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ABSTRACT 

Artificial Intelligence (AI) applications and digital technologies (DTs) are 
increasingly present in the daily lives of citizens, in cities and in industries. 
These developments generate large amounts of data and enhance 
analytical capabilities that could benefit the industrial ecology community 
and sustainability research in general. With this communication we would 
like to address some of the opportunities, challenges and next steps that 
could be undertaken by the Industrial Ecology community in this realm. 
This article is an adapted summary of the discussion held by experts in 
Industrial Ecology, AI and sustainability during the 2021 Industrial Ecology 
Day conference session titled “The future of artificial intelligence in the 
context of industrial ecology”. In brief, building on previous studies and 
communications, we advise the Industrial Ecology community to: 1) create 
internal committees and working groups to monitor and coordinate AI 
applications within and outside the community; 2) promote and ensure 
transdisciplinary efforts; 3) determine optimal infrastructure and 
governance of AI for IE to minimize undesired effects; 4) act on effective 
representation and on reduction of digital divides.   

KEYWORDS 
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6.1 INTRODUCTION 

The increasing diffusion of artificial intelligence (AI) applications such as 
machine learning, expert systems, computer vision, along with the rapid 
expansion of digital technologies (DTs) for data collection, storage and 
consumption, are providing society with an unprecedented capacity to 
generate insights on how to improve the quality of life and environment 
(UNSGHL, 2019). These developments, often referred to as the fourth 
industrial revolution (Combes et al., 2018), provide opportunities to improve 
the sustainability of society’s production and consumption system and its 
governance (Nishant et al., 2020).  

While a commonly shared definition of AI remains in many cases evasive 
(Frolov et al., 2021), in this paper we define it as software employing 
methods and models aimed at emulating or exceeding humans’ intelligence 
and ability to accomplish given tasks of different level of complexity (Ertel, 
2017; Frolov et al., 2021; Negnevitsky, 2011b). Applications of AI span across 
the following fields (Russell & Norvig, 2010b): Natural Language Processing; 
Knowledge Representation; Automated Reasoning; Machine Learning; 
Computer Vision; and Robotics.  

However effective AI methods may be, they rely on good quality data to 
provide good quality insights. As such, it is paramount to discuss the 
potential of AI in industrial ecology (IE) in combination with data processed 
to generate insights. Data can come from a variety of sources using 
traditional quantitative and qualitative data collection methods such as 
surveys, interviews, etc.; but also, from sensors spread across society and a 
variety of applications. In this article, we also refer to global digital 
infrastructure as the global network of interconnected DTs such as 
Information and Communication Technologies (ICT) for the purpose of 
collecting, storing and consuming data from a multitude of sources (e.g., 
statistical offices and organizations, remote sensing technologies such as 
satellite data, smart devices, and sensors for the Internet-Of-Things, Smart 
Cities and Industries, and many others). 

Since its foundation, IE has provided tools and knowledge to support a 
sustainable management of resources and environmental impacts and 
investigate the unintended consequences of human activities (Ayres & 
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Ayres, 2002a). The increasing use of AI and the expansion of DTs present 
great opportunities but also challenges for the IE community. The scientific 
and societal role of IE could be strengthened by increasing the timeliness, 
details and insightfulness of policy recommendations designed to tackle the 
great environmental challenges of our time. For example, Luque et al. (2020) 
argued that industrial sensing technologies could be combined with Life 
Cycle Assessment (LCA) and machine learning to provide real time 
environmental monitoring and improvement of industrial operations. 
Rolnick et al. (2019) presented ways in which machine learning could be 
employed to tackle climate change for thirteen domains from the electricity 
system to education and finance.  

There are however challenges in the development of a global digital 
infrastructure and the use of AI for sustainability. For example, Xu, Cai, and 
Liang (2015) indicated that while big data obtained from DTs could offer new 
data and opportunities for analytical techniques enabling IE to develop more 
realistic complex system models based on the capture of the “temporal, 
spatial and demographic heterogeneity of industrial systems”, we should be 
aware that “bigger data is not always better data”. Similarly, bigger and 
more complex models resulting from the use of AI may not always be 
preferable or better than simpler ones. In fact, they may prove difficult to 
understand and explain or require substantial resources (i.e., energy and 
materials) (Lottick et al., 2019). Additionally, they could perpetrate societal 
biases and unfair allocation of resources, or have economic barriers causing 
unequal access to information and enjoyment of its benefits through society. 
They could cause systemic cascading shocks due to failures of nested and 
decentralized AI systems, or the promotion of unstainable practices that 
prioritize few objectives over the overall spectrum of sustainability (Galaz et 
al., 2021).  

The recent (2022) special issue of Data Innovation in the Journal of Industrial 
Ecology addresses multiple of these questions with special attention to 
opportunities (Majeau-Bettez et al., 2022), and similar efforts are addressed 
also in other disciplines under the environmental science umbrella (Hsieh, 
2022; McGovern et al., 2022; Rolnick et al., 2019). The present article builds 
on these efforts and summarizes the seminar discussion on “The future of 
artificial intelligence (AI) in the context of industrial ecology (IE)” which took 
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place on the 21st of June 2021 during the Industrial Ecology Day (ISIE, 2021). 
Based on this knowledge, we propose a vision for the role of the AI and DTs 
in the future of IE. This article contextualizes the opportunities and 
challenges, and it indicates next steps to be taken by the IE community. 

6.2 ENVISIONING THE ROLE OF AI IN IE  

The diffusion of AI can greatly benefit the IE field by strengthening its 
capacity of mapping flows and stocks of materials and energy across society 
and identifying solutions to reach society’s sustainability goals. We divide 
the IE community work in descriptive and prescriptive, where the former 
concerns the analysis of current and past factors and trends of societies’ 
economic and environmental flows and stocks; while the latter is the 
analysis of possible and alternative future scenarios based on this 
accounting and other factors.  

In recent years, descriptive efforts have taken advantage of remote sensing, 
and geographic information systems (GIS) to reach a higher level of spatio-
temporal details of material flows and stock . Froemelt, Buffat, and Hellweg 
(2020) used machine learning to combine remote sensing and GIS-data with 
household budget surveys and agent-based models to develop a spatially 
resolved large-scale bottom-up model that is able to derive highly-detailed 
environmental profiles for individual households. Techniques of text mining, 
mode and image recognition (e.g. google street view), and analysis of night-
time lights from satellite images can allow a high-resolution capture of 
material types and volumes in the built-environment (Arbabi et al., 2022; 
Corea, 2019; Mesta et al., 2019). Additionally, the expansion of Open & Agile 
Smart Cities is providing additional information through sensing 
technologies (Degbelo et al., 2016; Open & Agile Smart Cities, n.d.). Some of 
these data are also available in data marketplaces such as Fiware (Cirillo et 
al., 2019) and European Union Data Portal (Datasets - Data.Europa.Eu, n.d.) 
and others may also arise. These data sources could be used with AI methods 
such as computer vision techniques to infer additional information about the 
built environmental, transport modality, emissions and biodiversity in cities 
(Ibrahim et al., 2020).  
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Direct data collection could be strengthened by the expansion of DTs in 
industrial operations. Better data could then be used directly to assess and 
monitor the environmental performance of supply chains by connecting it to 
LCA (Luque et al., 2020). However, this is only possible if relationships 
between IE practitioners and industrial actors have been established. Where 
such privileged relationship is missing, industrial ecologists could rely on 
simulation tools and support the development of digital twins. Digital twins 
are “digital replications of living as well as nonliving entities” (El Saddik, 
2018) such as in digital twins of the earth system (Bauer et al., 2021), of the 
built environment (Ketzler et al., 2020), and industrial activities.  

While data collection through DTs is of great importance, the community 
cannot have the expectation of being able to collect all possible data. In fact, 
this may not even be desirable, practical or even feasible given the material 
requirements of DTs and concerns of data protection. For this purpose, 
estimation through machine learning and data mining techniques could be 
useful. For example, there are opportunities to be investigated in conversion 
of domain specific data into data useful for Life Cycle Inventories, as shown 
by Mittal et al (2018) in the use of data mining to convert industrial process 
databases in data useful for LCI. Zhao et al (2021) show how unit process 
data can also be estimated using machine learning. Such developments 
could not only benefit LCA but also Input-Output databases in mapping 
activities and products as well as their environmental extensions. Some 
authors have also started using these approaches to estimate missing data 
in impact categories for Life Cycle Impact Assessment starting from diverse 
national databases (Cashman et al., 2016). The use of these approaches 
should be encouraged and supported, as they reduce dependency on data 
requests from industrial actors.   

Such approaches in data collection and estimation, as well as model 
creation, could then be instrumental for prescriptive efforts in the 
implementation of sustainability solutions. The prescriptive efforts of IE 
concern the prognostication of the impacts of future policies and 
technologies for sustainability. For example, AI can facilitate a better 
comprehension of households’ consumption and environmental impacts by 
linking diverse data sources and sub-models (physically-based, agent-based 
and data-driven approaches) (Froemelt et al., 2018, 2020b, 2021), which can 
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then be combined with top-down input-output models to investigate 
system-wide effects of demand-side sustainability solutions (Froemelt et al., 
2021). It could also provide more effective energy load levelization by 
combining AI with energy models, and shedding light on additional factors 
affecting new energy systems (Zahraee et al., 2016). It could also check the 
validity of recommendations and optimize them against multiple values 
(e.g., social and environmental performance). Furthermore, intelligent 
systems embedded in consumer products and services could help avoid 
undesired effects of novel technologies, rebound effects or problem shifting, 
by supporting consumers toward the adoption of sustainable lifestyles or 
embedding sustainable management systems within a given technology.  

More generally, AI can help society in designing targeted and more timely 
policies that take multiple values into consideration and optimize them to 
reduce unintended consequences. Such a holistic viewpoint has been at the 
core of methodologies developed by the IE community, for example in LCA. 
To this end, multivariate assessment and optimization of current systems 
and future solutions could be instrumental to avoid political and 
technological interventions where mitigation of ecological issues in one part 
of the supply chain simply shifts problems toward other parts, negatively 
affecting other desired outcomes. While IE methods such as LCA, Material 
Flow Analysis, and Environmental Input-Output Analysis have played core 
roles in detecting problem shifting, the combination of IE methods with AI 
and DTs could achieve unparalleled spatio-temporal granularity and make 
results more meaningful for scientists and policy makers at different level. 

The severity of many social and environmental impacts depends on time and 
place of emissions or resource extraction. For example, companies are 
rapidly expanding data collection along their supply chains thanks to 
embedded tracking technologies. As they assess their operations, 
environmental impacts and the wellbeing of workers could also be 
quantified. This data could then be used to support their decision support 
systems to reduce socio-economic and environmental risks (Alavi et al., 
2021) and improve their operations. In this context, AI in combination with 
IE methodologies can help the business community create new sustainable 
business models answering the social-economic and environmental 
challenges of our times. 
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6.3 CHALLENGES 

In this study we identified three main challenges:  

• Resource requirements 
• Data accessibility and governance 
• Explainability, interpretability and causality 

6.3.1 Resource requirements 
Industrial ecologists have an active lead in assessing the energy and material 
flows and stocks embodied in products and infrastructures, and their 
environmental impacts. The tremendous insight generation of DTs and the 
use of AI require energy and materials that could exacerbate environmental 
pressures. For example, AI models have known issues of high energy 
consumption which are also projected to growth beyond 2% of the world 
energy consumption (Lacoste et al., 2019; Lottick et al., 2019; Strubell et al., 
2019). For this reason, tools have been developed to assess the carbon 
intensity of models (Schmidt et al., 2022)[5, 6] which should accompany other 
efficiency and typical metrics (e.g., accuracy and robustness) as a push 
toward yielding “novel results without increasing computational cost, and 
ideally reducing it” (i.e., Green AI)  (Schwartz et al., 2019). Additionally, the 
resource consumption of DTs has also environmental impacts of its own, so 
it is important to mitigate burden shifting across environmental areas of 
concern (e.g., from resource depletion to climate change). In this regard, 
attention should be given to: 1) containing the need for large Graphical 
Process Unit (GPU) clusters; 2) mitigating excessive dispersion of sensing 
technologies for monitoring; 3) avoiding repetitive data harvesting practices. 
Given the long history of industrial ecologists assessing unintended 
consequences of policies and technology implementation (Font Vivanco & 
van der Voet, 2014), the community has a responsibility to hold Green AI 

 

 

5 ML CO2 Impacts tool: https://mlco2.github.io/impact/ 
6  Python based CodeCarbon: https://codecarbon.io/; 
https://pypi.org/project/codecarbon/ 

https://mlco2.github.io/impact/
https://codecarbon.io/
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standards together with the study of minimal expansion of digital 
technologies. 

6.3.2 Data accessibility and governance 
The issue of data governance is inherently political and concerns many 
aspects such as data ownership, data storage, data dissemination and the 
question of unequal access to the digital economy. These problems often 
have clear reasons. For instance, detailed information from which we can 
derive material and energy efficiency of processes, production volumes or 
product compositions, are often at the core of the competitive advantage of 
firms. Additionally, managing and exploiting big data has become a highly 
profitable business model for a very limited number of internet companies. 
They hold and monetize vast amounts of data while they may provide limited 
access by the public and scientific community. 

Gathering data and maintaining big databases are labor-intensive and costly 
activities. This creates an inherent problem in making data open access as 
database curators need to be concerned with financial sustainability of their 
operations and data confidentiality. As a result, many of the most used 
datasets in the IE field, such as the Life cycle inventory database Ecoinvent 
(Frischknecht & Rebitzer, 2005) or the IEA (e.g. the IEA Energy balances), are 
licensed and for the most part only accessible for a fee. With the expansion 
in data volumes there is a risk that these business models become more 
common and that reliance on private services to handle and manipulate such 
data in the AI infrastructure increases. 

This represents a barrier for an equal enjoyment of data (e.g., economic, 
industrial and environmental data) and AI solutions regardless of the income 
level of data users, and it exacerbates global inequalities in data accessibility 
and deployment of DTs (i.e., digital divide). Data access, quality and internet 
infrastructure notoriously differ across regions which risk endangering 
sustainability (Mehrabi et al., 2020). The digital divide will continue growing 
unless there are policy interventions. The use of AI for sustainability should 
heighten awareness of these inequalities and address them whenever 
possible. In various cases data accessibility and openness should be 
expanded, such as for geographic information and the built environment.  
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Industrial ecologists should investigate how public and private data may be 
governed to serve its objective of aiding decision making for a sustainable 
society. They can investigate different policy frameworks and mechanisms 
to ensure compliance to these frameworks (Mahanti, 2021) such that quality 
data is available for effective use of AI. One such mechanism could be the 
creation of openly accessible benchmark models and datasets for common 
IE analytical tasks (e.g., data estimation for LCI and EEIO, or environmental 
impact assessment under different climate scenarios). In a variety of other 
AI fields, such benchmarks (e.g., MNIST and CIFAR) have been instrumental 
in providing quality input data to train models, promoting transparency, 
comparability of models and focused progress (benchmarks.ai, 2022). The 
existence of such benchmarks would also be in line with the current efforts 
for open and shared data in the IE community (Hertwich et al., 2018). 

Furthermore, in order to support data availability, the system of incentives 
for scientists may also need to be modified to promote timeliness, wide 
access and interoperability of data and software of fundamental importance 
to sustainability objectives. Currently, scientists may not always want to 
publicly disseminate their work, for example, until they are able to submit a 
given number of publications or to ensure co-authorship in publications 
using their work. However understandable these practices may be, they 
remain undesirable behaviors which may slow down the community’s ability 
to provide timely and replicable analysis for sustainability.  

At last, AI, DTs and annexed services can be intrusive in the private life of 
citizens and have profound influence on their physical, mental, and financial 
well-being. At the same time, AI could also induce new behaviors and help 
reach sustainability objectives (Froemelt et al., 2018). However, currently 
there is a significant risk that AI could be used to support and exacerbate 
unsustainable levels of consumption and production. If there is no 
purposeful choice of direction toward sustainability from the governance 
perspective, the choice will be of those with the higher resources in the 
market to leverage AI and DTs developments. In this regard, AI and DTs 
should be closely scrutinized.  
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6.3.3 Explainability, interpretability and causality 
The way AI models are able to explain the world (i.e., explainability) and their 
ability to be understood by humans (i.e., interpretability) are of great 
importance to ensure trust in sustainability insights and effectiveness of 
sustainability solutions. Real-world data carries over biases to intelligent 
systems thereby perpetuating misconceptions, discrimination and 
enhancing the risks of other injustices. Improving explainability could 
prevent these issues by better representing the heterogeneity of complex 
socio-economic and ecological systems, highlighting where and how humans 
should intervene to correct AI models and reduce biases. Additionally, in the 
scope of industrial ecology, especially concerning scenarios analysis and 
dynamic systems, it is of fundamental importance to ensure clarity between 
cause and outcome. For example, in the use of multi-objective optimization 
of production and consumption system under different climate scenarios, 
we need to ensure that we can identify influential factors in such scenarios 
and explain the dynamics governing them. This is especially important in 
cases where AI is employed to enhance decision making. Recent studies such 
as Sgaier, Huang, and Charles (2020), present strong argument in favor of 
causal AI as acting on outputs from AI models that do not explain the root 
causes leading to ineffective, biased, poor decisions.  

6.4 RECOMMENDATIONS 

We have several recommendations for the IE community in moving forward 
in the use of Artificial Intelligence (AI) and Digital Technologies (DTs): 

• Creation of internal committees and working groups for AI and DTs 
research. Such committees and working groups could: 

o Provide research directions, and promote standards and 
protocols for governance of data, models and software within 
and outside of IE;  

o Support knowledge transfer from and to fields that successfully 
embarked on interoperable data sharing and best practices in AI 
applications; 

o Establish and/or promote data and model benchmarks as well 
as good modeling practices; 
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o Provide a platform for networking among researchers and 
establish relationships with other interest groups and 
institutions to promote governance of AI toward sustainability. 

• Support transdisciplinary and cross-societal efforts to ensure a 
successful implementation and use of sustainability knowledge and 
solutions. In particular: 

o Computer science, data science and mathematics are at the core 
of the expansion of the digital technologies and developments 
in AI and collaborations should be actively sought out to 
improve our methodological and technological approaches; 

o Anthropologists, social scientists, and law experts are also 
indispensable in understanding the consequences of AI on the 
social and economic organization of society. These experts carry 
with them different perspectives and approaches on the 
complex issues of sustainability;  

o Strengthen links between citizens, research, policy, industry, 
and communication. 

• Privilege simplicity and fair trade-off between complexity, and 
explainability, interpretability and causality. The community objective 
should not be to create models as complex as the world itself, but to 
provide systems that not only aid sustainability but embody it while 
improving insights, and quality and coherency in data and models; The 
community should also strive to avoid always prioritizing predictive 
models and also direct effort to building better causal models that help 
us develop a better understanding of our dynamic and complex world.  

• Maintain awareness of inadvertent impacts of AI and DTs due to 
material and energy requirements. Determining the optimal amount of 
data and connectivity that are required to support decision making and 
sustainable solutions. While IE should embrace AI developments 
enthusiastically, it is paramount that we are critical of the way AI is 
implemented and that we try to understand what such developments 
entail. 

• Maintain awareness of the digital divide, biases, and issues of 
demographic diversity and representation in data and in AI enabled 
decision making. The IE community should employ methods of data 
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collection to increase representativeness and create models that take 
these issues into account.  

In conclusion, AI can be an important instrument to solve the greatest 
sustainability challenges that are currently faced by humanity. However, it 
should not be seen as a silver bullet but, rather, as a helpful instrument to 
be handled with scrutiny. The IE community has a promising and yet rapidly 
changing path ahead. AI and digital technologies are changing the way data 
is handled, services and products manufactured and consumed, and society 
and industries governed. IE can provide tools and insights to direct such 
changes toward sustainability. At the same time, these advancements also 
have a potential to greatly support the work performed by IE. These 
mutually beneficial opportunities should be nurtured and actively directed 
to ensure we reach our sustainability objectives. 
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