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ABSTRACT 

Industrial and ecological data currently collected on supply chains is minimal 
in comparison with the enormous quantity and diversity of manufactured 
products. Meanwhile, Computer-Aided technologies (CAx) are used daily for 
the design and management of products’ manufacturing, life cycle. As such 
they can generate a wealth of information about products’ life cycle. 
Artificial intelligence (AI) methods and infrastructure are also steadily 
increasing society’s ability to generate data, insights and automation. In this 
study, we investigated the combination of CAx and AI to generate, estimate 
and extract data for Life Cycle Inventory (LCI) modelling. We performed a 
systematic review of these fields covering 1995 through May 2021 using the 
PRISMA method. We analyzed 131 studies concerning the use of CAx (84 
articles) and AI (47 articles). From the knowledge gathered in the review, we 
describe possible ways of using CAx and AI to obtain LCI data for existing 
products and their potential alternatives. Specifically, CAx provides benefits 
in the generation of data for life cycle stages that require industrial 
processing. AI provides benefits in the combination and extraction of data 
from heterogeneous sources, in the estimation of flows under scenarios, and 
it is especially helpful in highly repetitive tasks such as the creation of several 
alternatives. The combination of AI and CAx for LCI provides benefits for the 
optimization of simulated product systems from which LCI data can be 
obtained, generating a vast range of alternatives, estimating lifespan and 
maintenance of products and components. 
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5.1 INTRODUCTION 

Products and industries need urgent changes to mitigate further negative 
ecological and socio-economic effects such as anthropogenic climate change 
and biodiversity loss. The implementation of circular and sustainable supply 
chains is instrumental to this objective. In order to successfully execute and 
track the progress of this implementation, we need to be able to promptly 
assess the environmental impacts of supply chains and their alternatives. 
The compilation of Life Cycle Inventories (LCIs) is a fundamental practice 
enabling this type of assessment (Guinée, 2001). However, compiling LCIs is 
typically a challenging and human resource intensive activity (Zargar et al., 
2022). Additionally, most supply chain data has limited availability to 
scientists and the public due to companies’ protection of intellectual 
property to maintain competitive advantage (Goldstein & Newell, 2019).  

In order to align the need for assessment together with human limitations, 
estimation of LCI data through the use of Computer-Aided Technologies 
(CAx) and Artificial Intelligence2 (AI) could be an attractive option. In fact, 
CAx are commonly used by product designers and engineers in the creation, 
planning manufacturing and reverse engineering of products. Similarly, AI 
methods such as expert systems, data mining and machine learning, can be 
useful to estimate and extract and process information about manufacturing 
activities. For example, AI methods have shown to simplify the identification 
of needed processes (e.g., machining such as lathing), their parameters (e.g., 
tooling, operating time, and energy consumption) and sequence (e.g., 
cutting before lathing), or the choice of materials for manufacturing (Leo 
Kumar, 2017). While the use of CAx for LCIs has been previously investigated 
(Zargar et al., 2022), a systematic use of these technologies and full 
integration within the data processing pipeline of LCA practitioners and 
product developers still remains out of reach.  

 

 

2 In the scope of this paper, we refer to first generation AI as in Artificial 
Narrow Intelligence. I.e. the application of intelligent systems to solve 
specific tasks (Kaplan & Haenlein, 2019).  
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In response to these developments and needs, we present a systematic 
review investigating how CAx and AI can be used to obtain data for LCIs. We 
focus on data generation, estimation and extraction, leaving prospects of LCI 
data collection automation to future studies. The added value of estimating 
data via CAx and AI include the possibility to obtain data of the highest 
quality short of collecting data from manufacturers (Parvatker & Eckelman, 
2019; Zargar et al., 2022). This would offer the possibility to create LCIs 
independently from firms (i.e. reverse engineering LCIs), thereby reducing 
labor intensity of the LCI phase, and expanding supply chain coverage of LCIs 
in databases.  

These objectives are addressed by following research question and sub-
questions: 

How can CAx and AI methods be used to obtain data for LCIs? 

• How can CAx be used to obtain data for LCIs? 
• How can AI methods be used to obtain data for LCIs? 
• How can the combination of CAx and AI be used to obtain data for 

LCIs? 

The remainder of this article is organized as follows. In section 2, we provide 
the background information for LCI, CAx and AI. In section 3, we report the 
methods for the systematic review. Section 4 presents summary results, 
insights from the studies and how these are coupled to LCIs. Section 5 
describes how the methods are combined and limitation overcome. At last, 
sections 6 and 7 present discussions and conclusions respectively.  

5.2 BACKGROUND  

In this section we summarize the fundamental aspects of the various 
technologies investigated in our work. Each of these fields is vast, as such 
the provided definitions are only instrumental to understand the results of 
the literature review and do not have the intention of describing each field 
to its depth. For in-depth definitions, we refer the reader to the referenced 
and specialized literature on the topics. 
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5.2.1 Life Cycle Inventories (LCIs) 
LCIs are compiled during the inventory analysis phase of a Life Cycle 
Assessment (LCA). In this phase, practitioners compile the inputs and 
outputs of a product system along the life cycle (Guinée, 2001; ISO, 2006). 
The inventory analysis is usually considered the most time-intensive phase 
of LCA as all activities involved in the product life cycle are modeled. 
Activities are technical systems such as a process, transport and their 
respective aggregates (Carlson et al., 1998; Silva, 2021). Aggregates of 
activities form lifecycle stages (Fig. 1), from the extraction to the end-of-life 
(EOL) (recycle/waste management). For example the stage of manufacturing 
may be composed by activities such as materials manufacture, product 
fabrication and packaging (EPA, 1993; Silva, 2021). 

 

Figure 1: Lifecycle stages and flows of unit processes (adaptation from Guinée 2001; EPA 1993) 

Activities, modelled as unit processes (UPs), are connected to each other by 
their inputs and outputs. Flows that enter and exit UPs are divided into 
economic and environmental flows. Economic flows are physical flows 
connecting UPs and concern intermediate and final products and services of 
positive, negative or null economic value. Environmental interventions are 
chemical, physical or biological anthropic interferences with the natural 
environment such as the extraction of resources or the emission of 
pollutants into nature. These quantified flows are inputs and outputs to the 
environment relative to the primary function(s) (i.e., functional unit) 
satisfied by a product system (Guinée, 2001; ISO, 2006). The wealth of 
information that LCIs could contain can result in heterogeneous datasets. In 
order to ensure a common level of information, LCA data collection is 
regulated by ISO (2006).  
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5.2.2 Computer-Aided Technologies (CAx)  
CAx are a set of systems and software to support design, planning and 
management of products which have become indispensable to 
manufacturing firms and engineering education (Chryssolouris et al., 2009; 
Dankwort et al., 2004). They are part of a broad family of software for 
Product Life Management (PLM) and they compose a large ecosystem of 
technologies typically used in the design and planning manufacturing phase 
of product development. In this study, we selected a set of CAx that, to our 
knowledge and according to literature (Chryssolouris et al., 2009), are 
commonly used in engineering applications for designing products and 
planning their manufacturing. One additional criterion in our selection was 
the possibility to use CAx independently from direct interaction with firms. 
Such independence allows to design or reverse engineer products 
composition, manufacturing activities and other useful data for LCI such as 
economic and environmental flows. We selected the following CAx: 

• Computer-Aided Processes Engineering (CAPE): The use of 
computer system for the design and optimization of chemical 
processes (Agachi, 2005); 

• Computer-Aided Design (CAD): The use of computer systems for the 
creation, modification, analysis or optimization of a design 
(Elanchezhian et al., 2008); 

• Computer-Aided Engineering (CAE): The use of computer software 
to perform simulations on physical properties of materials and 
goods such as structural, thermal, surface and other properties 
(Terzi et al., 2010). In various CAx classifications, CAE may include 
Computer-Aided Process Engineering and it is occasionally used to 
describe the totality of the computer-aided design and engineering 
process within a firm, however, in this study we treat these concepts 
separately.   

• Computer-Aided Machining or Manufacturing (CAM): The use of 
software to plan and control manufacturing processes (Kreith & 
Goswami, 2004) (e.g., drills, lathes, mills or 3D printers); 

• Computer-Aided Process Planning (CAPP): Tools to assist the 
selection, sequencing ad scheduling of manufacturing operations 
and their resources (ElMaraghy, 1993). 
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5.2.3 Artificial intelligence (AI) 
AI concerns the development of “systems that exhibit the characteristics we 
associate with intelligence in human behavior” (Tecuci, 2012), such as the 
development of predictive models and learning complex tasks. AI is 
composed by 6 subfields (Russell & Norvig, 2010a): Natural Language 
Processing; Knowledge Representation; Automated Reasoning; Machine 
Learning; Computer Vision; and Robotics.  

We chiefly focus on knowledge representation, automated reasoning and 
machine learning, and we use the following concepts to aid our study as they 
allow the process of obtaining and organizing knowledge useful for LCIs: 

• Expert systems (ES) are knowledge-based systems that can match 
or exceed human experts in specific tasks, once provided with 
expert domain knowledge  (Russell & Norvig, 2010a). These systems 
typically do not have learning capabilities (Negnevitsky, 2011a) and 
are associated with early examples of AI systems relying on Boolean 
logic (Russell & Norvig, 2010a). Example of expert systems may be 
found in decision support systems making uses of Boolean and fuzzy 
logic systems relying on encoded expert knowledge. 

• Data mining (DM) is the process of extracting patterns from 
datasets, and it is an important step in the practice of knowledge 
discovery in databases (Fayyad et al., 1996; Han et al., 2012). While 
in principle data mining is not exclusive to AI, it is in practice a 
fundamental method in AI applications. Examples of data mining 
techniques are K-mean clustering, K-nearest Neighbor classification, 
decision trees, Bayesian Classification.  

• Machine learning (ML) concerns computer systems which have the 
ability to learn by experience, example and analogy (Negnevitsky, 
2011a). Machine learning makes great use of data mining 
techniques and expert systems to automatically generate rules and 
“avoid the tedious and expensive processes of knowledge 
acquisition, validation and revision” (Negnevitsky, 2011a). Examples 
of machine learning techniques are genetic algorithms, artificial 
neural networks and adaptive fuzzy interference systems, random 
forest, etc. 
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5.3 APPROACH TO THE LITERATURE REVIEW 

This systematic review utilizes the PRISMA guidelines (Page et al., 2021) and 
Web Of Knowledge Core Collection to retrieve the relevant literature. The 
objective of the systematic review was to analyze how CAx and AI have been 
used and can be used in the compilation of LCIs. Using the definitions 
presented in the previous section, we created two queries: one concerning 
CAx and LCIs, and one for AI and LCIs. To ensure the retrieval of studies 
relevant to our focus but with broader labels, we included keywords for LCA 
and PLM in our searches.  

The two searches concerned all document types in the English language 
from 1995 to May 2021. Any records that concerned medical research were 
removed before screening. We screened the articles and left out papers that 
incidentally contained homonyms from other fields, and those where CAx, 
AI and LCI were mentioned but were not employed in the methods. In the 
cascading phase, we analyzed the citing and cited publications in the articles 
that remained after screening. This step was performed to ensure the 
inclusion of additional literature that meets the requirements but was not in 
the Web of Knowledge query.  

Table 1: Literature review searches 

 How can CAx be used to 
generate data for LCI? 

How can AI be used to 
generate data for LCI? 

Keywords Topic= ("Computer-aided" 
OR "PLM" OR "CAx" OR 
"CAD" OR "CAE" OR 
"CAM" OR "CAPP" OR 
“CAPE”) AND Topic= 
("LCA" OR "LIFE CYCLE 
ASSESSMENT" OR "LCI" OR 
"LIFE CYCLE INVENTORY") 

Topic = ("Artificial 
Intelligence" OR "Machine 
Learning" OR "Data mining" 
OR “Expert system”) AND 
Topic = ("LCA" OR "LIFE 
CYCLE ASSESSMENT" OR 
"LCI" OR “LIFE CYCLE 
INVENTORY”) 

Total Results 163 109 
Removed before 
screening 

30 15 

Records after 
screening 

58 43 

Total records after 
cascading 

84 47 
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We classified the studies by type of CAx and AI methods used and collected 
data on additional techniques that may have been employed in the study. 
The studies were further classified by covered sectors. In order to highlight 
how CAx and AI can be used for LCI data, we classified the studies further by 
their coverage of life cycle stages and flow types (see figure 1). Additional 
details on the analyzed literature can be found in the supplementary 
information.   

5.4 RESULTS 

In this section, we present the results of the literature review. We start in 
4.1 with an overview of the characteristics of the collected literature. We 
first analyze historical publication trends, and then provide a network 
analysis of technologies (CAx and AI) used in the literature. These are 
followed by an analysis of which sectors were covered, followed by a 
network analysis of which technologies are applied in which sector. In 
section 4.2 and 4.3 we discuss how CAx and AI respectively are used to 
estimate LCI data, and in section 4.4 we address their integration. The data 
and classifications used for the analyses can be found in the supplementary 
information to this study. 

5.4.1 Overview of literature findings 
The historical bibliographic analysis (Figure 2) shows a slow growth of 
interest in the use of CAx to gain information on the lifecycle of technologies 
from 1995. On the other hand, the use of AI for related technologies for 
lifecycle data is much more recent. While the first paper appeared in 2004, 
45% of the papers were published only in 2020. Although the use of AI for 
LCI compilation is currently in its infancy, the publication of studies on these 
topics is growing rapidly. 
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Figure 2: Published papers in the use of CAx and AI for lifecycle data in the period 1995-2020 

In order to understand the attention given to each CAx and AI techniques in 
the context of data for LCI, we performed a network analysis (Figure 3). The 
circular network graph generated with the Xnetwork Python package show 
each keyword as a node, whose size is proportional to the number of articles. 
Each connection between nodes shows a number and is varied in thickness 
to indicate how frequently CAx and AI techniques were used in combination. 
Through this circular graph, we see that studies had a given keyword as main 
focus are directly connected to the main node (i.e., 131 studies (all 
keywords)). Combination of methods then are visible through the 
connections between the different keywords. For instance, one study may 
employ CAM as the main technology, and as a following step CAPP. The 
connection between these two keywords would indicate this relationship. 
However, the second keyword, in this case CAPP, would not have direct 
connection to the main node). 

The network graph shows a broad use of CAD, CAPE and ML. However, they 
are largely disconnected with only 2 studies concerning CAPE and ML out of 
45 studies concerning the two keywords. We also only found 3 articles for 
CAD and ML out of 80 studies for both keywords. No studies connected CAD 
to CAPE due to the difference in scope, as CAD focuses on the design of 
physical products and CAPE on the design of chemical processes. 9 studies 
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concerned the use of ES, 6 an indirect relationship to ES through CAD. CAM, 
CAE, CAPP were in most cases used in combination with CAD, this is due to 
the fact that they rely on information provided by CAD (e.g., geometry and 
materials). DM, CAE, CAPP are the least employed technologies.  

 

Figure 3: Technology focus in the literature and their intra-relationships. Each keyword is a 
node and the connections between nodes indicates combined use of the keywords. The 
numbers on the edges between the nodes indicate the number of studies concerning the linked 
CAx and AI techniques. CAD: Computer-Aided Design; CAE: Computer-Aided Engineering; 
CAM: Computer-Aided Machineries; CAPP: Computer-Aided Process Planning; CAPE: 
Computer-Aided Process Engineering; ES: Expert Systems; ML: Machine Learning; DM: Data 
Mining. 
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Figure 4: Sectoral focus by technology. CAD: Computer-Aided Design; CAE: Computer-Aided 
Engineering; CAM: Computer-Aided Machineries; CAPP: Computer-Aided Process Planning; 
CAPE: Computer-Aided Process Engineering; ES: Expert Systems; ML: Machine Learning; DM: 
Data Mining. 

Figure 4 shows a network analysis of the sectors in relation to CAx and AI 
methods. For this analysis we used the spring layout which employs a 
Fruchterman-Reingold force-directed algorithm. This algorithm simulates 
edges as springs pulling nodes together and nodes as repelling objects. In 
other words, the higher the number of studies concerning the sectoral use 
of a CAx or AI methods the closer their nodes. From the analysis, we see that 
CAD, CAE, CAM and CAPP are often used in combination for LCI of physical 
goods (i.e., consumer and capital goods). In the construction and 
transportation (i.e., design, planning and assessment of transport services), 
the combination of ML with the use of CAD appears to be an explored 
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avenue. However, despite the broad use of CAD for physical goods, we found 
little attention on how ML techniques can benefit the use of CAD for LCIs. 
CAPE is chiefly used in the chemical and energy sectors while ML enjoys 
great applications in the chemical, construction and agricultural sectors. 
Expert systems appear to be used mostly individually for the agricultural, 
and chemical sectors. Expert systems and data mining also showed some 
connections to CAD for physical goods. A few studies focused on general 
household consumption for which they employed machine learning and 
data mining.  

Table 2: Unit process’ flow types that may be estimated using the various technologies 
according to the literature. Each cell contains the total number of studies. Empty cells indicate 
no studies. A gradient from yellow (lowest number of studies) to red (highest number of 
studies) facilitates the identification of the least and most covered areas in data estimation 
for LCI.  
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Table 2 shows which flow types and life cycle stages may be generate or 
estimated using CAx and AI in the collected literature. The classification can 
be found in the supplementary information to this study. The table shows 
that CAx and AI have been used to estimate multiple flows and stages. The 
manufacturing stage has been broadly investigated both using CAx and AI. 
While CAx had scarce applications in the resource extraction, AI has many 
studies chiefly using ML with some ES applications. The distribution stage 
(i.e., transport and logistics from manufacturing plant to sale point) appears 
to not be investigated within the CAx or AI literature that we collected.  

5.4.2 How CAx can be used to estimate data for LCIs 
In this section we describe how CAx have been used for the estimation of 
each life cycle stage. The collected literature, however, revealed no CAx 
methods used for the estimation of LCI information for the transport stage. 
So this stage is discussed in the discussion section instead, together with 
possible ways to overcome this barrier.  

Resource extraction 
The analyzed literature has shown limited applications in the compilation of 
LCIs for the resource extraction stage. Nonetheless, in the context of 
agricultural products for energy or chemical production, CAPE and 
Computer-Aided Screening methods could be used to facilitate the 
identification of feedstock of agricultural origin and to be used in a specific 
application (Picardo et al., 2013). Once the feedstock is identified, data on 
the resource extraction phase could be collected or calculated. In order for 
this to be possible, however, the possible processes need to be modelled in 
CAPE software and a database needs to be provided with crops properties 
relevant to the modelled processes alongside information on growth 
conditions. However, these methods do not provide information on 
machineries employed for the extraction of resources.  

Manufacturing 
Once resources are acquired in the resource extraction stage, they are 
transformed into materials, parts and goods in the manufacturing stage. 
Most CAx applications focus on this secondary phase of the life of materials, 
therefore the vast majority of opportunities to estimate LCI data concerns 
this stage. Specifically, CAPE methods are used in the planning and design of 
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chemical processes. CAPE achieves this by generating flowsheets containing 
process flow diagrams describing mass and energy balances of processes, 
equipment and operating conditions (Carvalho et al., 2013; Kalakul et al., 
2014; Morales-Mendoza et al., 2018). This information can then be used in 
the simulation of plant-wide operations (Yoon et al., 2018). CAPE-generated 
flowsheets could be used to obtain LCI data (Romdhana et al., 2016) through 
the CAPE software Application Programming Interface (API) which allows to 
access the flowsheet of a simulated chemical production. Mass and energy 
balances can be used to identify all inputs and outputs, the processes and 
their order can be used to identify UPs, equipment tables can be used to 
identify equipment. Alternative processes and elementary flows, as well as 
uncertainties can also be identified when CAPE is linked to material property 
databases, knowledge based systems and optimization methods (Carvalho 
et al., 2013; Chen & Shonnard, 2004; Tula et al., 2017).  

For goods other than chemical products, such as appliances or even 
buildings, the combination of CAD with CAE, CAM, CAPP and other CAx 
seems prominent in multiple studies (Andriankaja et al., 2017; Ben Slama et 
al., 2020; Tao et al., 2017, 2018; L. Zhang et al., 2019). CAD can assist in 
identifying economic flows linked to unit processes as the parts and 
materials composing the final good are known (Leibrecht, 2005). After that, 
CAM and CAPP can enable the retrieval of information on processes (e.g., 
machining), including their energy demand (Huang & Ameta, 2014b, 2014a), 
equipment and waste flows (Singh & Madan, 2016) as they are typically 
connected to manufacturing equipment databases containing specifications 
on operations. Specifically, CAM is used in microplanning, where processes, 
parameters, tooling and fluids are identified according to specific features, 
and CAPP is used in macroplanning, which involves the sequence of 
processes  (Srinivasan & Sheng, 1999). The combination of multiple CAx for 
the design and manufacturing planning of physical goods is possible thanks 
to information generated by CAD software and stored within 3D CAD 
models, hereafter CAD models. CAD models are virtual geometric 
representations of goods and are stored in two types of CAD generated files 
(Ostad-Ahmad-Ghorabi et al., 2009): 

• Assemblies: which consist of parts and subordinate assemblies 
(Leibrecht, 2005); 
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• Parts:  which are made of one material and have any number of 
features (ibid).  

Features (i.e. Feature Technology, FT) are diverse sets of information 
concerning for example shape, tolerances and materials (Case & Gao, 1993; 
Shah & Rogers, 1988). They are used to connect CAD to downstream 
manufacturing as they provide detailed information useful for 
manufacturing parts (Tao et al., 2017). The use of FT allows to automate 
recognition of plausible manufacturing processes and tooling and has 
enabled extensive investigation of the integration of CAD and other CAx such 
as CAE, CAM and CAPP (ibid). The reviewed studies showed that there is a 
long standing interest in using FT to support LCI estimation (Abad Kelly et al., 
2008; Friedrich & Krasowski, 1998; Leibrecht, 2005; Otto et al., 2002). 
However, due to the different data structure of LCI and CAD, data transfer 
(i.e. interoperability) is not straightforward and prone to errors and 
incompleteness (Chiu & Chu, 2012; Hernandez Dalmau, 2015; Morbidoni et 
al., 2011). This is because LCIs focus on processes and their links to flows, 
while CAD models focus on the 3D representation of goods (H. Zhang et al., 
2015).  

This difference in ontologies across disciplines demands for common 
information models to allow effective transfer of data (Abad Kelly et al., 
2008; Chiu & Chu, 2012; P. Yung & Wang, 2014). For this reason, Tao et al. 
(2017) divided FT in two main classes Product Features and Operation 
Features. Product features refer to the following information obtainable 
from CAD: 

• form (e.g., name, dimensions and surface quality).  
• materials3 (e.g., name, properties, mass). 
• functionality3. 
• connectivity (e.g., connected parts, type of connection and mating 

relationships). 

 

 

3 n.b. not necessarily specified in CAD files 
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Operation features provide information through CAM and CAPP on process 
types, their parameters, machine and tooling specifications (e.g. resource 
use) and sequencing (Tao et al., 2017).   

In addition to the aforementioned methods, elementary flows through unit 
processes can also be inventoried from CAx generated bill-of-materials 
(BOMs) or Building Information Models (BIM). BOMs are list of all required 
materials, parts and components needed to manufacture a given part or 
product (Cinelli et al., 2020). Building Information Modelling (BIM) offers 
possibilities of storing and transferring data for LCI allowing for the retrieval 
of buildings’ parts, materials and energy performance (Mahdavi & Ries, 
1998; Seo et al., 2007; P. Yung & Wang, 2014). Of particular interest, is the 
ability to use BIM in combination with CAD to easily generate economic 
inputs and outputs in construction (Seo, Tucker and Newton, 2007). 
However, the retrievable data from BOMs and BIMs to be used in LCI is 
limited (W. K. C. Yung et al., 2012). For example, while energy and auxiliary 
materials used in production processes may be obtained, they miss logistic 
information for the modelling of transportation, and in the case of BIM 
information on construction machineries and equipment.  

Use, Reuse & Maintenance 
We found no literature concerning the use of CAPE in this life cycle stage due 
to the fact that this lifecycle stage is typically not applicable to chemical 
products and substances beyond use. However, the literature showed ample 
opportunities to collect LCI data for physical goods and construction sectors 
using CAD and CAE (Chan et al., 2010; Gaha et al., 2018; Jianjun et al., 2008; 
Komoto & Tomiyama, 2008; Mahdavi & Ries, 1998; Umeda et al., 2012). 
These approaches typically involved Design-for-X (D4x) practices - where X 
refers to any application – and software. However, D4x applications are not 
common as they are typically not provided in CAx tools by default (Sy & 
Mascle, 2011) and often require a high level of expert knowledge to be 
carried out.  

Some of these practices are design for disassembly, design for maintenance 
and design for recyclability. Maintainability and reusability (among others) 
can be considered life cycle features which, in addition to the product and 
operation features we described in the previous section, can provide 
information useful to compile the use, reuse and maintenance life cycle 
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stage (Sy & Mascle, 2011). For example, knowledge on the assembly can 
provide information on reusability and maintenance (Rosen et al., 1996). The 
lifespan and score of maintainability and reuse of parts (i.e. refurbishment) 
can be assessed (Jianjun et al., 2008) and information on maintenance 
operations could be obtained through maintenance schemes generated by 
combining parts performance analysis in CAE. The use of CAE to assess the 
performance of goods though Finite Element Analysis in the use phase can 
provide information on the use and lifespan of a given product (Russo & 
Rizzi, 2014). This means that it is possible to assess uncertainty in the use 
stage but also in the selection of materials and processes in the 
manufacturing stage depending on the goods performances.  

Additionally, thanks to the ability to assess performances, CAE can be of 
support in the identification of services related to maintenance through the 
generation of services oriented BOMs (Zhou et al., 2018). Service-oriented 
BOMs are extensive BOMs that not only contain the physical items and 
quantities needed to manufacture a product, but they also store service 
relevant information needed for maintenance, repair and overhaul 
throughout the product lifecycle (Zhou et al., 2018). Data concerning 
services can be calculated by combining users’ and business/service 
requirement information using a Boolean approach (Xing et al., 2013). Based 
on these parameters, it is then possible to estimate functional, physical and 
economic fitness of the product (ibid). This service engineering 
methodologies can be replicated into CAx systems oriented toward services 
(i.e. Service-CAD) (Komoto & Tomiyama, 2008). Service oriented CAD tools 
could provide information about existing potential services that could be 
used for a given product (Shimomura et al., 2007) and open possibilities of 
Life cycle simulation approaches (Garetti et al., 2012) which could generate 
multiple potential alternatives. These tools could be beneficial in LCI 
creation and they have been shown to support Lifecycle Costing analysis 
(Komoto & Tomiyama, 2008; Shimomura et al., 2007). All these 
developments could support the creation of multiple scenarios and aiding 
the selection of the best alternatives using, for example, Multi-criteria 
Decision Support Methods (MCDSMs) in combination with CAD (Ben Slama 
et al., 2020). 
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Recycling & waste management 
In section 4.2.2, we indicated that CAPE can be used to plan manufacturing 
activities. However, if recycling and waste management practices concern 
chemical processes such as in the case of processing biomass from waste 
sources (Romdhana et al., 2016) and reuse or conversion of CO2 emissions 
(Roh et al., 2016), CAPE could be used to simulate those processes and 
potential alternatives. For example, various approaches such as multi-
criteria decision analysis, network and graph theory and stochastic process 
techniques can be used to identify suitable waste and recycling treatments 
starting from information from the manufacturing and use stage (Fan et al., 
2020).  

In the life cycle of physical goods, thanks to the information on relationship 
among parts that is provided by assemblies and FT, it is possible to identify 
how a product is assembled and disassembled. Knowing this information, 
can be useful in understanding products’ end of life and provide uncertainty 
values for plausible end of life treatments (Sy & Mascle, 2011). For instance, 
by drawing the sequence of disassembly (i.e., disassembly logic network) it 
is possible to map input and output flow of parts to different unit processes 
concerning life cycle stages after use (Jianjun et al., 2008). Graph theory in 
combination with CAD can also be employed to create a lifecycle model of a 
product in which the structure indicates connectivity and hierarchy of parts 
(Umeda et al., 2012). The connectivity shows relationships among parts such 
as how they are fixated, their signal or power transmission and motion 
constraints which, with the use of CAE, can support the identification of a 
product’s fate based on its design (ibid). Once the plausible fates of a specific 
part or product are known, information on waste management service 
suppliers in a given region could be used to identify the most likely end of 
life treatment (Irie & Yamada, 2020). CAx could then be employed to 
simulate the end-of-life processes in this stage, thereby obtaining economic 
and environmental flows (Sy & Mascle, 2011). For example, previously 
developed CAx for products as complex as electronics have also helped in 
identify the best WEEE de-manufacturing processes according to eco-
toxicity and GHG emissions levels (Chang & Lu, 2014).  

At last, through the use of CAD software in construction application, BIMs 
and methods of construction and demolition waste assessment it is possible 
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to identify flows concerning end of life of constructions (Mercader Moyano 
et al., 2019). However, this approach requires information on time of 
material release from construction, which is typically not readily available. 
However, as we have seen in previous sections, CAE could also be used to 
estimate the lifespan of components according to their physical 
performances. 

5.4.3 How AI methods can be used to estimate data for LCIs 
Here we describe how AI methods can be used to estimate data for LCI. The 
collected literature, however, revealed no AI methods used for the 
estimation of LCI information for the distribution stage. Therefore, 
distribution is presented in the discussion section instead, together with 
possible ways to overcome this barrier. Additionally, in this section we 
present only applications that did not require the combination of AI with 
CAx. The studies we found that describe a combination of AI methods and 
CAx are discussed in section 4.4 concerning the integration of AI and CAx for 
LCI data.  

Resource extraction 
The literature showed only a use of AI methods to generate LCIs for the 
agricultural sector. For example, in order to identify the adequate deposition 
of soil nutrients and other treatments in agriculture, information on specific 
management and operations is necessary (Renaud-Gentié et al., 2014). 
Additionally, farmers make choices based on a variety of factors from soil 
conditions to business economics, practice preferences (e.g., organic 
agriculture), or operations constraints that may go beyond technical aspects. 
This information needs to be collected from experts, literature and farming 
surveys and grouped according to sets of different parameters and values. 
Collecting and organizing this information is of course time consuming, 
however, if the information is already embedded within reports or scientific 
articles, it could be first extracted by means of text mining (e.g, Diaz-Elsayed 
and Zhang 2020) and organized in sets of parameters and values. These sets 
may be created by means of clustering techniques from data mining (e.g., K-
mean clustering) to identify how frequently different choices and 
parameters are used in combination (Renaud-Gentié et al., 2014). This 
system may then also be combined with soil models and nutrients models 
to estimate inputs and outputs of unit processes of cropping operations 
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(Meza-Palacios et al., 2020). Regional data and survey (e.g., EPIC model 
(USDA, 2017)) can then be used to obtain regional variation of inputs and 
outputs (Kaab et al., 2019; Lee et al., 2020; Romeiko et al., 2020). Such 
applications of expert systems and data mining could present learning 
capabilities or be used to train an Artificial Neural Network or, in the case of 
fuzzy logic, to train an Adaptive Fussy Interference System (Nabavi-
Pelesaraei et al., 2018). In such a case, a system would be categorized under 
a machine learning application. The literature has shown that such systems 
could be used effectively in estimating a variety of LCI data concerning future 
scenarios (Kaab et al., 2019; Khanali et al., 2017; Khoshnevisan et al., 2014; 
Khoshnevisan, Rafiee, & Mousazadeh, 2013; Khoshnevisan, Rafiee, Omid, et 
al., 2013; Nabavi-Pelesaraei et al., 2018). Specifically, regional climate 
conditions, access to water and labor may greatly influence the output of 
farming activities. By using these additional parameters, pre-existing LCI 
data and regional farming surveys (Nabavi-Pelesaraei et al., 2018), it is 
possible to estimate data relevant for LCIs such as energy output of biomass 
destined for energy generation (Kaab et al., 2019; Nabavi-Pelesaraei et al., 
2018), crop yield (Khanali et al., 2017), and variety of inputs and outputs of 
agricultural activities (e.g., animal husbandry operations in a given region).  

Manufacturing 
In the context of the manufacturing stage, expert systems may be employed 
to transfer knowledge from one domain to the other and to identify data 
conversion rules (e.g., conversion of large chemical process databases to LCI 
data) (Meyer et al., 2021; Mittal et al., 2018a; Muñoz et al., 2018). 
Specifically, data that could be shared across disciplines may be labeled and 
organized in a different fashion than how it may be needed for the purpose 
of LCI modelling. In this case, the use of lineage and product ontologies have 
been proposed to obtain LCI data (Mittal et al., 2018a). A lineage ontology 
uses a family tree analogy to reconstruct all synthesis steps necessary for the 
production of chemicals from resource extraction to manufacturing (i.e., 
cradle to gate). In other words, a chemical product has own properties (e.g., 
the role that it plays in processes), it may be a child (i.e., the output of a 
reaction) and it has parent chemicals (i.e., the inputs to the reaction) defined 
by the reaction in which they may be involved. A process ontology is then 
employed to bridge this information toward LCIs to obtain elementary flows 
in and out of unit processes. These ontologies can help to predict products 
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of a reaction provided that they are present in the chemical database of 
reference in the form of rules or algorithms (ibid). Another way to convert 
domain specific knowledge to LCI is through the use of machine learning 
applications in the field of natural language processing (Muñoz et al., 2018). 
Natural language processing is the field of AI that concerns the creation of 
systems to understand and act on text and speech in a similar way humans 
do. Specifically, this approach may help in the conversion of the 
heterogenous data that may be present in databases used by engineers and 
manufacturers such as facility data that may be shared with US 
Environmental Protection Agency through the Facility Registry Service  (as 
shown in Mittal et al. 2018), or process recipe databases available within an 
enterprise (as shown in Muñoz, Capón-Garcia, and Puigjaner 2018). These 
databases may contain information on processes, production, materials and 
components and much more information that may be relevant for modelling 
LCIs. However, because of the diversity and large size of these databases, it 
is not practical to manually convert this information into LCIs. Natural 
language processing could be of support in this task by processing large 
volumes of this data, converting labels and data structures to be compatible 
with LCI databases (Muñoz et al., 2018).  

Use, Reuse & Maintenance 
The literature on this stage and the use of AI presented a vast majority of 
studies that focused on the combination of CAx and AI. We leave these 
studies for the following section concerning the integration of AI and CAx for 
LCI data modelling, and here we discuss the studies that did not rely on CAx 
software or data. The use of data mining techniques applied to regional 
household surveys could provide information on different regional 
household preferences and behaviours by creating regional household’s 
behavioural archetypes (Froemelt et al., 2018, 2020a). While this 
information cannot be used directly in the compilation of LCIs, it may be 
useful to estimate household habits and potential variations of product’s 
lifespan, reuse or maintenance. For instance, in studies outside of the scope 
of this research, households’ type, composition and lifestyle have shown to 
have an influential factor on the tendency of adopting circular economy 
practices (e.g., Ottelin, Cetinay, and Behrens 2020).  
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Recycling and Waste management 
Data mining techniques could be employed to estimate regional waste types 
in a given sector (e.g., food packaging) provided that access to detail data on 
regional consumption is available. For example, if micro data from food 
delivery web based services is available, likely packaging types may be 
associated to restaurant typologies, and by following the delivery, waste 
accumulation may be derived (Liu et al., 2020). If data is available on regional 
waste collection and treatment options, it is then possible to identify the 
most likely end-of-life concerning a given product system, and related 
energy flows. In fact, once the waste flows are known, Artificial Neural 
Networks could be used to estimate energy consumption due to waste 
transport and treatment of municipal waste management alternatives in 
several regions, and potential energy recovery from waste (Nabavi-
Pelesaraei et al., 2017). This approach could be useful when trying to quickly 
estimate the data concerning the end-of-life (e.g., output flows or impacts) 
for one or more products in different regions. These are practices that can 
already be performed in current LCI modelling practices, however, the 
employment of machine learning methods can allow for estimating these 
values for a large variety of regions provided.. 

LCI data may also be estimated starting from laboratory data. For instance, 
in the case of novel waste technologies for resource recovery, it may be 
important to estimate potential future yield. Machine learning algorithms 
could then be applied to laboratory data from pyrolysis where feedstock (i.e. 
waste flows) can be very diverse and then estimate process outputs (Cheng, 
Luo, et al., 2020). Specifically, by applying the Random Forest algorithm to 
data collected from laboratory tests, in combination with feedstock 
properties (e.g., content of carbon, hydrogen, nitrogen, oxygen, and ash) 
and processing conditions (e.g., reaction temperature and heating rate) it is 
possible to estimate yields and characteristics of biochar.  

At last, LCI data that may have not been added to LCI database may be 
concealed within the written text of previous LCA scientific publications and 
reports. In this case, natural language processing techniques such as text 
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mining4 can help in the extraction of LCI data from previous publications 
concerning wastewater-based resource recovery systems (e.g., functional 
unit, water, energy and nutrient flows) (Diaz-Elsayed & Zhang, 2020). While 
this technique is now being discussed within the recycling and waste 
management stage, it could also be employed for other life cycle stages.  

5.4.4 Integration: how the combination of CAx and AI methods can be used 
to obtain data for LCIs 

The literature presented various examples that addressed the integration of 
CAx and AI for the purpose of obtaining data for LCIs in the following life 
cycle stages: 1) manufacturing, 2) use, reuse and maintenance, and 3) 
Recycling and waste management. In this section we do not discuss the 
stages individually but we rather describe how CAx and AI can be used in 
combination. Specifically, we saw that the integration is typically employed 
for the following purposes: 

• Optimization of a simulated product system from which LCI data can 
be obtained 

• Generating a vast range of alternatives (which may or may not be 
optimal) from which LCI can be obtained  

• Estimating values concerning component’s performance over their 
use 

System optimization concerns finding the optimal parameters or 
organization of processes according to one or more objectives. From an LCI 
perspective, it concerns the identification of the optimal alternative. For 
example, once livestock is raised for meat products, it is lead to 
slaughterhouses where the animal is killed and its meat processed. CAx 
simulating meat process plants (e.g., Poultry Process Plants) can be used to 
obtain LCI data (López-Andrés et al., 2018). A Genetic Algorithm can then be 
employed to select optimal process parameters according to multiple 

 

 

4 To not be confused with data mining. Text mining concerns finding and 
extracting data from text, data mining concerns finding patterns and 
relationships in datasets.  
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objectives. Genetic Algorithms concern metaheuristic procedures from the 
field of evolutionary algorithms, which are inspired by the process of natural 
selection and they are often used to solve optimization problems. Once 
optimal parameters are selected, they can be used within process simulation 
software, thereby generating the optimal product system alternative which 
can then be converted into a LCI. Similar approaches have also been used to 
estimate optimal solar district heating installations for urban size 
communities (Abokersh et al., 2020).  

Besides system optimization, AI and CAx can be employed together to 
evaluate a vast range of design options. For example, renovation and use 
alternatives of buildings can be identified together with their embodied and 
operational energy by combining the use of Artificial Neural Networks using 
data from CAD models and data on properties related to building 
components (e.g. Roof, windows, HVAC system, location etc.) (Sharif & 
Hammad, 2019). Regenerative design approaches (i.e., the use of AI to 
generate designs) could also be employed to advance the exploration of 
potential design options and generate LCIs. In one study (Płoszaj-Mazurek et 
al., 2020), this approach was to generate 300 thousand possible building 
design configurations according to a multitude of parameters (e.g., type of 
windows, façade, height, etc.). 1500 of those configurations were then 
randomly selected and simulated in CAD together with their energy model 
to estimate embodied and operational energy. This was used as the training 
data for a machine learning algorithm (i.e., Gradient Boosting Regressor). 
The trained machine learning model was then used to estimate the carbon 
footprint for 100 thousand of randomly generated building designs. A similar 
approach is not only applicable to architectural design but also to product 
design and process design. Additionally, it could be employed in the 
estimation of flows in different stages not only for footprint analysis but also 
in chemical process applications, i.e., CAPE (Cheng, Porter, et al., 2020; Liao 
et al., 2020). 

At last, the combination of AI methods with CAE for the simulation of 
components performance can prove useful for the estimation of flows in and 
out of the use, reuse and maintenance stage as well as identifying when a 
given product or component will reach the end of life. Specifically, in order 
to understand the plausible failure points (e.g., abrasion of moving parts) 
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and maintenance requirements (e.g., when lubrification may be needed) of 
components and goods, engineers would typically carry out laboratory tests 
or perform simulations such as finite element analysis or boundary element 
analysis, through CAE software (Kurdi et al., 2020). In other words, CAE can 
therefore be used to estimate wear and tear of parts and products. 
However, it may be challenging to integrate within CAE the knowledge 
obtained during experimental data from the laboratory (e.g., physically 
measured failure points) and to apply large volumes of variations of system 
parameters. In this case, machine learning methods can be used as surrogate 
simulation models that take into consideration simulated and empirical data 
over large set of possible system properties and objectives (Ibid). This 
information can then be used for estimation of LCI data in the use, reuse and 
maintenance stage of product.  

5.5 DISCUSSIONS AND CONCLUSIONS 

Our study revolved around the question of how CAx and AI techniques can 
be used to generate, estimate and extract data for LCIs. We reviewed 131 
studies on the use of CAx (84) and AI (47) in the context of their potential to 
provide LCI data. The intent was to understand current developments of 
these applications and gain knowledge on how to improve data collection 
for the LCI modelling phase of LCA. We have found that there are many 
opportunities to obtain data through these approaches, however, there are 
also limitations that need to be addressed.  

CAx provide most of their benefits in the generation of data for life cycle 
stages that require industrial processing of some kind, and in the sectors 
concerning physical goods, chemical products, construction, and energy. 
This is a logical result as CAx software and methods are developed 
specifically for the purpose of managing design and manufacturing activities. 
Therefore, CAx can offer relatively easy access to LCI data in the 
manufacturing stage, with some applications in estimating potential 
recycling and maintenance activities. In order to estimate data on use, reuse 
and other aspects of the product system that cannot be assessed easily 
through simulations (e.g., use, maintenance, reuse, etc.), the literature has 
shown various methods that rely on expert knowledge. Such expert 
knowledge, however, needs to be collected and encoded in expert systems 
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which can then be used to estimate unit process data that does not concern 
industrial processes (e.g., use, reuse and maintenance, or the likelihood of a 
given part or product to undergo a given waste treatment option).  

CAx applications in the resource extraction phase appeared to be scarce. AI 
methods have been shown of use in this stage, for the agricultural sector. 
However, the collected literature on CAx and AI did not show studies 
concerning the resource extraction for abiotic materials (e.g., metals and 
minerals). Also, the literature did not present any studies for the distribution 
stage. However, methods and software to simulate aspects of these stages 
exist, for instance planning software for logistics may be used to obtain data 
on warehouses and transport (e.g., ODL studio, openMAINT), and the field 
of operation research offers potential opportunities to employ AI methods 
and optimization methods to simulate aspects of distribution from which LCI 
data may be obtained. These represent important research gaps that should 
be further investigated.   

We also showed that there are opportunities to extract data from previous 
studies and through the reuse of heterogenous data from different domains. 
The combination of expert systems, ontologies and natural language 
processing techniques such as text mining appear to be promising 
applications. However, more should be done to push the boundaries of their 
applications by performing a thorough search of all possible LCA publications 
beyond single sector studies, and in the combination of heterogeneous data 
from different domains not just in the chemical sector but also in agriculture 
and the estimation of LCIs for physical goods. 

As previously stated, a great limitation of CAx in data generation and 
estimation for LCIs is the fundamental need for some level of expert 
knowledge input. While LCI data may be obtained through CAx software 
APIs, CAx always needs human intervention to at least create the first 
representation of the product (i.e., CAD model or CAPE flowsheets). 
Generative design approaches and computer vision methods (e.g., visual 
recognition and 3D reconstruction) may provide additional opportunities for 
LCI data and should be further investigated. Additionally, a broader 
investigation into the field of intelligent process engineering and process 
systems engineering could deliver additional insights into filling data gaps in 
LCIs.  
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At last, while CAx and AI methods separately and in combination show 
potential to facilitate the LCI modelling phase, the main work that lays ahead 
is in formalizing the integration of tools and methods from both disciplines, 
and in the search, development and curation of databases that can provide 
a solid base of data for these methods to fulfil their potential. In fact, we 
came across many studies in which very diverse data sources other than LCIs, 
had already been collected in other domains and curated or encoded in 
some fashion. While these methods show great promise, we cannot avoid 
that data collection and curation will still be needed. In other words, it is key 
that scientists working on LCI modelling shift their focus from current data 
collection and curation practices, to new ones such as investigation of 
heterogenous and unfamiliar sources, their combination and how to do 
more with them through the methods described in this study.  

SUPPLEMENTARY INFORMATION 
Annex I and II: https://doi.org/10.5281/zenodo.7419311 

ABBREVIATIONS 
AI = Artificial Intelligence, 
CAD = Computer-Aided Design 
CAE = Computer-Aided Engineering 
CAM = Computer-Aided Machining or Manufacturing 
CAPE = Computer-Aided Process Engineering   
CAPP = Computer-Aided Process Planning 
CAx = Computer-Aided for x, where x stands for all possible applications 
D4x = Design for x, where x stands for all possible applications 
DM = Data Mining 
ES = Expert System 
FT = Feature Technology 
ML = Machine Learning 
LCA = Life Cycle Assessment 
LCI = Life Cycle Inventory 
  

https://doi.org/10.5281/zenodo.7419311
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