to cDNA by reverse transcriptase using a
High-Capacity RNA-to-cDNA™ kit (Applied Biosystems, Waltham, MA, USA). Real-time
quantitative PCR analyses of CD8, NFκB, FAAD, and β-actin mRNAs were performed
with SYBR-Green Mix in the Applied Biosystems® 7500 FAST system (Applied Biosys-
tems, Foster City, CA, USA). The experiments were performed in triplicate using the
following primers: β-actin (forward, 5′-CCACCATGTACCCAGGCATT-3′ and reverse,
5′- CGGACTCATCGTACTCCTGC-3′, annealing primer temperature, 60 ◦C); CD8 (forward,
5′-GCTCAGTCATCAGCAACTCG-3′ and reverse, 5′-ATCACAGGCGAAGTCCAATC-3′,
annealing primer temperature, 59 ◦C); NFκB (forward, 5′-CCGTCTGTCTGCTCTCTCT-
3′, and reverse, 5′-CGTAGGGATCATCGTCTGCC-3′, annealing primer temperature,
60 ◦C) and FAAD (forward, 5′-AGAAGAAGAACGCCTCGGTG-3′ and reverse,
5′- GCTCACAGATTCCTGGGCTT-3′, annealing primer temperature, 60 ◦C). The relative
expression was calculated using the ∆∆Ct formula as previously described [6].

2.9.4. Immunohistochemistry

Three paraffin-embedded fragments of the tumors from five mice per group were
cut into 3 µm sections and mounted on glass slides [6]. Tissues were subjected to de-
paraffinization and rehydration steps followed by incubation in sodium citrate solution
(11 µM) at 90 ◦C for 30 min for antigen retrieval. Endogenous peroxidase inactivation was
performed using 3% hydrogen peroxide and subsequent blocking of nonspecific markings
with Novocastra Protein Block (Leica Biosystems, Wetzlar, Germany). Tissue sections
were incubated with anti-NFKB, anti-MMP-2, anti-CD163, anti-CXCL12, and anti-TGF-β
primary antibodies diluted in Diamond antibody diluent (1:400; Cell Marque, Rocklin, CA,
USA) overnight at 4 ◦C. Slides were washed with PBS and incubated with biotinylated
pan-specific universal secondary antibody—R.T.U. Vectasian Kit (Vector, Burlingame, CA,
USA), followed by streptavidin/HRP-conjugated incubation. Diaminobenzidine (DAB;
DAKO, Santa Clara, CA, USA) was used as chromogen. Sections were counter-stained
with hematoxylin and imaged using a Nikon E200 LED light microscope (Minato, Tokyo,
Japan) coupled to a digital camera (Moticam, Kowloon Bay, Hong Kong), where digital
images were captured. The immunoreactivity classification was calculated as previously
described [6].

2.9.5. Immunofluorescence Microscopy

The preparation of samples for immunofluorescence was performed as previously
described [26]. Briefly, tissue sections from 5 animals per group were deparaffinized,
hydrated, and treated with antigen retrieval solution (10 mM sodium citrate with 0.05%
Tween 20) at 95 ◦C for 40 min. Slices were allowed to react with rabbit 1:400 anti-TGF-β
(Abcam, Waltham, MA, USA) overnight and subsequently washed 3 times with 0.2% triton
X-100 in PBS. Tissues were then incubated with secondary antibody 1:500 Alexa Fluor
488 (goat anti-rabbit) and DAPI 1:1000 DAPI for nuclear staining. Samples were mounted
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with VECTASHIELD (Vectorlabs, Burlingame, CA, USA) and imaged under a fluorescence
microscope (ZEISS, Jena, Germany).

2.9.6. Statistical Analysis

All experiments were performed in triplicate and expressed as mean± SEM. Data were
analyzed using Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA) and calculating
the analysis of variance (ANOVA) corrected by Bonferroni’s for multiple testing unless
indicated otherwise in the figure legend.

3. Results and Discussion
3.1. EVs from Polarized Macrophages

EVs isolated from RAW 264.7, as well as M1- and M2-polarized macrophages, were
characterized according to size, concentration, and protein expression (Figure 1). The three
types of vesicles presented a well-defined round morphology, with a size range of 100–200 nm,
and were obtained in a concentration of around 4 to 6× 108 particles per mL, corresponding
to 1–2 mg/mL. Western blot analysis of the EVs revealed the presence of typical EV markers,
such as the transmembrane protein flotillin, heat shock protein 70 (HSP70), the intracellular
cytoskeleton-associated protein actin, and the adhesion protein integrin α6 (Figure 1B).
These data are in accordance with our previous observations [10,11] and reports from other
authors indicating that our prepared samples were indeed enriched with EVs.
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cence microscope (ZEISS, Jena, Germany). 
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macrophages. Representative (A) cryo-EM micrograph, (B) capillary electrophoresis, (C) NTA,
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3.2. M1 but Not M2-Derived EVs Have Antitumor Potential in Breast Cancer Cells

EVs isolated from RAW 264.7, M1- and M2-polarized macrophages were evaluated ac-
cording to their antitumor properties in 4T1 cells (murine breast carcinoma). The M1-derived
EVs significantly decreased the viability and proliferation of 4T1 cells in a concentration-
dependent manner in comparison to M2 or RAW-derived EVs (Figure 2A). The capacity to
induce apoptosis was also evaluated by a double staining Annexin/DAPI assay and West-
ern blot analysis of caspase 3 expression. We observed that only EVs from M1 macrophages
increased Annexin and Annexin/DAPI staining in 4T1 cells in a significant manner when
compared to EVs from M2 macrophages and RAW 264.7 cells (Figure 2B). In accordance
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with this, M1-derived EVs also decreased the levels of full-length caspase 3, which is an
indication of caspase activation and induction of apoptosis (Figure 2C). Thus, our data
suggest that EVs isolated from M1 but not M2 macrophages or RAW cells have a natural
apoptotic effect on 4T1 cells. The capacity of M1-EVs to promote apoptosis via the caspase
3 pathway was previously shown by Wang et al., 2020 [19], although they did not observe
a significant effect on cell viability as the one observed in our study. The enhanced effect
observed in Figure 2A,B might be related to a different polarization method (IFN-γ vs.
IFN-γ + LPS) and different concentrations of EV used. We also evaluated E-cadherin
expression in 4T1 cells in response to the three types of EVs by immunofluorescence. We ob-
served a slight increase in the expression of E-cadherin in M1-EVs when compared to M2
and RAW cell-derived EVs (Figure 2D). The mentioned effect was only surpassed by that
of mitomycin, which was used as a positive control to verify the increase in E-cadherin
expression. In order to explore this mechanism further, we performed a wound-healing
assay using mitomycin as an internal control [5]. As shown in Figure 2E,F, M1-EVs but not
EVs derived from RAW or M2 macrophages prevented wound closure to a similar extent to
the control + mitomycin. This result is important considering that 4T1 is a highly metastatic
cell line, and the migration capacity of cancer cells in vitro is closely related to its metastatic
potential in vivo. Interestingly, M2-EVs had the opposite effect, increasing the migration
of 4T1 cells, which supports the hypothesis that M2-EVs have pro-tumoral/regenerative
properties. Another explanation of the effects of M1-EVs on migration could be that these
vesicles can deliver miRNA-326, which is involved in the suppression of migration and
invasion through downregulation of the NF-κB expression [27].
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Figure 2. In vitro effects of macrophage-derived EVs on proliferation and migration of 4T1 cells.
(A) An MTS assay to investigate the effect of M1, M2, and RAW-EVs on cell viability. (B) Annexin
V-FITC/DAPI double staining was used to evaluate apoptosis induction in response to the EVs.
(C) Western blot analysis of caspase 3 integrity in cells treated with the three types of EVs (left) and
relative exposure (right). (D) Immunofluorescence analysis of E-Cadherin expression in response to
EVs (Scale bars are 20 µM). (E) Wound-healing assay in the presence of mitomycin to verify the effect
of EVs on cell migration (Scale bars are 200 µM). (F) Quantification of migrating cells in the wounded
area. Data are means ± SEM (n = 3). Non-significant (ns); **** p < 0.0001; *** p < 0.001; ** p < 0.01;
* p < 0.05 (vs. control unless specified).
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3.3. Enhanced Antitumor Properties of M1-Derived EVs by Combination of HA and CV

Recent studies suggested that the effect of macrophage polarization can be modulated
with multiple drugs, leading to increased efficacy. We hypothesized that, by incubating
macrophages with such drugs, we could also produce EVs with enhanced therapeutic
potential. For that purpose, we selected two compounds: HA and CV, based on previous
reports indicating a modulatory effect on macrophage polarization [6,24]. As shown in
Figure 3A, during the polarization process, HA and CV alone or in combination did not
induce significant changes in cell viability, indicating that these compounds did not induce
cell death in RAW 264.7 cells. EVs from M1 macrophages polarized in combination with
HA and/or CV were isolated and subsequently incubated with RAW cells to evaluate
their capacity to modulate macrophage polarization. As expected, the incubation of RAW
264.7 cells with LPS + INFγ (used a positive control) increased the percentage of CD68+
cells while treatment with IL4 strongly induced the expression of CD163, indicating the
polarization to either an M1 or M2 phenotype, respectively. Interestingly, incubation with
EVs from M1 macrophages with or without pre-treatment with HA and CV was also able
to induce M1 polarization, and this effect was enhanced using the combination of both
compounds simultaneously. Based on these results, MM1-EVs showed higher efficiency
in stimulating polarization toward an M1 phenotype than M1-EVs, M1-EVs + HA, or M1-
EVs + CV. Therefore, all of the following experiments were performed with MM1-EVs
(Figure 3B). Next, we investigated whether these EVs could also downregulate markers
of epithelial-mesenchymal transition (EMT) in 4T1 cells. We observed that MM1-EVs
upregulated E-cadherin and decreased vimentin expression when compared to M2, RAW,
and M1-EVs. As increased vimentin levels and decreased E-cadherin levels are crucial in the
EMT process, our data indicate an interesting antimetastatic effect [5,6] (Figure 3C). In the
same way, MM1 EVs significantly reduced the viability of 4T1 cells compared to M1 or
RAW-derived EVs, which supports the hypothesis that the pre-modulation of macrophages
with the combination of HA and CV enhances the antitumoral properties of M1-EVs
(Figure 3D). In order to enhance the therapeutic potential even further, EVs from M1 and
MM1 macrophages were loaded with DOX, a reference chemotherapeutic drug used for
the treatment of soft-tissue cancer, including breast cancer. The physicochemical properties
of DOX make this compound ideal for EV encapsulation by direct incubation, which is a
simple method that does not require any synthetic steps and has previously been tested in
other studies [28,29]. Both M1 and MM1-EVs loaded with DOX (M1-DOX and MM1-DOX)
strongly decreased the cell viability of 4T1 cells at lower concentrations and significantly
enhanced the effect of DOX without additional compounds. In accordance with our
previous observations, MM1-DOX was significantly stronger than M1-DOX (Figure 3E).
By using an Annexin V/DAPI double staining, we observed that the combination of EVs
with DOX induced a strong apoptotic effect in 4T1 cells, and, particularly, the combination
of MM1-DOX was able to produce over 99% of cell death in 4T1 cells (Figure 3F).
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Figure 3. Influence of HA and CV on M1 polarization of macrophages and antitumor potential of
EVs in 4T1 cells. (A) Cell viability of RAW 264.7 cells treated with HA, CV, or a combination of both.
(B) Analysis of M1 (by means of CD68 expression) and M2 polarization (by means of CD163 expres-
sion) of RAW cells in response to IL-4. LPS + IFNγ, RAW-EVs, and M1-EVs alone and combined
with HA, CV, or both. (C) Western blot analysis of E-cadherin and vimentin levels in 4T1 cells in
response to EVs (left) and relative exposure (right). (D) Cell viability of 4T1 cells in response to RAW,
M1, and MM1-EVs. (E) Cell viability of 4T1 cells in response to M1 and MM1-EVs loaded with DOX
and free DOX. (F) Annexin V-FITC/DAPI double staining to evaluate apoptosis induction in 4T1
cells in response to free DOX and DOX-loaded M1 and MM1-EVs. Data are means ± SEM (n = 3).
Non-significant (ns); **** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05.

3.4. The Combination of HA and CV Potentiates In Vivo Anticancer Activity of M1-Derived EVs

To explore the potential of MM1-EVs in combination with DOX in vivo, we generated
an orthotopic mouse model of breast cancer by implanting 4T1 cells in the fourth left breast
of BALB/c mice. M1-DOX and MM1-DOX were used at a concentration of 2 mg/kg and
compared with free DOX at a dose of 5 mg/kg, which had been previously established as
an effective dose to reduce tumor growth in this breast cancer model [30]. The experiment
revealed that all samples were able to reduce tumor growth when compared to the groups
treated with saline solution. In addition, as previously observed in vitro, the antitumor
effect of MM1-DOX was significantly higher than M1-DOX and free DOX (Figure 4A,B).
These data were corroborated by weighting the isolated tumors ex vivo (Figure 4C).
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Figure 4. Influence of HA acid and CV on in vivo anticancer properties of M1-EVs loaded with
DOX in an orthotopic mouse model of 4T1 pro-metastatic breast cancer. Animals were treated with
saline solution (control), high dose of DOX (5 mg/kg), 2 mg/kg of M1-DOX (M1-EVs loaded with
20 µg/mL of DOX), and 2 mg/kg of MM1-DOX (MM1-EVs loaded with 20 µg/mL of DOX). (A) Size
comparison of the tumors isolated from animals of the four experimental groups. (B) Tumor volume
of treated animals during the 21 days of the experiment. (C) Tumor weight in mg of extracted tumors
from animals of the four experimental groups. (D) Immunohistochemical (IHC) detection of NF-κB
in tumor sections from treated animals. (E) IHC score of NF-κB for the four experimental groups.
(F) Relative mRNA expression of NF-κB, (G) CD8, and (H) FADD in tumor sections from treated
animals. Data are means ± SEM (n = 5 animals per condition). Non-significant (ns); **** p < 0.0001;
*** p < 0.001; ** p < 0.01; * p < 0.05.

It has been demonstrated that M1-EVs induce proinflammatory conditions by inducing
the release of proinflammatory cytokines (including TNF-α, IL-6, IL-12) and downregu-
lating the expression of M2-TAMs (CD163) in the TME as well as stimulating apoptosis
in tumor cells [31,32]. These are three important conditions that contribute to an overall
strong anticancer effect. NF-κB is an inhibitor of programmed cell death [33] via trans-
forming growth factor β (TGF-β) [34]. In cancer, elevated NF-κB activity is associated
with the downregulation of pro-apoptotic genes such as Fas-associated protein death do-
main (FAAD) and caspase 8 [35]. Immunologically, the NF-κB signaling pathway plays
an important role in the activation of T cells as well as the survival and/or function in
the context of cancer cells [36]. The tumor growth may be related to the blocking of ac-
tivation of CD8 lymphocytes by the inhibition of NF-κB via TGF-β, which was released
by M2-TAMs [6,36,37]. Next, we examined the expression of different inflammation, im-
mune, and cell death-related markers in tumor sections from control and treated animals.
Our data indicate that MM1-DOX was able to reduce NF-κB expression, as measured by
immunohistochemistry (Figure 4D,E) and mRNA expression (Figure 4F), with significant
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differences in comparison to M1-DOX, free DOX, and saline groups. Interestingly, free DOX
caused a slight increase in NF-κB mRNA expression in tumor samples, which, although
it was not statistically significant, could be related to the high dose of DOX used for this
group (5 mg/kg compared to 2 mg/kg in M1 and MM1). In a similar manner, MM1-DOX
increased the mRNA expression of CD8 (Figure 4G) and FADD (Figure 4H), indicating an
improvement in the infiltration of cytotoxic lymphocytes and induction of apoptosis in the
tumors. Some studies have shown that CV exhibits antitumor effects by inducing cell apop-
tosis in some cancer cells in vitro as well as downregulating the migration and invasion of
breast cancer cells [38–40]. On the other hand, HA is a hydrophilic mucopolysaccharide that
can be found in the stroma of animal tissues [41]. The CD44 receptor is the main receptor for
HA, which is expressed in several malignant cells [42,43]. CD44 receptors are also involved
in the development of drug resistance and inhibition of apoptosis due to their effects on
the NF-κB signaling pathway [44,45]. MM1-EVs carrying HA, natural proinflammatory
cytokines, and CV bind easily to the cancer cell surface, thereby promoting cellular uptake
and a potentiated antitumor effect of DOX on the TME. In our study, the groups treated
with MM1-DOX showed a significantly higher antitumor effect when compared to groups
treated with saline solution, M1-DOX, or free DOX.

3.5. Combined Treatment with HA and CV Increases Antimetastatic Capacity of M1-EVs

Our previous observations suggested that EVs derived from polarized macrophages
had an antimetastatic potential in vitro. Considering that the orthotopic 4T1 mouse model
develops spontaneous metastases and resembles advanced stage breast cancer, we decided
to evaluate the antimetastatic properties of our EV preparations in vivo. We used samples
from tumors, liver, and lungs to compare different indicators of metastases in response to
the different treatments. We observed that the administration of M1-DOX and MM1-DOX
significantly decreased the formation of metastatic niches in the liver (Figure 5A,B) and
lungs (Figure 5C,D) when compared to groups that only received a high dose of DOX or
saline solution. As with our previous observations, the effect of MM1-DOX was statistically
higher than M1-DOX.

Furthermore, we investigated the expression of CXCL12 in the lungs and liver, where
metastatic niches were observed. CXCR4 and its ligand CXCL12 are strongly involved in
the proliferation, survival, and invasion of cancer cells [46]. This axis CXCR4-CXCL12 has
been related to the “seed-soil” theory, which explains its role in regulating metastasis of
breast cancer to specific organs [47]. We observed that, after the treatment with M1-DOX
and mainly MM1-DOX, the expression of CXCL12 significantly decreased in the liver
(Figure 5E,F) and lungs (Figure 5G,H) when compared to groups that only received a high
dose of DOX or saline solution.

In a similar manner, MM1-DOX significantly decreased the expression of matrix met-
alloproteinase (MMP)-2 in tumors, as measured by immunohistochemistry, compared to
groups treated with saline solution, free DOX and M1-DOX groups (Figure 6A,B). Further-
more, we evaluated the expression of TGF-β using immunofluorescence in tumor sections
of control and treated animals. MM1-DOX also showed a significantly reduced expres-
sion of TGF-β compared to saline solution, M1-DOX, or free DOX alone (Figure 6C,D).
Finally, we found that the expression of CD163 reduced after the treatment with MM1-DOX
when compared to saline, M1-DOX, and DOX groups (Figure 6E,F). Although various
cancer cells produce TGF-β, which promotes the progression of EMT before metastasis,
TGF-β is also secreted by TAMs. This suggests that the TGF-β signaling significantly
increases the EMT and metastasis by reducing inflammation and diminishing the activity
of CD8+ cells [48]. Furthermore, M2-TAMs potentiate metastasis from primary TME by
stimulating the TGF-β/MMP-2 signaling axis in cancer cells [49–51]. The MMPs constitute
a large family of endopeptidases, such as MMP-2 and MMP-9, which are responsible
for degrading almost all extracellular matrix components during the invasion process
of cancer cells in the TME [52]. High expression of MMP-2 and TGF-β in human tu-
mors has been correlated with poor prognosis [7,53,54]. In this context, downregulating
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M2-TAMs through M1-EVs in the TME indicates to be a promising strategy for blocking
pro-tumor signals avoiding tumor growth and metastasis. Since EVs contain a multitude
of bioactive cargos [12,32], it was to be expected that our HA and CV-loaded EVs were
able to downregulate the expression of M2-TAM (CD163) in the TME, as was shown in our
study. Similar to the in vitro results, MM1-DOX was more effective in downregulating the
expression of M2-TAM (CD163) in the TME than free DOX and M1-DOX, which resulted
in a reduction in tumor progression as seen by the decreased metastases in the lungs
and liver.
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for the four experimental groups. (C) H&E staining of lung sections from treated animals showing
the formation of metastatic niches. (D) Percentage of lung metastatic niches for the four experimental
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4. Conclusions 
Our present study identifies the potential of EVs isolated from polarized macro-
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ized with different stimuli, including LPS, IFN-γ, HA, CV, and IL4, in preclinical models 
of breast cancer. Our data suggest that by using a combination of LPS, IFN-γ, HA, and 
CV, the percentage of macrophages polarized toward an M1 phenotype is enhanced. The 
resulting MM1-EVs showed an enhanced effect on apoptosis and reduction in cell viabil-
ity and migration when compared to M1-EVs and non-polarized EVs. MM1-EVs were 
loaded with DOX to further explore their therapeutic potential against breast cancer cells 
and tumors and compared to M1-EVs or a high dose of free DOX. All groups were able to 
decrease cell viability, increase apoptosis and induce inhibition of tumor growth, but 
MM1-DOX were the most efficient, showing almost total cell death and strong inhibition 
of tumor growth. M1-DOX and MM1-DOX treatments reduced NF-κB expressions while 
increasing mRNA expression of CD8 and FADD in the extracted tumors. In both cases, 

Figure 6. In vivo antimetastatic properties of MM1-derived EVs loaded with DOX in orthotopic
4T1 breast cancer-bearing mice in vivo. (A) Immunohistochemical (IHC) detection of MMP-2 in
tumor sections from treated animals. (B) IHC score for MMP-2 from the four experimental groups.
(C) Immunofluorescence detection of tumor growth factor beta (TGF-β) in tumor sections of treated
animals. (D) Mean fluorescence intensity of TGF-β in the four experimental groups. (E) IHC detection
CD163 in tumor sections from treated animals. (F) IHC score for CD163 from the four experimental
groups. Scale bars are 20 µM. Data are means ± SEM (n = 5 mice per condition). Non-significant (ns);
**** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05.

4. Conclusions

Our present study identifies the potential of EVs isolated from polarized macrophages.
We developed and evaluated the effect of EVs obtained from macrophages polarized with
different stimuli, including LPS, IFN-γ, HA, CV, and IL4, in preclinical models of breast
cancer. Our data suggest that by using a combination of LPS, IFN-γ, HA, and CV, the per-
centage of macrophages polarized toward an M1 phenotype is enhanced. The resulting
MM1-EVs showed an enhanced effect on apoptosis and reduction in cell viability and
migration when compared to M1-EVs and non-polarized EVs. MM1-EVs were loaded with
DOX to further explore their therapeutic potential against breast cancer cells and tumors
and compared to M1-EVs or a high dose of free DOX. All groups were able to decrease cell
viability, increase apoptosis and induce inhibition of tumor growth, but MM1-DOX were
the most efficient, showing almost total cell death and strong inhibition of tumor growth.
M1-DOX and MM1-DOX treatments reduced NF-κB expressions while increasing mRNA
expression of CD8 and FADD in the extracted tumors. In both cases, this effect was higher
than DOX alone. Furthermore, MM1-EVs but not M1-EVs had a significatively higher
reduction in metastatic niches and expression of TGF-B, MMP-2, and CD163 compared
to a high dose of DOX. Therefore, our data suggest that MM1-DOX had an important
immunomodulatory effect in the TME by reducing the expression of M2-TAMs (CD163),
increasing CD8+ cells, and downregulating NF-κB, which are key steps in the blockade
of metastasis. Overall, our study can be considered a novel strategy to increase the out-
comes of cancer therapy by using MM1-EVs combined with therapeutic compounds and a
chemotherapeutic agent.
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