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Abstract: The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded
(FFPE) human tissues is an important development spurred on by requests from stakeholder groups in
clinical fields. One objective is to complement current diagnostic methods with new specific molecular
information. An important goal is to achieve adequate and consistent protein recovery across and
within large-scale studies. Here, we describe development of several protocols incorporating mass
spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were
applied on 4 and 15 µm thick FF tissues, and 4 µm thick FFPE tissues. We evaluated sensitivity and
repeatability of the methods and found that the protocol containing Rapigest enabled detection of
630 proteins from FF tissue of 1 mm2 and 15 µm thick, whereas 498 and 297 proteins were detected
with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer
showed good extraction of the proteins from 4 µm thick FFPE tissue with the average of 270 protein
identifications (1 mm2), similar to the results on 4 µm thick FF. Moreover, we found that temperature
increases during incubation with urea on 4 µm thick FF tissue revealed a decrease in the number of
identified proteins and increase in the number of the carbamylated peptides.

Keywords: FF; FFPE; mass spectrometry; kidney; MS-compatible detergents

1. Introduction

In the emerging field of tissue proteomics, biopsies and sections from organs are being
used to convert solid tissues to molecular and digital information. After removal from
the patients, tissues are stored as either formalin-fixed paraffin-embedded (FFPE) or fresh
frozen (FF) tissues, often in optimal cutting temperature (OCT) medium. Formalin fixation
and paraffin-embedding has been a standard method used for preservation of the tissues
and recently FFPE tissues have also been used to reveal cancer biomarkers [1–3], analysis
of glycoproteomes with MS in cancer [4], and genetics [5]. However, due to chemical
reactions that take place following formaldehyde induced cross-linking and over time
during preservation, intra- and intermolecular interactions within the tissue and protein
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matrices occur. Chemical modifications of proteins add difficulty to achieving excellent
protein recovery from FFPE tissues, as the scope of number of modifications are poorly
described. However, progress and new knowledge has grown in recent years as a number
of studies have detailed the potential impact of the FFPE preservation procedure [6–8] with
respect to the discoverable proteome.

Already as a part of routine procedures, paraffin from FFPE tissues is removed by use
of xylene and water [9] and tissues are subsequently incubated at an elevated temperature
(95 ◦C) to maximize protein retrieval [10,11]. Additionally, extraction buffers have been
supplemented with detergents to enhance protein solubility and recovery. While SDS is one
of the most commonly used detergents for protein extraction in protein biochemistry [12],
its incompatibility with ESI-MS and MALDI-MS has limited its use. As an alternative,
several new detergents have emerged, such as Rapigest [13,14], PPS [15], or Protease-
Max [16], which are compatible with LC/ESI-MS procedures. Here, we investigated their
effectiveness in tissue analysis.

The motive for use of detergent is to release efficiently and comprehensively (all)
proteins from their cellular matrix into the aqueous phase ready for subsequent MS analysis.
Here, yield and efficiency are important parameters. Yield, in particular, is important as FF
and FFPE tissues are limited by size and the sheer amount of tissue available for molecular
studies. Therefore, sample loss, due to partial protein extraction, directly has an effect on
the detection and quantitation of proteins.

There are also other methods emerging that aim to improve the detection limits in
proteomics. Techniques, such as micro- and nano-liter scale sample preparation meth-
ods [17–19] which with laser capture microdissection (LCM) can be developed into spatial
proteome mapping systems exist [20]. Several other technologies have included integrated
proteome analysis devices such as “iPAD” for on-line digestion of 100 cells [21], immo-
bilized enzyme reactors (IMERs) [22–25], and, in a blast from the past, capillary zone
electrophoresis (CZE) [26] has recently shown to improve efficiency of sample preparation.

Nevertheless, in-solution sample preparation is currently the most widely used ap-
proach for analysis of human tissues, probably due to its ease of use. The variety of tissue
types and ongoing challenges to establish a ‘universal’ method for protein retrieval from
FFPE tissues requires constant attempts and community evaluation to move towards defin-
ing method(s) that allow for a generality of analysis of tissues [27]. Subsequent adaption
by colleagues in pathology labs may then follow.

In this study, we analyzed biopsy-size tissue sections, which are 4 µm thick and are
routinely used by pathologists world-wide. Our ambition was to develop fast and robust
sample preparation for 4 µm thick human kidney biopsy tissues, ideally FFPE. We used
both FF and FFPE tissues to investigate what difference could be found in protein detection
between tissue storage types (Figure 1). Results showed that methods were sensitive
enough to detect proteins from only several mm2 of 4 µm thick tissue. To investigate
sensitivity and reproducibility related to the amount of tissue, 4 µm thick FF tissue was
compared to 15 µm thickness of the same tissue. Further, we investigated the proteome
profile of paired 4 µm FF and FFPE tissues to determine if 4 µm FFPE tissues were suitable
for diagnostic and classification purposes. Similar physicochemical properties in terms of
distribution of molecular weight, GRAVY score, and pI values were detected for proteins
in both tissue types, whereas most of the proteins (265 ± 44) were detected in 4 µm thick
when PPS was used.



Molecules 2022, 27, 1137 3 of 13Molecules 2022, 27, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Scheme of the study of protein extraction from the FF and FFPE tissues with MS-compat-
ible buffers. Proteins were analyzed using 4 μm and 15 μm thick FF tissue to examine effect of the 
tissue thickness on the protein identification with several different methods. Further, identified pro-
teins were compared between 4 μm thick FF and FFPE tissues to evaluate appropriateness of the 
minute amounts of the FFPE tissues to be used with the MS-compatible protocols. 

2. Materials and Methods 
2.1. Materials and Reagents 

NH4HCO3 was obtained by Fluka (Zwijndrecht, The Netherlands), acetonitrile 
(ACN, LC-MS grade), formic acid (FA), and water (ULC/MS) were purchased from Bio-
solve (Valkenswaard, The Netherlands). Iodoacetamide (IAA, ≥99%), dithiothreitol (DTT, 
≥99%), acetone, urea, trifluoroacetic acid (TFA, ≥99%), and trypsin (European Pharmaco-
poeia reference standard) were delivered by Sigma Aldrich (Zwijndrecht, The Nether-
lands). PPS Silent Surfactant™ was obtained from Expedeon, ProteaseMax from Promega 
and Rapigest SF from Waters. 

2.2. Kidney Tissue Samples 
FFPE and FF tissues of the kidney were provided by Amsterdam University Medical 

Centers in Amsterdam anonymously. In short, small, equal-sized excisions were prepared 
from a transplant nephrectomy specimen. FF tissues were snap-frozen in optimal cutting 
temperature medium (OCT) and subsequently stored at −80 °C until analysis. FFPE tissues 
were fixated overnight in 4% buffered formalin, the next day embedded in paraffin and 
subsequently stored at room temperature until analysis. Tissue slides were generated with 
a standard clinical pathology lab microtome at 4 μm and 15 μm micrometer thickness. 
Tissue area of the excised material on slides was measured using ImageJ software (version 
1.49). All experiments were performed in triplicate. 

2.3. Tissue Preparation for LC-MS 
FFPE tissues were first deparaffinized by incubating the glass slide containing the 

excised tissue in xylene for 2 min to remove the paraffine. Next, the tissue was incubated 
for 2 min in a gradient of EtOH with the following order: 100% EtOH, 85% EtOH, 70% 
EtOH, and finally deionized water. 

The FF and FFPE tissues were cut out with the scalpel from microdissection and 
scraped off into the Eppendorf tube containing extraction buffer. Proteins from the tissues 
were extracted with the following buffers: 1) 0.1% Rapigest, 30% ACN, and 8 M urea in 
100 mM NH4HCO3 (Buffer 1); 2) 0.1% PPS, 30% ACN, and 8 M urea in 100 mM NH4HCO3 
(Buffer 2); and 3) 0.1% ProteaseMax, 30% ACN, and 8 M urea in 100 mM NH4HCO3 (Buffer 
3) using the following procedures. Samples were first incubated in 50 μL of the buffers 
with no urea addition for 90 min at 95 °C. After the first extraction, samples were cooled 
down to room temperature, 150 μL of 8 M urea was added and samples were further 

Figure 1. Scheme of the study of protein extraction from the FF and FFPE tissues with MS-compatible
buffers. Proteins were analyzed using 4 µm and 15 µm thick FF tissue to examine effect of the tissue
thickness on the protein identification with several different methods. Further, identified proteins
were compared between 4 µm thick FF and FFPE tissues to evaluate appropriateness of the minute
amounts of the FFPE tissues to be used with the MS-compatible protocols.

2. Materials and Methods
2.1. Materials and Reagents

NH4HCO3 was obtained by Fluka (Zwijndrecht, The Netherlands), acetonitrile (ACN,
LC-MS grade), formic acid (FA), and water (ULC/MS) were purchased from Biosolve
(Valkenswaard, The Netherlands). Iodoacetamide (IAA, ≥99%), dithiothreitol (DTT, ≥99%),
acetone, urea, trifluoroacetic acid (TFA, ≥99%), and trypsin (European Pharmacopoeia
reference standard) were delivered by Sigma Aldrich (Zwijndrecht, The Netherlands). PPS
Silent Surfactant™ was obtained from Expedeon, ProteaseMax from Promega and Rapigest
SF from Waters.

2.2. Kidney Tissue Samples

FFPE and FF tissues of the kidney were provided by Amsterdam University Medical
Centers in Amsterdam anonymously. In short, small, equal-sized excisions were prepared
from a transplant nephrectomy specimen. FF tissues were snap-frozen in optimal cutting
temperature medium (OCT) and subsequently stored at −80 ◦C until analysis. FFPE tissues
were fixated overnight in 4% buffered formalin, the next day embedded in paraffin and
subsequently stored at room temperature until analysis. Tissue slides were generated with a
standard clinical pathology lab microtome at 4 µm and 15 µm micrometer thickness. Tissue
area of the excised material on slides was measured using ImageJ software (version 1.49).
All experiments were performed in triplicate.

2.3. Tissue Preparation for LC-MS

FFPE tissues were first deparaffinized by incubating the glass slide containing the
excised tissue in xylene for 2 min to remove the paraffine. Next, the tissue was incubated
for 2 min in a gradient of EtOH with the following order: 100% EtOH, 85% EtOH, 70%
EtOH, and finally deionized water.

The FF and FFPE tissues were cut out with the scalpel from microdissection and
scraped off into the Eppendorf tube containing extraction buffer. Proteins from the tissues
were extracted with the following buffers: 1) 0.1% Rapigest, 30% ACN, and 8 M urea in
100 mM NH4HCO3 (Buffer 1); 2) 0.1% PPS, 30% ACN, and 8 M urea in 100 mM NH4HCO3
(Buffer 2); and 3) 0.1% ProteaseMax, 30% ACN, and 8 M urea in 100 mM NH4HCO3
(Buffer 3) using the following procedures. Samples were first incubated in 50 µL of the
buffers with no urea addition for 90 min at 95 ◦C. After the first extraction, samples were
cooled down to room temperature, 150 µL of 8 M urea was added and samples were further
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incubated for 30 min at 37 ◦C. Subsequently, 2.5 µL DTT (700 mM) was added to each
sample and incubated for 30 min at 37 ◦C. Further, 9.2 µL IAA (700 mM) was added to the
samples and incubated for 30 min at 37 ◦C. Finally, samples were diluted with 120 µL of
1M NH4HCO3 and 880 µL of H2O. To each sample, a total of 70 ng of trypsin was added
and proteins were incubated for 17 h at 37 ◦C. After digestion, samples were purified on an
SPE cartridge and stored at −20 ◦C until instrumental analysis.

2.4. NanoLC/ESI-MS/MS

For the analysis of the tissue samples an Eksigent Ekspert nanoLC 425 system (Sciex)
coupled to the nanoelectrospray interface (nanoESI) of a TripleTOF 5600+ was used. Pep-
tides were loaded onto an Eksigent trap column (nano-LC trap set, ChromXP C18, 120
Å, 350 µm, 0.5 mm) and further desalted with 3% ACN and 0.1% FA at rate 2 µL/min.
Subsequently, peptides were submitted to an in-house packed analytical column (Magic
C18 resin, 100 Å pore size, 5 µm particles, 75 µm i.d., 10 cm column length) at 300 nL/min.
Peptides were eluted with the mobile phase consisted of 5−40% B for 45 min, 40−95% B
for 5 min, 95% B for 9 min, and finally 95–5% B in 1 min. Mobile phase A was composed
of 0.1% formic acid (FA) in H2O, and mobile phase B of 0.1% FA in ACN. Detection of the
peptides was performed in intensity-dependent acquisition (IDA) mode, and survey scans
were acquired in 500 ms, with m/z from 400 to 1250 Da. In each duty cycle, 30 product
ion scans were collected for 100 ms in the m/z range from 200 to 1800 Da, if exceeding
100 counts per seconds and for the charge state 2+ to 4+. During acquisition, dynamic
exclusion was used for half of the peak width and rolling collision energy was used.

Samples were analyzed on LC-MS so that for 15 µm thick tissue amount corresponding
to 1 mm2 of the tissues was analyzed (corresponding to a small clinical biopsy) and for
4 µm thick amount corresponding to 2.5 mm2 of the tissue was analyzed.

2.5. Data Processing

Raw data files (.wiff) were converted into .mgf format using MS Data Converter
(Beta 1.3, https://ab-sciex-ms-data-converter.software.informer.com/1.3b/, accessed on
7 August 2021). Files were processed using SearchGUI (version 3.3.16, http://compomics.
github.io/projects/searchgui, accessed on 7 August 2021) and searched with X!Tandem
against the Uniprot database (downloaded September 5, 2019). Carbamidomethylation
of cysteine residues was set as fixed modification and methionine oxidation was set as
variable modification. Carbamylation of K residues and protein N-termini were set as
variable modifications for carbamylation analysis, and for up to two missed cleavages were
allowed for tryptic digestion. Results were analyzed using PeptideShaker [28] (version
1.16.42, http://compomics.github.io/projects/peptide-shaker, accessed on 7 August 2021),
and proteins at 1% FDR were filtered. The protein and peptide identification lists were
exported from PeptideShaker for each sample and the results of the different samples
corresponding to replicates were aggregated according to the protein accession number or
the peptide sequence. In the case of calculating the total number of proteins, the union of
the protein IDs was used. Otherwise, the individual counts for each replicate were used
and represented as measurement spread in the individual plots. Protein sequences and
protein annotations concerning subcellular localization were retrieved from UniProtKB
(http://www.uniprot.org, accessed on 7 August 2021), GRAVY scores were determined
using the GRAVY calculator (http://www.gravy-calculator.de, accessed on 7 August
2021) and pI values were obtained using ExPASy (https://web.expasy.org/compute_pi/,
accessed on 7 August 2021).

3. Results and Discussion
3.1. Evaluation of Protein Extraction with Different Tissue Thicknesses and Protocols

Protein extraction and further detection from the complex samples are influenced
by the composition of the extraction buffer and the digestion procedures. Use of the
MS-compatible detergents in extraction buffers might improve unfolding and solubility

https://ab-sciex-ms-data-converter.software.informer.com/1.3b/
http://compomics.github.io/projects/searchgui
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of the proteins while avoiding detergent interference with MS detection. In our study,
several protein extraction protocols have been applied to investigate protein extraction
from 4 µm thick tissue and to compare it with the results from 15 µm thick tissue. Buffers
used for protein extraction varied in composition of MS-compatible detergents (Rapigest,
PPS, and ProteaseMax) as described in Methods and Materials section. As shown in
Figure 2a, Buffers 1 and 3 yielded the highest number of proteins identified for 15 µm tissue
(1 mm2), while fewer proteins were identified in corresponding samples of 4 µm tissue
(2.5 mm2). However, similar sequence coverage results were obtained for 4 and 15 µm
tissue suggesting that buffers have similar efficiencies in solubilizing proteins for both tissue
thicknesses (Figure 2a). Correlation of the NSAF values of the identified proteins between
the biological replicates showed good correlation ranging from 0.76 to 0.9 for Pearson
coefficients (Figure S1, see Supplementary Materials) indicating good reproducibility of
the methods.
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Figure 2. Qualitative and quantitative comparison of the proteins extracted from 4 and 15 µm thick
FF tissue using Buffers 1 to 3. (a) Number of identified proteins; (b) Sequence coverage; (c) Venn
diagrams illustrating the distribution of all identified proteins between 15 µm (blue) and 4 µm (red)
thick FF tissue. Results are shown as mean ± SD.

Qualitative method comparison was measured in terms of protein overlap (Figure 2c).
The number of uniquely identified proteins was highest for 15 µm tissue using Buffer 1 and 3,
while the overlap between 4 and 15 µm tissue was similar using Buffers 1, 2, and 3.

Overall, these results demonstrate that protein extraction from 4 µm tissue is possible
and that protein extraction with different protocols was efficient enough for detection of
high numbers of proteins from 4 µm tissue compared to 15 µm tissue.

3.2. Evaluation of Extraction Buffer Efficiency and Reproducibility in FF and Archival
FFPE Tissues

To compare efficiency in protein extraction for different tissue types Buffers 1, 2, and
3 were applied to 4 µm thick FF and FFPE tissues. Results showed that higher protein
identifications and NSAF values were observed for FF tissues using Buffer 3 (Figure 3a,b),
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while the number of protein identifications and NSAF values were similar for FF and FFPE
tissues using Buffer 1 and 2. Venn diagrams in Figure 3c illustrate the overlap of protein
identifications among 4 µm FF and FFPE tissue samples for the three buffers. The highest
overlapping protein identifications between 4 µm thick FF and FFPE tissues were obtained
for Buffer 1 and Buffer 2 (47% and 45%, respectively), while the number of uniquely
identified proteins was highest for FF samples using Buffer 3 (58%).
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Figure 3. Qualitative and quantitative comparison of 4 µm thick FF and FFPE tissue. (a) Number of
identified proteins for 4 µm thick FF and FFPE kidney tissue with Buffers 1 to 3. (b) Quantitative
comparison of protein abundance by total NSAF values for 4 µm thick FF and FFPE tissue after
extraction with Buffers 1 to 3. NSAF values were expressed as a percentage of all proteins in all
samples of all buffers. (c) Venn diagrams illustrating distribution of identified proteins between 4 µm
thick FF (red) and FFPE (blue) tissue samples for Buffers 1 to 3. Results are shown as mean ± SD.

Overall, the results of 4 µm FF and FFPE tissues are comparable from which we can
conclude that FFPE tissues could be utilized when FF tissues are not available. Buffer 2
was selected for further analysis as this buffer showed the highest efficiency for protein
extraction for 4 µm FFPE tissues and gave comparable results for different tissue thicknesses
and types.

Qualitative and quantitative reproducibility of the methods were assessed between
replicates of 4 µm thick FF and FFPE tissue (Figure S1, see Supplementary Materials) using
Buffer 2. Qualitative reproducibility was evaluated in terms of protein identification overlap
between biological replicates which was 16% and 25% for FF and FFPE tissue, respectively.
Semi-quantitative reproducibility was determined by calculating the Pearson correlation
coefficients between replicates and results showed good correlation with r ≥ 0.85 for both
FF and FFPE tissue.

3.3. Comparison of Physicochemical Properties of Identified Proteins

The physicochemical properties of the identified proteins extracted with Buffer 2 were
evaluated in terms of molecular weight (MW) distribution, pI distribution, GRAVY scores,
cellular localization, and K/R ratio. For both FF and FFPE tissues, the most abundant
proteins are between 10 and 20 kDa mass range (Figure 4a). Proteins within the mass
range 10–50 kDa had higher abundances in FFPE tissues compared to corresponding FF
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tissues. Further, as shown in Figure 4b, NSAF values were highest for proteins with pI
values 5–6, followed by the proteins with a pI values of 6–7 and 8–9. Figure 4c shows the
distribution of the identified proteins in terms of their GRAVY scores. The most abundant
proteins were detected in the range −0.4 to −0.2 for both FF and FFPE tissue. FFPE samples
contained a higher abundance of proteins in the range of −0.4 to 0 GRAVY score. The semi-
quantitative distribution of the proteins was determined as their NSAF values according
to their cellular localization (Figure 4d). Similar abundancies between the proteins were
observed among FF and FFPE tissues, with proteins in the cytosol and nucleus having
the highest abundance, while membrane proteins were slightly more abundant in FFPE
samples which could be indication of good solubilization properties of Buffer 2. Cellular
localization and NSAF values of the proteins identified in FF and FFPE tissues with Buffer
2 are shown in Supplementary Table S1. Moreover, further comparison showed good
correlation of abundance of the proteins between FF and FFPE tissues (Figure 4e) which
could indicate appropriateness of 4 µm FFPE tissues in this study.
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Further, results for the ratio of C-terminal lysine-containing peptides versus C-terminal
arginine-containing peptides (K/R) are shown in Figure 5. Results show that K/R was
decreased for FFPE compared to FF tissue which is in agreement with the previously
published literature [29–32]. Underrepresentation of K residues due to the reaction of
side chains with formaldehyde confirm that lysine side chains are more involved in cross-
linking reactions with formaldehyde, to date mostly studied on tissues sections in the range
of 8–60 µm [29–31], while previously for 3 µm tissues micro sized heat-induced antigen
retrieval chamber was used [32].
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3.4. Effect of Temperature on Carbamylation during Urea-Incubation

Incubation with urea-containing buffers might lead to peptide carbamylation and
hindered protein digestion due to side reactions with isocyanic acid, which is enhanced
at elevated temperatures [33–35]. Modifications of the proteins might induce incomplete
protein digestion and alternate chromatographic analysis of the peptides. The influence
of an elevated temperature during incubation was tested by incubating 4 µm FF tissue
samples at increasing temperatures with the buffer containing 30% ACN/8 M urea in
100 mM ammonium bicarbonate whereas, previously, ammonium bicarbonate has been
shown as carbamylation inhibitor [33]. Increasing incubation temperatures of the FF tissues
in the buffer increased the percentage of carbamylated peptides which consequently led to
a decrease in the number of identified proteins as shown in Figure 6. These results indicate
that in the case of antigen retrieval of the FFPE tissues at elevated temperatures, urea should
be supplemented into the buffer in subsequent steps after decreasing the temperature of
the mixture to 37 ◦C.
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4. Conclusions

Detection of the proteins from the human tissues is important for patient care and
diagnostics. FFPE tissues are the most common method for storing patient material and
it is essential to find a reliable and reproducible protocol(s) for protein retrieval from this
type of material. We specifically developed the protocol so it could be directly used on
biopsy samples stored in pathology, even at surfaces below 2.5 mm2. The rationale was to
enable incorporation of the workflow without the need to take an extra biopsy (which is
the case for most RNA-based techniques).

In this study, we examined protein retrieval and compared results for 15 µm thick FF
kidney tissues, and applied developed protocols to 4 µm thick FF and FFPE kidney tissue
sections. We observed that the most proteins were identified in 15 µm FF tissues with a
buffer containing Rapigest (630 ± 80), followed by ProteaseMax (498 ± 51), and finally PPS
(297 ± 188). However, from 4 µm FFPE tissues, most proteins were recovered (265 ± 44)
with a buffer containing PPS, suggesting this buffer to be appropriate for screening of the
proteins in small tissue amounts. Proteomics of thin sections of FFPE tissues has already
been employed on different tissue types [13,36,37] to investigate protocols with the goal to
optimize them to obtain patient data. While there are existing methods as pressure cycle
technologies which omit long digestion times [37], in-solution digestion due to its low
cost and simplicity has still been most widely used. Additionally, in our study, proteins
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from 4 µm FF and FFPE tissues showed similarity in physicochemical properties indicating
appropriateness of the used in-solution protocol for protein extraction from FFPE tissues.

Our results on kidney FFPE tissues showed underrepresentation of lysine (K) residues,
probably due to a reaction of the lysine sidechains with formaldehyde in FFPE tissues,
which is in agreement with previously published work [31,37]. Significance of the ex-
perimental optimization of the protocols which use urea in protein extraction is also
demonstrated in previous reports whereas maximum yield was observed after samples
were incubated at elevated temperature (95 ◦C), and urea was added after decreasing the
temperature of the sample solution to 60 ◦C [38]. However, in the case of the lysate of
SK-MEL cells, rat spleen lysates, and pancreatic tumor lysates, the best performance was
observed when digestion was performed with urea at room temperature [35]. Here, we
observed that urea at elevated temperature, which is necessary for recovery of proteins
from FFPE tissues, results in an increase in the number of carbamylated peptides, while the
number of the identified proteins decreased. This implies that urea should only be used
later in the protocol with incubation at lower temperature.

Supplementary Materials: The Supporting Information contains qualitative and quantitative repro-
ducibility of the results, physicochemical properties of proteins detected in all methods. Table S1.
Peptides list and Proteins list. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE [39] partner repository with the dataset identi-
fier PXD020793. Figure S1. Qualitative and quantitative reproducibility of protein extraction from
(a) 4 µm thick FF and FFPE kidney tissue, and (b) 15 µm thick FF kidney tissue using Buffers 1 to 3.
Venn diagrams show the distribution of identified proteins among biological replicates and correla-
tion of the log 10 NSAF values between replicates is shown using Pearson r coefficient. Figure S2.
Quantitative analysis of physicochemical properties of the identified proteins from 4 µm thick FF
and FFPE tissue using Buffers 1 to 3. Quantitative protein distribution in terms of number of protein
identifications according to (a) MW, (b) pI, (c) cellular localization.
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Abbreviations

ACN acetonitrile
CZE capillary zone electrophoresis
DTT dithiothreitol
EtOH ethanol
FA formic acid
FF fresh frozen
FFPE formalin-fixed paraffin embedded
GRAVY grand average of hydropathy
IAA iodoacetamide
IMER immobilized enzyme reactors
iPAD integrated proteome analysis devices
LCM laser capture microdissection
NSAF normalized spectral abundance factor
OCT optimal cutting temperature
TFA trifluoroacetic acid
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