Hydrogen bonding in the bleu copper site. A resonance Raman study
Gastel, M. van; Nagano, Y.; Zondervan, R.; Canters, G.W.; Jeuken, L.J.C.; Warmerdam, G.C.M.; ...
; Groenen, E.J.J.

Citation
Gastel, M. van, Nagano, Y., Zondervan, R., Canters, G. W., Jeuken, L. J. C., Warmerdam, G. C. M., ...

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3590778

Note: To cite this publication please use the final published version (if applicable).
Hydrogen Bonding in the Blue-Copper Site. Resonance Raman Study

M. van Gastel,1 Y. Nagano,1 R. Zondervan,1 G. W. Canters,2 L. J. C. Jeuken,1 G. C. M. Warmerdam,1 E. C. de Waal,1 and E. J. J. Groenen*1,3

Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

Received: October 17, 2001; In Final Form: January 8, 2002

The blue-copper proteins azurin from Pseudomonas aeruginosa, azurin from Alcaligenes denitrificans, and the mutant Met121Gln of azurin from Alcaligenes denitrificans have been investigated by resonance Raman spectroscopy. Large deuterium isotope shifts up to 6 cm\(^{-1}\) have been observed for bands in the 350–460 cm\(^{-1}\) range after incubation of the apoproteins in D\(_2\)O and subsequent reconstitution with copper. The shifts derive from the deuteration of the amide hydrogens of Asn47 and Phe114 that form a hydrogen bond with the sulfur of the copper-coordinated cysteine. This observation reveals the coupling of the copper—sulfur and sulfur—hydrogen vibrations and indicates that these amide groups have to be taken into account to properly describe the electronic structure of the blue-copper site.

Introduction

High-resolution X-ray crystallography on blue-copper proteins\(^1\)–\(^5\) has revealed a largely conserved metal coordination, in which the copper is ligated equatorially by the nitrogens of two histidines and the sulfur of a cysteine. Variations occur as regards the nature of the axial ligand and the structural arrangement of the ligands around copper, which appear to be connected to differences in the electronic properties of the redox-active copper site. In this respect, also the hydrogen bonds to the sulfur of the cysteine may play a role.\(^2\) For plastocyanin from Populus nigra, the sulfur of Cys84 has been proposed to be hydrogen bonded to the backbone amide proton of Asn38,\(^3\) while for azurin the sulfur of Cys112 has been proposed to be involved in two hydrogen bonds to the backbone protons of Asn47 and Phe114.\(^2\) Direct evidence for a hydrogen bond to the cysteine sulfur in azurin came from NMR spectra of cobalt-substituted azurin\(^6\) and of azurin itself,\(^7\) which reveal a small amount of spin density on the amide proton of Asn47. Recently, Freeman discussed the importance of the hydrogen bonds at the sulfur in relation to conformational differences in the copper-binding side chains.\(^8\) The present paper concerns a study by resonance Raman spectroscopy of the hydrogen bonds of the cysteine sulfur for Pseudomonas aeruginosa (P. aeruginosa) azurin, Alcaligenes denitrificans (A. denitrificans) azurin, and the A. denitrificans azurin mutant M121Q.

The absorptions around 450 and 600 nm, characteristic for blue-copper proteins, concern transitions in which an electron is promoted from an orbital that is bonding to an orbital that is antibonding between copper and sulfur. When excitation light in this wavelength region is used, the Raman spectrum reveals a series of resonance-enhanced bands between 350 and 460 cm\(^{-1}\).\(^9\)–\(^11\) The intensity of these bands derives from normal hydrogen vibrations and indicates that these amide groups have to be taken into account to properly describe the electronic structure of the blue-copper site.

\(^{10.1021/jp013839p}\) CCC: $22.00 © 2002 American Chemical Society

Published on Web 03/21/2002
observed for native proteins in D$_2$O. These shifts derive from the exchange of the amide protons that form hydrogen bonds with the copper-coordinated sulfur of the cysteine.

Materials and Methods

The azurins were purified according to procedures reported previously,2,22–24 and the copper was removed according to the protocol described in ref 22. The solution of the apoprotein was exchanged to D$_2$O and subsequently incubated for 7 days at $T = 40^\circ$C and pH = 7 before it was concentrated. To reconstitute the protein, 1.2 equiv of Cu(II), in the form of Cu(NO$_3$)$_2$, was added to the solution. The final concentration of the protein was about 1 mM and the pH was 8.5.

Proton NMR spectra were recorded at 40 $^\circ$C on a Bruker DMX 600 MHz NMR spectrometer with standard Bruker pulse programs. Potassium chloride was added to the $P$. aeruginosa azurin samples used in the NMR experiment to an end concentration of 25 mM. The pH values were not corrected for the deuterium effect. In total, 128 scans were measured and processed with standard Bruker software.

The Raman experiments were performed in a bath cryostat at a temperature of 1.2 K. To minimize Rayleigh scattering, glycerol (30 vol %) was added to the solution of the protein. The protein was irradiated with about 100 mW of light at 635.5 nm from a DCM dye laser (Coherent Model 599) which was pumped with an argon ion laser (Spectra-Physics Stabilite 2017). In detection, a double monochromator (Spex Model 1403, third slit opened) with a grating of 1800 lines/mm and a liquid nitrogen cooled CCD camera (EG&G Model 4000) were used. The camera was operated as a linear array (about 0.14 cm$^{-1}$/pixel), and the Raman spectra were composed of several measurements each corresponding to a range of about 60 cm$^{-1}$. The resolution was about 1 cm$^{-1}$. The spectra were calibrated with a neon lamp (Oriel spectral lamps).

Results and Discussion

Proton NMR spectra have been recorded for the reduced form of the proteins in H$_2$O and in D$_2$O and of the proteins reconstituted in D$_2$O. For $P$. aeruginosa azurin in D$_2$O and reconstituted in D$_2$O the NMR spectra are shown in parts a and b, respectively, of Figure 1. In the spectrum of native azurin in D$_2$O a number of bands are visible related to nonexchanged protons, among which the bands at 10.6 and 10.5 ppm that have been assigned to the amide protons of Asn47 and Phe114.21 The exchange of the amide protons becomes almost complete for azurin when reconstituted in D$_2$O. A few bands remain, among those the ones assigned to the nonexchangeable C$_6$ and C$_5$ protons of His35 and Phe15, respectively.21
TABLE 1: Resonance Raman Frequencies (cm$^{-1}$) for *P. aeruginosa* Azurin, *A. denitrificans* Azurin, and the Azurin Mutant M121Q, in H$_2$O and Reconstituted in D$_2$O

<table>
<thead>
<tr>
<th></th>
<th><em>P. aeruginosa</em> Azurin</th>
<th><em>A. denitrificans</em> Azurin</th>
<th>Azurin Mutant M121Q Azurin</th>
</tr>
</thead>
<tbody>
<tr>
<td>native</td>
<td>347.9</td>
<td>374.0</td>
<td>349.1</td>
</tr>
<tr>
<td>reconstituted</td>
<td>362.9</td>
<td>372.2</td>
<td>368.6</td>
</tr>
<tr>
<td>shift</td>
<td>-1.7</td>
<td>-1.8</td>
<td>-2.5</td>
</tr>
<tr>
<td>native shift</td>
<td>-2.0</td>
<td>-0.9</td>
<td>-3.5</td>
</tr>
<tr>
<td>A. denitrificans Azurin</td>
<td>347.4</td>
<td>360.7</td>
<td>349.1</td>
</tr>
<tr>
<td>reconstituted</td>
<td>351.7</td>
<td>372.2</td>
<td>356.2</td>
</tr>
<tr>
<td>shift</td>
<td>-2.6</td>
<td>-3.1</td>
<td>-2.5</td>
</tr>
<tr>
<td>native shift</td>
<td>-2.3</td>
<td>-0.4</td>
<td>-3.4</td>
</tr>
</tbody>
</table>

$^a$ Also included are the corresponding deuterium isotope shifts. Literature values of the deuterium isotope shifts observed for the native azurins in D$_2$O have been reproduced from refs 15 and 18.

protons of Asn47 and Phe114, which are about 2.5 Å from the sulfur and coupling of the resonantly enhanced Cu$-$S(cys) vibration to the adjacent S(cys)$-$H vibration is most likely.

Relatively large isotope shifts upon reconstitution in D$_2$O have also been observed for amicyanin from *Paracoccus versutus* and the green nitrite reductase from *Alcaligenes faecalis* (data not shown). To the best of our knowledge, the literature of resonance Raman data on copper proteins reconstituted in D$_2$O is limited to stellacyanin from *Rhizus vernicifera*.12 Interestingly, the copper site of the azurin mutant M121Q mimics that of stellacyanin. The axial ligand is the same, a glutamine instead of the methionine commonly present in blue-copper proteins, and X-ray diffraction indicates a virtually identical structure of the metal site and the coordinated cysteine.4,5 On the other hand, the resonance Raman spectrum of *A. denitrificans* M121Q is of the azurin type (cf. the resemblance of the spectra of the azurins in Figure 2) and is largely different from the resonance Raman spectrum of stellacyanin.12 The isotope shifts of the native protein in D$_2$O and the protein reconstituted in D$_2$O were reported to be the same for stellacyanin.12 The shifts are small, less than 2 cm$^{-1}$, although the cysteine sulfur probably is involved in hydrogen bonds to two amide protons (Asn47 and Va191 for stellacyanin5) as for the azurins. The similarity of the isotope shifts for stellacyanin in D$_2$O and reconstituted in D$_2$O might indicate that in this case the amide hydrogens involved in the hydrogen bonds to the cysteine sulfur become exchanged already for the native protein in D$_2$O. This is conceivable because the X-ray study5 reveals that the copper site is much more solvent exposed for stellacyanin than for the azurin mutant M121Q. The exchange could be investigated by NMR spectroscopy. Alternatively, the similarity of the isotope shifts for stellacyanin in D$_2$O and reconstituted in D$_2$O might derive from the fact that the normal modes corresponding to the intense bands in the resonance Raman spectrum of stellacyanin are hardly sensitive to substitution of deuterium into the S(cys)$-$Hydrogen bonds. The intensity in the resonance Raman spectrum of stellacyanin is concentrated in two bands in the low-frequency range at 347 and 385 cm$^{-1}$. In this wavenumber range the shifts are small also for the *P. aeruginosa* and *A. denitrificans* azurins. Large isotope effects for the latter proteins are particularly observed for the bands above 395 cm$^{-1}$, where the resonance Raman intensity is low for stellacyanin.

The coupling of the copper$-$sulfur and sulfur$-$hydrogen vibrations indicates that for a proper description of the electronic structure of the blue-copper site in azurin the amino acids Asn47 and Phe114, although not copper-coordinated, have to be included. Besides the present resonance Raman study, data from NMR, electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations support the relevance of the sulfur$-$hydrogen bond with regard to the electronic structure. A significant contact shift was observed for the amide hydrogen of Asn47 in the proton NMR spectrum of oxidized azurin.3 Pulsed EPR, both electron nuclear double resonance (ENDOR)26 and electron spin-echo envelope modulation,27,28 experiments revealed spin density on a backbone nitrogen, initially assigned as that of Cys11226 or of His46.27 Recent DFT calculations of the nitrogen hyperfine interactions in azurin indicate that the backbone nitrogen instead concerns the one of Asn47.29 The latter interpretation is consistent with the orientation of the nitrogen quadrupole tensor as derived from ENDOR experiments.26

In summary, we have performed resonance Raman spectroscopy on the blue-copper proteins azurin of *P. aeruginosa* and of *A. denitrificans*, and the azurin mutant M121Q, in H$_2$O and reconstituted in D$_2$O. By reconstituting the apoproteins in D$_2$O, more protons exchange than when the native solution is incubated in D$_2$O. Among these protons are those that make hydrogen bonds to the copper-coordinated cysteine. Many deuterium isotope shifts are found to be significantly larger than those observed for the native proteins in D$_2$O, and the corresponding normal modes of the bands around 400 cm$^{-1}$ most probably contain Cu$-$S=H bending character.

Acknowledgment. This work has been performed under the auspices of the BIOMAC Research School of the Leiden and Delft Universities and was supported with financial aid by the Netherlands Organisation for Scientific Research (NWO), department Chemical Sciences (CW).

References and Notes

H Bonding in the Blue-Copper Site


