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Chapter 7

Abstract

Clinical trial design and dosing optimization strategies are increasingly relying on
model-based approaches in pharmacometrics and quantitative systems pharmacol-
ogy (QSP), which incorporate patient characteristics to simulate the expected phar-
macokinetic (PK) or pharmacodynamic (PD) response in cohorts of virtual patients. To
this end, the individual-level patient characteristics, or covariates, are used as input
for such simulations should accurately reflect the values seen in real patient popu-
lations. Current methods to achieve this goal either make unrealistic assumptions
about the correlation between patient’s covariates, or require direct access to actual
data sets with individual-level patient data, which may often be limited by data shar-
ing limitations. Here, we propose and evaluate the use of copulas to address current
shortcomings in simulation of patient-associated covariates for virtual patient simu-
lations for model-based dose and trial optimization in clinical pharmacology. Copulas
are multivariate distribution functions that can capture joint distributions, including
the correlation, of covariate sets. We compare the performance of copulas to alterna-
tive simulation strategies and we demonstrate their utility to a number of case studies.
Our analyses demonstrate that copulas can reproduce realistic patient characteris-
tics, both in terms of individual covariates and the dependence structure between
different covariates, outperforming alternative methods, in particular when aiming to
reproduce high-dimensional covariate sets. In conclusion, copulas represent a ver-
satile and generalizable approach for virtual patient simulation which preserve rela-
tionships between covariates, and offer an open science strategy to facilitate re-use
of patient data sets.

7.1 Introduction

Model-based approaches in pharmacometrics and quantitative systems pharmacol-
ogy (QSP) (Bonate, 2000, 2001; Chelliah et al., 2020) have become of pivotal impor-
tance for the optimization of drug treatment strategies or clinical trial designs (Holford
et al., 2010; Langenhorst et al., 2020). These model-based approaches typically sim-
ulate the expected pharmacokinetic (PK) and/or pharmacodynamic (PD) response
and the associated inter-individual variability for a cohort of virtual patients. Here,
the inter-individual variability in the PK or PD response is often in part captured by
patient-specific characteristics such as age, weight, organ function biomarkers, or
specific genetic polymorphisms, incorporated in quantitative PK-PD or QSP models.
The increasing public availability of quantitative PK-PD or QSP models for many im-
portant therapeutics thus offers extensive opportunities for the clinical pharmacology
community to perform virtual patient simulations. These simulations may aid in de-
sign of (stratified) dosing strategies in particular for new (special) patient population
populations (De Cock et al., 2016), such as pediatric (Illamola et al., 2016; J. G. C. van
Hasselt, Allegaert, et al., 2014; Vinks et al., 2015) or pregnant patients (J. G. van Has-
selt et al., 2014), or, to evaluate different potential trial designs in specific types of
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Figure 7.1: Pharmacometric workflow. (a) In order to optimize dosing for new medication or special patient
populations, pharmacometric models, such as (PK/)PD models, are used to simulate new patient dosing
regimens. Next to the developed pharmacometric model, simulation studies require covariate simulation.
(b) An important challenge for covariate simulation is sampling realistic patients, where the dependency
between covariates is preserved.

patients or treatments(J. G. C. van Hasselt, Allegaert, et al., 2014; J. G. C. van Hasselt,
van Eijkelenburg, et al., 2014; Yoneyama et al., 2017) (Figure 7.1a).

A key requirement to enable simulation of realistic virtual patients is to produce
realistic sets of patient-associated characteristics or covariates used in the model.
Such covariates can include demographics (e.g. body weight, sex, age), organ func-
tion measures (e.g. renal or hepatic function), pharmacodynamic endpoints (cardio-
vascular readouts, biochemical biomarkers), and increasingly also high-dimensional
pharmacogenomic data. Importantly, such covariates may have various distributions
including an intricate dependency structure (i.e., correlation) that must be accounted
for in virtual patient simulation to produce realistic patient-profiles (Figure 7.1b). Not
considering such correlations leads to an inflation of the variability in covariates and
hence unrealistic virtual patients. For example, a patient of 95 years old, with a high
body weight and a very good kidney function is a combination that is not expected
to actually exist. Various data analytical strategies are available to generate sets of
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realistic patient covariates for virtual patient simulation. These strategies are either
based on methods that require direct access to the appropriate individual patient-
level covariate data, which may often not be available, or on methods that characterize
the covariate distributions.

Covariate generation methods that utilize available patient-level covariate data
include resampling methods such as the bootstrap (Efron, 1979), which preserve the
dependence structure of the patient covariates by directly resampling from the ob-
served data. However, these methods are only able to simulate patients that are
already present in the data set and require a large enough number of patients to be
included. These shortcomings were addressed by a recently proposed imputation
method using conditional distributions (CD) (Smania & Jonsson, 2021), although this
method remains dependent on access to patient-level data. Distribution-based simu-
lation methods for virtual patient simulation do not require patient-level data access.
Although initially distributions are often derived from patient-level data, subsequent
use of these distributional models to generate sets of patient-level covariates is in-
dependent of access to such data. The most straightforward strategy is to capture
the marginal density of covariates in univariate parametric distributions with asso-
ciated means and variances for each covariate, and to subsequently draw random
samples from these distributions. However, such an approach assumes that covari-
ates are fully independent and do not show any correlation. Alternatively, multivariate
normal distributions (MVND) (Tannenbaum et al., 2006) do capture the correlation
structure (Teutonico et al., 2015), but make strong assumptions regarding the (mul-
tivariate normal) distributional shape, which is commonly violated. Thus, depending
on the distribution of the covariates of interest this again can lead to unrealistic sets
of virtual patient covariates.

Copulas are multivariate distribution functions that can capture the joint distribu-
tion, including the dependence structure for sets of covariates, and are thus of inter-
est as a distribution-based approach for generating realistic sets of covariates. They
address shortcomings of alternative distribution-based methods while not requiring
access to patient-level data (Czado, 2019; Nagler & Czado, 2016; Sklar, 1973). In this
study, we aim to evaluate and demonstrate the utility of copulas as a novel strategy
to support realistic virtual patient simulation in the context of the field of clinical
pharmacology. We first compare the performance of copula models in comparison to
existing methods including the bootstrap, CD, MVND, and marginal distribution. We
then demonstrate the application of copulas in three case studies focusing on phar-
macokinetic simulations, time-varying covariates, and higher-dimensional covariates.

7.2 Methods

7.2.1 Data

Three different datasets of combined patient characteristics were used in this study
to evaluate the performance and explore different applications. The first data set
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contains a special patient population of pediatric patients (Cock et al., 2014) with 445
neonates and young children admitted to the ICU, with twelve measured covariates,
including body weight, serum creatinine level (SCr) and age. These data were used
to evaluate the simulation performance (Data set 1). A second data set on pregnancy
data (Patel et al., 2013) with 123 subjects, with biomarkers measured over time, was
used to simulate longitudinal covariate profiles (Data set 2). Lastly, MIMIC (Johnson
et al., 2022), a large observational dataset with ICU patients, was used to evaluate the
correlation structure between a large set of 30 variables for >53,000 patients (Data
set 3).

7.2.2 Copula estimation and simulation

Vine copulas were used to estimate the joint density between all covariates. Kernel
density estimation was used to estimate the marginal density of each covariate. Using
the probability integral function, the covariates were transformed to a uniform scale,
with values on the [0,1] domain (Nagler & Vatter, 2020). Based on the correlations be-
tween the covariates, a vine structure was chosen, where the most correlated covari-
ates were placed closer to each other in the vine structure. For each bivariate copula,
a set of parametric distributions was fit and the best fitting distributions were chosen
by minimizing the AIC. Vine copulas with different distributions were fit using the R
library rvinecopulib (Nagler & Vatter, 2021). The resulting copula density was used to
simulate covariates with uniform marginal densities. The earlier estimated marginal
densities were used to transform these covariates back to their original scale, yield-
ing the simulated covariate sets for virtual patients. All analyses were performed in R
(https://github.com/vanhasseltlab/copula_vps).

7.2.3 Evaluation of simulation performance

To evaluate how well copulas can be used for simulation of covariate sets, we calcu-
lated the performance of copula simulations on the pediatric data (Cock et al., 2014)
(Data set 1). The estimation and simulation were performed in two differently sized
covariate sets, with the same subjects, but a different number of covariates: one sim-
ulation on three covariates, age, SCr and body weight, and one on twelve covariates.
The distribution of the simulated population was compared with the distribution of
the observed population in terms of the mean and standard deviation for each co-
variate and correlation between each combination of covariates. A relative error was
computed for each of these statistics (S) as

Relative error =
Ŝ − S

S

where Ŝ �denotes the statistic of the simulated population. The simulations were
repeated 100 times.

The copula results were compared to four other simulation methods, of which two
method are based on patient-level data and two methods are based on characteriza-
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tion of the covariate distribution. Bootstrap simulations were conducted by resam-
pling full rows from the original data with replacement (Efron, 1979). The conditional
distribution (CD) approach, which uses a multiple imputation algorithm to iteratively
impute covariate values for virtual patients, was used as implemented by the devel-
opers of the method (Smania & Jonsson, 2021). The standard multiple imputation
method ‘predictive mean matching’ was used, corresponding to their paper. The
distribution-based methods used were the multivariate normal distribution (MVND)
and marginal distributions (MDs), through maximum likelihood estimation. The best
fitting multivariate normal distribution was fitted. The univariate MDs of each covari-
ate was estimated using a kernel density estimation method (Nagler, 2017; Nagler &
Vatter, 2020). Covariate values were sampled from the respective density functions.

7.2.4 Applications

Pharmacokinetic simulation of vancomycin in pediatric patients

For the proposed copula approach, the effect of preserving the dependence structure
in covariate simulation methods was evaluated on PK predictions in pediatric patients.
To this end, for Data set 1, the performance of the use of body weight and SCr from
the three-covariate copula and the MDs simulation was compared in a population PK
one-compartmental model for vancomycin (Grimsley & Thomson, 1999).

dA

dt
= 0− Cl

V
·A

Cl =
3.56 ·WT

SCr

V = 0.669 ·WT

This PK model was used to calculate the PK curves from the original pediatric
covariate data (Data set 1) and the simulated covariate data from the three-covariate
copula and MDs simulations. These PK profiles were compared using the AUC of the
first 24 hours after dosing. The correlation between the AUC and the covariates, SCr
and body weight, was evaluated to identify whether this correlation was recovered
between the covariates and the PK curve.

Time-varying covariates in pregnancy data

One of the possible applications of using copulas is the simulation of time-varying
covariates. Using Data set 2 with six time-varying covariates (y) over the gestational
age (t) during pregnancy (Patel et al., 2013), including albumin concentration, bilirubin
concentration, lymphocytes, neutrophils, platelets and SCr, we fit a copula to simulate
time varying covariates in a two-step procedure. First, we fitted a second degree
mixed effects polynomial regression model on the temporal data for each covariate j

and extracted three individual parameters for each patient i, the intercept (β0j + b0ji),
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the linear term (β1j + b1ji) and the quadratic term (β2j + b2ji), resulting in a total of
18 dimensions.

ŷij(t) = β0j + b0ji + β1j · t+ b1ji · t+ β2j · t2 + b2ji · t2

b0ji ∼ N(0, σ0)

b1ji ∼ N(0, σ1)

b2ji ∼ N(0, σ2)

For example, yielding for albumin concentration:

̂Albumin conci(t) = 44.1 + b0ji + 0.269 · t+ b1ji · t+ 0.0017 · t2 + b2ji · t2

b0ji ∼ N(0, 1.86)

b1ji ∼ N(0, 0.105)

b2ji ∼ N(0, 0.00224)

Second, instead of fitting a copula directly on the longitudinal covariates, the cop-
ula was fitted on the set of individual parameter estimates, yielding the six new sets
of intercepts, linear and quadratic terms for each simulated patient. To create time-
dependent covariates, the curves for each patient were retrieved from the simulated
parameter sets. The performance of the copula simulation was evaluated by com-
paring the time-curves estimated from the copula simulated time curves with those
estimated on the original pregnancy data. The performance was evaluated both in
terms of the simulated individual parameters as the calculated time-curves. Next to
simulation with the copula, the time-varying covariates were simulated in a similar
two-step approach with MDs, to compare the differences between the MDs and cop-
ula.

Covariate distributions in large ICU data

To characterize the joint distributions in a large dataset, copula simulation was used
to characterize and simulate from the MIMIC database (Data set 3) (Johnson et al.,
2022). A copula model was fit to a large dataset of 30 available patient-associated
covariates with primary focus on clinical laboratory measurements from >53,000 ICU
patients. There were many values missing over the covariates and subjects. To es-
timate the copula on missing data, for each combination of covariates needed for a
node in the vine copula structure, the complete observations were used. This simula-
tion was used to demonstrate how copulas can be used to characterize the underlying
dependency structure of these covariates and evaluate the correlations.
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7.3 Results

7.3.1 Evaluation of simulation performance

The performance of the copulas was assessed on two differently sized datasets, one
with three covariates and one with twelve covariates (Data set 1). First, for a set of
three covariates, copulas show a low relative error of 0.02, 0.08 and 0.04 for the in
terms of correlations between age and body weight, age and SCr, and body weight
and SCr respectively (Figure 7.2a). Second, for the twelve-covariate simulations, the
copula simulation slightly underestimates the covariances with a median error of 0.05
over all covariate combinations (Figure 7.2b).
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Figure 7.2: Relative error over 100 simulations as compared to the statistics of the observed population
for five different simulation methods. (a) Boxplots of the correlation, mean and standard deviation of three
covariates. (b) Median relative error of a large covariate simulation for the correlations of each combination
of twelve covariates.

The performance of copulas was compared to four other simulation methods. For
the three-covariate simulation the copula yielded similar results to the conditional
distributions, which has relative errors of 0.01, 0.12 and 0.03 (Figure 7.2a), but for the
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twelve-covariate simulations, the CD simulations show a large median underestima-
tion with a relative error of 0.60 (Figure 7.2b). The bootstrap shows the best per-
formance, since it can fully keep the dependence structure intact, both in the three-
covariate (Figure 7.2a) and the twelve-covariate simulation (Figure 2b). The MDs was
unable to capture any correlation, which is seen in the relative error of around -1.0 for
each covariate combination. The MVND shows a good performance in the estimates
for correlation, mean and standard deviation, but a visual check of the density plots
shows a non normal distribution of the covariates, which is not well covered by the
simulated density (Figure S7.1).

Overall, copulas performed closest to the bootstrap, which can fully capture the de-
pendence, but it was not able to capture all covariate combinations equally well, such
as a large overestimation of the combination CREF and FRCR. The twelve-covariate
model showed a weakness in the conditional distributions, which the copulas did not
show and although the MVND shows very good summary metrics, the distributions
themselves perform worse than the copula (Figure S7.1).

7.3.2 Applications

Pharmacokinetic simulation of vancomycin in pediatric patients

The effect of ignoring the correlation between covariates on PK simulations was eval-
uated by comparing the PK curves from the copula simulations with those from the
MDs simulation. Covariate sets simulated for SCr and body weight from Data set 1
were used to predict PK profiles and compute subsequent AUCs. The AUCs from
the copula and the MDs simulations did not show differences in summary statistics
such as the median and quartiles (Figure 7.3a). However, when comparing the cor-
relations between the covariates and the AUC, we found that the original correlation
between the AUC and body weight (r = 0.67) was lost in the MDs simulations (r = -
0.07), whereas the copula preserved their dependence (r = 0.66) (Figure 7.3b). If the
dependence between variables is not taken into account, this can lead to unrealistic
virtual patients, such as individuals with a high body weight having a high AUC.

Time-varying covariates

To evaluate how well copulas can be used to simulate time-varying covariates, a two-
step simulation method was used to simulate patients, with and without taking the
dependency into account, by simulating from a copula and MDs respectively. For the
time-varying covariates in the pregnancy data (Data set 2), polynomial linear regres-
sion curves were fitted for each covariate, resulting in polynomial equations. The
individual parameters were estimated, resulting in a set of 18 parameter estimations
for all subjects. A set of virtual patients was simulated from the estimated individual
parameters. The correlations between the individual parameters from the simulated
patients were on average close to the correlations between the estimated parameters
of the observed data. The simulated individual parameters were used to generate
time-varying covariate values, by calculating the curves from the intercept and the
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Figure 7.3: (a) Pharmacokinetic (PK) curves calculated for the observed population and the virtual patient
populations from copula simulations and the marginal densities (MDs). The median and quantiles show a
similar pattern between all three sets, however the weight is randomly distributed over the PK profiles for
the simulation with MDs. (b) Scatter plot of area under the PK curve (AUC) against body weight.

linear and quadratic terms. Polynomial regression coefficients were simulated in a
realistic domain, while simulating from a MDs led to more extreme polynomial curves,
with a five times higher error on the standard deviation of the AUC (Figure 7.4). This
shows how covariate values can be inflated when simulating independent covariates.

Covariate distributions in large ICU data

To establish the use of copula for simulation in a larger data set, a simulation was
conducted based on 30 covariates from the MIMIC database (Data set 3). Copula
estimation and simulation was feasible on this large dataset, showing how copulas
can be useful for simulation for extensive pharmacometric models. The higher di-
mension did increase the underestimation of the correlations to a relative error of
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Figure 7.4: Polynomial curves for the six biomarkers from pregnancy data. In gray the estimated curves
from the observed data. The copula (turquoise) shows very similar patterns, while the marginal distribution
(yellow) shows extreme values, especially at the end of the curve.

0.11, which was slightly worse compared to the estimation in the lower dimensional
twelve- and three-covariate data sets. Some covariates show interesting dependency
structures, which can be evaluated and be used in covariate selection decision mak-
ing (Figure 7.5). The results from the larger data set also show that through the use
of copulas, it is feasible to share hospital data distributions.
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dashed line) and the simulated population from a copula (blue solid lines), with marginal densities on the
top and right sides of each plot. More overlap between the lines shows a better correspondence between
the observed and simulated patient covariates.

7.4 Discussion

We showed a competitive or superior performance of copula simulations compared
to other simulation methods, and we demonstrated multiple applications for covariate
simulations using copulas. Copulas were able to preserve the correlations between
covariates in lower and higher dimensional datasets. Preserving the dependence
structure in copula simulations allows for simulating covariate sets for realistic PK
predictions, time-varying covariates, and in a large scale data set, i.e., the MIMIC
data, thus making it a suitable method for virtual patient covariate simulations in
a variety of settings. Copula simulation has apparent benefits over currently used
methods, since these either neglect the dependence structure among the covariates,
or rely on real patient data in simulation.

We evaluated the performance of copulas compared to other simulation methods.
While performing well in lower dimensions, we observed increasing underestimation
in higher dimensions for CD, making the method less suitable for simulations in higher
dimension. The MVND showed very promising results in terms of capturing the corre-
lation (Figure 7.2). However, this is an inherent feature of how the MVND is estimated,
which is based on the mean, standard deviation, and covariance. It does, on the other
hand, not capture the actual shape of the distribution when covariates are not normally
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distributed (Figure S7.1). Although the bootstrap can fully preserve the dependence
structure between covariates, it cannot be used for simulation when actual data are
unavailable. Additionally, due to the resampling nature of the bootstrap, one cannot
simulate covariate values for virtual patients beyond which are present in the actual
data set, which may result in simulating an unbalanced virtual patient population. The
application of MDs was shown to simulate unrealistic patients, in the three situations
studied.

Preserving the dependence between covariates is required for simulation of real-
istic patients in terms of PK predictions in the pediatrics vancomycin model, used in
this study. The copula was able to preserve the relationship between the body weight
and the AUC, which is of high clinical relevance. This feature of copulas provides a
significant insight into how PK may differ between subgroups of patients. It allows
one to optimize the dose for a particular patient group or to study the differences
between patients groups. We found that PK at the population level is not affected by
the method used for virtual patient simulation (Figure 7.3). The impact of preserv-
ing the dependence structure can differ per model, as can be seen in simulating the
time-dependent covariates in the analysis of the pregnancy data. Here, polynomial
regression coefficients need to be simulated in a realistic domain, in order to pre-
serve the structure of the data, both on the individual and population level. Simulating
from a marginal distributions lead to extreme polynomial curves.

Access to real individual-level patient data is often hampered by personal data
protection regulations, which is a significant obstacle for community-driven design
of optimized treatment strategies and trial designs (Conrado et al., 2017). Although
copulas are mostly estimated on data, resulting copulas can be easily shared with-
out sharing patient data, allowing one to use established copulas for virtual patient
simulation (Gambs et al., 2021). Using copulas both opens opportunities for better
replication and comparison studies, and copulas can facilitate in simulation platforms
for sharing patient characteristics. The sharing of models has become more common
in the pharmacometrics community, for example through platforms for model shar-
ing, such as DDMoRe. However, models often require covariate input. Copulas can be
used to set up a large scale covariate simulation platform, which can accompany the
shared models to allow the clinical pharmacology community to simulate clinical tri-
als and dosing regimens for (special) populations, even when there is no patient-level
data available (Figure 7.6).

This paper did not address simulation of categorical variables. Discrete, ordered
categorical and binary covariates can be captured as a copula, by using rank-based
distributions (Czado & Nagler, 2022), however the copula method is not able to deal
with unordered categorical variables in a natural way (Faugeras, 2017).

Regardless of the method of simulation, further research would also require look-
ing into the underestimation of the correlation by the different simulation techniques,
since there are limits to the full characterization of the joint distribution. Visualization
of the simulation through density plots, allows to investigate how severe the discrep-
ancy between the observed and population and the copula is and whether it seems
clinically relevant. This can be evaluated on the level of the covariates, but also by
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Figure 7.6: Community access pharmacometrics research pipeline. Data and pharmacometric models
from (special) patient populations can be shared with the clinical pharmacology community. Through
copulas, covariate sets can be simulated, which, when used in PK/PD models, can aid treatment and dosing
optimization, ultimately improving treatment for the patients.

looking at the outcomes of pharmacometric models (Nguyen et al., 2017).

In summary, copulas represent an attractive approach to capture multivariate co-
variate distributions, which can be readily implemented for pharmacometric simu-
lations. Importantly, the distribution-based nature of copula’s has the distinct ad-
vantage that access to original individual-level datasets is not required when ap-
plied for virtual patient simulation, in contrast to resampling-based strategies. To
this end, copula models can address hurdles in accessing real clinical data by devel-
oping open access simulation models for distinct (special) patient populations, which
can be readily shared with the community and support clinical trial simulations and
treatment optimization.

References

Bonate, P. L. (2000). Clinical trial simulation in drug development. Pharmaceutical Research, 17(3), 252–
256. doi: 10.1023/A:1007548719885

132



7777777

Virtual patient simulation using copula modeling

Bonate, P. L. (2001). A Brief Introduction to Monte Carlo Simulation. Clinical Pharmacokinetics, 40(1),
15–22. Retrieved from http://link.springer.com/10.2165/00003088-200140010-00002 doi:
10.2165/00003088-200140010-00002

Chelliah, V., Lazarou, G., Bhatnagar, S., Gibbs, J. P., Nijsen, M., Ray, A., … Kierzek, A. M. (2020, Aug).
Quantitative systems pharmacology approaches for immuno-oncology: Adding virtual patients to
the development paradigm. Clinical Pharmacology & Therapeutics, 109(3), 605–618. Retrieved
from https://doi.org/10.1002%2Fcpt.1987 doi: 10.1002/cpt.1987

Cock, R. F. W. D., Allegaert, K., Brussee, J. M., Sherwin, C. M. T., Mulla, H., de Hoog, M., … Knibbe,
C. A. J. (2014, May). Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and
vancomycin clearance from neonates to adults: Towards a semi-physiological function for mat-
uration in glomerular filtration. Pharmaceutical Research, 31(10), 2643–2654. Retrieved from
https://doi.org/10.1007%2Fs11095-014-1361-z doi: 10.1007/s11095-014-1361-z

Conrado, D. J., Karlsson, M. O., Romero, K., Sarr, C., & Wilkins, J. J. (2017, Nov). Open innovation: To-
wards sharing of data, models and workflows. European Journal of Pharmaceutical Sciences,
109, S65–S71. Retrieved from https://doi .org/10 .1016%2Fj .ejps .2017 .06 .035 doi:
10.1016/j.ejps.2017.06.035

Czado, C. (2019). Simulating regular vine copulas and distributions. In Analyzing dependent data with
vine copulas (pp. 123–144). Springer International Publishing. Retrieved from https://doi.org/
10.1007%2F978-3-030-13785-4_6 doi: 10.1007/978-3-030-13785-4_6

Czado, C., & Nagler, T. (2022, Mar). Vine Copula Based Modeling. Annual Review of Statistics and Its
Application, 9(1), 453–477. Retrieved from https://www.annualreviews.org/doi/10.1146/
annurev-statistics-040220-101153 doi: 10.1146/annurev-statistics-040220-101153

De Cock, P. A. J. G., Mulla, H., Desmet, S., De Somer, F., McWhinney, B. C., Ungerer, J. P. J., … De Paepe,
P. (2016, Dec). Population pharmacokinetics of cefazolin before, during and after cardiopul-
monary bypass to optimize dosing regimens for children undergoing cardiac surgery. Journal of
Antimicrobial Chemotherapy, 72(3), dkw496. Retrieved from https://academic.oup.com/jac/
article-lookup/doi/10.1093/jac/dkw496 doi: 10.1093/jac/dkw496

Efron, B. (1979, Jan). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1).
Retrieved from https://doi.org/10.1214%2Faos%2F1176344552 doi: 10.1214/aos/1176344552

Faugeras, O. P. (2017, Jan). Inference for copula modeling of discrete data: a cautionary tale and some facts.
Dependence Modeling, 5(1), 121–132. Retrieved from https://www.degruyter.com/document/
doi/10.1515/demo-2017-0008/html doi: 10.1515/demo-2017-0008

Gambs, S., Ladouceur, F., Laurent, A., & Roy-Gaumond, A. (2021, Apr). Growing synthetic data through
differentially-private vine copulas. Proceedings on Privacy Enhancing Technologies, 2021(3), 122–
141. Retrieved from https://doi.org/10.2478%2Fpopets-2021-0040 doi: 10.2478/popets-2021-
0040

Grimsley, C., & Thomson, A. H. (1999, Nov). Pharmacokinetics and dose requirements of vancomycin in
neonates. Archives of Disease in Childhood - Fetal and Neonatal Edition, 81(3), F221–F227. Retrieved
from https://doi.org/10.1136%2Ffn.81.3.f221 doi: 10.1136/fn.81.3.f221

Holford, N., Ma, S. C., & Ploeger, B. A. (2010, Jul). Clinical trial simulation: A review. Clinical Pharmacology &
Therapeutics, 88(2), 166–182. Retrieved from https://doi.org/10.1038%2Fclpt.2010.114 doi:
10.1038/clpt.2010.114

Illamola, S. M., Colom, H., & Hasselt, J. G. C. (2016, Sep). Evaluating renal function and age as predictors
of amikacin clearance in neonates: model�based analysis and optimal dosing strategies. British
Journal of Clinical Pharmacology, 82(3), 793–805. Retrieved from https://onlinelibrary.wiley
.com/doi/10.1111/bcp.13016 doi: 10.1111/bcp.13016

Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L. A., & Mark, R. (2022). MIMIC-IV. PhysioNet. Retrieved
from https://physionet.org/content/mimiciv/1.0/ doi: 10.13026/7vcr-e114

Langenhorst, J. B., Dorlo, T. P., Kesteren, C., Maarseveen, E. M., Nierkens, S., Witte, M. A., … Huitema, A. D.
(2020, Apr). Clinical trial simulation to optimize trial design for fludarabine dosing strategies in
allogeneic hematopoietic cell transplantation. CPT: Pharmacometrics & Systems Pharmacology.
Retrieved from https://doi.org/10.1002%2Fpsp4.12486 doi: 10.1002/psp4.12486

Nagler, T. (2017, May). Asymptotic analysis of the jittering kernel density estimator. Mathematical
Methods of Statistics, 27(1), 32–46. Retrieved from http://arxiv.org/abs/1705.05431 doi:
10.3103/S1066530718010027

Nagler, T., & Czado, C. (2016, Oct). Evading the curse of dimensionality in nonparametric density estimation
with simplified vine copulas. Journal of Multivariate Analysis, 151, 69–89. Retrieved from https://
doi.org/10.1016%2Fj.jmva.2016.07.003 doi: 10.1016/j.jmva.2016.07.003

Nagler, T., & Vatter, T. (2020). kde1d: Univariate Kernel Density Estimation [Computer software manual].
Retrieved from https://cran.r-project.org/package=kde1d

133



Chapter 7

Nagler, T., & Vatter, T. (2021). rvinecopulib: High Performance Algorithms for Vine Copula Modeling [Com-
puter software manual]. Retrieved from https://cran.r-project.org/package=rvinecopulib

Nguyen, T. H., Mouksassi, M. S., Holford, N., Al-Huniti, N., Freedman, I., Hooker, A. C., … Mentre, F. (2017).
Model evaluation of continuous data pharmacometric models: Metrics and graphics. CPT: Pharma-
cometrics and Systems Pharmacology, 6(2), 87–109. doi: 10.1002/psp4.12161

Patel, J. P., Green, B., Patel, R. K., Marsh, M. S., Davies, J. G., & Arya, R. (2013, Sep). Population phar-
macokinetics of enoxaparin during the antenatal period. Circulation, 128(13), 1462–1469. Re-
trieved from https://doi.org/10.1161%2Fcirculationaha.113.003198 doi: 10.1161/circula-
tionaha.113.003198

Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9(6), 449–460.
Smania, G., & Jonsson, E. N. (2021, Apr). Conditional distribution modeling as an alternative method for

covariates simulation: Comparison with joint multivariate normal and bootstrap techniques. CPT:
Pharmacometrics & Systems Pharmacology, 10(4), 330–339. Retrieved from https://doi.org/
10.1002%2Fpsp4.12613 doi: 10.1002/psp4.12613

Tannenbaum, S. J., Holford, N. H. G., Lee, H., Peck, C. C., & Mould, D. R. (2006, Oct). Simulation of cor-
related continuous and categorical variables using a single multivariate distribution. Journal of
Pharmacokinetics and Pharmacodynamics, 33(6), 773–794. Retrieved from https://doi.org/
10.1007%2Fs10928-006-9033-1 doi: 10.1007/s10928-006-9033-1

Teutonico, D., Musuamba, F., Maas, H. J., Facius, A., Yang, S., Danhof, M., & Pasqua, O. D. (2015, May).
Generating virtual patients by multivariate and discrete re-sampling techniques. Pharmaceutical
Research, 32(10), 3228–3237. Retrieved from https://doi.org/10.1007%2Fs11095-015-1699-x
doi: 10.1007/s11095-015-1699-x

van Hasselt, J. G., van Calsteren, K., Heyns, L., Han, S., Mhallem Gziri, M., Schellens, J. H., … Amant, F.
(2014). Optimizing anticancer drug treatment in pregnant cancer patients: pharmacokinetic anal-
ysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel. Annals of
Oncology, 25(10), 2059–2065. Retrieved from https://doi.org/10.1093/annonc/mdu140 doi:
10.1093/annonc/mdu140

van Hasselt, J. G. C., Allegaert, K., van Calsteren, K., Beijnen, J. H., Schellens, J. H. M., & Huitema, A. D. R.
(2014). Semiphysiological versus Empirical Modelling of the Population Pharmacokinetics of Free
and Total Cefazolin during Pregnancy. BioMed Research International, 2014, 1–9. Retrieved from
http://www.hindawi.com/journals/bmri/2014/897216/ doi: 10.1155/2014/897216

van Hasselt, J. G. C., van Eijkelenburg, N. K. A., Beijnen, J. H., Schellens, J. H., & Huitema, A. D. R. (2014,
Dec). Design of a drug-drug interaction study of vincristine with azole antifungals in pediatric cancer
patients using clinical trial simulation. Pediatric Blood & Cancer, 61(12), 2223–2229. Retrieved from
https://onlinelibrary.wiley.com/doi/10.1002/pbc.25198 doi: 10.1002/pbc.25198

Vinks, A., Emoto, C., & Fukuda, T. (2015, Jul). Modeling and simulation in pediatric drug therapy: Application
of pharmacometrics to define the right dose for children. Clinical Pharmacology & Therapeutics,
98(3), 298–308. Retrieved from https://doi.org/10.1002%2Fcpt.169 doi: 10.1002/cpt.169

Yoneyama, K., Schmitt, C., Kotani, N., Levy, G. G., Kasai, R., Iida, S., … Kawanishi, T. (2017, Dec). A pharma-
cometric approach to substitute for a conventional dose-finding study in rare diseases: Example of
phase III dose selection for emicizumab in hemophilia a. Clinical Pharmacokinetics, 57(9), 1123–
1134. Retrieved from https://doi.org/10.1007%2Fs40262-017-0616-3 doi: 10.1007/s40262-
017-0616-3

134



7777777

Virtual patient simulation using copula modeling

Supplementary material

bootstrap conditional distribution copula marginal distribution mvnormal distribution

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
0.0

2.5

5.0

7.5

Age

B
od

y 
w

ei
gh

t

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
0

30

60

90

Age

S
C

r

0.0 2.5 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.5
0

30

60

90

120

Body weight

S
C

r

Figure S7.1: Densities of the three covariate simulations. Grey dashed lines show the observed joint
density for each pair of covariates. The solid lines represent the joint density of a simulated population for
each of the five simulation methods: bootstrap (blue), conditional distributions (pink), copula (turquoise),
marginal distribution (yellow) and multivariate normal distribution (green).
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