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Abstract: Elicitors are stressors that activate secondary pathways that lead to the increased production
of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L),
methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually
and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture
significantly increased the concentration of photosynthetic pigments and total phenolic contents.
The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs
(silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g−1 FW)
and chlorophyll b (33.6 µg g−1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a
substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in
carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the
phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the
highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments
with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest
concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor,
following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA
(100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure
times of 120–144 h proved to be the most promising in the accretion of valuable bioactive molecules.
The study opens new insights into the use of these elicitors, individually or in combination, by using
different concentrations and compositions.
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1. Introduction

Herbs are plants or plant parts used to treat many physiological diseases as they
possess various phytochemical and remedial properties [1]. In different countries, local
physicians used different herbal remedies as therapeutic agents. The herbal plant Silybum
marianum L. has been found very effective to cure liver disorders. S. marianum L. (Milk
thistle) is a herbaceous broadleaf plant that grows both annually and biennially and is
a member of the Asteraceae family [2]. S. marianum has recently gained much attention
from the scientific community as it possesses medicinal and therapeutic value [3]. The
significance of S. marianum and subsequently its active constituents are evident from the
list of diseases for which the plant extracts have been used as therapeutic agents [4]. The
diseases such as cancer, anorexia, diabetes, hepatitis, hemorrhoids, cirrhosis, malaria, spleen
disease, and estrogen-related diseases are found to be treated with the pharmacologically
important metabolites obtained from S. marianum [2–5]. This plant is well-known for curing
biliary and liver conditions, including liver cancer [6].

Chlorophyll pigments (chlorophyll a and chlorophyll b) are photosynthetic pigments
that give plants their green color. Chlorophyll has antioxidant properties in human nutri-
tion, and its bright color makes food more appealing to eat [7,8]. It has also been found to
have anti-cancer qualities because it can prevent some carcinogenic substances from being
absorbed into the gastrointestinal system [9].

Photosystems in plants are protected by carotenoids, which allow them to engage in
photosynthesis [10]. Carotenoids are potent antioxidants with a wide range of health bene-
fits, including pro-vitamin A activity, cancer prevention, improved cognitive function, and
improved eye and cardiovascular health [11,12]. Immunomodulation and the prevention
of degenerative diseases have also been connected to carotenoids [13]. Carotenoid-rich
diets have also been linked to a lower incidence of various diseases in epidemiological
studies [14].

Phenolics are a wide category of phytochemicals that includes, among other things,
phenolic acids and flavonoids [15]. They are powerful antioxidants with anti-inflammatory,
anti-obesity, and anti-cancer activities [12–16]. They have also been demonstrated to
help prevent diabetes and cardiovascular disease [16]. It is the main bioactive ingredient
in S. marianum to cure numerous deadly illnesses because it includes flavonoids and
flavonolignans, which are recognized to have therapeutic potential in S. marianum [17,18].
Photosynthetic pigments play a fundamental role in plant defense response by increasing
phenolic contents in plants [19]. In plant cells, phenolic compounds play a variety of
roles, including defense against insect attack and infection by disease agents such as fungi,
bacteria, and viruses [20,21], DNA protection from oxidative damage, and reductions in
photo-oxidative damage to photosystems [22,23].

Lignin and flavonoids have antioxidant and antimicrobial properties and have po-
tential use in the production of pharmaceuticals and biomedical applications. Its biocom-
patibility, ability to absorb UV light, antioxidant and antimicrobial activities, and ability
to improve the mechanical strength of processed biomaterials make it a promising can-
didate for pharmaceutical and biomedical applications. Research suggests that lignin
and flavonoids could be used in the development of biomedical hydrogels, drug delivery
vehicles, or biocomposites for tissue engineering and wound healing [24–26].

Genetic, physiological, ecological, and environmental variables all have an impact
on the S. marianum secondary compounds’ production that was grown in vivo [27,28].
All of these factors cause variations in the quality and quantity of S. marianum medicinal
formulations that are commercially available. As a result, a strategy for growing S. marianum
in vitro with standardized quantities of physiologically active substances is needed to
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optimize its production [29,30]. The use of culture media has been the most popular strategy
employed in recent decades to obtain improved yields in the production system [31]. Recent
research suggests that several bioactive molecules and plant secondary metabolites along
with various reactive oxygen species are involved in signal transduction at the cellular level
when a host plant is faced with any type of biotic or abiotic stress [30].

Different elicitor treatments can be used to induce the formation of secondary metabo-
lites in plant cells in vitro [32]. In response to elicitors, plants produce bioactive chemicals
as a natural defensive mechanism. Elicitors are stressors that activate secondary pathways
that lead to the production of bioactive substances. Elicitors are classified as either abiotic
or biotic based on their natural state. Physical agents (e.g., UV irradiation, temperature,
mechanical injury) and chemical compounds (e.g., salicylic acid (SA), jasmonic acid (JA),
and methyl jasmonate) are examples of non-biological elicitors (MeJA) [33–36]. Biotic
elicitors come from a microbial or plant source, such as yeast extract, and have a biolog-
ical origin [37]. In vitro, abiotic and biotic elicitors were used to rapidly produce a large
number of bioactive chemicals [33]. Elicitation can also affect the creation of other bioactive
substances such as vitamins and plant pigments (chlorophylls and carotenoids), affecting
plant organoleptic quality, particularly color [14].

Nanotechnology is an emerging technology, and the use of nanoparticles (NPs) as
elicitors shows promising effects to increase secondary products in the body of plants [38].
The authors of reference [39] observed nine different types of mono- and bimetallic alloy
metal NPs including gold (Au), copper (Cu), silver (Ag), silver–copper (1:3), silver–copper
(3:1), silver–copper (1:3), silver–copper (3:1), silver–gold (1:3), and silver–gold (3:1) which
exerted their influence on the stem and root growth, seed growth, and biochemical levels
of the plant S. marianum. When the seeds were given NP suspension treatment, their
growth was noticeably enhanced especially with silver nanoparticle (AgNP) suspension.
The effect of AgNPs was found to be more significant among all the NPs used in mapping
the conclusions of different mono- and bimetallic NPs on medicinal plant species. NPs
have a significant impact on the development of hairy roots and seeds of many plants such
as Lactuca sativa, Brassica napus, Zea mays, Raphanus sativus, Cucumis sativus, and Lolium
multiflorum. The authors of reference [40] observed that AgNPs have a favorable impact on
S. marianum as the concentration of secondary metabolites was remarkably increased in the
medium. In another study, AgNPs used for Brassica juncea seeds increased seedling vigor,
root, shoot height, and weight [41]. Hence, AgNPs are crucial for plant growth because
they regulate numerous metabolic tracks which significantly affect phyto- chemical levels
in plant cells.

Aspergillus niger is also known to play an important role as a biotic fungal elicitor for
the enhancement of the synthesis of secondary metabolites in laboratory cultures [39,40].
In addition to this, methyl jasmonate (MeJA), a plant growth regulator, is also regarded as
a useful biotic elicitor against different stresses. When there is any damage in plant cells,
jasmonic acid and MeJA are produced in the damaged part of the plant [42].

Using a soilless growing method called hydroponics, highly nutritious media are
used to cultivate plants with enough dissolved oxygen [43,44]. It is a method of soilless
cultivation where the roots are submerged in water H2O enriched with mineral elements
while being fixed by growing materials such as pebbles, clay, or perlite [45]. Precise and
regular surveillance is necessary to improve the formation of liquid fertilizer to enhance
plant production [46]. A hydroponic system can be employed to augment the production
of medicinally important compounds in plants by using different elicitors. Elicitation is
a promising technique for increasing phytochemical contents by activating the defense
mechanism of plants [34].

There is however little information on the effects of elicitors on these metabolites
in medicinal plants, specifically S. marianum (L.). This study aimed to investigate the
response of S. marianum (L.) to elicitors in a hydroponics culture. Considering the medicinal
importance of S. marianum’s bioactive compounds and due to the lack of information on
the effects of elicitors’ application on chlorophyll, carotenoid, and total phenolic contents
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in S. marianum, the current study was designed to investigate biotic and abiotic elicitors’
effects on the accretion of these bioactive compounds. Moreover, a combination of different
elicitors has not been studied previously on hydroponically grown medicinal plants. There-
fore, in the current study, three different elicitors, i.e., MeJA, fungal elicitors, and AgNPs,
were utilized to examine their impact on the buildup of bioactive chemicals in hydroponic
environments, both singly and even in mixture form.

2. Results

The applied treatments had a significant impact on the chlorophyll a, b, ab, total
chlorophyll, carotenoids, lignins, and flavonoid contents in S. marianum under hydroponic
culture.

2.1. Weight of Treated Plants

For different treatments, no significant change in plant weight was observed, and a
pairwise comparison was performed which showed no significance among the treatments
used under hydroponics.

2.2. Chlorophyll a, b, ab and Total Chlorophyll Contents in Treated Plants

All the treatments showed a significant effect on chlorophyll content. The highest
chlorophyll content was found in control plants after 48 h. However, as the treatment
time increased, the highest chlorophyll content was found in plants treated with methyl
jasmonate (100 µM/L) after 144 h. Both primacy and insignificance among the replications
were revealed by the pairwise comparison of the harvests and therapies (Figures 1a and 2a).
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Figure 1. Effect of different treatments of elicitors on chlorophyll a (a), b (b), and ab (c) and total
chlorophyll (d) contents of Silybum marianum in hydroponics where harvest time on x-axis, first = one
day (24 h), second = 48 h, third = 72 h, fourth = 96 h, fifth = 120 h, sixth = 144 h, where (T0 = control,
T1 = methyl jasmonate, T2 = silver nanoparticles, T3 = fungal elicitors, T4 = methyl jasmonate + fungal
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T7 = methyl jasmonate + silver nanoparticles + fungal elicitors); different letters on the bars indicate a
difference that was significant at p > 0.05; Tukey test.
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Figure 2. Chord diagram showing effect of different treatments of elicitors on chlorophyll a (a), b (b),
and ab (c) and total chlorophyll (d) contents of Silybum marianum in hydroponics where harvest time
on x-axis, first = one day (24 h), second = 48 h, third = 72 h, fourth = 96 h, fifth = 120 h, sixth = 144 h,
where (T0 = control, T1 = methyl jasmonate, T2 = silver nanoparticles, T3 = fungal elicitors,
T4 = methyl jasmonate + fungal elicitors, T5 = methyl jasmonate + silver nanoparticles, T6 = fungal
elicitors + silver nanoparticles, T7 = methyl jasmonate + silver nanoparticles + fungal elicitors).

A considerable impact of various treatments was found on chlorophyll b content. The
commodity with the highest concentration of chlorophyll b was AgNP (1 ppm/L)-treated
plants after 120 h, whereas, after 144 h, the co-treatment of MeJA and AgNPs (100 µM/L +
1 ppm/L) was found to be more effective in enhancing chlorophyll b content. The fungal
elicitors (0.2 g/L) also caused an increase in chlorophyll b content after 72 h and 120 h of
treatment. MeJA (100 µM/L) also caused an increase in chlorophyll b content after 72 h of
treatment. Both primacy and insignificance among the replications were revealed by the
pairwise comparison of the harvests and therapies (Figures 1b and 2b).

All the treatments showed a significant effect on chlorophyll a and b content. The
highest concentration of chlorophyll ab was noted under the combined treatment of MeJA
(100 µM/L) and fungal elicitors after 72 h. However, after long-term exposure of 144 h,
MeJA (100 µM/L) application was more effective in enhancing chlorophyll ab. The com-
bined treatment of fungal elicitors (0.2 g/L) and AgNPs (1 ppm) and MeJA (100 µM/L)
also increased chlorophyll ab content after 72 h of treatment. Moreover, the combined
effect of fungal elicitors (0.2 g/L) and AgNPs (1 ppm) also showed an increase in chloro-
phyll ab content after 72 h and 96 h of treatment. Both primacy and insignificance among
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the replications were revealed by the pairwise comparison of the harvests and therapies
(Figures 1c and 2c).

All the treatments showed a significant effect on the total chlorophyll content. Treat-
ments were found effective only after 120 h, and among these, individual methyl jasmonate
(100 µM/L) application showed the highest total chlorophyll content. Both primacy and
insignificance among the replications were revealed by the pairwise comparison of the
harvests and therapies (Figures 1d and 2d).

2.3. Carotenoid, Total Phenolics, Lignins, and Flavonoids Content in Treated Plants

A substantial outcome of various treatments was found on carotenoid material. The
highest carotenoid production has been observed under combined treatment of MeJA
(100 µM/L) and silver nanoparticles (1 ppm) after 48 h of treatment. MeJA (100 µM/L)
treatment also showed significantly increased production after 72 h and 120 h of treatment.
Combined treatment of MeJA (100 µM/L) and fungal elicitors (0.2 g/L) also showed an
increase in the carotenoid content after 72 h of treatment. AgNPs (1 ppm) showed a
relentless increase in carotenoid content from 24 h to 72 h of treatment. An increase in
carotenoid content was also observed under the combined treatment of fungal elicitors
(0.2 g/L) and AgNPs (1 ppm) after 144 h. Both primacy and insignificance among the
replications were revealed by the pairwise comparison of the harvests and therapies
(Figures 3a and 4a).
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Figure 3. Effect of different treatments of elicitors on Carotenoids (a), Phenolics (b), Flavonoids (c),
and Lignin (d) contents of Silybum marianum in hydroponics where harvest time on x-axis, first = one
day (24 h), second = 48 h, third = 72 h, fourth = 96 h, fifth = 120 h, sixth = 144 h, where (T0 = control,
T1 = methyl jasmonate, T2 = silver nanoparticles, T3 = fungal elicitors, T4 = methyl jasmonate + fungal
elicitors, T5 = methyl jasmonate + silver nanoparticles, T6 = fungal elicitors + silver nanoparticles,
T7 = methyl jasmonate + silver nanoparticles + fungal elicitors); different letters on the bars indicate a
difference that was significant at p > 0.05; Tukey test.
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Figure 4. Chord diagram showing effect of different treatments of elicitors on Carotenoids (a), Phenolics
(b), Flavonoids (c), and Lignin (d) contents of Silybum marianum in hydroponics where Harvest time
on x-axis, First = One day (24 h), second = 48 h. Third = 72 h. Fourth = 96 h. Fifth = 120 h.
Six = 144 h. where(T0 = control, T1 = methyl jasmonate, T2 = silver nanoparticles, T3 = fungal elicitors,
T4 = methyl jasmonate + fungal elicitors, T5 = methyl jasmonate + silver nanoparticles, T6 = fungal
elicitors + silver nanoparticles, T7 = methyl jasmonate + silver nanoparticles + fungal elicitors).

Under hydroponic conditions, various treatments showed a discernible increase in
overall phenolics. Among different treatments, MeJA (100 µM/L), MeJA (100 µM/L) and
fungal elicitors (0.2 g/L), and MeJA(100 µM/L) and AgNPs (1 ppm/L) implementations
displayed an enhanced total phenolic concentration following 24 h. After 72 h, MeJA
(100 µM/L) was more phenolic in total than other treatments. However, after 120 h,
MeJA (100 µM/L) and MeJA (100 µM/L) and fungal elicitors (0.2 g/L) had been the most
successful in increasing the total phenolic content. The highest total phenolic content was
noticed after 144 h under AgNP treatment (1 ppm/L). Both primacy and insignificance
among the replications were revealed by the pairwise comparison of the harvests and
therapies. Pearson correlation for different phytochemical analyses of S. marianum in
hydroponics culture with different treatments and principle component analysis of the
effect of various treatments application in hydroponics culture to enhance phytochemicals
of S. marianum has also been portrayed (Figures 3b and 4b).

All the treatments showed a significant effect on the flavonoid content. The highest
content was found in the plants after 72 h of treatment of MeJA (100 µM) and the control.
All of the treatments almost showed good results in flavonoid production. The pairwise
comparison of treatments and harvests showed both significance and non-significance
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among the treatments. Different letters on the bars show significant differences at p ≤ 0.05;
Tukey test. The chord diagram is showing the average contribution of different treatments
for the enhancement of flavonoid contents (Figures 3c and 4c).

All the treatments showed a significant effect on the lignin content. The highest content
was found in plants after 96 h under the combined treatment of MeJA and fungal elicitors
(100 µM/L + 0.2 g/L). This treatment showed the best effect on lignin production in all
six harvests. Fungal elicitors (0.2 g/L) and green-synthesized nanoparticles (1 ppm/L)
separately also showed increased lignin content. Under fungal elicitor (0.2 g/L) treatment,
the highest content was observed after 144 harvests. Green-synthesized nanoparticles
(1 ppm/L) treatment showed the highest lignin content in harvest after 24 h. The combined
treatment of MeJA and green-synthesized AgNPs (100 µM/L + 1 ppm/L) and fungal elici-
tors and green-synthesized AgNPs (0.2 g/L + 1 ppm/L) showed increased lignin content
production in comparison to the control. The pairwise comparison of treatments and har-
vests showed both significance and non-significance among the treatments. Different letters
on the bars show significant differences at p ≤ 0.05; Tukey test. The chord diagram shows
the average contribution of different treatments for the enhancement of lignin content
(Figures 3d and 4d).

2.4. Principal Component Analysis

There is a high correlation among the various treatments, viz., (T0 = control,
T1 = methyl jasmonate, T2 = silver nanoparticles, T3 = fungal elicitors, T4 = methyl
jasmonate + fungal elicitors, T5 = methyl jasmonate + silver nanoparticles, T6 = fungal
elicitors + silver nanoparticles, T7 = methyl jasmonate + silver nanoparticles + fungal
elicitors) and the enhanced production of various secondary molecules in S. marianum.
The first principal component (PC1) revealed 20.5% of the total variation. The PC2 explained
16.7% of the total variation in the enhanced production of various molecules by different
treatments. The loading plots demonstrate that the relationships among various treatments
with the enhanced production of various secondary molecules at different locations with
a <90◦ angle of vectors are positively correlated and with a >90◦angle of vectors are not
correlated (Figure 5a,b).
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3. Discussion

It has been a long-standing practice to treat patients using medicinal plants to treat a
variety of ailments. Plant small molecules such as photosynthetic pigments and carotenoids
play a key role in photosynthesis. The elicitation technique has commonly been used to
increase the production of plants’ important bioactive compounds in parts of plant cells
with special reference to medicinal plants [47]. In the present study, different types of
elicitors (abiotic and biotic) have been used to enhance the production of these valuable
compounds by S. marianum [48,49]. The most commonly used and effective elicitors for the
stimulation of secondary metabolite production are methyl jasmonate (MeJA), fungal cells,
and metallic nanoparticles [50,51]. Moreover, among different culture systems, scientists
and growers claim that hydroponic systems allow plants to increase their capabilities for
continuous production in a short growing period, require less space, and allow plants
to be grown anywhere with a regulated growth environment [52,53]. The hydroponic
technique is not seasonal, and just a few investigations on S. marianum in hydroponics
have been conducted [54]. The use of elicitors under such controlled conditions is very
useful for the enhanced production of secondary metabolites. MeJA and fungal elicitors
increased bioactive compound production in in vitro cultures of Stemona sp. due to the
increased production of stamina alkaloids [55]. Our findings are in line with the authors
of references [21,56], where MeJA significantly increased the production of secondary
metabolites such as total phenolics and flavonoid contents [34,57].

MeJA is considered a signaling molecule that stimulates the accumulation of essential
phyto-compounds including chlorophyll and carotenoids [37]. Our results show enhanced
photosynthetic pigments under the influence of MeJA, which coincides with the authors
of reference [58] who reported a similar study of increased photosynthetic activity by
enhancing the photosystem II machinery under MeJA application. Similar findings were
observed by [55] where jasmonic acid application led to the accretion of plant pigments [56].
The results of the present study are also supported by different research groups who studied
the impact of MeJA application, and the results showed that the treatment with MeJA led
to increases in photosynthetic pigments under drought stress conditions compared to
control plants [39,57–60]. When MeJA and AgNPs were used together, chlorophyll ab
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concentration reached a maximum after 72 h of exposure which was far more than the
control. Hence, MeJA is proved to be an important determinant in enhancing chlorophyll
and carotenoid contents in most plants [61,62].

Phenolic compounds play an important role in scavenging free radicals and protecting
plants from the damaging effects of elevated ROS levels due to stress. A substantial
upsurge in phenolic compounds by MeJA application has also been observed in various
studies [63,64]. The maximum increase in phenolic compounds was observed in Giza
35 (soybean genotype) under MeJA treatment [1,65]. The authors of reference [66] also
found that the formation of phenols in plant tissues increases under conditions of biotic
stress [67]. Previous reports by the authors of reference [68] showed an increase in phenolic
compounds under the effect of MeJA treatment. Therefore, our study suggested that MeJA
could be used as a potential growth regulator to enhance the synthesis of these essential
compounds in plants [68].

MeJA accumulates phenolic content in plant cells by regulating phenylpropanoid
metabolism. MeJA stimulates three important enzymes in phenylpropanoid metabolism:
Phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, and 4-coumarin coenzyme A
ligase [20]. Phenylalanine ammonia-lyase changes L-phenylalanine into trans-cinnamic
acid, and then, trans-cinnamic acid is converted into coumaric acid by cinnamate
4-hydroxylase in the presence of oxygen molecules and NADPH. Later, coumaric acid
is converted into 4-country-CoA by the enzyme 4-coumarin co-enzyme A ligase. Then,
4-coumaryl co-enzyme A further acts as a substrate for the synthesis of phenols. Moreover,
the enzyme polyphenol oxidase is inhibited by MeJA. This enzyme oxidizes phenolic
content into highly reactive quinones. With its inhibition, the phenolic content starts to
accumulate and increase in concentration. In a study by the authors of reference [69], a
considerable increase in antioxidant phenolic compounds and carotenoids was found while
studying the effect of exogenous MeJA application on sweet potatoes. Another study per-
formed on Romaine lettuce also showed similar results of increased phenolic content under
the effect of MeJA [70]. In Braeburn apple, the phenolic content with some other bioactive
compounds increased in concentration upon the exogenous application of MeJA [39].

Metallic nanoparticles have an impact on plant photosynthetic system structure and
functions. Different plant species have shown a favorable impact of NPs on various
photosynthetic metrics [58,59]. In Linum usitatissimum L., AgNPs increased photosynthetic
pigments. Likewise, our findings of using AgNPs as elicitors are supported by the authors
of reference [71] who studied the stimulatory effect of AgNPs on potted oriental lilies
where they found the accumulation of chlorophyll a and b and carotenoids in the leaves
of treated plants. Our results, which show a substantial increase in all photosynthetic
pigments (chlorophyll a, chlorophyll b, carotenoids) in response to treatment with AgNPs,
are in agreement with the results of the authors of reference [72].

According to the authors of reference [73], AgNPs considerably boost the photosyn-
thesis process as a result of the altered nitrogen metabolism. Furthermore, the authors
of reference [74] described that the chlorophyll content of corn plants was enhanced at
low concentrations (10–50 µL/L) of AgNP treatment, whereas it was suppressed at higher
concentrations of AgNPs. The authors of reference [67] reported that metallic nanoparticles
induce chemical energy in photosynthetic systems. The higher contents of photosynthetic
pigments, i.e., chlorophyll a, chlorophyll b, and carotenoids increase the rate of photo-
synthesis which, in turn, increases the weight and growth of the plant as observed in the
study [67]. The author of reference [75] studied the effect of AgNPs on the fenugreek
plant and discovered a rise in photosynthetic pigments as well as phenolics. The effect
of biogenically generated AgNPs at appropriate concentrations on rice plant carotenoid
and chlorophyll levels was explored by the authors of reference [76], and there was a
considerable increase in their production. The authors of reference [77] investigated the
effect of AgNPs on Linum usitatissimum L. and found that they were effective in raising
carotenoid contents, and AgNPs showed a significant rise in chlorophyll concentration in
recent research by the author of reference [78].
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In the current study, Aspergillus niger was shown to be an effective elicitor for increasing
photosynthetic pigments and total phenolics. According to a study on tomato plants, fungal
elicitors showed an increase in chlorophyll, flavonoid, and total phenolic contents as well
as plant dry mass [79]. A substantial rise in the chlorophyll content of plants treated with
fungal elicitors was also observed. Another study by the authors of references [80–83]
presented likewise results where the total phenolics were improved by Aspergillus niger.
The authors of references [84–87] investigated the impact of Aspergillus niger on apricot
(Prunus armeniaca L.) production and discovered a 30% increase in total phenolics. Similarly,
the authors of reference [88] also found a significant increase in phenolics production in
sunflower and soybean crops by the application of biotic elicitors. However, there has not
been much research in this area in recent years, and this research might be of potential
reference to help in this case.

Our results showed that the exogenous application of MeJA in hydroponics increased
flavonoid contents, which is consistent with the findings of [89], which observed increased
levels of quercetin and rutin in all soybean genotypes with MeJA application. Flavonoids
play a role in plant defense mechanisms [90]. These results suggest that total flavonoid
contents can be controlled and modified by MeJA application, which may help plants
withstand different abiotic stresses [91]. MeJA has also been found to regulate secondary
metabolism by stimulating the accumulation of flavonoids, alkaloids, and phenols in
plant cells [92]. The methyl ester and jasmonic acid components of MeJA are believed
to be involved in the synthesis of secondary metabolites like flavonoids [93]. Increased
flavonoid and antioxidant activity were also observed in a study of blackberries by [94].
MeJA can regulate the expression of flavonoid genes in response to wounds, leading to
increased flavonoid concentration [95]. MeJA is involved in the formation of 4-coumaryl
coenzyme-A, which, when combined with malonyl coenzyme-A, forms naringeninchalcone
in the presence of the enzyme naringeninchalcone synthase. Chalconoids, which are the
precursors to flavonoids, have a structure similar to flavonoids, with two phenyl rings and
a three-ringed structure. In a study on tomato plants, fungal elicitors increased chlorophyll
contents, flavonoids, and total phenolic contents, as well as plant dry mass [96].

Lignin is a major component of plant cell walls and is a natural high molecular weight
phenolic polymer with a complex composition and structure. It plays a significant role
in plant growth, tissue and organ development, lodging resistance, and responses to
various biotic and abiotic stresses. It also helps to prevent the spread of pathogens [97].
The elicitation of plants with elicitor molecules activates a series of defense responses,
including the reinforcement of the cell wall through lignin deposition, the induction of
defense enzyme activity, and the production of phenolics [98,99]. MeJA has been found to
increase lignin accumulation in tea plants [100]. Histochemical staining has demonstrated
the ability of AgNPs to induce lignin deposition in vascular bundles in Triticum aestivum L.
Treatment with silver nanoparticles has also been shown to stimulate more intensive lignin
accumulation in cell walls and improve the quality of in vitro-propagated Thymus daenensis
Celak seedlings [101,102].

4. Materials and Methods
4.1. Plant Material, Experimental Design, Sterilization of Seeds and Sand

Seeds of S. marianum were obtained from the National Agriculture Research Centre
(NARC) in Islamabad, Pakistan. The seeds were disinfected with 70% ethanol (C2H5OH)
for 1 min after being washed with distilled water initially. Washing with alcohol was
performed, and to remove any remaining ethanol, the seeds were once again washed
3 times with distilled water. Next, 0.01% mercuric chloride solution was employed for two
min, and 4 to 5 repetitions of distilled water washing were then performed (81–82). The
sand used in the study was also sterilized. For this purpose, it was repeatedly washed
with distilled water. After rinsing, it was addressed with sodium hypochlorite (NaOCl) for
5 min and then washed to completely remove any sodium hypochlorite traces, repeating
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the process three to five times with distilled water. The sand was then dried in an oven set
to 70 ◦C [103].

4.2. Seed Germination and Shifting to Hydroponic System

After sowing the seeds in sterile sand, the pots were kept under controlled conditions
(24–25 ◦C, 20–700 µMol m−2s−1). The seedlings received regular watering and Hoagland
solution supplements after emergence. After a fortnight of germination, the plants were
reduced to 1 plant per pot and placed in a hydroponic system [104]. A setup of an air pump
was added to ensure a continuous supply of oxygen [105]. The seedlings were then given 7
distinct treatments to develop in, 1 of which was designated as control (Table 1). Different
elicitors were used for each treatment, whereas the control solution, devoid of the elicitors,
used solely Hoagland solution as a supplement. In a completely randomized design (CRD),
5 replications for every treatment were used. For each treatment, thirty plants were placed
in a hydroponic system for this objective. For each treatment, six pickups were performed,
and 5 seedlings were cultivated for each harvest. The 1st harvest was completed after
one day of treatment; the 2nd was completed after two days; the 3rd was completed after
3 days; the 4th was completed after 96 h; the 5th was completed after 120 h; and the 6th
harvest was completed after 144 h of therapy. The treatment procedure started on 19 May
2022 (12:00 pm) and ended on 25 May 2022 (12:00 pm). The fresh weight of the leaves was
measured in grams using an electronic balance.

Table 1. All the treatments with tags used for the experiment.

Sr. No. Treatments Tags

1 Control T0
2 MeJA T1
3 Fungal elicitors T2
4 Green-synthesized AgNPs T3
5 MeJA + Fungal elicitors T4
6 MeJA + Green-synthesized AgNPs T5
7 Fungal elicitors + Green-synthesized AgNPs T6
8 Fungal elicitors + Green-synthesized AgNPs + MeJA T7

In the research, various elicitors were applied to encourage the synthesis of secondary
products. To do this in the hydroponic medium, the addition of methyl jasmonate (Sigma-
Aldrich, Waltham, MA, USA) (100 µM/L), fungal elicitors (200 mg/L), and sonicated
green-synthesized AgNPs (1 ppm/L) was performed singly and as a mixture of all these
compounds. The green synthesis of AgNPs was performed by the reaction of silver nitrate
and Fortunella margarita by slight modification in the method as described by the authors of
reference [106]. For every hydroponic replication, Hoagland’s solution was already added
to the pots (Figure 6). Different treatments of elicitors and their combinations are shown in
Table 1. A controlled environment was provided to the plants with 24–25 ◦C of temperature.
A pictorial representation of the study in question has been presented in Figure 1.

4.3. Phytochemical Analyses

The plants were exposed to phytochemical evaluations after harvest. The plant
leaves were examined for a variety of phytochemical assays, including those for phenolic,
carotenoid, and chlorophyll contents.
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4.4. Chlorophyll and Carotenoid Content

Chlorophyll (a, b) and carotenoid contents were determined according to the authors
of reference [107]. One gram of finely chopped fresh leaves was ground with 20–40 mL of
acetone at a concentration of 80%. The sample was centrifuged for 5 min at 5000–10,000 rpm.
The supernatant was transferred, and the operation was repeated until the residue was
colorless, at which point, the absorbance was measured in a spectrophotometer at 663
and 645 nm. Chlorophyll a and Chlorophyll b concentrations were calculated using the
formulae below for total chlorophyll and carotenoids.

Chlorophyll a (µg/g FW) = {12.7 (OD663− 2.69 (OD645)× V/1000× W}

Chlorophyll b (µg/g FW) = {12.9 (OD645− 4.68 (OD663)× V/1000× W}}

Total chlorophyll (µg/g FW) = [20.2 (OD645− 8.02 (OD663)× V/1000× W]

Carotenoids (µg/g FW) = OD480 + (0.114× OD663)− (0.638× OD645)

where, OD = Optical density; V = Volume of sample; W = Fresh weight of sample

4.5. Total Phenolic Content

The Folin–Ciocalteu method was slightly modified to determine the entire phenol
concentration [108]. One gram of crushed leaves was homogenized in 80 percent aqueous
ethanol at room temperature, and centrifuged in cold at 10,000× g for 15 min. The super-
natants were collected, deposited on evaporating plates, and dried at room temperature
after two extractions with 80 percent ethanol. The residue was 5 mL of Folin–Ciocalteu
reagent (previously diluted to 1:10 v/v with water) and 4 mL (75 g/L) of sodium carbonate
(Na2CO3). Vortexing the material for 15 s was performed, and it was incubated at 40 ◦C for
thirty minutes for color development. The absorbance was measured at 765 nanometers by
a spectrophotometer, and the amount of total phenol content was calculated in mg/g of
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tannic acid (C76H52O46) equivalent using the following equation based on the calibration
curve:

y = 0.1216x, r2 = 0.9365,

where x is the absorbance and y is the tannic acid equivalent (mg/g).

4.6. Determination of Lignin Content

Lignin has antioxidant and antimicrobial properties and has potential use in the
production of pharmaceuticals and biomedical applications. Its biocompatibility, ability
to absorb UV light, antioxidant and antimicrobial activities, and ability to improve the
mechanical strength of processed biomaterials make it a promising candidate for pharma-
ceutical and biomedical applications. Research suggests that lignin could be used in the
development of biomedical hydrogels, drug-delivery vehicles, or bio composites for tissue
engineering and wound healing [26].

4.7. Determination of Flavonoids

To measure the total flavonoid content, a protocol developed by the authors of refer-
ence [24] was followed. The extract was placed in a 10 mL volumetric flask, and distilled
water was added to forma volume of 5 mL. After 5 min, 0.3 mL of sodium nitrite (NaNO2)
and 0.3 mL of aluminum chloride (AlCl3) were added. After an additional 6 min, 2 mL
of 1 M sodium hydroxide (NaOH) was added, and the volume was brought up to 10 mL
with distilled water. The solution was mixed well, and the absorbance was measured using
a spectrophotometer at 510 nm, with a blank as the reference. A calibration curve was
used to determine the flavonoid content, which was expressed as a percentage of quercetin
(C15H10O7) in the extract [25].

4.8. Experimental Design and Statistical Analysis

The experiment was conducted in five replicates for each treatment, including a control,
using a completely randomized design (CRD). The plants were harvested at 24 h intervals
up to 144 h of exposure. Data calculations were completed using Microsoft Excel 2019®,
and Origin 2021 b was used for one-way ANOVA statistical analysis. The Tukey test at
the 0.05 probability level was used to determine whether there was a difference between
the treatment means. Pearson correlation among treatments and variables and principal
component analysis were also performed using Origin 2021b [109].

5. Conclusions

The results of this study show that several elicitors, such as the fungus Aspergillus niger
(0.2 g/L), methyl jasmonate (100 M/L), and silver nanoparticles (1 ppm), had a favorable
influence on the levels of photosynthetic pigments and total phenolics, both alone and
in combination. Photosynthetic pigments were produced in significant amounts under
MeJA, AgNPs, and a combination of MeJA and fungal elicitors and MeJA and AgNPs.
Carotenoid production was also substantial under MeJA and a combination of MeJA and
AgNPs and MeJA and fungal elicitors, respectively. However, in the case of total phenolics,
AgNPs, a combination of meJA and fungal elicitors, and MeJA treatment showed the best
result among all other combinations. We may, therefore, infer that using elicitors to treat
S. marianum in hydroponic culture could be a useful method for researching how plants
quickly increase metabolite synthesis in reaction to diverse stress events to control their
metabolism. Increasing the production of medicinally important bioactive molecules
and compounds is the need of the hour. It is, therefore, recommended that the elicitors
which produced promising results can be used for further studies in different concentra-
tions and on different pharmacologically important plants to augment the synthesis of
phytocompounds that have medicinal and therapeutic importance. In contrast to other
biotechnological processes, hydroponics is inexpensive and less time-consuming. These
elicitors ought to be used with a variety of medicinally effective crops cultivated in a variety
of growth mediums and environments, such as tissue culture, sand culture, Petriplate
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culture, soil culture, and hydroponics. Additionally, there is avariety of other kinds of
nanoparticles in a range of sizes that can be used in numerous investigations. Hence,
extraordinary results might be achieved in future studies with the use of various cultural
techniques and types of elicitors. Furthermore, a study on the combined application of
elicitors is required, as novel compositions of potential elicitors might be explored by
experimenting with different combinations of elicitors.
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