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ABSTRACT 
A circular economy is an industrial system that is restorative or regenerative 
by intention or design. During the last decade, the circular economy became 
an attractive paradigm to increase global welfare while minimizing the 
environmental impacts of economic activities. Although several studies 
concerning the potential benefits and drawbacks of policies that implement 
the new paradigm have been performed, there is currently no standardized 
theoretical model or software to execute such assessment. In order to fill 
this gap, in the present paper we show how to perform these analyses using 
Environmentally Extended Input-Output Analysis. We also describe a Python 
package (pycirk) for modelling Circular Economy scenarios in the context of 
the Environmentally Extended Multi-Regional Input-Output database 
EXIOBASE V3.3, for the year 2011. We exemplify the methods and software 
through a what-if zero-cost case study on two circular economy strategies 
(Resource Efficiency and Product Lifetime Extension), four environmental 
pressures and two socio-economic factors.  
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3.1 INTRODUCTION 

The current global challenges of climate change and resource supply risk 
(European Commission, 2018) demand concrete strategies and actions to 
reach a sustainable society (UNEP, 2011). While various proposals for this 
future societal state exist (Geng et al., 2016; Sacchi-Homrich et al., 2018), in 
recent times a paradigm that has gained traction is the Circular Economy 
(CE): an economy that is "... restorative and regenerative by design, and aims 
to keep products, components, and materials at their highest utility and 
value at all times." (EMF, 2012). Decision makers supporting these objectives 
can employ different strategies intervening at multiple levels (Ghisellini et 
al., 2016): a) macro-level, by changing regional fiscal and economic 
conditions; b) meso-level, by changing the way supply-chains are organized; 
c) micro-level, by changing the way we produce and use materials and 
products. In this process, decision makers are faced with unknowns over 
potential benefits and undesired effects of their decisions (Faucheux and 
Froger, 1995). This is due to the complexity and interconnectedness of 
economy and environment (Knights et al., 2014). In order to shine light on 
these complex systems, economic-environmental models can be used 
(Fauré et al., 2017). Computable General Equilibrium (CGE) and Input-
Output (IO) models are the most widely employed ones for the assessment 
of CE (Kronen et al., 2010). The two models have distinct characteristics that 
make them suitable for different type of analyses (de Koning, 2018). CGE is 
a macro-economic model broadly used for its dynamic features and 
endogenous inclusion of price dynamics, investment and tax relations. IO, in 
its various forms, is a static structural model which provides a high resolution 
of sectors and structural economic composition. This makes IO a useful tool 
for the impact assessment of supply-chains (de Koning, 2018). Both models 
have been used to assess the potential environmental and economic impacts 
of CE (McCarthy et al., 2018). 

Through the use of a national CGE model of 2000 for South Korea, Kang et 
al. (2006) estimated the effects of increasing waste recycling and pollution 
management policies. They showed potential losses of 0.2% in GDP as a 
result of reduction of environmental pressures. In a study by WRAP on CE 
for Britain (WRAP, 2015), the authors investigated multiple interventions, 
such as reuse, recycling, servitization, and repairing and remanufacturing. 
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Their findings showed a reduction of unemployment rate of 0.1-0.2 
percentile points by 2030. Wijkman and Skanberg (2015) analyzed CE effects 
on CO2 emissions, employment and trade balance. Using 2009 WIOD data 
(Timmer et al., 2015) for 5 EU countries (Finland, France, the Netherlands, 
Spain and Sweden), they simulated measures for renewable energy 
transition, and energy and resource efficiency. Their results showed a 
reduction of 70% CO2, 875000 created jobs, and an improvement of 2% of 
the trade balance. 

Rutherford et al. (EMF, 2015), employed a CGE model based on GTAP-8 
aggregated to 5 global macro-regions and 16 sectors. The study focused on 
technology shifts in private transport, housing and food production. Results 
showed that CE could deliver 48% CO2 emissions reductions by 2030 and 
83% by 2050 across the analyzed sectors. The study also showed that 
household disposable income in 2050 would be higher by 12 percentile 
points in comparison with current linear economy projections. 

(Tisserant et al., 2017) analyzed the waste treatment and footprints in the 
circular economy using the IO database EXIOBASE v2 in the Waste-IO (WIO) 
format. They observed that despite the difference in waste generation 
among countries, there is a significant potential for closing material cycles in 
all regions regardless of the level of country’s income. 

(Winning et al., 2017) developed a multi-regional macro-econometric model 
(ENGAGE-materials) using EXIOBASE v2 and GTAP-9. Through the model 
they showed a reduction of 0.02% in total CO2 and an increase of 0.03% in 
GDP due to the doubling of yearly scrap availability between 2017 and 2030. 

More recently, (Wiebe et al., 2019) presented a global CE scenario to 2030 
using EEIOA in EXIOBASE. Their study investigated the impact of recycling, 
higher material efficiency and repair, reuse and recycling. Results show that 
reduction in raw material extraction used of 10% with a positive but small 
impact on employment around 2%.  

As shown by these studies, there is still limited information on impacts and 
indirect effects of the application of the circular economy (Rizos et al., 2017). 
In particular, more technology-based assessments are needed (McCarthy et 
al., 2018). IO is a suitable model for the creation of this type of "what-if" 
scenarios through the application of exogenous changes (de Koning, 2018). 
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One of the advantage of this type of approach is the level of transparency in 
assumptions (de Koning, 2018). This is especially important for CE impact 
assessment as the variety of approaches makes it difficult to compare 
studies (Rizos et al., 2017). Previous studies have tried to categorize types of 
interventions within CE (EMF, 2012; Aguilar-Hernandez et al., 2018), their 
fundamental waste management models (Yifang, 2007; Li, 2012) and 
indicators (Iacovidou et al., 2017). However, there is still a need for current 
CE assessment methods to become more comparable and robust in order to 
serve as policy tools (Rizos et al., 2017). 

In order to gain insights for policies, IO databases and methods can be used 
in specialized software. An overview of such tools is available in Annex II. 
From this analysis, it appeared that no viable free and open-source 
alternative is available for the construction and the analysis of complex 
scenarios using detailed IO databases like EXIOBASE (Tukker et al., 2013; 
Stadler et al., 2018). 

Hereby we present a software and systematic methods to build complex CE 
counterfactual (what-if) scenarios with Environmentally Extended IO (EEIO) 
tables. We focus on the creation of CE scenarios for two CE strategies: 
Product Lifetime Extension (PLE) and Resource Efficiency (RE) (Aguilar-
Hernandez et al., 2018). Furthermore, instead of the hybrid unit data 
(Merciai & Schmidt, 2018) in the WIO framework (Nakamura & Kondo, 2009) 
as suggested by (Aguilar-Hernandez et al., 2018b) we employ the monetary 
EEIO framework, as the base for the implementation of the strategies. This 
is because the hybrid data does not contain value added and employment 
inputs (Merciai & Schmidt, 2018), key indicators used in previous literature 
about the implementation of CE strategies.  

We first present a CE scenario implementation framework for EEIO tables. 
Secondly, the data and Python package developed for this study are 
described. At last, we exemplify methods and software in a case study 
concerning 2 CE strategies: Product Lifetime Extensions (PLE) and Resource 
Efficiency (RE). The results section presents the findings and is followed by 
discussions and conclusions. Furthermore, scenario assumptions and 
modelling choices and complete results are shown in Annex I. 
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3.2 METHODS 

3.2.1 CE policy modelling framework 
CE policies are often articulated at different levels of detail, so it is 
convenient to define a clear modelling framework (Illustrated in figure 1). 
We begin by asserting that the objective of a CE policy is always the 
implementation of the circular economy paradigm. In order to achieve this 
objective different strategies exist. There are various categorizations of CE 
strategies such as ReSOLVE (EMF, 2015c), (Kirchherr et al., 2017a), and 
(Bocken et al., 2016). However, in this study we follow the 4-strategy 
classification of Aguilar-Hernandez et al. (2018) which consists of: Product 
Lifetime Extension (PLE); Resource Efficiency (RE); Closing Supply Chains 
(CSC); Residual Waste Management (RWM).  

In the analyzed literature, the terms strategies and interventions are often 
used interchangeably. However, we believe that a distinction between these 
two concepts is needed. We define strategies as sets of policy interventions 
and improvement options (or simply interventions). For example, PLE can be 
achieved, among others, by reuse and remanufacturing, or delaying 
products’ replacement (Allwood and Cullen, 2015). In other words, while 
these two interventions aim at the same objective, the extension of 
product’s life, the way they are implemented is different. We further 

 
Figure 1: CE policy modelling framework – RWM = Residual Waste Management;  
RE = Resource Efficiency; CSC: Closing Supply Chains; PLE: Product Lifetime Extensions 
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distinguish between a general description of interventions and specialized 
interventions. An intervention (e.g. reuse and remanufacturing) is 
specialized when it refers to a specific product or application (e.g. increase 
lifetime through reuse and remanufacturing in final consumers’ vehicles). 
Interventions are modelled through sets of changes that affect the 
production and consumption systems. We further distinguish between 
primary and ancillary changes. For instance, if the intervention concerns 
increasing the lifetime of vehicles the primary change would be a reduction 
of sale of vehicles resulting from less consumers needing to replace their 
vehicles. A corresponding ancillary change would be the potential increase 
in repairing services caused by a higher utilization of the good. We show this 
conceptual approach in Figure 1. 

3.2.2 Environmentally Extended Input-Output (EEIO) analysis 
Environmentally Extended Input-Output (EEIO) analysis (Leontief, 1970; Suh, 
2009) is based on Input-Output (IO) analysis (Leontief, 1951; Miller and Blair, 
2009) and deals with the quantification of environmental pressures that take 
place along the supply chain of goods and services, by assuming that 
production structure remains fixed. The basic Leontief demand-driven 
model can be framed such that a stimulus vector of final demand leads to a 
set of emissions occurring in each production sector as: 

𝐫𝐫 =  diag(𝐛𝐛)(𝐈𝐈 −  𝐀𝐀)−1 𝐲𝐲                                                     ( 1 ) 

In the preceding expression 𝐫𝐫 is the column vector of emissions occurring in 
each production sector (the response variable) and 𝐲𝐲 is the column vector of 
final demand of products delivered by each sector (the control variable). The 
parameters of the model are the column vector 𝐛𝐛  of environmental 
intensities (environmental pressure per unit of economic output) and 𝐀𝐀 is a 
matrix of technical coefficients (whose entry 𝑖𝑖𝑖𝑖 is the volume of inputs from 
sector 𝑖𝑖 that are required to generate one unit of output of sector 𝑗𝑗). diag 
stands for diagonal matrix and 𝐈𝐈 is the identity matrix.  

The technical coefficient matrix is calculated as 𝐀𝐀 =  𝐙𝐙 diag(𝐱𝐱)−1, where 𝐙𝐙 
is the matrix of inter-industry transactions and 𝐱𝐱 is the column vector of total 
output of each sector, 𝐱𝐱 =  𝐙𝐙 𝐢𝐢 +  𝐘𝐘 𝐢𝐢, the row sum of 𝐙𝐙 and 𝐘𝐘, where the 
latter is a matrix whose columns represent the final demand of different 
consumption categories (e.g., households, government, investment), and 𝐢𝐢 
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is a vector column of ones. For the purpose of this study the stimulus vector 
entering Eq. 1 is assumed to be row sum of the final demand matrix, 𝐲𝐲 =
 𝐘𝐘 𝐢𝐢 . For some environmental pressures (e.g., global warming) there are 
direct emissions resulting from final consumption activities (e.g., the 
combustion of fossil fuels by households leads to the emission of 
greenhouse gases). When that is the case it is necessary to include emissions 
from final demand to obtain total emissions, 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡, as: 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡  =  𝐫𝐫′ 𝐢𝐢 +  𝑏𝑏𝑦𝑦 𝑦𝑦                                           ( 2 ) 

In the previous expression prime (') denotes transpose, 𝑏𝑏𝑦𝑦 is a scalar 
representing the intensity of final demand environmental pressure (i.e., 
emissions caused by households per unit of final demand), and y is a scalar 
of total final demand obtained as y =  𝐲𝐲′ 𝐢𝐢, i.e., the column sum of the final 
demand stimulus vector. If more information is available, the intensity of 
final consumption environmental pressures can in principle be 
disaggregated by product category. 

Note that in the application the system used is multiregional. That is, each 
entry of 𝐛𝐛, 𝐀𝐀 or 𝐘𝐘 identify not only a row and/or column economic sector or 
final demand category but also a region (e.g., EU or Rest of the World). 

3.2.3 Baseline and counterfactual scenario 
In order to assess the environmental or socio-economic impact of 
implementing a CE policy we compare the impact that occurs in the baseline 
and the impact that occurs in a counterfactual scenario in which the changes 
corresponding to the CE intervention and strategy have been implemented. 
More formally, the impact of the CE policy is Δ𝐫𝐫 =  𝐫𝐫∗  −  𝐫𝐫, where 𝐫𝐫 is the 
impact in the baseline scenario, defined in Section 2.1, and  𝐫𝐫∗ is the impact 
in the counterfactual scenario, defined as: 

𝐫𝐫∗ =  diag(𝐛𝐛∗)(𝐈𝐈 −  𝐀𝐀∗)−1𝐘𝐘∗ 𝐢𝐢                                      ( 3 ) 

If there are final consumption emissions, we can further define  Δ𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡  =
 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡∗  −  r𝑡𝑡𝑡𝑡𝑡𝑡 where 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡∗  =  (𝐫𝐫∗)′ 𝐢𝐢 + 𝑏𝑏𝑦𝑦∗  𝑦𝑦∗                                             ( 4 ) 
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A counterfactual scenario (an object adjoined with *) is constructed by 
adjusting particular elements in the objects that define the baseline EEIO 
system, 𝐛𝐛 , 𝐀𝐀 , 𝐘𝐘  (and possibly 𝑏𝑏𝑦𝑦  and 𝑦𝑦 ) with this adjustment being as 
faithful as possible to the concepts underlying the policy intervention, 
subject to the limitations of the data and model. 

The counterfactual scenario is constructed by adjusting only a (possibly) 
small set of values of some of the matrix objects than define the EEIO 
system. All other entries remain identical in both scenarios. With the current 
methods, we do not perform any automatic rebalancing of the 
counterfactual scenario, as such the system may become unbalanced when 
changes are applied to the technical coefficient matrix 𝐀𝐀 (i.e., total outputs 
differ from total inputs). 

3.2.4 Change coefficients and substitution 
The edit of a particular entry 𝑖𝑖𝑖𝑖 of an arbitrary 𝐌𝐌 matrix object from the 
baseline to the counterfactual scenario, is performed by the software as: 

𝑀𝑀𝑖𝑖𝑖𝑖
∗ =  𝑀𝑀𝑖𝑖𝑖𝑖 (1 −  𝑘𝑘𝑎𝑎)                                             ( 5 ) 

The change coefficient (𝑘𝑘𝑎𝑎) expresses the magnitude by which a value in the 
IO system is modified. It is obtained as the product of a technical change 
coefficient (𝑘𝑘𝑡𝑡 ) which describes the intervention’s maximum potential 
effect, and of a market penetration coefficient (𝑘𝑘𝑝𝑝) describing the size of the 
given market affected (Wood et al., 2017), 𝑘𝑘𝑎𝑎  =  𝑘𝑘𝑡𝑡 𝑘𝑘𝑝𝑝. 

Furthermore, there might exist a substitution relation between edits in 
different entries. For example, a reduction in the volume of a particular 
material (e.g., steel) used in a production process might be compensated by 
an increase of another (e.g., aluminum). This type of relation is modelled as: 

𝑀𝑀𝑖𝑖𝑖𝑖
∗ =  𝑀𝑀𝑖𝑖𝑖𝑖  +  𝛼𝛼(𝑀𝑀𝑚𝑚𝑚𝑚

∗ −  𝑀𝑀𝑚𝑚𝑚𝑚)                                  ( 6 ) 

Here 𝑚𝑚𝑚𝑚 are the coordinates of the original change (e.g., reduction in steel) 
and 𝑖𝑖𝑖𝑖 are the coordinates of the substitution (e.g., increase in aluminum). 𝛼𝛼 
is a substitution weighting factor accounting for differences in price and 
physical material properties between products, materials or services.  
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3.2.5 Modeling CE interventions in EEIO 
In this section, we show the suggested assumptions behind modelling CE 
interventions. These assumptions may vary depending on the specific case, 
so we encourage a critical reading and application. Firstly, we explain the 
elements that compose the modelling blueprints. We then present 
blueprints for modelling CE interventions under PLE and RE. Blueprints are 
graphic visualizations that indicate where and how changes are applied in 
the EEIO system in order to simulate CE interventions. They are designed 
with the conceptual aid of the work of Allwood and Cullen (2012) and the 
Ellen MacArthur Foundation (EMF, 2015c), which indicate respectively the 
requirements for the implementation of PLE and RE measures, and business 
models in the circular economy. The blueprints provide a simplified visual 
representation of the IO system. This simplification does not include trade. 
Unless otherwise specified in the assumptions, production of export/import 
would be subject to the same changes. 

The blueprints are composed by the technical coefficient matrix (𝐀𝐀), final 
demand (y), and the environmental extensions 𝐛𝐛  and 𝑏𝑏𝑦𝑦  respectively. In 
order to facilitate the identification of points across these tables, we 
subdivide production and consumption activities into groups of similar 
economic and technical properties. These are the coordinate groups needed 
for the blueprints elaborated in this study: 

• Final products (fp): fully manufactured consumer or capital goods that 
are not typically a component (e.g. vehicle, building, instrumentation 
and desktop computers); 

• Components (c): a manufactured or semi-manufactured product that 
may be used as an element in production or as subcomponent of final 
products (e.g. engine, window, spring and metal plates); 

• Primary raw materials (pm): virgin material resulting from extraction or 
the refinement of extracted materials (e.g. primary steel); 

• Secondary raw materials (sm): recycled materials obtained from pre- 
and post-consumer phase (e.g. Recycled Steel); 

• Services (sr): activities aiding the supply and maintenance of goods and 
value (e.g. sharing, renting, selling and repairing). 

The blueprints show different symbols which indicate reductive (-), 
increasing (+) or undefined and case specific (◊) effects of intervention’s 
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changes. In those cases where a substitution between two commodities may 
apply (equation 9) the blueprint shows a star symbol (*). Following the 
framework presented in section 2.1, we make a distinction between primary 
and ancillary changes.  

Figure 2 shows how interventions under PLE are modelled at the industry 
and final demand level. PLE is composed by a set of interventions aimed at 
prolonging the utility of final products or their components. We divide PLE 
in two interventions: 

• Reuse and remanufacturing: modelled by reducing transactions of new 
products (or components) and increasing services (e.g. retail trade, 
maintenance and repairing services). The latter, an ancillary activity, 
may be applied either at the industrial level or final demand depending 
on whether specialized intervention assumes services to be internalized 
by firms or allocated to consumers.  

• Delayed product replacement: modelled by reducing transactions of 
new products (or components) and increasing services in either final 
demand or for the sectors (depending on the assumptions). Changes in 
material demand to increase durability may also be needed.  

 

Figure 2: Product Lifetime Extension (PLE) modelling blueprints 
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Figure 3: Resource efficiency (RE) modelling blueprints 
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We define RE as a set of interventions aimed at reducing use of resources 
and improving performance during their use. In figure 3 we show 8 types of 
interventions and how they are applied:  

• Scrap diversion: This simulates the reduction of swarf due to 
mechanical processing (e.g. during metal cutting). This is modelled 
by reducing the scrap going to recycling activities (secondary 
materials) from a specific manufacturing activity, with it we reduce 
also the equivalent volume of primary material used. We assume 
that the output of production remains unchanged. In other studies 
(Wiebe et al., 2019), this is performed as a market share change in 
the supply table of the supply-use system. However, here we apply 
them in the IO so that we are able to distinguish between industries 
generating scrap. 

• Yield loss reduction: this intervention represents the reduction of 
physical losses at the process level; the simulation method is 
comparable to scrap diversion, however, it includes possible 
material substitutions. This is because Yield loss reduction may be 
obtained by both improving the environmental conditions of 
processes but also by substituting substances which could help 
deliver higher yields.  

• Process improvements: replacing old technologies with more 
efficient ones (e.g. introduction of additive manufacturing). In the 
blueprints we show that the substitution of components may be 
required, however, it is unclear whether it would have a reductive 
or increasing effect. As a result of this change, materials may be 
substituted, however, we assume that process improvements 
always represent a reduction of materials used. The improvement in 
the process may also concern emissions intensities both at the 
industrial level or final consumers. For example, the improvement 
of the process of combustion in car engines may result in changes in 
the intensity of emissions during use.  

• Design improvements: In this intervention we reduce the amount of 
materials (primary and secondary) consumed along a manufacturing 
activity. A change component may also be required depending on 
the specific case.  
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• Use intensification: using products or materials more over a period 
of time would result in higher demand for components and 
maintenance services while reducing the demand for new goods.   

• Sharing: using products among multiple users. Here it is assumed 
that a firm holds the ownership of the product and allows use among 
multiple actors. This means that replacement of components and 
maintenance remains a responsibility of the firm while the sales of 
final products serving the same purpose are reduced.  

3.3 DATA, SOFTWARE AND CASE STUDY SETTINGS 

3.3.1 Data 
The database used is the multi-regional Supply-Use Tables (SUTs) EXIOBASE 
V3.3 from 2011 (Tukker et al., 2013; Wood et al., 2015; Stadler et al. 2018). 
We chose to employ this database for its high level of detail on product 
categories. Specifically, for its inclusion of primary and secondary raw 
materials (PRM and SRM) and environmental extensions. These 
characteristics make EXIOBASE a suitable option for the analysis of CE. 
EXIOBASE is broadly used in the analysis of policies through the use of 
symmetric IO tables. IO tables are calculated from SUTs through the use of 
various transformation methods (Eurostat, 2008). In this work we use the 
Product-by-Product Industry Technology Assumption (ITA). This method is 
commonly used by practitioners and thereby a suitable format to facilitate 
future comparability of studies.  

3.3.2 Software 
The Python Circular Economy (pycirk) software package was designed for the 
creation and analysis of CE scenarios, and it builds on previous software for 
modelling CE (Donati, 2017). This Python3 package can be used by import 
into a Python interpreter or a command line interface. To initialize modeling 
users have to specify various parameters: transformation method; directory; 
aggregation (bi-regional or 49 regions); make secondary (make SRM 
apparent during transformation from SUTs to IO, see section 3.1). The 
package reverts to default settings if parameters are not specified. Upon 
initialization a scenarios.xls file is created in the specified directory. This file 
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works as an interface to set scenario inputs and assessment parameters 
through its multiple spreadsheets. The analysis sheet allows to specify 
assessment indicators while sheets beginning with ”scenario_” represent a 
scenario. These sheets are set to facilitate the integration with the methods 
highlighted in sections 2.3 through 2.5. Once the settings are saved, the 
model is run and results can be calculated for one or all scenarios. Further 
information on use, architecture and logic flows is available through on the 
software documentation (Donati, 2019b). Pycirk is made available for any 
practitioner interested in scenario making or further development of the 
tool. The software is shipped with a bi-regionally aggregated version of 
EXIOBASE v3.3 in pickle format. This is done to facilitate study replicability 
by using a common database and software. The complete multiregional 
database (48 regions) is also available upon request in the same format. 
Additional information on changes to the database can be found in Annex II. 

3.3.3 Case study settings 
With the case study we exemplify the use of pycirk through the analysis of 
global implications of applying Product lifetime extensions (PLE) and 
Resource efficiency (RE) CE strategies. The data used is at a bi-regional (EU-
ROW) level of aggregation as our interest is in the global effects of the 
strategies and their significance to the EU28. For this study we also made 
secondary raw materials explicit in IO, an explanation of how this was done 
can be found in Annex II. We further elaborated the 2 CE strategies into 8 
interventions (figure 2 and 3), for which we identified their specialized 
applications (i.e. interventions applied to a specific product). These 37 
specialized interventions, their assumptions and inputs to the case study are 
in Annex I.a. The results from the processing of each individual intervention 
were used to calculate the intervention priority order for the total scenario. 
This processing order was based on the size of the sum of the relative change 
(RC) of all the indicators from the baseline. The smaller the total RC the 
higher the priority in the total scenario. In table 1 we show a summary of the 
interventions with a cumulative RC < -4%. 

In the first specialized intervention “Increase average lifetime of office 
buildings in constructions 1.5 times”, we reduce the transactions of 
construction in Final demand (except households) and industry. This 
indicates that offices last longer and therefore there is a reduced need for 
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building new ones. We increase by the same relative value services going to 
constructions to simulate more renovation and maintenance. These services 
are contained within the construction category.  

For “Increase average lifetime of vehicles 2.3 times”, we reduce the sales of 
“Motor vehicles, trailers and semi-trailers” both in final demand and 
industry. The category "Sale, maintenance, repair of motor vehicles, motor 
vehicles parts, motorcycles, motor cycles parts and accessories" is increased 
by the same relative value in both final demand and in the technical 
coefficient matrix where the services intersect with motor vehicles. 

In “Increase 2.5 times the intensity of use of vehicles due to higher 
occupancy”, we reduced transactions of cars to final demand. With it, we 
modelled an equivalent reduction of public transport demand. This is 
modelled by using the substitution formula (eq. 6) and applying a negative 
value to the substitution weighting factor𝛼𝛼.  

At last, “Increase average life time of electrical machineries and apparatus 
to final consumers 4 times”. In order to simulate a longer life in this 
specialized intervention, we reduced the transactions of “Electrical 
machineries and apparatus n.e.c.” to final demand. We increase by the same 
relative value the services for maintenance and repair "Retail trade services, 
except of motor vehicles and motorcycles; repair services of personal and 
household goods".



 
 

Table 1: Specialized Interventions with a cumulative relative change < -4% 

Strategy 
(Intervention) 

Specialized 
intervention 

Change 
type 

Product 
category 

Consumption 
activity 

Technical 
Change 
(%) 

Market 
pen. 
(%) 

Substitute 
(SWK) (%) 

Citations 

Product 
lifetime 
extension  
 
(Delayed 
replacement) 

Increase 
lifetime of 
office 
buildings in 
construction
s 1.5 times  

Primary Construction 
work 

Final Demand  
except 
households 

-60 32.1  (Allwood 
and Cullen, 
2012, p234; 
FIEC, 2019) Ancillary Construction 

work 
Construction 
work 

60 22.7  

Product 
lifetime 
extension 
 
(Delayed 
replacement) 
 

Increase 
average 
lifetime of 
vehicles 2.3 
times 
  

Primary Motor 
vehicles, 
trailers and 
semi-trailers 

All final 
demand 
categories 

-50.7 100  (Allwood 
and Cullen, 
2012, p234; 
Allwood and 
Cullen, 
2012, p271 ) 

Ancillary Sale, 
maintenanc
e, repair of 
motor 
vehicles 

Motor 
vehicles, 
trailers and 
semi-trailers 

50.7 100  

Resource 
Efficiency  
 
(Intensify use) 

Increase 2.5 
times the 
intensity of 
use of 
vehicles due 

Primary Motor 
vehicles, 
trailers and 
semi-trailers 

All final 
demand 
categories and 
all product 
categories 

-60 33  (J. M. 
Allwood, 
2015; 
Litman, 
2019; 



 

Strategy 
(Intervention) 

Specialized 
intervention 

Change 
type 

Product 
category 

Consumption 
activity 

Technical 
Change 
(%) 

Market 
pen. 
(%) 

Substitute 
(SWK) (%) 

Citations 

to higher 
occupancy 
  
  
  
  
  
  

Proportio
nal 
reduction 
to  the 
above 
change 

Other land 
transportati
on services 

All final 
demand 
categories 

   -30 Mount, 
2016) 

Ancillary Sale, 
maintenanc
e, repair of 
motor 
vehicles 

All final 
demand 
categories and 
all product 
categories 

120 33  

Product 
lifetime 
extension 
 
(Delayed 
replacement) 

Increase 
average life 
time of 
electrical 
machineries 
and 
apparatus to 
final 
consumers 4 
times  

Primary Electrical 
machinery 
and 
apparatus 
n.e.c. 

All final 
demand 
categories 

-75 100  (Allwood 
and Cullen, 
2012, p275) 

Ancillary Retail  trade 
services, 
except of 
motor 
vehicles and 
motorcycles 

All final 
demand 
categories 

75 100  
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3.4 RESULTS 

3.4.1 Impact of the strategies 
Figure 4 shows the relative change (RC) of Product Lifetime Extension (PLE), 
Resource Efficiency (RE) and their combination (Total). Starting from the 
total scenario, environmental indicators are reduced by -10.1% Global 
Warming Potential 100-years (GWP), -12.5% Raw Material Extraction (RME), 
-4.3% Land Use (LU) and -14.6% Blue Water Withdrawal (BWW). BWW 
concerns the withdrawal of surface and ground water by the manufacturing, 
electricity production and domestic use sector (Eisenmenger et al., 2014). It 
includes all the water used which may be consumed or returned to the 
environment (Eisenmenger et al., 2014). LU is strongly dominated by the 
agricultural sector; therefore, it may see milder effects due to interventions 
in the product categories we analyzed.  

 
Figure 4: Global potential effects of the CE strategies and their combination 
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We also see a great reduction of socio-economic indicators, -6.3% Value 
Added (VA) and -5.3% employment. These results are in contrast with 
previous macro-economic studies and general aims of the CE, where 
economic growth is ensured while decoupling environmental impacts. This 
is in part logical. We focused on Life time extension. Life time extension and 
a more intensive use of products imply that with less product output (and 
hence less VA and labor) the same final demand can be satisfied. Society has 
no wealth loss, needs less labor and hence can provide more free time, but 
optically produces a lower GDP. Another explanation of this discrepancy is 
the absence in our model of interventions concerning investment and other 
dynamic changes (e.g. in price) that were included in other studies. For 
instance, we did not assume that as a result of a more economically efficient 
production, a sector may invest more in other activities nor did we include 
rebound effects. However, it is to be noted that the modelled interventions 
have a stronger relative reductive effect on almost all environmental 
indicators than the socio-economic indicators. That suggests that even at 
parity of economic performance, a circular economy could deliver 
environmental benefits.   

Analyzing the individual strategies, PLE shows the largest contribution to 
reductions across all indicators: -6.9% GWP; -8.7% RME; -3.2% LU; -9.3% 
BWW. In terms of socio-economic indicators, PLE showed an important 
effect in the reductions of employment (-4.6%). RE also indicated a change 
of employment of -2.5% which might imply an overall difference of 2.1 
points between PLE and RE. However, we obtain a -5.3% change in 
employment when we combine the interventions, a 0.7 point difference. 
This is due to the sequential processing of the interventions, producing 
counterfactual values in the matrix of reference at each implemented 
change. Furthermore, in order to understand the sensitivity of the total 
scenario to changes in the order of intervention, we tested different 
processing sequences. By modifying the order of application of the changes, 
we noticed that employment may vary by ~0.05 points (annex I.g). This 
indicates that results on employment have a mild sensitive on the way 
scenario inputs are processed. A similar sensitivity can also be seen in VA. 
On the other hand, the other impact categories remain between 0.1-0.3 
percentile points.  
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Despite smaller effects due to RE, we still see notable improvements in 
environmental performance in this strategy: -5.2% GWP, -5.3% RME, -1.7% 
LU and -8.0% BWW. To be noticed is also the difference in GWP of the two 
strategies (PLE -6.9%; RE -5.2%) (Annex I.b). So PLE has deeper effects in 
reduction of GWP, however, a similar difference can also be observed across 
the other impact categories.  

Figure 5 shows the regional relative change due to the global application of 
the total scenario. As it is to be expected, the implementation of CE 
strategies delivers minor results on environmental reductions at the EU level 
in comparison with ROW (Rest Of World). In fact, if we analyze the change 
of environmental impacts in comparison with the regional baseline (Annex 
I.c), the EU showed GWP -6.4%, RME -7.8%, LU -4.1% and BWW -9.8%; while 
ROW showed GWP -10.9%, RME -13.1%; LU -4.3% and BWW -15.7%. At the 
same time, socio-economic indicators may also see a reduction in both 
regions. The question then remains on how the capital saved is reused by 
industry and final consumers in each region. Therefore, care should be given 
when interpreting the results as economic and environmental impacts may 
vary depending on how the intervention is implemented. 

 
Figure 5: Relative and absolute regional change of global effects due to application of CE 
strategies 
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3.4.2 Impact of individual interventions 
Finally, the interventions are analyzed (figure 6 and 7). We first analyze the 
interventions included in PLE, Delayed replacement and Reuse and 
remanufacturing. Delayed replacement shows major reductions in 
comparison with the other interventions (-6.06% GWP; -7.86% RME; -3.06% 
LU; -7.74% BWW, -4.78% VA, -4.21% E). The specialized interventions (annex 
I.f) mainly responsible for the strength in delayed replacement are the 
increase in average lifetime of office buildings and longer lifetime of vehicles. 
Office buildings were increased 1.5 times (J. Allwood & Cullen, 2013) in 32% 
of the market (FIEC, 2019) and all vehicles increased 2.3 times (J. Allwood & 
Cullen, 2013) in the entire market. This increase in lifetime is modelled by 
reducing the size of transactions proportionally. Therefore, longer life means 
fewer sales of a specific product. Furthermore, repairing and maintenance 
services are increased proportionally according to the intervention.  

 

 
Figure 6: Global relative change in environmental indicators due to the individual Circular 
Economy Interventions. Labels: DR = Delayed Replacement; UI = Use Intensification; DI = 
Design Improvements; R&RM =  Reuse and Remanufacturing; PE = Process Efficiency; YLR 
= Yield Loss Reduction; S = Sharing; SD = Scrap Diversion 
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Reuse and remanufacturing on the other hand, while less meaningful than 
delayed replacement, may still deliver significant environmental benefits (-
1.36% GWP; -1.40% RME; -0.33% LU; -2.33% BWW) at a lower burden on 
employment (-0.93%) and value added (-0.82). However, our input data 
concerned mostly the reuse and remanufacturing of components for 
industrial or infrastructural purposes (e.g. refurbishing electricity 
transmission components), with only a few interventions affecting final 
consumer goods (e.g. reuse of parts in vehicles and mechanical products). 
Therefore, while we show environmental impact reduction, this cannot be 
considered a rule for all cases of reuse as discussed also by (Cooper & 
Gutowski, 2015) and effects may differ depending on the region (Duchin & 
Levine, 2019).  

Use intensification and Design improvements appear to be the most 
effective RE interventions under all environmental indicators, followed by 
Process efficiency. In particular, changes in GWP amounted to: -1.93% Use 
intensification; -1.92% Design Improvements; -0.69% in Process Efficiency; -
0.45% in yield loss reduction; -0.39% Sharing and -0.02% in scrap diversion.  

Covering how vehicles, buildings and machineries are used on a daily basis - 
and their maintenance and reparation - use intensification’s environmental 
benefits also appear to be substantial (-1.93% GWP; -2.24% RME; -0.97% LU; 
-3.04% BWW). However, these environmental benefits rely on the 

 

 
Figure 7: Global relative change in socio-economic indicators due to the individual Circular 
Economy Interventions. Labels: DR = Delayed Replacement; UI = Use Intensification; DI = 
Design Improvements; R&RM =  Reuse and Remanufacturing; PE = Process Efficiency; YLR 
= Yield Loss Reduction; S = Sharing; SD = Scrap Diversion 
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assumption that production is avoided due to a more intensive use. 
Followed by this category, we find design improvements, concerned the 
reduction of material used during the production of various transport 
methods (-53%), structural construction components (-29.4%), and 
mechanical and electrical equipment (-34%). This was modelled by reducing 
the amount of steel and aluminum during manufacturing (Annex I.a). It is 
important to note that we did not take into account other types of design 
improvements concerning better performing components or design for 
disassembly, which may influence emissions during the use phase as well as 
enabling availability of scrap at the end of life. 

Process improvements concerns only the application of additive 
manufacturing. We assumed that 28% (Fraunhofer-Gesellschaft, 2018) 
material savings are obtained by using additive manufacturing for steel and 
aluminum in the production of parts for the transport sector, precision tools, 
and mechanical and electrical equipment. Due to lack of data on the 
potential market penetration, we assumed that this process improvement 
would affect the entire production.  

Yield loss reduction intervention also indicates some environmental benefits 
(-0.45% GWP; -0.12% RME; -0.73% BWW) except for LU which remained 
unchanged. Also socio-economic indicators were moderately reduced (-0.14 
VA and -0.10 E). This intervention was modelled by assuming that a 
cumulative 35% of steel and aluminum going to recycling processing from 
the production of semi-manufactured products is diverted to other uses 
instead. 

The environmental benefits of Sharing appear moderate in comparison with 
the other interventions (-0.39% GWP; -0.28% RME; -0.35% LU; -0.63% 
BWW). Also socio-economic indicators see a contraction (-0.39 VA and -0.30 
E). Analyzing the specialized intervention we see that this is mainly due to 
the change in the way we travel - namely increasing occupancy and use of 
personal vehicles – and sharing machineries across industries. In particular 
the increase in occupancy of vehicles is most aggressive specialized 
intervention affecting environmental performance, which however also has 
the highest impact on socio-economic indicators. This is due to the fact that 
increasing occupancy of vehicles would negatively affect the demand on 
public transport. 
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At last, we see that the implementation of Scrap Diversion shows moderate 
reductions in environmental factors. This is mostly due to the limited scrap 
availability. For instance, while scrap diversion of steel and aluminum in the 
construction sector could be diverted by 90% (J. Allwood & Cullen, 2013), 
the availability of scrap from this use is only 7% (J. Allwood & Cullen, 2013). 
This leads us to consider that while this intervention may be a good practice 
and beneficial for individual manufacturing firms, their benefits on the global 
scale may be limited.  

3.5 DISCUSSION 

3.5.1 Methods and framework 
One of the aims of this paper was to propose standard EEIO modeling 
procedures for CE strategies and their interventions. We proposed a total of 
10 interventions under two CE strategies. Although the basic CE strategies 
are in line with those found by Aguilar et al. (2018), we innovated by making 
a clear distinction between strategies and interventions. We also expanded 
the approach of Aguilar-Hernandez et al. (2018) by including components, 
services, and primary and secondary materials. These interventions’ 
blueprints provide a large degree of flexibility in describing the relationships 
between various elements of IO tables. However, they need to be applied 
critically because, as shown in the case of sharing, variations may be needed 
depending on the specific case. Additionally, the blueprints do not discuss 
how trade should be modelled. Therefore, we are assuming that trade would 
change relative to the applied changes. This is an assumption that in some 
case may need to be modified. Furthermore, our modeling choices respond 
to the premise of creating static representations of a counterfactual 
economic structure using IO. As such, they do not take into account changes 
in price dynamics, investments and stocks. Concerning the use a static 
monetary IO system, we see that it limited our possibilities to model 
strategies for residual waste management. The use of dynamic models (e.g. 
CGE or Stock and flow consistent models) and hybrid unit IO data could 
provide respectively additional insights on monetary dynamics of the CE and 
the physical transaction and stocks creation in the global economy. 
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3.5.2 Software and Data 
Open-access software and data was of great importance in our study. Our 
desire was to ensure study replicability and transparency. In our review we 
found some proprietary software and platforms that allowed for the 
simulation of interventions. However, they were specific to a few regions 
and in some cases the software or data was not publicly accessible. In 
particular, no Python packages were available that allowed for the 
transformation from SUTs to IO and for scenario modeling. We therefore 
developed pycirk, a Python package to handle EXIOBASE V3.3 and convert 
SUTs to IO tables to create scenarios for CE. Pycirk gives the opportunity to 
implement an indefinite number of changes in any matrix in the IO system. 
In this way, one can process multiple type interventions at ones, including 
substitutions. These features are useful in the creation and analysis of 
scenarios. Currently, pycirk only supports product-by-product industry-
technology transformation. Furthermore, pycirk allows for the creation of 
EXIOBASE IO tables in which secondary raw material transactions are 
explicitly separated from primary raw materials. This is a unique feature that 
allows modelers to analyze secondary raw material production and 
consumption in EXIOBASE IO tables.  

3.5.3 Case study 
We performed a zero-cost analysis of a counterfactual economy using the 
EEIOA. Therefore, we presented a world in which CE strategies were already 
implemented. Investments and fiscal stimuli were not included. This means, 
that effects of material taxes and subsidies could not be investigated. For 
this reason, many of the other studies found focused on CGE models. Their 
advantage is in the ability to represent dynamic aspects of the economy. This 
comes at the expense of sectoral resolution, something for which EEIO as a 
structural model is better suited. For this reason many previous studies on 
CE are difficult to compare to our results.  

For the interventions, strategies and goods that we investigated, various 
assumptions had to be made on the basis of EXIOBASE product category 
aggregation. For instance, the data collected (Annex I.a) often referred to 
products for which there was no explicit category in EXIOBASE and were 
therefore sub-items of an aggregated product category. Where it was 
possible we disaggregated the values by their relative market size, otherwise 
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we made an average of the change coefficients to be applied. In order to 
provide a logical order of intervention processing, their schedule was 
optimized against the baseline. However, other types of scheduling may 
output different results (Annex I.g). Moreover, the study was conducted on 
a bi-regional global level, with EU and ROW as the only two regions, 
however, results at a country or regional level may differ greatly as also 
discussed by (Duchin & Levine, 2012) and (Wiebe et al., 2019). 

Additionally, we did not take into consideration changes in commodity and 
service prices resulting from endogenous or exogenous factors. Changes in 
investment, reinvestment of savings due the increased efficiency and global 
market trends such as the transition to a renewable energy system and 
electrification of mobility were not considered. This differs from previous 
studies we analyzed which often presented analyses of the transition to a 
new CE state within a time range (EMF, 2015; WRAP, 2015; Wijkman and 
Skanberg, 2015; (Winning et al., 2017), Wiebe et al., 2019). In particular, the 
study by WRAP (2015) which concerned reuse, recycling, repair and 
remanufacturing and servitization in the UK, showed that by 2030 the 
circular economy could deliver an increase of employment between 31,000 
and 517,000 people in the UK alone (0.1-2% from 2015 UK employment). 
Our results, while of different scope, show that in the EU (EU28) 
employment may decrease by 5.31%. In the study by Rutherford et al. 
(2015), provided an aggressive EU agenda on CE to 2050, reductions of 83% 
in CO2 emissions and an increase of 27% in value added could be seen in the 
EU (EU27). However, while our study shows a different picture, it is 
important to stress that we did not take into consideration the transition to 
a renewable energy system and changes in the food system while they did. 
Therefore, much more moderate impacts are seen on our results. In the 
study by Wijkman and Skanberg (2015), only one part could be compared to 
our work, the resource efficiency scenario. Although, the process efficiency 
improvement in their scenario (25%) is comparable to ours (28%), their other 
RE interventions appear more aggressive than in our case. Despite the 
differences in assumptions, their results show GWP reductions between 3 
and 10% depending on the analyzed country, against our 10.1% global 
reductions. Furthermore, (Winning et al., 2017) showed -0.02% change in 
GWP due the doubling of scrap availability which appears to confirm our 
results concerning scrap diversion. Our results on material extraction (-
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12.5%) are also above those seen in the work of Wiebe et al. (2019) (-10%). 
At the same, their results on employment are ~2% while we show -5.3%. The 
change in employment and value added seems to vary substantially across 
literature as shown also by McCarthy et al. (2018).  

3.5.4 Future work 
From a methodological perspective, intervention modeling blueprints 
should be further expanded and validated. Relationships concerning fiscal 
stimuli and rebound effects specific to interventions should also be 
established. The blueprints should be adapted to other types of IO models 
(e.g. hybrid unit) and to SUTs. The software could be instrumental in this by 
being expanded to allow changes on different types of data structures, using 
different types of datasets and transformation methods. This would allow 
modelers to run sensitivity analysis on their scenarios, something that was 
not possible to do with the current software. Future studies should also 
enrich our findings on CE so to provide a representation of CE closer to real 
world dynamics. In particular, more research is needed on the CE strategies 
and interventions that could not be investigated in our study. For instance, 
Closing Supply Chains and its potential interventions. Future work should 
provide additional insights on CE effects of many other interventions, 
product categories and their stocks across regions as well as more strongly 
integrating economic and physical material studies through the use of 
EEIOA. 

3.6 CONCLUSIONS 

We presented a framework, a software and a structural study on the Circular 
Economy (CE). The framework provides an overview of the structure of CE 
strategies and their implementation in EEIO. Modeling blueprints were used 
to aid scenario building and to provide a systematic and transparent 
application of interventions. We also presented pycirk, a free and open-
source Python package for modeling policies, and technological and market 
changes in EEIO starting from the SUTs database EXIOBASE v3.3 for 2011. 
This is done chiefly to provide practitioners with tools to model CE policies 
in EEIOA in order to facilitate decision making in the transition to a 
sustainable society. The possibilities and use of pycirk were exemplified 



70 
 

through a case study on the CE on a bi-regional (EU-ROW) IO system. Using 
this system, we created scenarios for 2 CE strategies: Product Lifetime 
Extensions and Resource Efficiency. The results from the case study show 
that environmental benefits can be obtained through the pursuit of CE 
strategies. In particular, the combined global effects could amount to a 
global relative change of -10.1% (GWP100), -12.5% raw material extraction 
used, -4.2% land use and -14.6% blue water withdrawal. The analysis of the 
socio-economic indicators showed global reductions of 6.3% in Value Added 
and 5.3% in Employment globally. However, it is to be noted that fiscal 
stimuli (subsidies or tax changes), investment and price changes were not 
included. For this reason, our approach did not follow the premise that a CE 
delivers equal or better economic performance. Additionally, an apparent 
change in GDP does not necessarily represent a loss of general wealth so 
long as the same utility is maintained. Nevertheless, the results from this 
case study should be used and interpreted with care as our scenarios aimed 
largely at show-casing the use of the methods and software presented.  

SUPPLEMENTARY INFORMATION 
Annex I and II: https://doi.org/10.5281/zenodo.7419203 
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