
Environmental factors and mobility predict COVID-19 seasonality in
the Netherlands
Hoogeveen, M.J.; Kroes, A.C.M.; Hoogeveen, E.K.

Citation
Hoogeveen, M. J., Kroes, A. C. M., & Hoogeveen, E. K. (2022). Environmental factors and
mobility predict COVID-19 seasonality in the Netherlands. Environmental Research, 211.
doi:10.1016/j.envres.2022.113030
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3479851
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3479851


Environmental Research 211 (2022) 113030

Available online 4 March 2022
0013-9351/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Environmental factors and mobility predict COVID-19 seasonality in 
the Netherlands 

Martijn J. Hoogeveen a,*, Aloys C.M. Kroes b, Ellen K. Hoogeveen c 

a Department Technical Sciences & Environment, Open University, the Netherlands 
b Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands 
c Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
COVID-19 reproduction number 
Solar radiation 
Allergens 
Allergies 
Mobility 
Temperature 

A B S T R A C T   

Background: We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses 
incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. We hypothesize 
that in The Netherlands the same environmental factors and mobility trends that are associated with the sea
sonality of flu-like illnesses are predictors of COVID-19 seasonality as well. 
Methods: We used meteorological, pollen/hay fever and mobility data from the Netherlands. For the reproduction 
number of COVID-19 (Rt), we used daily estimates from the Dutch State Institute for Public Health. For all 
datasets, we selected the overlapping period of COVID-19 and the first allergy season: from February 17, 2020 till 
September 21, 2020 (n = 218). Backward stepwise multiple linear regression was used to develop an environ
mental prediction model of the Rt of COVID-19. Next, we studied whether adding mobility trends to an envi
ronmental model improved the predictive power. 
Results: Through stepwise backward multiple linear regression four highly significant (p < 0.01) predictive 
factors are selected in our combined model: temperature, solar radiation, hay fever incidence, and mobility to 
indoor recreation locations. Our combined model explains 87.5% of the variance of Rt of COVID-19 and has a 
good and highly significant fit: F(4, 213) = 374.2, p < 0.00001. This model had a better overall predictive 
performance than a solely environmental model, which explains 77.3% of the variance of Rt (F(4, 213) = 181.3, 
p < 0.00001). 
Conclusions: We conclude that the combined mobility and environmental model can adequately predict the 
seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In this model higher solar 
radiation, higher temperature and hay fever are related to lower COVID-19 reproduction, and higher mobility to 
indoor recreation locations is related to an increased COVID-19 spread.   

1. Introduction 

COVID-19 appears to be subject to multi-wave seasonality (Kissler 
et al., 2020; Grech et al., 2020; Liu et al., 2021; Coccia, 2022), compa
rable to other respiratory viral infections and pandemics since time 
immemorial (Moriyama et al., 2020; Fox et al., 2017). It is observed that 
the COVID-19 community outbreaks have a pattern that is similar to 
those of other seasonal respiratory viruses (Sajadi et al., 2020; Poole, 
2020; Burra et al., 2021; Hoogeveen and Hoogeveen, 2021), whereby 
the seasonal dips coincide with allergy season in regions in the 
temperate climate zone (Hoogeveen et al., 2021; Hoogeveen, 2020; 

Shah et al., 2021). The same factors that drive the seasonality of flu-like 
illnesses, appear to drive COVID-19 seasonality: solar radiation 
including ultraviolet (UV) light, temperature and humidity (Byun et al., 
2021), seasonal allergens (i.e., pollens) and allergies, and behavior. 
Regarding behavior, mobility data show the beneficial effect of restric
tive measures on the reproduction number (Rt) of COVID-19 (Kajitani 
and Hatayama, 2021; Nouvellet et al., 2021; Linka et al., 2020), but the 
seasonal aspects of mobility are often overlooked. For example, during 
nice weather people spend more time outdoors. The advantage of 
including mobility data in the model is that it allows to discriminate 
between indoor and outdoor locations. This distinction is relevant since 
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government policies typically restrict mobility regarding specific loca
tion types. A single indicator for human-to-human interactions, as for 
example “commercial trade” (Bontempi, 2020), would not allow us to 
discriminate mobility per location type. Moreover, selective restrictive 
policies may distort the association between “commercial trade” and 
viral spread during our research period. For flu-like illnesses, we pre
viously showed that a compound predictor of solar radiation and sea
sonal allergens is highly significant though moderately strong r(222) =
− 0.48 (p < 0.001) (Hoogeveen et al., 2021). It is unclear why envi
ronmental factors, such as higher solar radiation, a higher level of sea
sonal allergens (pollens) and subsequently hay fever are consistently 
associated with a lower Rt of COVID-19, and, thus possibly associated to 
COVID-19 seasonality as well. Exposure to solar radiation might be 
associated with better COVID-19 outcomes (Abraham et al., 2021), and 
daylight is understood to regulate melatonin levels, and subsequently 
circadian (lung) immunity (Nosal et al., 2020). Further, increased UV 
light levels are associated with a more rapid degradation of SARS-CoV-2 
particles (Kumar et al., 2021), although the clinical relevance of this 
effect is debatable. 

Upon the observation that allergic diseases are associated with lower 
rates of COVID-19 hospitalizations (Larsson and Gill, 2021; Keswani 
et al., 2020), several possible pathophysiological explanations are pro
vided, such as a lower expression of membrane-bound angio
tensin-converting enzyme 2 (ACE-2) (Jackson et al., 2020; Wan et al., 
2020), higher eosinophil counts that are associated with a more favor
able course of COVID-19 (Licari et al., 2020; Lindsley et al., 2020; Fer
astraoaru et al., 2021), a reduced risk of a cytokine storm or 
hyper-inflammation (Carli et al., 2020), and T cell-mediated immune 
responses to allergens which might be effective against COVID-19 as 
well (Balz et al., 2021). On the other hand, a recent international 
epidemiological study reported a positive correlation between pollen 
concentrations and COVID-19 incidence (Damialis et al., 2021). As 
another study, from Spain, could not confirm the latter finding (Moral de 
Gregorio et al., 2022), this finding is still a matter of considerable 
debate. 

Further, we noticed that an estimate of Rt discriminates better be
tween independent variables than incidence metrics (Hoogeveen et al., 
2021), as typically used in flu-like and COVID-19 seasonality research 
(Byun et al., 2021). The Rt variable is not only a more sensitive metric, 
but also includes incubation time lags, and is corrected for test bias. 
Moreover, it is less dependent on seasonality than crude incidence. For 
such reasons, the Rt has become the standard in predictive modelling for 
COVID-19. As a consequence, it typically leads to quite different con
clusions regarding the nature of, specifically, the relation between 
COVID-19 spread and humidity and temperature, as seen in research 
focusing on crude incidence. 

Apart from the use of the Rt, the novelty of our research is based on 
the aim to almost fully explain the remarkable fact that during every 
spring, COVID-19 incidence appears to quickly melt away in the 
temperate climate zone. We aim to do this by including a very 
comprehensive set of environmental and mobility parameters in a single 
predictive model. Whereby we also include recently identified variables 
such as mobility, solar radiation and seasonal allergens and allergies, 
that appear to be reliable predictors as discussed above. Finally, among 
experts there is quite some disagreement on the relative importance of 
different SARS-CoV-2 transmission routes (Freeman et al., 2021). The 
statistical elimination of mobility locations and identifying the best 
predictor, can be helpful to reduce the confusion. 

Our hypothesis is that a model, combining both environmental fac
tors and mobility trends, improves the prediction of the seasonality of 
COVID-19 compared to each factor alone. Therefore, the main objective 
of this study is to explore a comprehensive model, including both 
environmental factors and mobility trends of people, to improve the 
prediction of the reproduction number for COVID-19 during spring 
season which coincides with the low-season of flu-like respiratory dis
eases in a country in the temperate climate zone such as the Netherlands 

(latitude: 52◦N). 

2. Methods 

2.1. Data 

For the present analyses, we selected the overlapping period of 
available data sets. The baseline is defined as the first measurements of 
incidence of COVID-19 on February 17, 2020, and the end date coincides 
with the end of the first full allergy or pollen season on September 21, 
2020, as will be further explained below. 

2.1.1. Reproduction number for COVID-19 
For the observations of Rt, we used the respective dataset from the 

Dutch State Institute for Public Health (Rijksinstitutuut voor Volksge
zondheid en Milieu; RIVM) (dataset]D-19 r, 2021) from February 17, 
2020 till September 21, 2020. RIVM uses a standard method to calculate 
the Rt metric on the basis of the input data described below (Wallinga 
and Lipsitch, 2007). RIVM’s Rt metric is a daily estimate that is based on 
positive COVID-19 tests in the Netherlands in hospitals from national 
intensive care foundation (NICE) and from RIVM’s own institutes in 
municipalities (GGD). When the first symptomatic day of a COVID-19 
infected person is not known, RIVM estimates this date. Further, RIVM 
assumes an average 4 days delay period between infection and first 
symptoms, and estimates the mean incubation period to be 6.4 days 
(95% confidence interval (CI): 5.6–7.7) (Backer et al., 2020). As the 
surveillance system of COVID-19 incidence and hospitalizations in the 
Netherlands, on which Rt is based, is considered highly reliable and 
valid, we did not consider to look into alternative metrics such as viral 
particle counts in waste water (Hu et al., 2021). 

2.1.2. Meteorological data 
Regarding meteorological data, we used datasets from the Royal 

Dutch Meteorological Institute (dataset]Daily Mete, 2021) from 
February 17, 2020 till September 21, 2020. The downloaded daily data 
included global solar radiation in J/cm2, mean relative atmospheric 
humidity (% RH), and average temperature in degrees Celsius. For 
comparison, and given their effects on pollen distribution, we also added 
precipitation duration in 0.1 h, precipitation amount in 0.1 mm, mean 
wind speed, minimum and maximum temperatures in degrees Celsius, 
mean dew point temperature in degrees Celsius, and sunshine duration 
in 0.1 h. Additionally, we calculated the wind chill temperature per day. 
These datasets were obtained from the KNMI’s centrally located De Bilt 
weather station. De Bilt is traditionally chosen as it provides an 
approximation of modal meteorological parameters in the Netherlands, 
which is a small country. Furthermore, all major population centers in 
the Netherlands, which account for around 70% of the total Dutch 
population, are within a radius of only 60 km from De Bilt. We therefore 
assumed in this study that the measurements from De Bilt are suffi
ciently representative for the meteorological conditions typically expe
rienced by the Dutch population. 

2.1.3. Mobility data 
We used Google mobility data for relative trends regarding visits to 

different types of locations in the Netherlands (dataset] Google. 
Mobility, 2021) for the same period from February 17, 2020 till 
September 21, 2020. These location types are: Residential, Workplaces, 
Indoor Recreation (called retail & recreation by Google, which includes 
restaurants, cafes, retail, shopping centers, theme parks, museums, li
braries, and movie theaters), Outdoor Recreation (called Parks by 
Google, and including places such as national parks, public beaches, 
marinas, dog parks, plazas, and public gardens), and Transit Stations 
(places such as public transport hubs such as subway, bus, and train 
stations). For comparison, as these are less affected by lockdowns, we 
also included mobility trends for Grocery & Pharmacy (places such as 
grocery markets, food warehouses, farmers markets, specialty food 
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shops, drug stores, and pharmacies). 

2.1.4. Seasonal allergens and allergies 
For hay fever (allergic rhinitis) we used the data from Nivel (2021), 

for the same period, about weekly incidence reports at primary medical 
care level, per 100,000 citizens in the Netherlands. Primary medical care 
is the day-to-day, first-line healthcare given by local healthcare practi
tioners to their registered clients as typical for the Netherlands. The hay 
fever incidence metric is a weekly average based on a representative 
group of 40 primary care units, and calculated using the number of hay 
fever reports per primary care unit divided by the number of patients 
registered at that unit. This is then averaged for all primary care units 
and then extrapolated to the complete population. We used interpola
tion to generate a daily data set. 

For comparison, we included daily mean pollen concentrations based 
on the data from two Dutch pollen stations: Elkerliek Ziekenhuis in 
Helmond (latitude 51.487059, longitude 5.662036) (Elkerliek, 2020), 
and Leiden University Medical Center in Leiden (latitude 52.166309, 
longitude 4.477315) (dataset]Pollen con, 2021). The mean pollen con
centration is measured in grains/m3, whereby we used the daily totals 
for the 42 types of pollen particles for which by both stations the 
numbers are counted and averaged per day per 1 m3 of air. The common 
Burkard spore trap is used by these stations. It was noticed before that a 
metric including all available allergenic particle types, lower allergenic 
or higher allergenic, correlates stronger with the incidence or Rt of 
COVID-19, than a metric only based on higher allergenic particle types 
(Hoogeveen et al., 2021; Shah et al., 2021). In the Netherlands, these are 
the only two pollen stations, whereby it is understood that the station in 
Leiden represents the maritime coastal zone in the Netherlands, below 
sea level, and the one in Helmond the more continental zone, above sea 
level. In previous studies, we saw that using the data of a single station 
already provided a good parameter for trend analysis (Hoogeveen et al., 
2021; Hoogeveen, 2020). But, we believe that including data of both 
stations leads to a better estimate for the Netherlands as a whole. 

2.2. Data sets consolidation 

As said before, we selected for all datasets the same overlapping 
period of COVID-19 and the first full allergy season (Hoogeveen and 
Hoogeveen, 2021), during 2020. The overlapping period runs therefore 
from February 17, 2020 till September 21, 2020 (n = 218 days). The end 
of allergy or pollen season, we defined as total pollen concentrations 
structurally dropping below 10 grains/m3. Further, all variables were 
consolidated into a single parameter for the whole country not ac
counting for spatial variability given that not for all datasets data is 
available on provincial or municipality level. 

For sensitivity analyses, we also extended the datasets to periods till 
June 10, 2021 (n = 480 days). 

For mobility datasets the clearly intra-week patterns required a 7 
days moving average to reduce noise. Therefore, for reasons of consis
tency, we calculated 7 days moving averages for all other variables as 
well. 

2.3. Statistical analysis 

Variables are presented with their sample sizes (n), means (M), and 
standard deviations (SD). We calculated correlation coefficients to assess 
the strength and direction of relations of each independent variable with 
Rt, and with each other. 

Stepwise backward multiple linear regression for all independent 
variables on Rt was used to keep only candidate predictors that are 
significant (p < 0.05) in the model and remove insignificant predictors. 
Next, we removed predictors that were multicollinear as defined below. 
With the remaining independent variables the F-value, standard de
viations and errors, degrees of freedom (DF), and significance level, are 
calculated to test the goodness of fit hypothesis for our predictive model 

for Rt. Further, the multiple R, Multiple R squared (R2) and adjusted R2 

correlation coefficients are calculated to estimate the predictive power 
of our model. Additionally, the algebraic equation to predict Rt is 
determined, which is just to be understood as an empirical formula. 
Next, per independent variable the (standard) coefficient, t-stat and its 
95% CI, probability, and the variance inflation factor value (VIF) are 
calculated as well. 

Further, as linear regression assumes normality of the residuals, we 
applied the Shapiro-Wilk test and to test the homoscedasticity require
ment – homogeneity of variance of residuals– the White test is applied. 
To analyze multicollinearity we used a VIF value of 2.5 as a threshold. 
Additionally, the priori power is calculated of each predictor alone and 
compared with the full model. Although the independent variable Rt 
assumes time lags, we also studied the autocorrelations of residuals, 
whereby we interpret an autocorrelation beyond a time lag of 7 days as 
an indication that our model probably might miss a key predictor. 
Finally, we created calibration plots to visually review the fit of the 
model. 

For selected independent variables with a p < 0.05 and VIF score 
<2.5, standard log10, square root and quadratic (^2) data trans
formations are applied to reduce non-linearity in relations between 
variables which helps to reduce skewness, and, especially, meet the 
normality and homoscedasticity requirement. Such data trans
formations do not change the nature and direction of relations between 
independent variables and Rt. In case of the relative mobility trend data 
we added a constant before such data transformations to avoid loss of 
data because of negative numbers. For other variables that was not 
necessary as they only included positive numbers. 

We reported the results in APA style, adapted to journal re
quirements, and applied the TRIPOD guidelines in so far applicable. 

All statistical analyses were done with Stats Kingdom 2021, which 
we benchmarked on R version 3.5. 

3. Results 

3.1. Variables and their correlations 

The sample sizes (N), means, and SDs of the independent variables as 
used in our multiple linear regression models are summarized in Table 1. 
The values are given for the data sets after applied data transformations. 

During the allergy season, the factors that negatively correlate with 
Rt, are in order of strength: hay fever (r(218) = − 0.65, p < 0.00001), 
solar radiation (r(218) = − 0.63, p < 0.00001), pollen (r(218) = − 0.62, 
p < 0.00001), and temperature (r(218) = − 0.12, p = 0.085). Positively 
correlated to Rt are relative humidity (r(218) = 0.55, p < 0.00001) and 
the related dew point temperature (r(218) = 0.12, p = 0.082). Further, 
higher relative humidity is associated with rain or fog, and thus reduced 
solar radiation and lower temperature. Temperature and solar radiation 
are associated as well, although only moderately strong: r(218) = 0.39, 
p < 0.00001). 

Table 1 
Overview means (M), standard deviations (SDs) and skewness values.  

Variable N Mean SD 

Hay Fever 218 131 73.8 
Log10(Hay Fever) 218 2.06 0.215 
Log10(Pollen) 218 1.84 0.464 
Log10(Solar Radiation) 218 3.15 0.273 
Log10(Solar Radiation7dma) 218 3.18 0.198 
Temperature2 218 221 142 
Dew point temperature 218 8.56 5.70 
Sqrt(Mobility: Indoor recreation) 218 214 35.8 
Sqrt(Rt) 218 1.03 0.163 

Table 1: Overview of mean (M), and standard deviation (SD) per independent 
variable as used in the multiple linear regression models. The function Sqrt 
returns the square root of the variable. 
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Pollen and hay fever are, as to be expected, associated: r(218) = 0.50, 
p < 0.00001), although moderately strong. We did not add allergenicity 
weights to different pollen particles, and the pollen stations do not cover 
all types of allergenic particles such as, for example, mold spores. 
Therefore, having both data sets next to each other has added value, at 
least for our environmental model. 

Solar radiation is an important factor as it has, during allergy season, 
stimulating effects on pollen (r(218) = 0.40, p < 0.00001) and subse
quently hay fever (r(218) = 0.40, p < 0.00001), in addition to its as
sociations with temperature and Rt. 

The mobility places that are correlated with Rt are Indoor Recreation 
(n(218) = 0.761, p < 0.00001), Residential (n(218) = − 0.684, p <
0.00001), Transit Stations (r(218) = 0.563, p < 0.00001), Workplaces (r 
(218) = 0.532, p < 0.00001), Grocery & Pharmacy (r(218) = 0.472, p <
0.00001), and, not significantly, Outdoor Recreation (r(218) = − 0.048, 
p = 0.5). Indoor Recreation and Residential are most strongly inversely 
correlated: r(218) = − 0.817, p < 0.00001), and thus highly collinear (p 
> 0.8). Indoor Recreation has moderately strong positive correlations 
with all other mobility variables, and should therefore be seen as a 
representant of the mobility cluster. 

Temperature and dew point temperature had a high correlation of r 
(218) = 0.84 (p < 0.00001), and appear thus to be collinear. These 
variables although they have, standalone, no significant correlation with 
Rt, still play a role in our combined and environmental model, probably 
because of their indirect effects on mobility and pollen maturation and 
dispersion, with their opposite associations with Rt. 

3.2. Outcomes combined model 

After several iterations with stepwise backward multiple linear 
regression, four independent variables were selected from the combined 
pool of environmental and mobility variables that are both significant 
(p < 0.05) and have a VIF value below 2.5. These selected predictors are: 
temperature, solar radiation, hay fever, and Indoor Recreation (see 
Table 2). From the mobility datasets, residential was significant as well 
but was deselected based on its very high multicollinearity with all other 
mobility variables, homoscedasticity concerns and lowered explanatory 
power. In other words, staying at home has a beneficial effect, but, does 
not explain at which out-of-home location most COVID-19 infections 
occur. Without the hay fever data, the pollen data would have been 
significant, but using only the pollen data led to homoscedasticity con
cerns, which were fully mitigated when using the hay fever data instead. 

On the basis of the multiple linear regression test, we can reject the 
null-hypothesis (H0) that our combined predictive model with the four 
selected factors does not provide a good fit: F(4, 213) = 374.2, p <
0.00001. R2 equals 0.875, which means that our predictors explain 
87.5% of the variance of Rt. The adjusted R square equals 0.873, and the 
coefficient of multiple correlation (R) equals 0.936. A simple Pearson 
correlation between our model’s predicted and the observed values for 
Rt is equally strong and highly significant: r(218) = 0.996, p < 0.00001. 
It means that there is a strong, and highly significant, relationship be
tween our combined model’s predicted and the observed Rt of COVID-19 

Table 2 
Multiple linear regression for mobility and environmental predictors.   

Coeff. SE t-stat lower t0.025(213) upper t0.975(213) Stand. Coeff. P VIF 

B 0.804 0.0961 8.37 0.615 0.994 0 <0.00001  
Sqrt(Mobility: Indoor recreation) 0.00385 0.000174 22.1 0.0035 0.00419 0.842 <0.00001 2.48 
Log10(Hay Fever) − 0.132 0.0241 − 5.46 − 0.179 − 0.084 − 0.173 <0.00001 1.72 
Log10(Solar Radiation) − 0.0637 0.0201 − 3.17 − 0.103 − 0.024 − 0.106 0.00177 1.93 
Temperature2 − 0.000561 0.0000401 − 14.0 − 0.00063 − 0.000482 − 0.489 <0.00001 2.09 

Table 2: Overview of outcomes per predictor after multiple linear regression for both mobility and environmental variables. Selection of predictors is based on being 
(highly) significant and having multicollinearity (VIF) score below 2.5. The function Sqrt returns the square root of the variable. 

Fig. 1. Scatter diagram predicted versus observed reproduction number. Fig. 1: 
The combined mobility and environmental model is superior as its predictions 
(R̂t) explain 87.5% of the variance of the observed reproduction number of 
COVID-19 (Rt) during allergy season. 

Fig. 2. Time series predicted versus observed reproduction number COVID-19. 
Fig. 2. The time series of the predicted ((R̂t) versus the observed reproduction 
number of COVID-19 (Rt) in the Netherlands show the very good fit of both the 
combined and environmental model during allergy season in the Netherlands. 
However, the Combined Model predicts Rt even better. The seasonality effect in 
March is visible in both model. 
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(see Fig. 1 and Fig. 2). 
The combined predictive model’s regression formula looks as 

follows: 

R̂t=
(

0.804+0.00385
̅̅̅̅̅̅̅
MR

√
− 0.132log10 HF − 0.0637log10 SI − 0.000561T2

)2  

Where R̂t is the predicted effective reproduction number for COVID-19, 
MR is the indexed mobility trend data for Indoor Recreation locations to 
which the mobility constant of 60,000 is added, HF is the hay fever 
incidence per 100K citizens, SI is the mean global solar radiation in J/ 
cm2, and T is the mean temperature in degrees Celsius. In our dataset, 
the transformed variables only contain positive numbers. 

3.3. Statistical outcomes environmental model 

For the environmental model we excluded mobility data. Again solar 
radiation and hay fever were selected as predictor of Rt. The pollen 
metric added explanatory power, and dew point temperature was 
selected at the expense of its collinear, temperature (see Table 3). 
Relative humidity was again deselected as an insignificant predictor. 

On the basis of the multiple linear regression test, we can reject the 
H0 that our environmental predictive model with the four selected fac
tors does not provide a good fit: F(4, 213) = 181.3, p < 0.00001, and R2 

equals 0.773, which means that our environmental predictors explain 
77.3% of the variance of Rt. The adjusted R2 equals 0.769, and the co
efficient of multiple correlation (R) equals 0.879. It means that there is a 
very strong direct and highly significant relation between our environ
mental model’s predicted and the observed reproduction numbers of 
COVID-19. 

The environmental model’s regression formula looks as follows: 

R̂t =(3.00 − 0.0587log 10 SA − 0.592log 10 SI + 0.00674 Td − 0.000262 HF)2  

Where R̂t is the predicted reproduction number for COVID-19, SA is 
average seasonal allergens or pollen concentrations in particles/m3, SI is 
the 7 days moving average of global solar (ir)radiation in J/cm2, Td is 
the average dew temperature in degrees Celsius, and HF is the hay fever 
incidence per 100K citizens. In our dataset, the transformed variables 
only contain positive numbers. 

4. Discussion 

The predictive power of the combined environmental-mobility 
model including solar radiation, hay fever, temperature and visits to 
Indoor Recreation locations (87.5%) surpasses the environmental model 
(77.3%) with more than 10%. Furthermore, the improved accuracy of 
the combined model shows that adding mobility trends not only helps to 
control the environmental model for lockdown effects, but also clearly 
improves it by helping to show the importance of seasonal behavior 
better. For example, nice weather (sun shine, warmth, low humidity) in 
The Netherlands is related to higher pollen concentrations, and more 
visits to crowded non-residential locations where social distancing is 
hard to apply. The latter is in turn associated with increased COVID-19 
infections. Interestingly, increased visits to Outdoor Recreation 

locations are not associated with an increase in COVID-19 infections 
(Rt). This finding suggests that outdoor transmission of SARS-CoV-2 is 
far less likely than indoor transmission, and that restrictive policies that 
limit visiting Outdoor Recreation locations have less added value. 

Although, overall, the environmental model is weaker than the 
combined model, it is still somewhat better at the onset of COVID-19 
during February and March 2020. This is probably explained by the 
exclusion from the mobility data the visits to ski holiday locations 
abroad, in Italy and Austria, where many of the first patients contracted 
COVID-19, which leads to an underestimation of both the Indoor Rec
reation and Outdoor Recreation trend. On the other hand, the combined 
model is somewhat better in July when lockdown restrictions were 
relaxed and people were less strict, which is caught well by the mobility 
trends variable. Both models are almost equally strong in predicting the 
seasonal decline in March/April, which indicates that the relative 
importance of restrictive measures was probably not the main driver of 
that particular decline, but the seasonality effect was. 

Of the non-residential locations, especially Indoor Recreation is by 
far the best predictor of increasing COVID-19 infections (Rt), which 
makes sense as social distancing in busy shopping locations, bars, discos 
and other such locations, is hard to maintain. Especially, when the 
seasonality effects are offset by relaxed lockdown measures and social 
distancing discipline. Even more, if people are under the influence of 
alcohol and party drugs in crowded party locations, social distancing 
becomes a distant reality. Additionally, the strong inverse correlation of 
Residential with Rt, shows that staying at home, because of lockdown 
measures, is effective. That all other indoor locations have a positive 
correlation with Rt, shows basically the same: when lockdown measures 
are relaxed, infection rates increase as people will meet more other 
people. 

The single effect of high temperature on Rt appears to be not sig
nificant. The role of temperature can be understood only when its as
sociations with other variables such as mobility trends and pollen 
maturation and dispersion are taken into account. Humidity in general, 
relative or specific (Td), appears to be positively associated to COVID-19 
reproduction, as it is associated with reduced solar radiation and sea
sonal allergens, and more traffic to indoor locations which are associ
ated with an increase in infections. Even despite observations that, 
indoors, very dry air, with a low absolute humidity, might favor SARS- 
CoV-2 transmission, which is likely caused by increased aerosolisation of 
infectious aqueous particles. It appears that using Rt as dependent var
iable instead of crude incidence, is a good approach to resolve the in
consistencies that are found in literature regarding especially humidity 
and COVID-19 (Byun et al., 2021). For example, the observation that 
rainy season in tropical countries coincides with an uptick in flu-like 
incidence fits our environmental model: the higher outdoor humidity 
during rainy season is associated with less solar radiation (and UV) and 
less pollens, which in its turn explains the increase in incidence of viral 
respiratory diseases. Finally, although we assume that day length is 
already covered by the solar radiation variable, it might still be inter
esting to look if this solar-related variable could add something to the 
predictive power of our models as well. 

Given that the same environmental factors and mobility are identi
fied as predictors of COVID-19 spread in other countries, we hypothesize 

Table 3 
Multiple linear regression for environmental predictors only.   

Coeff. SE t-stat lower t0.025(213) upper t0.975(213) Stand. Coeff. P VIF 

B 3.00 0.100 30.0 2.80 3.19 0 <0.00001  
Log10(Pollen) − 0.0587 0.0144 − 4.08 − 0.0870 − 0.0303 − 0.167 0.0000633 1.56 
Log10(Solar radiation 7dma) − 0.592 0.0370 − 16.0 − 0.664 − 0.519 − 0.717 <0.00001 1.89 
Dew point temperature 0.00674 0.00109 6.19 0.00459 0.00888 0.235 <0.00001 1.35 
Hay fever − 0.000262 0.0000903 − 2.91 − 0.000440 − 0.0000844 − 0.118 0.00405 1.56 

Table 3: Overview of outcomes per selected environmental predictor after multiple linear regression. Selection of predictors is based on being (highly) significant and 
having multicollinearity (VIF) score below 2.5. 
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that our models would have a similar predictive power in other coun
tries in the temperate climate zone with highly similar seasonality pat
terns. But, as this generalization was outside the scope of our study, 
further study is needed to test this hypothesis (Hoogeveen and Hoo
geveen, 2021). Further, it can be argued that during flu-like season, 
outside allergy season, a model with solar radiation, mobility to indoor 
entertainment locations, and humidity (dew point temperature or spe
cific humidity and relative humidity), but without the allergens or hay 
fever factor, can be determined with high predictive power. This is both 
demonstrated in a recent Lombardian study focusing on a combination 
of UV radiation and mobility trends, which jointly account for 82.6%– 
85.5% of the variance of Rt (Falzone et al., 2022). Which is only slightly 
lower than the outcomes of our combined environmental and mobility 
model. It is good to note that UV radiation is a collinear of our factor 
solar radiation. 

4.1. Methodological concerns 

Test bias, especially for new viruses such as COVID-19, is a major 
methodological challenge. The approach to use more reliable metrics 
such as the number of hospitalizations to generate the Rt metric appears 
to be a good method to reduce test bias. But, the change of methodology 
in June 2020, when more test stations were included with their fluctu
ating test capacities, most likely led to the introduction of test bias in the 
Rt metric. Such reliability concerns may have reduced the predictive 
power of our combined and environmental model. 

The usefulness of the pollen concentration metric might be improved 
by taking into account the allergenicity per particle type. The allerge
nicity classification is available, but it is not on a ratio scale and there are 
discussions about the accuracy of this classification. Furthermore, other 
allergenic particles like mold spores, are hardly ever covered by Euro
pean pollen stations because of budget constraints. 

We observed that the Indoor Recreation and Outdoor Recreation 
metric might need to be expanded to holiday locations in foreign 
countries. Unfortunately, that is something that is currently not possible 
via the Google Mobility datasets. A solution could be to make use of data 
about airport travelers. Further, it would be of interest to understand 
whether the predictive power of our models could be improved by using 
a single, consolidated parameter for human-to-human contacts. In future 
research, a comparison could be made between the mentioned “com
mercial trade” substitute (Bontempi, 2020), and a consolidated factor 
that combines all traffic to out-of-home indoor locations, all correlating 
positively with R0. 

In our research we precluded the period of intensive vaccination 
from January 2021 onward. Given that it is widely observed that the 
protective immunity of vaccinations or infections is short-lasting, we are 
still confronted with resurgences of COVID-19 (Edridge et al., 2020). A 
comparative Italian study concludes that “the COVID-19 pandemic is 
driven by seasonality and environmental factors that reduce the nega
tive effects in the summer period, regardless control measures and/or 
the vaccination campaign” (Coccia, 2022). Nevertheless, it would be of 
interest to test our predictive models for vaccination events. In any case, 
it is likely that new waves, will be less intense given longer lasting B-cell 
and T-cell memory of people that have been infected or are vaccinated 
already. Therefore, it might be good to control also for herd immunity 
levels when testing the predictive models for subsequent allergy seasons. 
Additionally, it might be of interest to differentiate the Rt per virus 
variant, given that the genetic drift typically leads to more contagious 
but less deadly variants, that change the dynamics of COVID-19. 

Finally, testing the predictive models for a wider geographical scope 
would be of interest, but would require metrics that are not widely 
available such as a standardized metrics for Rt, hay fever incidence, and 
pollen datasets. 

5. Conclusion 

The combined, mobility and environmental, model explains 87.5% 
of the variance of Rt of COVID-19 during spring season in a country in 
the temperate climate zone like the Netherlands, and provides a very 
good fit (F(4, 213) = 374.2, p < 0.00001), as the predicted and observed 
Rt correlate strongly and highly significantly. The significant predictors 
in the combined model are temperature, solar radiation, hay fever 
incidence, and the Indoor Recreation trend. The environmental factors 
are inversely associated with Rt. On the other hand, more visits to Indoor 
Recreation locations is associated with more infections (Rt). This seems 
to be the best mobility predictor for the effects of lockdown measures on 
the spread (Rt) of COVID-19. On the other side of the spectrum, moving 
to Outdoor Recreation locations is not significantly associated with 
changes in Rt, and including such locations in lockdown regimes appears 
to be ineffective. 

The solely environmental model, is around 10% less powerful than 
the combined model. Nevertheless, the environmental model shows that 
pollen concentrations and dew point temperature as a collinear of 
temperature, have an added explanatory value. Further, there are short 
periods in which the environmental model beats the combined model. 
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