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Abstract 

Introduction: Various statistical approaches can be used to deal with unmeasured confounding when estimating 
treatment effects in observational studies, each with its own pros and cons. This study aimed to compare treatment 
effects as estimated by different statistical approaches for two interventions in observational stroke care data.

Patients and methods: We used prospectively collected data from the MR CLEAN registry including all patients 
(n = 3279) with ischemic stroke who underwent endovascular treatment (EVT) from 2014 to 2017 in 17 Dutch hospi-
tals. Treatment effects of two interventions – i.e., receiving an intravenous thrombolytic (IVT) and undergoing general 
anesthesia (GA) before EVT – on good functional outcome (modified Rankin Scale ≤2) were estimated. We used three 
statistical regression-based approaches that vary in assumptions regarding the source of unmeasured confounding: 
individual-level (two subtypes), ecological, and instrumental variable analyses. In the latter, the preference for using 
the interventions in each hospital was used as an instrument.

Results: Use of IVT (range 66–87%) and GA (range 0–93%) varied substantially between hospitals. For IVT, the 
individual-level (OR ~ 1.33) resulted in significant positive effect estimates whereas in instrumental variable analysis 
no significant treatment effect was found (OR 1.11; 95% CI 0.58–1.56). The ecological analysis indicated no statistically 
significant different likelihood (β = − 0.002%; P = 0.99) of good functional outcome at hospitals using IVT 1% more fre-
quently. For GA, we found non-significant opposite directions of points estimates the treatment effect in the individ-
ual-level (ORs ~ 0.60) versus the instrumental variable approach (OR = 1.04). The ecological analysis also resulted in a 
non-significant negative association (0.03% lower probability).

Discussion and conclusion: Both magnitude and direction of the estimated treatment effects for both interven-
tions depend strongly on the statistical approach and thus on the source of (unmeasured) confounding. These issues 
should be understood concerning the specific characteristics of data, before applying an approach and interpreting 
the results. Instrumental variable analysis might be considered when unobserved confounding and practice variation 
is expected in observational multicenter studies.
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Introduction
Assignment of treatment mostly depends on both meas-
ured and unmeasured patient characteristics (i.e., prog-
nostic factors) that are associated with outcome [1, 2]. As 
a consequence, estimates of treatment effects in obser-
vational data tend to be biased because they reflect, at 
least in part, the effects of (unmeasured) confounding 
variables rather than the true effect of treatment [1, 2]. 
In randomized clinical trials (RCTs), such (unmeasured) 
confounding is avoided because randomization ensures 
all prognostic factors to be equally balanced between 
treatment groups [3]. However, RCTs can be expensive 
and challenging to conduct. In addition, for ethical and 
practical reasons executing an RCT could even be infea-
sible, or it could provide results with considerable delay. 
Furthermore, the external validity of RCTs might be lim-
ited due to often stringent inclusion criteria [2–4].

In practice, therefore, observational studies constitute 
the main alternative in absence of RCTs to approximate 
the true treatment effects of medical interventions. Sev-
eral approaches – e.g. covariate adjustment, ecological 
analysis, and instrumental variable analysis – have been 
proposed to detect or control for (un) measured con-
founding in such studies [4–10]. With covariate adjust-
ment, it is possible to directly adjust the treatment effect 
estimate for differences in measured prognostic factors in 
patients (e.g., disease severity) as well as in hospital fac-
tors (e.g., admission characteristics or practice style) that 
may influence the outcome [5]. An important downside 
of this approach is that it does not allow for controlling 
for differences of unmeasured factors that may influence 
both treatment allocation and outcome, causing con-
founding by indication. Moreover, sufficient sample sizes 
are required to allow for adequate statistical modeling of 
multiple confounding variables [5]. The ecological analy-
sis approach is based on the analysis of differences in 
treatment decisions between groups of patients, i.e., at 
the hospital-level [4, 7, 8, 11]. Although ecological studies 
may reduce the effect of unmeasured confounding, this 
approach introduces new problems that are not present 
in individual-level analyses, such as the ecological fallacy, 
collinearity, and lack of power [11]. A third approach is 
instrumental variable analysis [6, 8]. This approach takes 
advantage of both reduced confounding by indication in 
the ecological analysis and more accurate specification of 
individual outcome and potential confounders using the 
individual patient data (just like when applying covari-
ate adjustment). With instrumental variable analysis, 

a measured variable (i.e., the instrument) is used that 
influences treatment decisions but that is assumed to be 
unrelated to (both measured and unmeasured) patient 
characteristics that influence the outcome. When sub-
stantial hospital-level variation in the use of a specific 
intervention exists, the variable ‘hospital’ can be used as 
an instrument to study the effect of this intervention on 
the outcome [6, 10]. Choosing an appropriate instrument 
is the main challenge when using this approach.

In stroke care, endovascular treatment (EVT) has 
become standard care for patients with acute ischemic 
stroke caused by an intracranial large vessel occlusion 
of the anterior circulation, when the procedure is avail-
able and can be performed in a timely fashion [12–15]. 
All major guidelines recommend intravenous thromboly-
sis (IVT) in eligible patients before EVT [16, 17]. Patients 
receive IVT with alteplase as standard care, unless they 
have a contraindication for IVT. In addition, it might be 
necessary to perform the EVT procedure under a form of 
anesthesia, like conscious sedation or general anesthesia 
(GA), in case the patient is agitated, or a secured airway 
is required [18]. The effect of IVT and GA on neurologi-
cal outcomes after EVT were evaluated in previous RCTs 
[18–25] and observational studies [16, 18, 26], but the 
results were inconclusive.

Given the large between-hospital variability in IVT 
and GA utilization before EVT [27], this study aimed 
to compare treatment effects of both IVT and GA esti-
mated using observational data derived from a nation-
wide stroke care registry, to provide further insight into 
the influence of different analysis approaches and source 
of (un) measured confounding.

Methods
Study design and patients
For the current study, we used data collected between 
March 2014 and November 2017 from the MR CLEAN 
Registry, a prospective, observational study in all 17 hos-
pitals that perform EVT in the Netherlands [28]. We 
included patients adhering to the following criteria: treat-
ment at age 18 years and older, treatment in a hospital 
that participated in the MR CLEAN trial, clinical diagno-
sis of acute stroke with a deficit on the National Institute 
of Health Stroke Scale (NIHSS) of at least 2 points, CT 
or MRI ruling out intracranial hemorrhage, the possibil-
ity to start treatment within 6 h of onset, and proximal 
intracranial vessel occlusion in the anterior circulation 
(internal carotid artery, internal carotid artery terminus, 

Keywords: Unmeasured confounding, Confounding by indication, Statistical approaches, Ecological-analysis, 
Instrumental variable, Acute ischemic stroke, Intravenous thrombolysis, General anesthesia



Page 3 of 12Amini et al. BMC Medical Research Methodology          (2022) 22:103  

middle (M1/M2) cerebral artery, or anterior (A1/A2) cer-
ebral artery), as shown by computed tomography angi-
ography. Details on the study design and objectives of 
the MR CLEAN Registry have been described elsewhere 
[28]. Overall, data from 3279 patients were available for 
analysis.

Variables
Outcome measure
Good functional outcome as measured by a score of 0–2 
on the modified Rankin Scale (mRS) was used as the 
outcome [29]. The mRS is a commonly used measure of 
patients’ functional outcome after ischemic stroke care 
and ranges from 0 (no symptoms) to 6 (death). The mRS 
score was assessed at 90 days after EVT (± 14 days).

Treatment variables
We assessed two treatment variables. First, yes/no IVT 
administration before EVT was studied. Second, yes/no 
GA during EVT was assessed, no GA meaning either no 
sedation or conscious sedation.

Case‑mix variables
Time between stroke onset and arrival at the emergency 
department (ED) of the EVT hospital and patients’ age, 
sex, relevant medical history (i.e. previous stroke, atrial 
fibrillation, hypertension, hypercholesterolemia), and 
baseline score on the NIHSS were considered poten-
tial confounders of the estimated association between 
administration of IVT or GA and good functional out-
come. The latter four variables were selected based on 
clinical knowledge and previous studies [30, 31]. The 
time between stroke onset and arrival at the ED was used 
because it cannot be influenced by hospitals while it may 
have an impact on the outcome.

Statistical analysis
All analyses were carried out using SPSS version 25.0 
(IBM Corporation, Armonk, NY, USA) and Stata version 
13.0 (StataCorp, College Station, TX, USA). Case-mix 
variables and outcome were described using summary 
statistics and measures of spread, and differences therein 
among hospitals and patient groups (i.e., yes/no IVT 
and GA) were tested on statistical significance (P < 0.05). 
Groups were compared using a non-parametric Kruskal 
Wallis test for continuous variables or Pearson’s chi-
square statistic for categorical variables. Next, separately 
for IVT and GA, we applied three statistical approaches 
to estimate and compare treatment effects, both unad-
justed and case-mix adjusted: individual-level, ecological, 
and instrumental variable analysis.

Individual‑level analysis
For the individual-level analysis we ran two separate 
models for each of the two interventions, with good 
functional outcome after 90 days (i.e., mRS 0–2) as the 
dependent variable: standard logistic regression and 
generalized estimating equations (GEE).

Logistic regression assumes independent observa-
tions for every patient. But in multicenter studies, it 
is not necessarily valid when individual observations 
(here patients) and their characteristics are ‘clustered’ 
in higher-level entities (here hospitals) [32]. Therefore, 
given differences among hospitals in the way they treat 
patients, correlation is likely within-hospital obser-
vations. The GEE model allows for accounting for 
this correlation (differences in the use of IVT or GA 
between hospitals) to appropriately adjust the estima-
tion of effect sizes and confidence intervals [32]. In the 
case of significant within-hospital correlation, broader 
confidence intervals are estimated due to fewer inde-
pendent observations. We accounted for clustering 
by hospitals using a compound symmetry correlation 
structure (correlation assumed to be the same for all 
within-hospital comparisons and all between-hospital 
comparisons). This means that we assumed the treat-
ment effects were the same within the same cluster 
(hospital), and there was no variance between patients. 
Given our binary outcome variable, we used a bino-
mial distribution and logistic link function for the GEE 
model [33].

Ecological analysis
Ecological analysis exploits differences in preferences for 
the use of IVT or GA between groups of patients (i.e., 
hospitals). The key assumption is that differences in the 
use of interventions across hospitals are mainly driven 
by hospitals’ practice styles rather than differences in 
patients’ prognostic factors. While practice style is diffi-
cult to detect at the individual patient level, its impact can 
be measured ecologically. Linear regression at the hospi-
tal-level was used to estimate the association between the 
percentage of patients with a good functional outcome 
(dependent variable) and the percentage of patients who 
received IVT or GA. To let high-volume hospitals con-
tribute more to the analysis than low-volume hospitals, 
we used the number of patients treated in each hospital 
as weights. In the adjusted analysis, case-mix variables 
were measured at the hospital-level (i.e., mean age, the 
proportion of patients with the male sex, proportion of 
patients with a previous stroke, atrial fibrillation, hyper-
tension, and hypercholesterolemia, mean NIHSS score, 
and mean time from onset to ED-arrival). This analysis 
provides insight into the change in absolute probability 
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of a good functional outcome for every additional 1% of 
patients receiving IVT or GA.

Instrumental variable analysis
The advantages of considering the hospital’s practice 
style in the ecological analysis and the potentially more 
accurate specification of individual-level outcome and 
potential confounders in the individual-level analy-
sis, were combined in the instrumental variable analy-
sis. Specifically, preference for IVT or GA per hospital 
was used as an instrument, defined as the proportion of 
patients who received IVT or GA within each hospital 
[34, 35]. By using this instrument, we relied on three key 
assumptions for instrumental variable analysis (Fig.  1): 
(1) the instrument is associated with exposure to the 
treatment; (2) the instrument only has an effect on the 
outcome through treatment; and [3] the instrument is 
unrelated to (un) measured prognostic factors. Using the 
Stata command “ivregress gmm” [36] we used two-stage 
logistic regression to estimate the treatment effect on 
good functional outcome (Supplementary information). 
The first stage comprised running a case-mix adjusted 
logistic regression model to estimate the predicted prob-
ability of receiving IVT or GA given the preference to use 
those interventions at that hospital. In the second stage, 
the predicted probability of the first stage was used as a 
covariate in another logistic regression model at the indi-
vidual patient level adjusted for case-mix variables, with 
yes/no good functional outcome as a dependent variable. 
In addition, the cluster effect of hospitals was added to 
the analysis and the standard errors were adjusted for 17 
clusters. This model yields an estimate of the effect of IVT 
or GA on good functional outcome. Then, we assessed 
the validity of the instrumental variable analysis. Specifi-
cally, based on the first abovementioned assumption, the 

strength of the instrument was assessed using the F-sta-
tistic calculated as [R2 × (n − 1 − K)]/[(1 − R2) × K], where 
‘R2’ represents the partial variance from the first-stage, ‘n’ 
represents the sample size, and ‘K’ represents the num-
ber of instrumental variables included in the model [36, 
37]. As a rule of thumb, the F-statistic for the significance 
of the instrument in the first stage should exceed 10. The 
second assumption was tested using the Durbin-Wu-
Hausman χ2 test to examine the existence of endogene-
ity in the estimated treatment effects. This test compares 
an estimate of the average treatment effect assuming no 
unmeasured confounding, to an estimate of the aver-
age treatment effect using an instrument that allows for 
unmeasured confounding [38]. The third assumption 
underlying instrumental variable analysis we tested was 
whether the instrumental variable was associated with 
case-mix variables.

Results
Descriptive analyses
The number of patients receiving IVT varied signifi-
cantly between hospitals (range 66–87%, P < 0.01) and 
GA (range 0–93%, P < 0.01) (Fig. 2). The number of EVT 
patients also varied widely from 23 to 405 patients per 
hospital (Table  1). There were significant differences 
(P < 0.05) in case-mix variables between patients who 
received the interventions of interest (i.e., IVT and GA) 
and patients who did not (Table 1).

IVT intervention
In the adjusted logistic regression model, receiving IVT 
was significantly associated with higher odds of good 
functional outcome (Fig.  3A-1). As the within-hospital 
correlation between patients was very small (0.0053), 
the estimated odds ratios and width of the confidence 

Fig. 1 Instrumental variable assumptions in relation to estimation of treatment effect on the outcome. U/M Unmeasured/measured confounders
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intervals in the GEE model were very similar to those in 
the logistic regression model (Fig. 3A-2). The same pat-
tern was noticed in the unadjusted models, in which 
larger treatment effect estimates were estimated, as com-
pared to the adjusted models (Figs. 3A-1 and A-2).

In the ecological analysis at the hospital-level, no sta-
tistically significant different likelihood (β = − 0.002%; 
P = 0.99) of good functional outcome at hospitals using 
IVT 1% more frequently was estimated after case-mix 
adjustment (Fig.  3B). In the case-mix adjusted instru-
mental variable analysis, no significant treatment effect 
was found when patients treated in hospitals were 
using IVT more frequently (OR 1.11; 95% CI 0.58–1.56; 
Fig.  3C). These results were not significantly different 
from the individual-level estimates from the logistic and 
GEE analyses (Durbin-Wu-Hausman χ2 = 0.073, P-value 
for difference = 0.75), and no endogeneity was noticed. 
The instrument explained 1.6% of the variation in the use 
of IVT in the adjusted model. The derived F-statistics 
was 41.2 in the adjusted model, which indicates that the 
instrument has sufficient power. However, we did find 

the instrument to be associated with some confounders 
including age, previous stroke, previous atrial fibrilla-
tion, and baseline NIHSS score (Supplementary Table 1). 
Thus, the assumptions underlying an appropriate instru-
mental variable analysis were not fully met.

GA intervention
The adjusted logistic regression analyses of patients 
undergoing GA on good functional outcome showed no 
statistically significant effect (OR 0.87; 95% CI 0.71–1.07; 
Fig.  4A-1). The within-hospital correlation was 0.022 
and in the adjusted GEE model the treatment effect 
was statistically significant (OR 0.60; 95% CI 0.44–0.80; 
Fig. 4A-2) and larger compared to the effect in the logis-
tic regression model.

The ecological analysis showed no statistically signifi-
cant different likelihood of a good functional outcome in 
the adjusted model, following a 1% increase in the use of 
GA (Fig. 4B).

In contrast to the individual-level results, the instru-
mental variable analysis showed that the use of GA has 

Fig. 2 Differences in the percentage of patients receiving IVT (A) and undergoing general anesthesia (B) before EVT and good functional outcome 
in 17 EVT hospitals in the Netherlands. Note: Good functional outcome is defined as mRS 0–2 at 90 days
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a positive but non-significant effect on a good functional 
outcome (OR 1.04; 95% CI 0.95–1.15; Fig. 4C). Durbin-
Wu-Hausman χ2 was significant (17.6, P < 0.01) in the 
adjusted model, which indicates that one of the assump-
tions underlying the instrumental variable is met. The 
instrumental variable explained about 5.9% of the varia-
tion in the use of GA, regardless of case-mix adjustment. 
The F-statistic was 11,243.5, indicating a sufficiently 
powerful instrument. In addition, associations between 
the instruments and measured confounders were gener-
ally small (Supplementary Table 1), which indicates that 
another assumption underlying the instrumental variable 
was met.

Discussion
The challenge when using observational data to esti-
mate treatment effects is to overcome unmeasured con-
founding [8, 39, 40]. In the current study, we applied and 
compared various analytical approaches that have been 
advocated to reduce confounding in observational data, 
to assess the effect of IVT and GA on the probability of 
good functional outcome after ischemic stroke due to a 
large vessel occlusion in patients treated with EVT. We 
found that the size and direction of estimated effects 
strongly depend on the statistical approach used and 

therefore on the source of unmeasured confounding, i.e. 
individual patient prognostic factor or hospital practice.

In observational studies, regression analysis adjusted 
for patient characteristics is commonly used to estimate 
treatment effects of interventions. Our results of these 
analyses showed that patients who received IVT had 
significantly better outcomes than patients who did not 
receive IVT. This was consistent with the recent RCTs 
[22, 41] and inconsistent with other trials [18, 24, 25] 
results. Our adjusted regression analysis showed that 
patients receiving GA had no statistically significant 
higher odds of good functional outcome. Previous RCTs 
showed no conclusive results on the effect of GA versus 
other types of anesthesia [20, 21, 23]. In those trials, the 
comparator was different than the comparator in our 
study. In our data ‘no GA’ included patients with either 
no sedation or conscious sedation, but in those trials, GA 
was compared with conscious sedation only or local anes-
thesia. Generally speaking, individual-level regression 
analysis could provide unbiased estimates of treatment 
effects if all relevant confounders are known, measured, 
and adjusted for [5, 6]. But because of the difficulty to 
assess medical indications and underlying disease sever-
ity and prognosis, confounding by indication is often an 
impassable problem in multivariable regression analysis 

Table 1 Case-mix characteristics of patients treated in all 17 EVT hospitals in the Netherlands; stratified by whether patients received 
IVT or not and whether patients underwent GA or not

IVT Intravenous thrombolysis, GA general anesthesia, NIHSS National institutes of health stroke scale, ED Emergency department
a  Good functional outcome is defined as mRS 0–2 at 90 days
b  P-value is based on comparison between 17 centers using a non-parametric Kruskal Wallis test for continuous variables or Pearson’s chi-square statistic for 
categorical variables
c  P-value is based on comparison between groups (receiving IVT/GA vs. non-receiving IVT/GA) using a non-parametric Kruskal Wallis test for continuous variables or 
Pearson’s chi-square statistic for categorical variables

hospitals range
(n = 17)

P-valuesb IVT +
(n = 2450)

IVT -
(n = 817)

P-valuesb GA + 
(n = 778)

GA -
(n = 2304)

P-valuesc

Age (years) [Median (IQR)] 68–77 0.001 71 (60–80) 73 (63–82) < 0.001 70 (59–79) 73 (62–81) < 0.001

Baseline NIHSS score 
[Median (IQR)]

13–17 < 0.001 16 (11–19) 16 (11–20) 0.048 17 (12–20) 16 (11–19) 0.011

Time from onset to arrival at 
the ED (min) [Median (IQR)]

52–160 < 0.001 135 (65–185) 145 (67–240) < 0.001 140 (72–190) 135 (64–195) 0.538

Men [N (%)] 39–55% 0.790 1294 (53) 394 (48) 0.024 420 (54) 1178 (51) 0.171

Medical History [N (%)]

 Previous Stroke 0–26% < 0.001 330 (14) 212 (26) < 0.001 127 (16) 389 (17) 0.739

 Atrial Fibrillation 13–37% < 0.001 414 (17) 356 (44) < 0.001 157 (20) 567 (25) 0.012

 Hypertension 41–67% < 0.001 1234 (50) 447 (55) 0.037 346 (45) 1251 (54) < 0.001

 Hypercholesterolemia 15–50% < 0.001 696 (28) 269 (33) 0.023 207 (27) 720 (31) < 0.001

Good functional  outcomea 
[N (%)]

31–50% 0.004 985 (40) 251 (30) < 0.001 272 (35) 896 (39) 0.309

IVT utilization [N (%)] 66–87% < 0.001

GA utilization [N (%)] 0–99% < 0.001

Hospital volume [n] 23–405
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at the individual-level [5, 6]. In our observational data, 
some important prognostic variables were available (e.g., 
age, comorbidity, the severity of disease) and treatment 
groups were unbalanced concerning these variables. 
Still, it is possible that we have missed other important 
unmeasured prognostic factors, which might be associ-
ated with outcome. For example, many patients received 
IVT in a primary stroke center and were transferred to 
an intervention center. These patients were treated with 
EVT following no response to IVT. Also, many patients 
in the dataset were not eligible for IVT since they were 
outside the time window for treatment or because of 
other contraindications. Therefore, the treatments effects 
of IVT or GA as estimated in our individual-level analy-
ses may be biased. This also could explain the different 
effect estimates in our analyses compared to the results 
in the RCTs. Additionally, an alternative approach for the 
measured confounding factor adjustment is the propen-
sity score statistical methods, such as propensity score 

matching or inverse probability of treatment weighting, 
that may put different results [42, 43].

In addition, in multicenter studies at the individual-
level, treatment effects are likely to be biased when 
observations are not independent but clustered at the 
hospital-level. To deal with this and to adjust for the 
potential effects of unmeasured hospital characteris-
tics, GEE can be used [44]. For the IVT intervention, the 
within-hospital correlation between patients was very 
small and thus the GEE and logistic regression model 
yielded very similar results. In contrast, for GA the 
within-hospital correlation was moderate, resulting in 
no statistically significant effect in the logistic regression 
model compared to a significantly lower odds of good 
functional outcome in the GEE model. Similar to GEE, 
other approaches like random effect analysis which deal 
with dependent observations can put a similar argument 
(Supplementary Fig. 1 and Supplementary Fig. 2). In the 
presence of hospital-level clustering and unmeasured 

Fig. 3 Effect estimates of receiving IVT intervention on the good functional outcome (mRS 0–2 at 90 days) from four statistical methods of 
A-1 logistic regression, A-2 generalized estimating equation, B ecological analysis, and C instrumental variable analysis. # Case-mix variables in 
the models are including age, sex, medical history, NIHSS score baseline, and time from onset to arrival at the ED of intervention hospital. Hospital 
volume was also added to the instrumental variable analysis. * Difference in the absolute probability of a good functional outcome for every 1% of 
the cases receiving IVT before EVT. For example, the unadjusted coefficient implies that the absolute probability of a good functional outcome is 
0.15% higher for a patient treated at a hospital utilizing IVT intervention in 1% of the cases compared with one not utilizing the intervention
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hospital characteristics influencing the outcome, GEE or 
other approaches which deal with clustering will be supe-
rior to conventional regression analysis for treatment 
effect estimation. However, this type of analysis might 
still be biased in the case of a small number of hospitals 
and/or small within-hospital sample size [44].

In an ecological analysis, aggregated data instead of 
individual-level data is used. Only the proportion of 
patients who received the intervention at a given hospital 
and aggregated information on case-mix was included. 
This approach is adjusted for confounding by hospital 
practice, especially in the case of a large variation in the 
use of the intervention between hospitals (as in the cur-
rent study) [7]. For both interventions, observed differ-
ences in treatment effect estimates in the hospital-level 
versus the individual-level analyses suggest unmeasured 
confounding by hospital practice to be present to some 
extent. An ecological analysis at the level of the hospital 

bypasses the issue of confounding by indication. Patients’ 
prognostic factors are no longer placed in the model—
only the aggregate values for a hospital’s treated popu-
lation are considered. The portion of cases treated with 
interventions at a given hospital is more likely to be influ-
enced by practice style rather than the prognostic factors 
of the case mix, particularly because some hospitals do 
not utilize the interventions. Yet, given its hospital-level 
approach, ecological analysis is prone to bias. For exam-
ple, some hospitals treated more patients who were 
transferred from other hospitals, suggesting differences 
in some patient characteristics, which may have resulted 
in a change in the probability of a good functional out-
come. The intuitive solution of adding these factors to the 
model (if available) would weaken rather than strengthen 
the analysis. In our analysis, the model had just 17 obser-
vations and already 8 independent variables, and adding 
additional variables would (further) increase the potential 

Fig. 4 Effect estimates of undergoing general anesthesia on the good functional outcome (mRS 0–2 at 90 days) from four statistical methods of 
A-1 logistic regression, A-2 generalized estimating equation, B ecological analysis, and C instrumental variable analysis. # Case-mix variables in 
the models are including age, sex, medical history, NIHSS score baseline, and time from onset to arrival at the ED of intervention hospital. Hospital 
volume was also added to the instrumental variable analysis. * Difference in the absolute probability of a good functional outcome for every 1% of 
the cases receiving general anesthesia. For example, the unadjusted coefficient implies that the absolute probability of a good functional outcome 
is 0.05% higher for a patient treated at a hospital utilizing general anesthesia in 1% of the cases compared with one not utilizing the intervention
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for collinearity and reduce power [11]. Another potential 
issue is the ecological fallacy [11], which could lead to 
effect estimates that do not exist or are in the opposite 
direction of the effects at the individual-level. Thus, when 
individual-level data are unavailable, this approach does 
not allow for conclusions about individual-level treat-
ment effects. Combined with the biased outcome meas-
ure due to possibly missing data at certain hospitals [11], 
this warrants caution in interpreting treatment effects 
derived from this type of analysis [45]. In general, the 
ecological analysis would only be superior to individual-
level analysis when the influence of hospital practice on 
treatment is independent of prognostic factors and the 
number of observations is sufficiently high.

Instrumental variable analysis has become increasingly 
popular in epidemiology as it can exploit the advantages 
of both individual-level and hospital-level approaches and 
can provide unbiased treatment effect estimates [46–48]. 
This is underscored by the fact that for IVT, our instru-
mental variable analysis results are in line with recent 
RCTs; among patients with acute large vessel occlusion 
stroke, these trials showed noninferiority of combined 
IVT and EVT relative to EVT alone regarding good func-
tional outcome [18, 24, 25]. This was in contrast to other 
RCTs that failed to demonstrate noninferiority [22, 41]. In 
this analysis, the assumption of endogeneity due to unob-
served confounding was violated, but still, in comparison 
to RCTs, instrumental variable analysis is superior to the 
conventional regression method. In addition, the results 
of previous RCTs have not been conclusive on the impact 
of the type of anesthesia on neurological outcome after 
EVT for stroke patients [20, 21, 49, 50]. However, com-
paring our results with those RCTs might not be valid 
since the comparator was different [51]. No violations 
of the instrumental variable assumption were noticed 
in the GA intervention analysis. This demonstrates that 
our instrumental variable analysis for this intervention 
was more efficient than for the IVT intervention and its 
results might be more valid than those of the conventional 
approaches. In instrumental variable analysis, a reliable 
instrumental variable must satisfy criteria related to the 
instrument and sample size to allow for adequate esti-
mation of the treatment effect [52]. A comparison of the 
precision of the estimates was assessed by looking at the 
widths of the confidence intervals around effect estimates. 
Larger widths are interpreted as a less precise effect 
estimate. Weak instruments might produce large con-
fidence intervals which result in imprecise (and biased) 
results. For the GA intervention, the intervals around 
the estimates were narrower using the instrumental vari-
able approach than conventional approaches. For the IVT 
intervention, the intervals were broader, as a result of the 
weak instrument. For the IVT intervention, using hospital 

as an instrument might not be valid, since the receiving 
IVT is not very hospital dependent but more related to 
(unmeasured) contraindications at the patient level. In 
addition, the instrument was associated with some meas-
ured confounders. The adjusted instrument, by definition, 
is independent of those factors. On the other hand, the 
fact that we have measured confounders that predict the 
instrument makes it likely that other unmeasured predic-
tors also predict treatment, that we cannot account for. 
Therefore, for reliability and validity of the instrumental 
variable analysis, it is essential that a suitable instrument 
is used to overcome unmeasured confounding. Reli-
ability is mentioned as the most important limitation of 
instrumental variable analysis. Boef et al. [53] states that 
the statistical power of instrumental variable analysis 
is dependent on instrument strength and the strength 
of unmeasured confounding, but will usually be large 
given the typical moderate instrument strength in medi-
cal research. However, the increasing availability of data 
(sources) and existence of large registry databases, can 
accommodate the lack of statistical power of this method.

In summary, we recommend that investigators analyz-
ing observational studies consider the sources of (un) 
measured confounding that may affect their results. The 
standard analysis should not be blindly accepted before 
considering what type of (un) measured confounding 
may contribute to the results. Several approaches can be 
used in different phases of study to account for unmeas-
ured confounding [4]. Instrumental variable analysis 
might be used in conjunction with other approaches, 
such as multivariate regression analysis, propensity score 
methods, or ecological analysis to better describe the 
effect of treatment.

Strengths and limitations
A major strength of our study is that we used the pro-
spective data from a nationwide registry of all 17 EVT 
hospitals with various relevant case-mix variables which 
enable us to compare four approaches and demonstrate 
the influence of the analytical approach on the estimated 
effect.

The first limitation of the study is that we were not able 
to compare our treatment effect estimates to an estimate 
derived from an RCT with the same comparator. As a 
result, we cannot prove one approach as being superior 
to the others given our observational data. The second 
limitation might be that we only analyzed one clinical 
dichotomous outcome and no other outcomes with possi-
bly other scales (i.e., ordinal, continuous). Thus, it is uncer-
tain whether the results of this study are also generalizable 
to other outcomes. The third limitation is that we only 
used three approaches to compare the treatment effect. 
There are other approaches with probability of different 
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results like the propensity score calibration and two-stage 
calibration statistical methods   [54–56] which can be an 
alternative approach for instrumental variable analysis; 
or propensity score matching and inverse probability of 
treatment weighting [42, 43] as an alternative to covari-
ate adjustment. The fourth potential limitation is that for 
some of the models we compared (e.g. GEE), we made spe-
cific analytical choices that may have affected (the statis-
tical significance of) our effect estimates. For example, in 
the GEE model, we assumed a compound symmetry cor-
relation structure. While this is a common assumption in 
this type of research [57], it may not (fully) hold. Finally, it 
should be recognized that we deliberately included a lim-
ited number of covariates to keep consistency over differ-
ent models, while adjusting for other patient or hospital 
characteristics, e.g., the time from arrival at the emergency 
department to EVT could have led to improved model 
performance and different treatment effect estimates.

Conclusion
Using observational data, the choice of statistical 
approach has important consequences for the size, direc-
tion, and statistical significance of estimated treatment 
effects. Each approach has its merits and limitations 
and deals differently with the potential influence of (un) 
measured confounding. Before applying an approach 
and interpreting the results, researchers should under-
stand these issues in relation to the specific characteris-
tics of their data. While it is not desirable to appoint one 
approach as being always preferable, the instrumental 
variable analysis should be considered when unobserved 
confounding and hospital practice variation are expected 
in observational multicenter studies.
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