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Abstract 

Background: The Netherlands is currently considered a low endemic country for carbapenem-resistant Enterobac-
terales (CRE) and carbapenemase-producing Enterobacterales (CPE), experiencing only sporadic hospital outbreaks. 
This study aims to describe susceptibility to carbapenems and the epidemiology of carbapenemase production in 
Enterobacterales in the Netherlands in 2017–2019.

Methods: Three complementary nationwide surveillance systems are in place to monitor carbapenem susceptibility 
in the Netherlands. Routine antimicrobial susceptibility test results from medical microbiology laboratories were used 
to study phenotypic susceptibility of Escherichia coli and Klebsiella pneumoniae. Pathogen surveillance (of all Entero-
bacterales species) and mandatory notifications were used to describe the characteristics of CPE positive isolates and 
affected persons.

Results: The prevalence of isolates with gradient strip test-confirmed elevated meropenem (> 0.25 mg/L) or imipe-
nem (> 1 mg/L) minimum inhibitory concentration (MIC) in the Netherlands was very low in 2017–2019, with per-
centages of 0.06% in E. coli and 0.49% in K. pneumoniae, and carbapenem resistances of 0.02% and 0.18%, respectively. 
A total of 895 unique species/carbapenemase-encoding allele combinations of CPE from 764 persons were submitted 
between 2017 and 2019, with the annual number of submissions increasing slightly each year. Epidemiological data 
was available for 660 persons. Screening because of presumed colonisation risk was the reason for sampling in 70.0% 
(462/660) of persons. Hospitalization abroad was the most common risk factor, being identified in 45.9% of persons.

Conclusions: Carbapenem resistance of E. coli and K. pneumoniae remains low in the Netherlands. The annual 
number of CPE isolates slightly increased during the period 2017–2019. Recent hospitalization abroad is the main risk 
factor for acquisition of CPE.

Keywords: Enterobacterales, Carbapenem resistance, Carbapenemase production, Surveillance, Risk factors, E. coli, K. 
pneumoniae, Travel, Hospitalization
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Background
Carbapenem-resistant Enterobacterales (CRE) and 
carbapenemase-producing Enterobacterales (CPE) in 
particular Klebsiella pneumoniae and Escherichia coli, 
have been reported all over the world and are the most 

Open Access

*Correspondence:  lieke.wielders@rivm.nl
1 Centre for Infectious Disease Control (CIb), National Institute for Public 
Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The 
Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13756-022-01097-9&domain=pdf


Page 2 of 12Wielders et al. Antimicrobial Resistance & Infection Control           (2022) 11:57 

commonly found microorganisms with resistance to 
multiple antimicrobials [1, 2]. Carbapenems represent 
a group of last resort drugs for the treatment of many 
enterobacterial infections. Therefore, resistance to car-
bapenems poses significant challenges to clinicians and 
negatively impacts patient care [1, 2]. CPE can spread 
easily and are able to colonize and infect patients in 
healthcare environments and subsequently also in the 
community. Preventing the transmission of these micro-
organisms is of major importance and necessitates coor-
dinated international efforts [3–5].

CRE and CPE were first described in Europe in the 
early 2000’s and their prevalence has since increased 
[4–6]. The current epidemiology in European countries 
varies from sporadic imported cases and hospital out-
breaks to (inter-)regional spread and CRE and CPE being 
endemic in healthcare settings [4]. To date, CRE and CPE 
have mainly posed a problem in hospitals in the Neth-
erlands, though community-associated infections have 
begun to emerge [2, 5].

In the Netherlands, targeted screening is performed 
for persons suspected, or at risk of, carrying a highly 
resistant microorganism (HRMO), such as CPE [7, 8]. 
Targeted screening is generally performed upon hospi-
tal admission following previous hospitalization abroad 
for > 24 h within the prior two months, or upon transfer 
from a department in a healthcare institution with an 
ongoing HRMO outbreak that is not yet under control. In 
addition, for hospitalized patients previously identified as 
CPE carriers, follow-up screening is routinely performed.

Three complementary surveillance systems have been 
implemented in the Netherlands to monitor carbap-
enem susceptibility and occurrences and outbreaks of 
CPE. The first system, launched in 2008 and known as 
the Infectious Diseases Surveillance Information Sys-
tem for Antimicrobial Resistance (ISIS-AR), collects 
routinely available antimicrobial susceptibility testing 
(AST) results of all isolates cultured in Dutch medi-
cal microbiology laboratories (MMLs) [9]. ISIS-AR is 
a combined initiative of the Dutch Ministry of Health, 
Welfare and Sport and the Dutch Society for Medical 
Microbiology  (NVMM). It is coordinated by the RIVM 
and participation of the MMLs is voluntary [9]. In Febru-
ary 2019, 82% (45/55) of Dutch MMLs were connected 
to ISIS-AR. In the second system, which was established 
by the RIVM in 2011, MMLs are requested to submit 
isolates suspected of producing carbapenemase to the 
national pathogen surveillance system for molecular typ-
ing. A web-based system, Type-Ned CPE, is used to reg-
ister the isolate and to submit accompanying isolate and 
patient data. The third system, OSIRIS, is the web-based 
national notification system. Since  1st July 2019, notifica-
tion of CPE has become mandatory to control its spread 

locally, regionally and nationally [7, 10]. The physician 
requesting the diagnostic test and the MML conduct-
ing the diagnosis must both notify the Municipal Health 
Service (MHS) of persons carrying or infected with CPE. 
The MHS then notifies the National Institute for Pub-
lic Health and the Environment (RIVM) via OSIRIS, as 
defined in the Dutch Public Health Act. This law aims to 
prevent potential transmission of CPE by enabling the 
data transfer between the MHS, the MML, the treating 
physician and involved hospitals and nursing homes.

The current study aims to provide insight into the epi-
demiology of carbapenem-resistant E. coli and K. pneu-
moniae and carbapenemase-producing Enterobacterales 
in the Netherlands using data from the three different 
surveillance systems.

Methods
This study was restricted to the period 2017–2019. Data 
from 2020 was excluded as it was not representative of 
the usual epidemiology of carbapenem susceptibility and 
CPE due to travel restrictions and downscaling of non-
urgent healthcare procedures caused by the COVID-19 
pandemic.

Carbapenem susceptibility and prevalence of CRE
The ISIS-AR database was searched for diagnostic iso-
lates (i.e., taken because of a clinical indication) and 
non-diagnostic isolates (i.e., taken because of increased 
risk, or surveillance cultures as part of selective digestive 
tract decontamination (SDD)/selective oropharyngeal 
decontamination (SOD) at the intensive care unit (ICU), 
or partial digestive tract decontamination (PDD) in hae-
matology patients) of patients. The search was limited to 
isolates of the two most prevalent Enterobacterales spe-
cies, E. coli and K. pneumoniae isolates, that were sam-
pled in the period 2017–2019 and tested for meropenem 
and/or imipenem susceptibility by an automated system. 
Based on the automated minimum inhibitory concentra-
tion (MIC), isolates were categorized as having either an:

 (i) MIC ≤ the screening breakpoint as defined by the 
Dutch national guideline (0.25  mg/L for merope-
nem and 1 mg/L for imipenem) [11];

 (ii) MIC > the screening breakpoint and ≤ the EUCAST 
clinical susceptible (S) breakpoint (2 mg/L for both 
imipenem and meropenem) (EUCAST version 9.0 
[12]);

 (iii) MIC > the EUCAST clinical S breakpoint and ≤ the 
EUCAST clinical resistant (R) breakpoint (8 mg/L 
for meropenem and 4  mg/L for imipenem) 
(EUCAST version 9.0 [12]);

 (iv) MIC > the EUCAST clinical R breakpoint.
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In accordance with the Dutch national guideline rec-
ommendations, isolates with automated measured 
elevated MIC for carbapenems (i.e., MIC > the screen-
ing breakpoint) were further investigated using a gradi-
ent strip test [11]. Therefore, isolates in ISIS-AR with 
elevated automated MIC were further investigated for 
data on gradient strip tests. Only one isolate per patient 
per species was included across the period 2017–2019. 
If multiple isolates per patient per species were available, 
isolates with a gradient strip test were given priority for 
inclusion over isolates with only an automated test. Fur-
thermore, if more than one of these isolates had a gra-
dient strip test, the most resistant isolate was prioritized 
for inclusion. The total number of isolates was then cal-
culated per automated MIC categorization as above. 
Isolates with an elevated automated MIC were further 
categorized according to the gradient strip test results, 
using the same categories as above.

Microbiological characteristics of CPE and genetic clusters
For the national CPE pathogen surveillance, MMLs are 
requested to submit Enterobacterales isolates with an 
MIC > 0.25  mg/L for meropenem and/or > 1  mg/L for 
imipenem [11] and/or producing carbapenemase and/
or with a carbapenemase-encoding gene. Since Sep-
tember 2016 on, it has only been possible to submit 
accompanying isolate and patient data via Type-Ned 
CPE. This system allows only one isolate per person 
per Enterobacterales species/carbapenemase-encoding 
allele (carba-allele) combination within a twelve-month 
period. As part of the pathogen surveillance, the species 
is confirmed by MALDI-ToF (Bruker Daltonics GmbH, 
Bremen, Germany), the MIC for meropenem by gradient 
strip test, carbapenemase production by carbapenemase 
inactivation method (CIM) [13], the presence of the pre-
dominant carbapenemase-encoding genes by polymerase 
chain reaction (carba-PCR), and whole genome sequenc-
ing (WGS) [14] is performed for all CIM-positive isolates.

Microbiological characteristics were described based 
on unique CIM-positive species/carba-allele combina-
tions per person for the period 2017–2019. Only the first 
species/carba-allele combination per person detected 
during the 3-year period was included. Samples were 
excluded if they were without a personal identifier or 
from Dutch Caribbean MMLs.

Genetic clusters were identified for E. coli, K. pneu-
moniae complex and Citrobacter freundii using whole 
genome multi-locus sequence typing (wgMLST), and for 
Enterobacter cloacae complex using pan-genome multi-
locus sequence typing (pgMLST) [15]. Isolates were con-
sidered part of a genetic cluster if their allelic distance 
was ≤ 25 alleles for E. coli or ≤ 20 alleles for K. pneumo-
niae complex, E. cloacae complex and C. freundii [15, 

16]. Clusters were included only if they contained ≥ 2 iso-
lates originating from ≥ 2 persons.

CPE epidemiological data
Epidemiological data for samples taken between January 
2017 and June 2019 were retrieved from the Type-Ned 
CPE database. From  1st July 2019 onwards, notification of 
CPE became mandatory, with epidemiological data being 
collected via OSIRIS. If information overlapped between 
Type-Ned CPE and OSIRIS, the information from Type-
Ned CPE was used. For persons who within the last 
2 months before the CPE positive culture had been hos-
pitalized abroad for > 24  h, their reported geographic 
regions of the world and countries were analysed for the 
most frequently reported carba-alleles using solely the 
available Type-Ned CPE data.

Statistical analysis
Numbers and percentages were calculated for charac-
teristics of CPE isolates/CPE positive persons where 
applicable. The median and interquartile range (IQR) 
were calculated for age and the size of the genetic clus-
ters. Microbiological/WGS data on isolates, carba-alleles, 
and person levels are presented. The data is presented 
separately for persons with one versus multiple unique 
CIM-positive species/carba-allele combination(s). The 
Cochran-Armitage test for trends was used to assess the 
trends over time, with a p-value < 0.05 being considered 
statistically significant. Descriptive analyses of the epi-
demiological information were performed per reason for 
sampling (presumed risk of carriage versus clinical indi-
cation). All statistical analyses were performed using SAS 
version 9.4.

Results
Carbapenem susceptibility and prevalence of CRE
From ISIS-AR, routine AST data for 572,501 E. coli and 
K. pneumoniae isolates with automated MIC for mero-
penem and/or imipenem were available from 43 labo-
ratories (covering around 80% of all hospitals/MMLs 
in the Netherlands) for the period 2017–2019. For 
automated testing, an elevated MIC was found in 0.9% 
(5112/572,501) of isolates (Fig. 1). Confirmatory gradient 
strip testing was performed in 66.3% (3390/5112) of iso-
lates with an elevated MIC (> the screening breakpoint). 
Gradient strip test-confirmed elevated MIC was found 
in 12% (272/2323) of the E. coli isolates that underwent 
gradient strip testing and 0.06% of all E. coli isolates 
(n = 489,931). For K. pneumoniae, 38% (402/1067) of the 
isolates that underwent gradient strip testing and 0.49% 
of all K. pneumoniae isolates (n = 82,570) were found to 
have an elevated MIC. Among the 3513 E. coli isolates 
with an elevated MIC based on automated testing, 133 
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(3.8%) had an MIC above the clinical S breakpoint for the 
gradient strip test, of which 90 (2.6%) had an MIC above 
the clinical R breakpoint. Among the 1599  K. pneumo-
niae isolates with an elevated MIC based on automated 
testing, these values were 223 (13.9%) and 145 (9.1%), 
respectively. Thus, gradient strip test-confirmed car-
bapenem resistance was calculated to be 0.02% in E. coli 
(90/489,931) and 0.18% (145/82,570) in K. pneumoniae.

Microbiological characteristics of CPE and genetic clusters
A total of 895 unique species/carba-allele combinations 
of CPE (and thus CIM-positive) were detected in isolates 
submitted to the pathogen surveillance by 50 labora-
tories for a total of 764 persons (median age = 66 years, 

IQR = 50–76  years; 53.4% male; Table  1). One unique 
species/carba-allele combination was detected in 668 
persons, whilst 96 persons had multiple isolates (median 
number of submitted isolates = 2, IQR = 2–2 submitted 
isolates, range = 2–7 submitted isolates). The median age 
and sex distribution were similar across the three years. 
Although not statistically significant, the number of CPE 
isolates increased from 234 in 2017 to 354 in 2019.

Of all 895 unique species/carba-allele combinations, 
48.2% (431/895) had an MIC for meropenem above the 
clinical S breakpoint and 30.7% (275/895) had an MIC 
above the clinical R breakpoint. Subsequently, 51.8% 
(464/895) unique species/carba-allele combinations 
had an MIC below or equal to the clinical S breakpoint. 

Fig. 1 Categorization of automated and gradient strip test results for carbapenem susceptibility in E. coli and K. pneumoniae between 2017 
and 2019 in 43 laboratories participating in the Infectious Diseases Surveillance Information System for Antimicrobial Resistance (ISIS-AR) in the 
Netherlands. EC: Escherichia coli, KP: Klebsiella pneumoniae. Screening breakpoint: meropenem 0.25 mg/L, imipenem 1 mg/L (according to the 
Dutch Society for Medical Microbiology (NVMM) Guideline Laboratory detection of highly resistant microorganisms (HRMO) (version 2.0, 2012) [11]). 
Clinical S breakpoint: meropenem 2 mg/L, imipenem 2 mg/L (according to EUCAST clinical breakpoint table, version 9.0 [12]). Clinical R breakpoint: 
meropenem 8 mg/L, imipenem 4 mg/L (according to EUCAST clinical breakpoint table, version 9.0 [12])
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An MIC below or equal to the screening breakpoint 
of 0.25  mg/L for meropenem was observed in 19.2% 
(172/895). Nevertheless, a carbapenemase-encoding 
allele was found in 91.8% (158/172), whilst no carbap-
enemase-encoding allele, despite the positive CIM-test 
result, was detected in the remaining 14 (8.1%) isolates 
with an MIC for meropenem below or equal to the 
screening breakpoint. Nine of those fourteen (64.2%) iso-
lates belonged to the Enterobacter cloacae complex. Of 
the 292 isolates with an MIC for meropenem above the 
screening breakpoint and below or equal to the clinical 
S breakpoint (MIC for meropenem > 0.25 and ≤ 2 mg/L), 
93.5% (n = 273) had a detectable carbapenemase-encod-
ing allele whilst 6.5% (n = 19) did not. Interestingly, thir-
teen of those nineteen (68.4%) CIM-positive isolates 
without a detectable carbapenemase-encoding allele and 
an MIC for meropenem > 0.25 and ≤ 2 mg/L, belonged to 
the Enterobacter cloacae complex.

Of the 895 total unique species/carba-allele combina-
tions, the most frequently identified species was K. pneu-
moniae complex (39.3%), followed by E. coli (34.4%), E. 
cloacae complex (11.3%), and C. freundii complex (7.8%; 
Table  2). For the 227 persons with multiple unique iso-
lates solely, the relative contributions of these species 
were 35.7%, 33.5%, 10.6%, and 8.8%, respectively (Addi-
tional file 1: Table S1). A statistically significant increas-
ing trend was seen for the percentage of urine samples 
over time (12.4% in 2017 to 19.2% in 2019; p = 0.021), and 
statistically significant decreasing trends were observed 
for sputum/bronchoalveolar lavage (4.7% in 2017 to 1.1% 
in 2019; p = 0.007) and blood (4.3% in 2017 to 1.4% in 
2019; p = 0.029; Table 2) over time.

blaOXA-48 was the most frequently identified carba-
allele in CPE isolates overall, as well as in persons with 
one and with multiple isolates, followed by blaNDM-5 
and blaNDM-1 (Table  2; Additional file  1: Table  S1). A 
statistically significant increasing trend was observed 
for blaNDM-5 over time (7.4% in 2017 to 20.3% in 2019; 

p < 0.001) and statistically significant decreasing trends 
were observed for blaVIM-1 (9.8% in 2017 to 2.1% in 2019; 
p < 0.001) and blaKPC-3 (5.3% in 2017 to 0.3% in 2019; 
p < 0.001; Table 2). A total of 77 genetic clusters with ≥ 2 
isolates from ≥ 2 different persons were identified: 36 K. 
pneumoniae complex clusters, 31 E. coli clusters, 7 E. clo-
acae complex clusters, and 3 C. freundii clusters (Addi-
tional files 2 and 3: Tables S2 and S3), with a median size 
of 2 isolates (IQR = 2–3 isolates, range = 2–38 isolates). 
Most genetic clusters were caused by blaOXA-48 (Addi-
tional file 2: Table S2). The biggest cluster was caused by 
a C. freundii blaNDM-5 outbreak in a hospital (Additional 
file  3: Table  S3). Two or more healthcare facilities were 
involved in 62.3% (n = 48) of the genetic clusters, 22.1% 
(n = 17) of the clusters comprised 1 isolate from a hos-
pital and ≥ 1 sample taken by a general practitioner/
caregiver at home, 13.0% (n = 10) of the clusters were 
restricted to 1 healthcare facility, and 2.6% (n = 2) con-
sisted of 2 samples taken by a general practitioner.

CPE epidemiological data
Accompanying epidemiological data was available for 
660 persons (Type-Ned CPE, n = 487; OSIRIS, n = 173). 
Screening (usually upon admission) because of increased 
risk for colonisation was the reason for sampling in 
most persons (70.0%, 462/660; Table  3). Among per-
sons with a positive screening sample, clinical infection 
due to CPE was reported in 9.1% (42/462), colonisation 
was reported in 87.0% (402/462), and for 3.9% (18/462) 
it was unknown whether the patient was colonised or 
infected. Among persons with a diagnostic isolate, the 
most common infection was a urinary tract infection 
(43.8%, 84/192). Half of all CPE positive samples (49.5%) 
were taken from inpatients, whilst 17.5% of the cases 
were from outpatients. Of the six predefined risk factors 
for CPE presence, recent hospitalization abroad was the 
most frequently reported: 45.9% (303/660) overall, 59.5% 
(275/462) in persons with a screening sample, and 14.6% 

Table 1 Number of unique species/carbapenemase-encoding allele  combinationsa and number of  personsb with a CPE isolate 
cultured in the Netherlands and submitted to the pathogen surveillance system (Type-Ned CPE), 2017–2019

a Only one unique species/carba-allele combination was included for the period 2017–2019. When similar unique species/carba-allele combinations were submitted 
in multiple years, they were only included in the first year in which they were recorded
b Persons were only included once for the period 2017–2019. When isolates were submitted for the same person in multiple years, they were only included in the first 
year in which they were recorded

Number of CPE 
 isolatesa

Number of persons with 
 CPEb

Number of persons with one unique 
CPE isolate submitted

Number of persons with 
multiple unique CPE isolates 
 submittedb

2017 234 201 172 29

2018 307 264 227 37

2019 354 299 269 30

Total 895 764 668 96
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(28/192) in those with a diagnostic sample (Table  3). 
Countries in Western Asia (24.4%, 74/303) and Northern 
Africa (23.4%, 71/303) were most frequently reported. 
In 35.2% (232/660) of persons, no risk factor was iden-
tified. No major shifts in occurrence of risk factors were 
observed during the period 2017–2019 (data not shown).

No predefined risk factor was reported for 69.8% 
(134/192) of persons with a diagnostic isolate and 20.4% 
(94/462) of persons with a screening isolate. However, 
48.3% (55/114) of persons with a screening isolate noti-
fied in OSIRIS underwent an invasive medical procedure 
or invasive diagnostics prior to detection of the CPE.

When investigating carba-alleles and the geographic 
regions and countries where CPE positive persons were 

recently hospitalized, it was observed that blaOXA-48 was 
often reported for hospitalizations in Northern Africa 
and Western Asia, Morocco and Turkey in particular 
(Table 4). blaNDM was often related to countries in Asia, 
Southern Europe and Northern Africa, whilst blaKPC and 
blaVIM-1 were more often limited to countries in South-
ern Europe.

Discussion
The prevalence of isolates with gradient strip test-con-
firmed elevated MIC in the Netherlands was very low 
in 2017–2019 with percentages of only 0.06% in E. coli 
and 0.49% in K. pneumoniae, and carbapenem resist-
ance of 0.02% and 0.18% respectively. The number of CPE 

Table 2 Species, carbapenemase-encoding allele and material from CPE isolates cultured in the Netherlands and submitted to the 
pathogen surveillance system (Type-Ned CPE) per year and the trend over time, 2017–2019, the Netherlands

CPE carbapenemase-producing Enterobacterales, WGS whole genome sequencing; ↑ statistically significant increasing trend for the period 2017–2019 (p < 0.05); ↓ 
statistically significant decreasing trend for the period 2017–2019 (p < 0.05)

Characteristic 2017 2018 2019 Total Time trend
n (%) n (%) n (%) n

Total number of isolates 234 307 354 895

Total number of carbapenemase-encoding alleles 244 328 379 951

Species

 Klebsiella pneumoniae complex 99 (42.3%) 122 (39.7%) 131 (37.2%) 352

 Escherichia coli 82 (35.0%) 90 (29.3%) 136 (38.4%) 308

 Enterobacter cloacae complex 31 (13.2%) 38 (12.4%) 32 (9.0%) 101

 Citrobacter freundii complex 10 (4.3%) 33 (10.7%) 27 (7.6%) 70

 Other species 12 (5.1%) 24 (7.8%) 28 (7.9%) 64

Most frequently identified carbapenemase-encoding allele (WGS)

 blaKPC-2 14 (5.7%) 11 (3.4%) 11 (2.9%) 36

 blaKPC-3 13 (5.3%) 6 (1.8%) 1 (0.3%) 20 ↓
 blaNDM-1 37 (15.2%) 37 (11.3%) 46 (12.1%) 120

 blaNDM-5 18 (7.4%) 61 (18.6%) 77 (20.3%) 156 ↑
 blaNDM-7 5 (2.0%) 6 (1.8%) 10 (2.6%) 21

 blaOXA-48 89 (36.5%) 125 (38.1%) 145 (38.3%) 359

 blaOXA-181 13 (5.3%) 22 (6.7%) 26 (6.9%) 61

 blaOXA-244 6 (2.5%) 10 (3.0%) 11(2.9%) 27

 blaVIM-1 24 (9.8%) 14 (4.3%) 8 (2.1%) 46 ↓
 Other carbapenemase-encoding gene 14 (5.7%) 22 (6.7%) 23 (6.1%) 59

 No carbapenemase-encoding gene found 8 (3.3%) 14 (4.3%) 21 (5.5%) 43

 No WGS results 3 (1.2%) 0 (0.0%) 0 (0.0%) 3

Sample material

 Swab of throat/nose/perineum/rectum 161 (68.8%) 213 (69.4%) 243 (68.6%) 617

 Urine 29 (12.4%) 44 (14.3%) 68 (19.2%) 141 ↑
 Wound/ulcer/superficial infection 7 (3.0%) 13 (4.2%) 18 (5.1%) 38

 Pus/aspirate/biopsy 10 (4.3%) 4 (1.3%) 8 (2.3%) 22

 Sputum/bronchoalveolar lavage 11 (4.7%) 7 (2.3%) 4 (1.1%) 22 ↓
 Blood 10 (4.3%) 4 (1.3%) 5 (1.4%) 19 ↓
 Urine (catheter-related) 3 (1.3%) 9 (2.9%) 3 (0.8%) 15

 Other/unknown 3 (1.3%) 13 (4.2%) 5 (1.4%) 21
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Table 3 Epidemiological data of CPE positive persons with an isolate cultured because of a presumed risk for carriage (screening) or 
a clinical indication (diagnostic) from the pathogen surveillance (Type-Ned CPE; sampling date 1 January 2017–30 June 2019) and of 
notifications (OSIRIS; sampling date 1 July–31 December 2019), the Netherlands

CPE carbapenemase-producing Enterobacterales
a Numbers and percentages are reported on person level with available questionnaire data for the characteristic (n = 462 as denominator) unless otherwise indicated
b Numbers and percentages are reported on person level with available questionnaire data for the characteristic (n = 192 as denominator) unless otherwise indicated
c Numbers and percentages are therefore reported on person level with n = 660 as denominator unless otherwise indicated. The total number includes 6 persons with 

Characteristic Reason for culturing

Screening (n = 462)a Diagnostic (n = 192)b Total (n = 660)c

n (%) n (%) n (%)

Sample taking  locationd

 Inpatient departments (excluding Intensive Care Units) 174/348 (50.0) 67/138 (48.6) 241/487 (49.5)

 Outpatient departments 57/348 (16.4) 27/138 (19.6) 85/487 (17.5)

 Intensive Care Units 37/348 (10.6) 12/138 (8.7) 49/487 (10.0)

 Other/unknown 80/348 (23.0) 32/138 (23.2) 112/487 (23.0)

Residence

 Living independently 378 (81.8) 153 (79.7) 536 (81.2)

 Nursing or elderly home/facilities for small-scale housing for elderly 29 (6.3) 21 (10.9) 50 (7.6)

 Asylum seekers centre 17 (3.7) 1 (0.5) 18 (2.7)

 Rehabilitation centre 5 (1.1) 6 (3.1) 11 (1.7)

 Other/unknown 33 (7.1) 11 (5.7) 45 (6.8)

Underlying  illnessd

 No underlying illness 164/348 (47.1) 64/138 (46.4) 228/487 (46.8)

 Malignancy/leukaemia or organ/bone marrow transplantation or immunosup-
pressive therapy (steroids/chemotherapy)

48/348 (13.8) 19/138 (13.8) 68/487 (14.0)

 Renal dialysis 13/348 (3.7) 5/138 (3.6) 18/487 (3.7)

 Other/unknown 123/348 (35.3) 50/138 (36.2) 173/487 (35.5)

Invasive medical procedure/diagnosticse

 No 53/114 (46.5) 28/54 (51.9) 82/173 (47.4)

 Surgery 24/114 (21.1) 13/54 (24.1) 39/173 (22.5)

 Other (including invasive procedure like endoscopy, cystoscopy, urinary catheter, 
renal dialysis)

31/114 (27.2) 11/54 (20.4) 43/173 (24.9)

 Unknown 6/114 (5.3) 2/54 (3.7) 9/173 (5.2)

Risk  factorsf

 No known risk factor/unknown 94 (20.4) 134 (69.8) 232 (35.2)

 Hospitalization abroad for > 24 h during the previous two months 275 (59.5) 28 (14.6) 303 (45.9)

 Hospitalized in a country in:

   Western Asia (including Turkey) 64/275 (23.3) 10/28 (35.7) 74/303 (24.4)

   Northern Africa 64/275 (23.3) 7/28 (25.0) 71/303 (23.4)

   Southern Europe 53/275 (19.3) 4/28 (14.3) 57/303 (18.8)

   South Asia 36/275 (13.1) 2/28 (7.1) 38/303 (12.5)

   South-eastern Asia 19/275 (6.9) 1/28 (3.6) 20/303 (6.6)

   Western Europe 10/275 (3.6) 2/28 (7.1) 12/303 (4.0)

   Another region of the world/unknown 29/275 (10.6) 2/28 (7.1) 31/303 (10.2)

 Known CPE outbreak in own healthcare facility 26 (5.6) 4 (2.1) 30 (4.6)

 Contact with a hospital abroad in the last year in a different way than > 24 h dur-
ing the previous two months

31 (6.7) 13 (6.8) 45 (6.8)

 Already known carrier of CPE 11 (2.4) 3 (1.6) 16 (2.4)

 Received care in a department of another healthcare facility with an ongoing 
outbreak of  CPEg

14 (3.0) 2 (1.0) 16 (2.4)

 Travelling abroad in the past six/twelve months without hospitalization or visiting 
a  hospitalh

13 (2.8) 8 (4.2) 22 (3.3)
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isolates submitted to the pathogen surveillance annually 
increased slightly over the study period, with sporadic 
clusters mostly confined to a median of two cases in one 
or two healthcare centres. Recent hospitalization abroad, 
particularly to the regions of Western Asia and Northern 
Africa, was identified as the main risk factor for CPE in 
the Netherlands.

K. pneumoniae was the species most often identified 
as CRE in ISIS-AR and as CPE in the Dutch pathogen 
surveillance system, followed by E. coli. This finding has 

also been observed in other European countries [17–21]. 
In addition, the distribution of screening and diagnostic 
samples (urine being the most important diagnostic sam-
ple), was similar to that found in other countries [18–20, 
22]. The observed increasing trend in CPE occurrence is 
in line with previously reported findings in other coun-
tries [18–20, 23]. In line with findings from other coun-
tries, the most frequently identified carba-allele in CPE 
isolates in the Netherlands was blaOXA-48, followed by 
blaNDM-5 and blaNDM-1 [17, 18, 22, 23]. This distribution 

an unknown/other reason for culturing in addition to the 462 screening and 192 diagnostic isolates (1 from Type-Ned CPE and 5 from OSIRIS)
d This information was only available for the questionnaires in the pathogen surveillance (Type-Ned CPE)
e This information was only available for the notification questionnaires in OSIRIS
f The total number for this characteristic is higher than the total number of persons presented in the table and the summed percentage is higher than 100% because 
for some persons more than one answer was registered
g Defined in Type-Ned CPE as received care in a department of another healthcare facility with an ongoing outbreak of CPE in the previous two months; defined 
similarly in OSIRIS but without the addition of “in the previous two months”
h Defined as in the past six months in Type-Ned CPE and in the past twelve months in OSIRIS

Table 3 (continued)

Table 4 Most frequently identified carbapenemase-encoding alleles and the corresponding reported geographic regions of the 
world and countries for persons who were recently hospitalized abroad, January 2017–June  2019a, the Netherlands

CPE carbapenemase-producing Enterobacterales; WGS whole genome sequencing
a Only data from the pathogen surveillance (Type-Ned CPE) for persons with epidemiological data available were used in this table (sampling date January 2017–June 
2019). Recent hospitalization abroad was defined as hospitalized abroad for more than 24 h during the two months prior to the CPE positive culture
b Persons with multiple identified carbapenemase-encoding alleles in a single sample were included in these numbers

Carbapenemase-encoding 
allele (WGS)

Number of persons being hospitalized abroad for > 24 h 
during the previous two  monthsb (n)

Geographic region(s) most 
frequently reported (n)

Most 
prevalent 
countries 
(n)

blaOXA-48 84 Northern Africa (35) Morocco (29)

Western Asia (30) Turkey (29)

Southern Europe (6) Egypt (4)

Spain (4)

blaNDM-1 37 Southern Europe (9) Greece (5)

South-eastern Asia (6) Turkey (4)

Northern Africa (5) India (3)

Western Asia (5) Thailand (3)

South Asia (5)

blaNDM-5 29 Southern Asia (12) India (10)

Northern Africa (10) Egypt (7)

Morocco (3)

blaOXA-181 22 South Asia (11) India (7)

South-eastern Asia (4) Turkey (4)

Western Asia (4) Thailand (3)

blaKPC-2 15 Southern Europe (8) Greece (6)

Western Asia (4) Turkey (3)

blaOXA-244 13 Western Asia (6) Turkey (6)

Northern Africa (4) Egypt (3)

blaKPC-3 12 Southern Europe (11) Italy (8)

Portugal (3)

blaVIM-1 11 Southern Europe (9) Spain (5)
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was also reflected in the genetic clusters that were identi-
fied in our study, with most clusters involving blaOXA-48. 
In this study, 62.3% (48/77) of the genetic clusters 
occurred in 2 or more healthcare facilities. Without the 
use of the pathogen surveillance, most genetic clusters 
would not have been identified. When there is a multi-
institutional cluster, or when a new person is found with 
an isolate belonging to an already existing cluster, the 
MMLs are notified and asked to share the identities with 
other MMLs involved in the genetic cluster [24], in order 
to detect potential transmission routes and prevent fur-
ther spread.

Hospitalization abroad during the preceding two 
months was the main risk factor for CPE in the Nether-
lands. This finding was also observed in many (mainly 
Northern European) countries [19, 20, 23]. Turkey and 
Morocco were the most frequently reported countries, 
which is not surprising since the majority of Dutch citi-
zens with a migration background originate from these 
countries [25] and might still often visit relatives there. 
OXA-48 and OXA-48-like producers are endemic in 
Morocco and Turkey [3, 26, 27] and acquisition there 
was also observed in other European countries [18–20]. 
NDM is endemic in India and Pakistan [3, 26] and has 
been the cause of outbreaks in Northern Africa and 
Southern Europe [3, 26]. This corresponds with results 
from the current study and other studies [18, 20, 28]. 
KPC is endemic in Italy and Greece [3, 26] which was 
also reflected in the current study and other studies [18, 
20, 28, 29]. Finally, VIM causes significant outbreaks in 
Southern Europe [26, 27], which explains our findings as 
well.

For timely identification of nosocomial outbreaks 
throughout the country, hospitals and long-term care 
facilities are requested to notify outbreaks of HRMO 
to the national Early warning and response meeting of 
Hospital-acquired Infections and AntiMicrobial Resist-
ance (SO-ZI/AMR) group. This expert group, hosted by 
the RIVM, aims to monitor the course and management 
of these outbreaks and to analyse and communicate pos-
sible risks to public health. From 2017 to 2019, nine CPE 
outbreaks were reported to SO-ZI/AMR [30]. An E. coli 
blaVIM-1 outbreak in an elderly home in 2017 and a C. fre-
undii blaNDM-5 outbreak in a hospital in 2018–2019 con-
tributed to the significant decreasing trend in blaVIM-1 
and the increasing trend in blaNDM-5 over time. From 
the above, it can be concluded that the comprehensive 
surveillance system provides a true picture of trends in 
carbapenem resistance among Enterobacterales in the 
Netherlands.

Thus, a comprehensive surveillance system is essen-
tial to monitor carbapenem susceptibility and CPE. Sur-
veillance based only on phenotypical AST results from 

routine diagnostics may be affected by changes in sam-
pling practices and test performances over time [9]. In 
our study, 0.9% of isolates had an elevated carbapenem 
MIC on automated testing. The actual percentage of gra-
dient strip test-confirmed elevated MIC was much lower 
(0.1%), and this difference is caused by the specificity of 
the automated systems and possibly the sensitivity of the 
gradient strip tests. However, confirmatory gradient strip 
tests are not performed for all isolates with elevated MIC. 
Besides, the Dutch national guideline was updated in 
2021, and confirmatory gradient strip testing is not rec-
ommended anymore [31]. Based on a selection of data 
from ISIS-AR similar to the current study, the percent-
age of isolates with elevated automated MIC with a gra-
dient strip test performed has slightly decreased, from 
70% in 2016 to 65% 2019 in E. coli and from 72% in 2016 
to 67% in 2019 in K. pneumoniae. This is likely compen-
sated by the observed increase in additional tests for car-
bapenemase production or carbapenemase genes during 
the period 2015–2019 [30]. Thus, most of the suspected 
isolates are tested with one or more confirmatory tests: 
either phenotypically with an MIC measurement and/
or CIM test and/or genotypically by PCR. It should be 
noted that both diagnostic and non-diagnostic isolates 
were selected from ISIS-AR, and therefore the percent-
ages for elevated MIC and CRE will be lower among 
infections only. Also, prioritisation of the most resist-
ant isolate might have led to an increase in the reported 
percentages.

Although the Netherlands has a comprehensive sur-
veillance system, participation is voluntary, data are not 
always complete, and reconciliation is hard due to the 
lack of a corresponding identifier. Moreover, only lim-
ited information on patient characteristics is available, 
which complicates drawing conclusions regarding dis-
ease burden and transmission. The introduction of man-
datory notification of CPE led to more insight into the 
completeness of the pathogen surveillance: 94.2% of the 
notifications in our study had a corresponding isolate in 
the pathogen surveillance. Interestingly, 42 isolates from 
at least 32 CPE positive persons (the exact number is 
unknown as no personal identifier was available for 10 
samples) were submitted to the pathogen surveillance 
system without a corresponding notification, potentially 
caused by differing criteria for isolate submission and 
notification, or by non-reporting by the MHS or MML.

Conclusions
Carbapenem resistance for E. coli and K. pneumoniae 
remains low in the Netherlands. The predominant CPE 
species were E. coli, K. pneumoniae and species belong-
ing to the E. cloacae complex. Recent hospitalization 
abroad was the main risk factor for CPE, with countries 
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in the geographic regions of Western Asia and Northern 
Africa most often reported. It therefore remains impor-
tant to perform targeted screening in the Netherlands for 
persons who have been (hospitalized) abroad recently.
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